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In fractured geological formations, as a result of the in-situ stress changes, fractures can 
propagate or slide. This phenomenon can be efficiently modeled by the extended finite el-
ement method (XFEM) when there are only a few fractures present. However, geological 
reservoirs contain many fractures which can also cross and are densely populated. There-
fore, the classical XFEM is too expensive to be applied for the simulation of propagating 
fractures in geological formations. To reduce the costs, typically, homogenization or up-
scaling is used. However, they result in inaccurate solutions, since no separation of scales 
exists in this process. To resolve this challenge, in this work, a multiscale XFEM (MS-XFEM) 
for propagating fractures is developed and presented. In each time step, given the current 
geometries of the fractures, local XFEM-based basis functions are constructed or adaptively 
updated. The adaptive update takes place in certain regions where fracture geometries 
are changed due to propagation. Using these basis functions, a very efficient FEM-based 
coarse-scale system is developed since it has no extra degrees of freedom (DOFs). Once the 
coarse-scale system is solved, its solution is prolonged to the fine-scale original resolution 
using the basis functions. This approximate fine-scale solution is then used to estimate the 
group of growing fractures tips and their growing angles. This allows for exploiting the 
locality of the propagation process fully while solving a global system. To control the error, 
an iterative procedure is also developed. Proof-of-concept test cases are presented to study 
the developed MS-XFEM algorithm. It is shown that MS-XFEM results are capable of pre-
dicting the propagating paths for complicated fracture patterns. As such, MS-XFEM casts a 
promising method for field-scale applications.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The equilibrium state of fractured geological formations can be violated due to a sudden change of the state of stress, 
which can arise from anthropological operations. As a consequence, fractures can be activated and then slide or even prop-
agate. The consequences of sliding fracture phenomena can be disastrous, as it may cause surface subsidence or induced 
earthquakes [1,2], and impose high risks to the safety of the residents and surface infrastructure [3]. To be able to control 
and alleviate these risks, accurate and efficient simulation of growing fractures in underground formations is crucial.
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Fig. 1. An illustration of fractured domain setup.

In view of fracture growth, many mechanical theories have been proposed. To determine whether a fracture tip can grow 
or not, the Griffith theory [4] is commonly used. To further track the growth direction, different theories have been applied. 
The maximum principle stress theory [5] has been proved to be able to track the direction of crack growth under tension 
accurately. For complicated fracture networks, or a multiple fractured system, some fractures tips may not grow even if 
they meet the Griffith criterion as the global system tends to release minimum energy and form a stable crack pattern. The 
double virtual incremental method is a good option to determine whether the group of tips should propagate [6,7].

To simulate growing fractures, the extended finite element method (XFEM) [8,9], which is an embedded method for 
fracture mechanics simulation, is a viable option. Unlike the unstructured grid approach [10–15], the embedded method 
overcomes the problem of remeshing. It implies the enrichment to shape functions meanwhile not interfering with the 
discretization layout [16–20,9,21–26]. To match the partition of unity (PoU) property of shape functions [27], extra degrees 
of freedom (DOFs) are given to enriched nodes. Level set functions are introduced to help XFEM track the fracture tip 
positions [28,29].

Being widely used in fracture mechanics, the classical XFEM is not the ideal method for the simulation of massive DOFs 
propagation in geological formations. It is efficient to apply homogenization or an upscaling strategy using XFEM with 
coarse grid sizes but this will lead to loss of accuracy [30–38] and possibly even the wrong prediction of propagation paths 
of fractures. In addition to that, homogenization of the heterogeneities that span over large length scales can cause the loss 
of details. However, a finer mesh is computationally expensive even if it can preserve the accuracy of the final solution. The 
number of extra DOFss will increase significantly as the finer mesh is paired with XFEM for multiple fractures simulation, 
which makes the linear system size too large to be computed efficiently.

A scalable simulator, or a multiscale strategy, is used to seek the good balance between efficiency and accuracy for the 
simulation of the propagation of complicated fracture networks. The multiscale method (MS) [39–48] has been proved to 
be able to capture the fine-scale heterogeneity, by constructing accurate coarse-scale systems and thus reduce the compu-
tational costs. In presence of fractures that span over different length scales, an adaptive local projection method has been 
developed [49,50]. This method requires to solve on the coarse mesh and the coarse scale mesh solution is used as the 
boundary condition to simulate the micro-scale cracks DOFs on a finer scale mesh. As for the more geoscience oriented 
method, the multiscale extended finite element method (MS-XFEM) has been recently developed by Xu et al. [51]. This 
method incorporates the fine scale discontinuities into the basis functions and creates a finite element type problem on the 
coarse-scale mesh which contains no extra DOFs. Computation only takes place on a coarse scale mesh.

This paper expands the MS-XFEM to simulate fracture growth in highly fractured formations. The growing fracture tips 
are tracked by updating the basis functions which are generated based on the revised fine-scale stiffness matrix in an 
algebraic manner. Thus, in each time step the basis functions are updated only at the local domains in which the fracture 
geometry will change. Still, no extra DOFs are introduced on the coarse scale system. Preconditioned GMRES is used during 
the iterative solving stage to control the accuracy of the final results.

The structure of this paper is set as follows. First, the governing equations and the fine scale XFEM method are in-
troduced. Next, the level set functions assisted XFEM in simulation of multiple fractures propagation is introduced. Then 
the principles of how MS-XFEM in simulation of multiple DOFs simulation is presented. Different numerical test cases are 
presented to demonstrate the performance of the new method.

2. Governing equations and XFEM

Consider a domain � bounded by � as shown in Fig. 1. Prescribed displacements or Dirichlet boundary condition are 
imposed on �u , while traction are imposed on �t . The multiple crack surfaces �c,i=1...n are assumed to be traction-free 
under tension loading.

The momentum balance equations and boundary conditions read

∇ · σ + f = 0 in �, (1)
2
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Fig. 2. Two types of the junction enrichment functions (a) T-shape junction enrichment functions. (b) X-shape junction enrichment divided into two T-shape 
enrichment functions.

σ · n = t̄ on �t , (2)

σ · n = 0 on �c, (3)

u = ū on �u, (4)

where σ is the stress tensor and u is the displacement field over the whole domain. n is the normal vector pointing outside 
the domain.

A linear elastic constitutive law is applied in this paper. The second order partial differential equation (PDE) for displace-
ment field u reads

∇ · (C : ∇su) + f = 0, (5)

where ∇s denotes the symmetrical part of the gradient operator. C is the linear elastic constitutive tensor. In this manuscript, 
the constitutive law is simplified to the linear elastic model without considering the poroelasticity. However, a damage 
model or poroelasticity model can be conveniently integrated in Eq. (5) [52,53,41]. Eq. (5) is then solved for computational 
domains with DOFs (representing faults and fractures) by using XFEM. Next, the XFEM is revisited briefly.

2.1. Extended Finite Element Method (XFEM)

The XFEM introduces different types of enrichment to the classic shape functions to represent discontinuities. The ele-
ment cut fully by the fracture path is enriched by a jump enrichment. Elements crossed by different fractures are enriched 
with a junction enrichment. An additional crack tip enrichment is not applied in this paper for convenience of implementa-
tion. Below brief descriptions of the two enrichment functions are provided.

2.1.1. Jump enrichment
The jump enrichment represents the discontinuity in the displacement field across the fractured body. The jump enrich-

ment is often chosen as a step function, which can be expressed as

H(x) =
{

1 on �+

−1 on �− . (6)

Note that �+ and �− zones are determined based on the normal vector n pointing out of the fracture curve.

2.1.2. Junction enrichment
In a multiple DOFs simulation, crossing of DOFs needs to be considered. To simulate that in XFEM, the junction enrich-

ment, or the crossing enrichment, is applied [25]. There are two situations of crossing considered: T-shape crossing and 
X-shape crossing.

The T-shape enrichment is the commonly seen scenario in an underground fracture network and it is illustrated in 
Fig. 2(a). The crack with its tip joined with another crack’s main path is called the minor crack and the other crack is called 
the main crack. For any Gauss point in the T-shape crossed element there is one jump function addressed due to the major 
crack. If this Gauss point is on the negative side of the main crack, i.e., the jump function value due to main crack H I (x) is 
negative, the junction enrichment function value is 0. If this point is on the positive side of the main crack, i.e., the jump 
function value due to main crack H I (x) is positive, the junction enrichment function value is equal to the jump enrichment 
function value due to the minor crack H I I (x). Thus T-shape function J (x) is given by

J (x) =
{

H I I (x) H I (x) > 0

0 H I (x) < 0
. (7)

Another type of crossing is X-shape crossing as shown in Fig. 2(b). To enrich this, usually the minor crack is decomposed 
into two minor DOFs. Thus, two sets of T-shape functions are introduced to each of the X-shape enriched node. Note that 
3
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for either T-shape or X-shape junction enrichment, there will be always a jump enrichment added to each junction enriched 
node due to the main crack.

2.1.3. XFEM linear system
The XFEM approximates the displacement field d at fine-scale resolution h by dh which is defined as

d ≈ dh =
∑
i∈I

ui Ni +
∑
j∈ J

a j N j(H(x) − H(xc)) +
∑
k∈K

bk Nk( J (x) − J (xc)), (8)

where N , H and J represent, respectively, the classical FEM shape functions, the jump function and the junction enrichment 
functions. xc represents the coordinates of the enriched mesh nodes. The u denotes the standard DOFs associated to the 
classical finite element method and a denotes the extra DOFs associated to the jump enriched nodes. Note that a also 
includes the jump enriched extra DOFs in the crossing fractured element due to the main crack. The multipliers b are the 
extra DOFs due to the junction enrichment. The resulting linear system entails the nodal displacement unknowns u, as well 
as the jump enriched extra DOFs a and junction enriched extra DOFs b per fracture (and fault). The augmented XFEM linear 
system K h dh = f h , therefore, reads⎡

⎣ Kuu Kua Kub
Kau Kaa Kab
Kbu Kba Kbb

⎤
⎦

︸ ︷︷ ︸
Kh

⎡
⎣u

a
b

⎤
⎦

︸ ︷︷ ︸
dh

=
⎡
⎣ fu

fa

fb

⎤
⎦

︸ ︷︷ ︸
fh

. (9)

3. Multiple fractures propagation simulation

In this section, the methodology used to predict fracture propagation is explained. To simulate fractures growth, level sets 
functions assisted XFEM is introduced. The same methodology is used during the application of MS-XFEM in the simulation 
of fracture propagation.

3.1. Propagation criterion

Griffith’s theory [4] states that the fracture tip will grow if the energy release rate, G , is larger than or equal to the 
critical energy release rate, Gc . This is expressed as

G � Gc, (10)

where G is defined as the rate of energy decreased per unit fracture surface area increased [4]. Eq. (10) can be also written 
in terms of the stress intensity factor K as

K � Kc, (11)

where Kc is called fracture toughness.
The fracture increment in this paper is defined as a user-defined input. The angle of propagation can be quantified using 

different theories. In this paper, only test cases under tensile forces are performed, the maximum principle stress theory is 
used to predict the direction of fracture propagation according to

θ = 2 arctan
1

4
(

K I

K I I
±

√
(

K I

K I I
)2 + 8), (12)

where K I is the stress intensity factor for mode I fracture which means the opening mode fracture and K I I is the stress 
intensity factor for mode II fracture which represents the sliding mode fracture.

3.2. Level sets functions assisted fracture propagation

The growing crack tip always leads to a change of crack geometries, which can be tracked by using level sets functions. 
Below the level sets functions and how they can help track the propagation of fractures tips will be introduced briefly.

3.2.1. Level sets functions
Level set functions are usually defined as signed distance functions. Two level set functions are applied in this paper. The 

first function, ψ , represents the signed distance from any point to the main crack path. It is defined as

ψ(x, t) = ± min
�c

||(x − x�c )||. (13)

x ∈�c

4
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Fig. 3. Illustration of (a) the level set functions and (b) the update of the function φ upon a crack increment ||F ||.

�c represents the crack or discontinuity interface and thus it is a zero valued interface for ψ . The second function, φ, is 
defined as the signed distance to the tangential line ξ crossing the crack tip, defined as

φi(x, t) = ± min
xξ ∈ξ,i

||(x − xξ )||, i = 1,2. (14)

Similarly, ξ represents the zero valued interface for function φ. Normally, there will be two φ functions indicating that there 
are two tips for each crack. To combine them into one function, for any point the maximum value of [φ1, φ2] is selected as 
the φ value, i.e.,

φ(x, t) = max(φ1, φ2). (15)

In Fig. 3 (a) the two level set functions are shown.

3.2.2. Update of level sets functions
The update of level sets functions is done at the beginning of each step. The crack angle can be computed using Eq. (12). 

The incremental crack length is also explicitly known as user-defined input and its value is denoted as ||F||. The growth of 
the tip is then traced by updating the zero value interface of function φ with propagation speed F = (Fx, F y).

The current functions φ at time step, φt , are rotated with angle θ as shown in Fig. 3 (b). The function (φt)′ represents 
the rotated function φt . Next, function φt+1 is constructed via

φt+1 = (φt)′ − ||F||. (16)

After updating functions φ, the function ψ is recomputed to construct the function ψ t+1. Details can be found in the 
literature [29].

Updating the level set function values is not necessarily needed for all the elements in the model. The level set functions 
update can be limited to the elements, or to a narrow band, in which the fracture tips will propagate into.

3.3. Multiple fractures propagation

Unlike propagation of a single fracture, the impact of the increment of one fracture tip to another needs also to be 
considered in a multiple fractures propagation problem. Some fracture tips will grow and they are grouped as competitive 
tips ncomp . These tips must strictly follow Eq. (11). But not all of them can grow since the whole fractured system tends to
form a stable crack pattern with minimum energy dissipation [6]. The unstable configuration of fractures path is defined as

(
∂Gi

∂l j
− ∂Gc,i

∂l j
) � 0, ∀i, j ∈ ncomp, (17)

where ∂Gi/∂l j is the derivative of energy release rate of crack tip i with respect to crack tip j increment. ∂Gc,i/∂l j is the 
derivative of critical energy release rate of crack tip i with respect to crack tip j increment.

At the beginning of each fracture growth step, the matrix ∂G/∂l needs to be constructed to check whether the chosen 
growing path meets the criterion described by Eq. (17). The double virtual incremental method is applied to construct the 
matrix ∂G/∂l. In the double virtual incremental method, it is assumed that the growth of the tips would only affect a small 
region near the fractures tips. The virtual fracture tip i increment, li , is approximated using virtual displacement function 
5
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Fig. 4. Function 
 (green) and function � (blue) belong to one tip (i = j) or belong to different tips (i �= j). The gradients of both functions are 0 outside 
the colored zones. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

�i . The virtual fracture tip j increment, l j , is approximated using the virtual displacement function 
 j . These functions 
are shown in Fig. 4. Note that the radius of the non-zero gradient zone of function 
 is normally twice the radius of the 
none-zero gradient zone of function �.

The virtual displacement field d̃ j is constructed in order to compute ∂Gi/∂l j . To compute this virtual displacement field, 
a virtual force vector f̃
 j around the fracture tip j is defined as

f̃
 j =
∫

BT (CB̃
 j d − σdiv(
 j))d� +
∫

B̃T

 j

σd�, (18)

where C is the linear elastic constitutive matrix. The B matrix represents the strain-displacement matrix that contains the 
gradients of shape functions inside each element [54]. The matrix B̃
 j is assembled similar to the construction of the B

matrix. Each component of B̃
 j is constructed by multiplying the gradient of the function 
. Details can be found in [6]. 
The virtual displacement field d̃ j is given by

d̃ j = K−1 f̃
 j . (19)

The derivative of the energy release rate at fracture tip i corresponding to incremental of fracture tip j increment is com-
puted using

∂Gi

∂l j
= dT [

∫
(BT CB̃�i + B̃T

�i
CB − BT CB)d�]d̃T

j . (20)

The construction of B̃�i is carried out by multiplying B with the gradient of function �.
The matrix ∂G/∂l is constructed by assembling the terms ∂Gi/∂l j . The maximum subdeterminant of matrix ∂G/∂l pro-

vides the set of fracture tips that would grow in the current time step, defined as N grow , which read

Ngrow = max︸︷︷︸
∀i, j∈ncomp

[
det(

∂Gi

∂l j
) � 0

]
. (21)

If the maximum subdeterminant value is negative, no fracture tips will grow.

4. MS-XFEM in simulation of multiple fractures propagation

The propagation of a fracture network, unlike propagation of a single fracture, means that many more extra DOFs are 
added in each new time step. This will increase the size of additional blocks such as Kaa shown in (9). Multiscale simulation 
6
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Fig. 5. Illustration of the multiscale mesh imposed on a given fine-scale mesh, with a coarsening ratio of 4 × 4. The fine scale mesh nodes in each coarse 
scale element can be categorized as internal nodes, edge nodes and vertex nodes.

becomes necessary to reduce the computational burden caused by the excessive number of fractures. MS-XFEM is creating 
a finite element type system on a coarse scale mesh without any extra DOFs required. It would become a good solution to 
simulate the fractures propagation in underground formation. Preconditioned GMRES is used to control the error level in 
the final solution as will be explained.

4.1. Multiscale simulation

The fine scale solution dh can be approximated with the solution field d′h by a multiscale formulation

dh ≈ d′h = P dH , (22)

where P is the matrix of basis functions (i.e., prolongation operator) and dH are the nodal displacements at the coarse scale 
mesh �H . Prolongation operator P has the dimension of Nh × N H . Nh is the size of the fine-scale enriched XFEM system 
including the extra DOFs and N H is the size of the coarse mesh. All extra DOFs and enrichment functions are included 
in matrix P instead of vector dH , which reduces the size of the coarse scale linear system. This is crucial in significantly 
improving the computational efficiency in these large-scale heterogeneous systems.

4.1.1. Coarse scale linear system
MS-XFEM solves the linear system of equations on the coarse mesh, imposed on a given fine-scale mesh, as shown in 

Fig. 5. The coarsening ratio is defined as the ratio between the coarse mesh size and fine-scale mesh size, which is 4 × 4
for the example shown in Fig. 5.

To construct the coarse-scale system of equations and solve for dH , the fine-scale linear system (Kh dh = fh) is restricted 
to the coarse-scale via

(R Kh P)︸ ︷︷ ︸
KH

dH = R fh. (23)

Here, R is the restriction operator with size N H × Nh , defined as the transpose of basis function operator

R = PT . (24)

This results in the coarse-scale system matrix KH size of N H × N H . Once the coarse-scale system is solved on KH space for 
dH , one can compute the approximate fine-scale solution using Eq. (22). Overall, the multiscale procedure can be summa-
rized as finding an approximate solution d′h according to

dh ≈ d′h = P dH = P(R Kh P)−1R fh. (25)

In here, the term P(R Kh P)−1R is called the multiscale operator M−1
MS .

Next, the prolongation operator P, i.e., the basis functions are explained in detail. Once P is known, all terms in Eq. (25)
are defined.
7
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4.1.2. Iterative strategy
Preconditioned GMRES [55] is applied to control the error and reduce it to any desired tolerance. To reduce the high 

frequency error, a fine-scale smoother M−1
sm (usually named as ILU(0) [56]) is paired with the multiscale operator M−1

M S . The 
preconditioner used here involves the multiscale operator and the fine scale smoothing operator following

M−1 = M−1
M S + M−1

sm (I − K h M−1
M S). (26)

The system in Eq. (25) is then iteratively solved using preconditioned GMRES until the error is reduced to the desired 
tolerance.

4.2. Algebraically construction of basis functions

In order to obtain the basis functions, a local XFEM problem can be solved in each coarse element of �H . This can be 
expressed as

∇ · (C : (∇ S N H
i )) = 0 in �H , (27)

subject to local boundary conditions. A reduced-dimensional equilibrium equation is composed to solve for the boundary 
elements as

∇‖ · (Cr : (∇ S‖ N H
i )) = 0 on �H . (28)

Here, �H denotes the boundary of the coarse element �H . In addition, ∇ S‖ denotes the reduced dimensional divergence and 
symmetrical gradient operators, which contains the gradient to either only x-direction or only y-direction. Moreover, Cr is 
the reduced-dimensional (here, 1D in 2D domain) averaged elasticity tensor along the x direction and y direction boundary 
of the coarse element according to

Cr,x =
⎡
⎣ λ̄ 0 0

0 0 0
0 0 μ̄

⎤
⎦ , Cr,y =

⎡
⎣0 0 0

0 λ̄ 0
0 0 μ̄

⎤
⎦ , (29)

where, λ̄ and μ̄ are the averaged Lamé parameters along the coarse scale element boundary. The basis function matrix P is 
composed of terms from x and y directions and has the form of

P =
[

P xx P xy

P yx P yy

]
. (30)

To construct basis functions matrix algebraically, the stiffness matrix needs to be reordered. The reordered system allows to 
solve the Eq. (28) firstly, which is composed by only boundaries terms, and then the equilibrium equation Eq. (27) is solved. 
In Fig. 5, it is shown that all nodes in any coarse element can be split into three groups: internal, edge and vertex nodes. 
The fine-scale stiffness matrix Kh is permuted using the permutation operator T as⎡

⎣ K I I K I E K I V

K E I K E E K E V

K V I K V E K V V

⎤
⎦

⎡
⎣ dI

dE

dV

⎤
⎦ =

⎡
⎣ f I

f E

f V

⎤
⎦ . (31)

Here, I represents the internal nodes, E represents the edge nodes and V represents the vertex nodes. The coarse-scale 
solutions can be computed based on the solutions on the vertex nodes. The functions that interpolate the solution between 
the vertex nodes through the edge and internal nodes are then the necessary basis functions.

The reduced-dimensional boundary condition Eq. (28) is now being imposed by a 1D XFEM discrete system in the 2D 
XFEM problem. This causes the entry K E I to vanish, as the connectivity between the edge and internal nodes for the edge 
elements is assumed to disappear. This 1D edge equations can then be expressed as

K R
E EdE + K R

E V dV = 0. (32)

Since the solutions at vertex nodes will be obtained from the coarse-scale system, the reordered fine-scale matrix can now 
be reduced to⎡

⎣ K I I K I E K I V

0 K R
E E K R

E V
0 0 K H

⎤
⎦

⎡
⎣ d′

I

d′
E

d′
V

⎤
⎦ =

⎡
⎣ 0

0
f H

⎤
⎦ , (33)

where, the d′
I , d′

E and d′
V are the approximated displacements solutions for the internal nodes, edge nodes and vertex 

nodes. Note that the equations for basis functions do not consider source terms in their right-hand-side while these are 
transferred to the coarse scale system. Given the coarse nodes solutions d′ , one can obtain the solution at the edge via
V

8
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Fig. 6. An example of updating the basis functions that captures the fracture growth from (a) step 2 to (b) step 6. The white segment represents the 
fracture.

Algorithm 1 Algorithm of MS-XFEM in fracture growth.
while Set of growing tips, ngrow , is not empty do

Update stiffness matrix K f

Update P locally
Update the MS-XFEM solutions: dh

M S iteratively
Compute the ngrow using double virtual incremental method
Compute the growing angle θ
Update level sets functions: ψ t → ψ t+1, φt → φt+1

Update fracture tip positions and enrichment
end while

d′
E = −(K R

E E)−1 K R
E V d′

V = PE V d′
V . (34)

Similarly, the solution at the internal cells reads

d′
I = −K −1

I I (K I Ed′
E + K I V d′

V )

= −K −1
I I (−K I E(K R

E E)−1 K R
E V + K I V ) d′

V = PI V d′
V . (35)

Note that PE V and PI V are the sub-matrices of the prolongation operator. The prolongation matrix is then defined as

d′ =
⎡
⎣ d′

I
d′

E
d′

V

⎤
⎦ =

⎡
⎣ P I V

P E V

I V V

⎤
⎦

︸ ︷︷ ︸
P

d′
V . (36)

Here, I V V is the diagonal identity matrix equal to the size of the number of vertex nodes.
After defining the prolongation operator algebraically, based on the entries of the 2D XFEM (for internal nodes) and 1D 

XFEM (for edge nodes), one can determine the multiscale solution.

4.3. MS-XFEM on fracture propagation

The propagation of fracture tips will change the geometries of fine scale discontinuities and these changes should be 
captured by the basis functions in MS-XFEM, as shown in Fig. 6. To be able to use MS-XFEM to simulate the fracture 
propagation, the basis functions need to be updated during each growth step. Note that it is not necessary to update the 
basis functions matrix globally since the fracture tips growth only affect the local coarse elements that contains this growing 
fracture tip or this fracture tip will propagate into.

Update of basis functions is straightforward with the algebraic method. In each growth step, the basis functions matrix 
is updated locally only on those coarse elements that are affected by the growing fracture tips. This is done by extracting 
the terms of the updated K f matrix and reconstructing the local basis functions matrix Pl and reassemble Pl into global P
matrix.

The Algorithm 1 shows the procedure how to use MS-XFEM simulate fractures propagation.
9
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Fig. 7. Test case 1: illustration of the model setup.

When multiple fractures grow and cross each other, it is reasonable to apply adaptive local refinement around the 
crossing points or the fracture tips. This will improve the quality of the MS-XFEM results. A strategy such as ADM (adaptive 
dynamic multilevel) is a good option to be applied [57]. Currently these are not involved in this paper.

5. Numerical test cases

In this section both test cases have been performed to investigate the applicability of the MS-XFEM in simulation of 
single and multiple fractures propagation. For all test cases, a square 2D domain of 10 [m] × 10 [m] is considered. The 
material of both test cases is homogeneous sandstone with a Young’s modulus E = 25 [GPa] and Poisson’s ratio of 0.2. The 
fracture toughness of sandstone Kc = 1.4 × 106 [Pa · m− 1

2 ] [58,59]. The fine scale mesh is set as 49 × 49 and the coarse 
mesh is 7 × 7 for both test cases. This results in a coarsening ratio of 7 × 7 in both x and y directions.

Both test cases are simulated using the MS-XFEM and compared with the fine scale results to check accuracy. To illustrate 
the importance of the iterative strategy on quality control, the result computed without using the iterative strategy, i.e., 
directly computed from (25), is shown. Also the result computed using preconditioned GMRES is shown. The criterion to 
stop the iterations is set as if the norm of the residual ||rn||2 at current time step tn is less than τ of the original residual 
norm ||r0||2

||rn||2
||r0||2

� τ . (37)

The tolerance input is affecting the number of iterations required to reach convergence. In this paper, two different tolerance 
values, τ = 10−8 and τ = 10−2, are applied. It is essential to observe how much improvement the iterative strategy can bring 
since this strategy will add extra computational burden. Normally there is no doubt that a tolerance of τ = 10−8 would give 
very accurate MS-XFEM solutions but it is also valuable to analyze whether the less accurate solutions (τ = 10−2) are 
acceptable since this less accurate solution has less computational burden.

5.1. Test case 1: homogeneous sandstone with single fracture

A single horizontal fracture test case as shown in Fig. 7 is simulated here. The fracture tip coordinates are shown in Fig. 7. 
The Dirichlet boundary conditions are applied at the bottom. The left-bottom corner is fixed in both x and y directions while 
the rest of the nodes at the bottom boundary are fixed only in y direction. At the top boundary, a distributed upward loading 
q = 109 [N/m] is applied. The left and right boundaries are set as stress free. The maximum step size that the fractures 
allowed to grow is 7 seconds, or 7 [s], and each time step is 1 [s]. In each step the length of the fracture increment is 
constant 0.4 [m].

Results for the displacement field without iterative strategy (Fig. 8(a)) and with the iterative strategy using an accuracy 
tolerance of τ = 10−2 (Fig. 8(b)) at the end of time step 4 are shown. The result for tolerance τ = 10−8 is not shown since 
it is nearly identical to the fine scale solution. Both MS-XFEM results (red color lines represent the coarse mesh 7 × 7) are 
plotted on top of the fine scale XFEM result (blue color using the mesh 49 × 49) in order to compare them.

Without the assistance of preconditioned GMRES, there is an obvious difference between the MS-XFEM solution com-
pared to fine scale solution in Fig. 8 (a). The maximum difference between the displacements solutions is 0.22 [m]. This 
result properly captures the opening of the fracture. The MS-XFEM result with error tolerance τ = 10−2 is very close to the 
10



Fig. 8. Test Case 1: displacement field at time step 4 using (a) no iterative strategy and (b) tolerance τ = 10−2 with 11 iterations to reach convergence. 
Red lines represent the coarse scale mesh with MS-XFEM displacement field plotted on coarse scale grid. Blue lines represent the fine scale mesh with fine 
scale solution plotted on fine scale grid.

fine scale XFEM result. The number of iterations required for Fig. 8 (b) is 11 while the iterations for obtaining the solution 
with tolerance τ = 10−8 is 34 which implies more computational costs.

The crack path from initial step to final step is tracked and at time step 4 and 6 the crack patterns are plotted in Fig. 9. 
The crack angle is computed using Eq. (12). The two crack paths are computed using the MS-XFEM displacement solutions 
that computed without iterative strategy and with the iterative strategy using the tolerance of τ = 10−2. These two crack 
paths are both compared with the crack path computed based on the fine scale displacement field. Note that the crack paths 
predicted using fine scale XFEM solutions are plotted in blue color. It is clear that using the iterative strategy or not yields 
the same crack path considering that this is a pure mode I problem of single fracture. For complicated fracture systems as 
for the next test case, this is not true.

The convergence characteristic at step 2, 4 and 6 using preconditioned GMRES is shown in Fig. 10. The number of extra 
DOFs involved in these three steps are: 112, 144 and 176, respectively. The number of iterations to reach convergence with 
respect to a tolerance of 10−8 of these three steps are: 32, 34 and 36. Thus the iterations required to reach convergence 
are slightly increasing with the growth of fractures. This is reasonable since growing fractures increase the number of extra 
DOFs.

5.2. Test case 2: homogeneous sandstone with multiple fractures

The second test case is used to test the application of MS-XFEM in the simulation of multiple fractures propagation. 
The fractures setup is shown in Fig. 11. The fractures are rotated around its center point (marked with red circle). The 
coordinates of center points of each fracture and the rotation angles are shown in brackets. The four fractures been labeled 
with a number from 1 to 4. The initial length of each fracture is all 1 [m]. Number of maximum growing step size is set 
as 17 [s] and each time step size is 1 [s]. The fracture increment is set as 0.4 [m] per time step. The Dirichlet boundary 
conditions are applied at the bottom. The bottom center point is fixed in both x and y directions while the rest of the nodes 
along bottom boundary are fixed in y direction. At the top a distributed upward loading q = 107 [N/m] is applied. The left 
and right boundaries are set as stress free.

If no GMRES is used to control the error level of final solutions, the MS-XFEM fails to predict the crack path as shown 
in Fig. 12. This suggests that the errors accumulated in highly fractured system will become too significant to ignore them 
and thus the iterative strategy is necessary to be paired with MS-XFEM. In the following, only the test case using GMRES 
with tolerance of τ = 10−2 is studied.

The propagation crack paths at step 4, 10 and 15 are shown in the upper row of Fig. 13. It is clear that not all tips will 
grow considering the global minimum energy release by Eq. (21). Since the preconditioned GMRES is applied, displacement 
field solutions from MS-XFEM are close to the fine scale XFEM solutions, which is shown in the bottom row of Fig. 13.

However, there is still small difference between the predicted crack pattern in step 15, which is shown in the top right 
part of Fig. 13 (c). This is due to the generous tolerance τ = 10−2 given in here. When the tolerance is set as high as 
τ = 10−8, the accuracy of MS-XFEM result is very high as shown in Fig. 14. But the iteration number required to reach 
τ = 10−8 is 53 while it only requires 28 iterations to reach τ = 10−2. Considering the less computational burden, the result 
of Fig. 13 (c) is still considered as good prediction.

The stress plots are shown in the lower row of Fig. 13, which partly reveals why some tips grow and others do not. The 
sequence of propagating crack tips is as follows. First, both the two tips of fracture 3 grows since the maximum stress is 
F. Xu, H. Hajibeygi and L.J. Sluys Journal of Computational Physics 486 (2023) 112114
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Fig. 9. Test case 1: fracture propagation path at step 4 and 6. Red lines represent the coarse scale mesh. Blue segments and blue circles represent the fine 
scale fracture path while red segments and red crosses represent the path predicted using MS-XFEM. The left column includes the paths predicted using 
MS-XFEM without iterations. The right column includes the paths predicted using MS-XFEM with tolerance of 10−2.

Fig. 10. Test case 1: convergence history at step 2, 4 and 6 using preconditioned GMRES. The corresponding extra DOFs are: 112, 144 and 176. The number 
of iterations to reach convergence is increasing as fracture is growing.
12
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Fig. 11. Test case 2: Multiple fractures within a homogeneous sandstone sample under tension stress.

Fig. 12. Test case 2: crack pattern predicted at step 12. The blue curve represents the crack path predicted using only the fine scale solution and the red 
curves represent the incorrect crack paths predicted using MS-XFEM solution.

located around both tips of fracture 3, as shown in Fig. 13 (d). At step 9, the left tip of fracture 3 reaches at the left edge 
of domain. Then the right tip of fracture 3 propagates since the maximum stress surrounds this tip as shown in 13 (e). At 
step 12, the right tip of fracture 3 grows and joins fracture 4. After that, the top fracture tip of fracture 4 continues to grow, 
which is represented in Fig. 13 (f) since the top fracture tip is located in the peak stress area.

The convergence characteristics, recorded using preconditioned GMRES, are shown in Fig. 15. In this figure, the conver-
gence characteristics at step 4, 10 and 15 are plotted. Extra DOFs for each of these steps, respectively, are: 136, 192 and 
248. The iterations required to reach convergence with respect to the tolerance of 10−8 are: 38, 46 and 53, respectively. 
Clearly, the number of iterations required to reach convergence is increasing as the fractures are growing.

6. Conclusion

An adaptive multiscale method for XFEM, namely MS-XFEM, is proposed to track the propagation of multiple fractures 
in geological formations. The growth of fractures leads to the extension and also the junction of discontinuities. The basis 
functions are capable of capturing this extension or junction of the fine scale fractures. The basis functions are updated in 
an algebraic manner based on the updated fine-scale stiffness matrix, which is revised in accordance with the growth of 
fractures. This makes MS-XFEM suitable to simulate propagation of fractures. With the assistance of preconditioned GMRES, 
the quality of the displacement field result is controlled to a certain level of accuracy, which ensures the correct prediction 
of fractures growth in the next step. Test cases results show that MS-XFEM with preconditioned GMRES track the growth of 
fractures paths correctly, even if the error tolerance is not extremely small. This means that the basis functions successfully 
capture the changes of these fractures.
13
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Fig. 13. Test case 2: crack paths growing history at step 4, 10 and 15. Upper row includes crack patterns predicted. Red segments and crosses represent 
crack paths predicted using MS-XFEM result and blue segments and circles represent the crack paths predicted using fine scale XFEM result. The middle 
row includes the stress plot of σyy at these steps. The bottom row includes the displacement field solutions by fine scale XFEM (blue) and MS-XFEM (red).

Fig. 14. Test case 2: crack pattern predicted at step 15 using tolerance value of 10−8. The blue curve represents the crack path predicted using only the fine 
scale solution and the red curves represent the correct crack paths predicted using MS-XFEM solution. 53 iterations required to reach this accuracy while 
only 28 iterations required to reach τ = 10−2.
14
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Fig. 15. Test case 2: convergence history using preconditioned GMRES. The number of extra DOFs at steps 4, 10 and 15, respectively, are: 136, 192 and 248. 
The number of iterations to reach convergence is increasing with the growth of fractures.
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