Effect of filler on performance of porous asphalt pavement using multiscale finite element method

More Info
expand_more

Abstract

Porous asphalt (PA) pavements are widely employed in areas with wet climates. As particle enhancement inclusions in asphalt mastic, mineral fillers play essential roles in improving the performance of PA pavements. This study developed a coupled multiscale finite element (FE) model, involving the mesostructure of PA mixture and PA pavement. Four types of mastic properties were employed with four mineral fillers (Granodiorite, Limestone, Dolomite, and Rhyolite) in the mesoscale portion of the pavement model to analyse the effects of filler types on the performance of pavements. The performances (load-bearing capacity, rutting resistance, and ravelling resistance) of pavements with different fillers were identified and ranked, and their correlations with the chemical components of the four fillers were analysed. The computational results showed that pavements with Rhyolite and Granodiorite fillers have higher load-bearing capacities and rutting resistance, while the Limestone and Dolomite fillers can improve the ravelling resistance of the PA pavements. In the correlation analysis, the chemical components Al2O3 and SiO2 play dominant roles in improving the load-bearing capacities and rutting resistance of the PA pavements, and the fillers with high percentages of CaO can improve the ravelling resistance of the PA pavements.

Files

AAM_Effect_of_filler_on_perfor... (pdf)
(pdf | 1.53 Mb)
- Embargo expired in 16-08-2021
Unknown license
Effect_of_filler_on_performanc... (pdf)
(pdf | 2.21 Mb)
Unknown license

Download not available