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Modelling driver expectations for safe speeds on freeway curves using
Bayesian belief networks
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Department of Transport and Planning, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
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A B S T R A C T

Sharp curves in freeways are known to be unsafe design elements since drivers do not expect them. It is difficult
for drivers to estimate the radius of a curve. Therefore, drivers are believed to use other cues to decelerate when
approaching a curve. Based on previous successful experiences of driven speeds in curves, drivers are thought to
have built expectations of safe speeds given certain cues, minimalising risks. This research employs a Bayesian
Belief Network to model driver expectations using measured speeds in 153 curves and data on the characteristics
of the curve approaches. This model mimics expectations as the probability of measured speeds given certain
cues. Using Bayes theorem, prior beliefs on safe speeds are updated towards a posterior belief when a new cue is
observed during curve approach. We refer to this posterior belief as expected safe speed. Drivers are assumed to
adjust their operating speed if it does not match their expected safe speed. The model shows that the visible
deflection angle has a large influence in setting the expectations of a safe speed for an upcoming curve. In
addition, the preceding type of roadway and the number of lanes are both important cues to set a driver’s ex-
pectations of a safe speed. Speed and warning signs are shown to be interdependent on the road scene and hence
have less influence in setting expectations. This research shows that design and safety assessment of freeway
curves should be considered aligned with the road scene upstream of the curve.

1. Introduction

Both in research and in policy making, there is an increasing interest
in a pro-active road safety assessment, based on infrastructure, its sur-
roundings and human factors knowledge, i.e. how drivers interact with
the road (Domenichini et al., 2022; SWOV, 2018). Sharp curves in
freeways are known to be unsafe design elements, especially when
drivers do not expect them (Davidse and Duijvenvoorde, 2020; Elvik,
2022). Research on the interaction between curve characteristics and
driver behaviour in the curve itself are available and can be used in pro-
active assessment of road design and safety (Charlton, 2007; Jamson
et al., 2015; Lappi and Lehtonen, 2012; Ryan et al., 2022). Driving task
descriptions for curve driving however indicate that drivers anticipate a
curvewell ahead of the start of the curve, by using visual cues on the road
to recognize an upcoming curve and using signage to estimate a needed
speed change in order to drive safely in the curve (Campbell et al.,
2012). The estimation of a safe speed in curves is thought to be based on
drivers’ judgement of driving comfort and the ability to slow down
safely without skidding (Gibson and Crooks, 1938; Summala, 2007).

Since drivers start anticipating the curve well ahead of the curve start
itself, they are assumed to have expectations of safe speeds based on the
visual cues they receive during curve approach, such as roadside signs
and the road scene upstream of the curve (Campbell et al., 2012). These
expectations are believed to be stored in memory schemata of drivers
(Charlton and Starkey, 2017b), connecting road characteristics to safe
speeds. Quantitative research of speed behaviour in curve approach is
covered in deceleration models (Nama et al., 2020), but these models do
not take into account the visual cues drivers use during curve approach.
They merely show correlations between deceleration and the curve
geometric design elements itself. Our aim is to develop a generalizable
and quantifiable method to model drivers’ expectations during curve
approach. This will help to explain which visual cues drivers use to
decelerate and that can be used pro-actively in road-design and road
safety assessment.

To build such a generalizable and quantifiable model, we first
identify which cues are known to influence driving speed behaviour
during curve approach (Section 2). We then proceed by discussing how
these cues are perceived by drivers and how they build expectations on
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certain safe speeds in curves. Next, we show how to model these ex-
pectations using a Bayesian approach. This approach is suitable since it
is assumed to resemble how drivers build-up and update their expecta-
tions of safe speeds during curve approach. Section 3 of this paper dis-
cusses the data and methods used for developing the Bayesian model
using the data gathered by Vos et al. (2021b). This data is used since it
contains information on curve characteristics and speed profiles of 153
horizontal curves. In Section 4 we build the Bayesian model, present the
results, and run a number of case studies for demonstration purposes.
The results are then discussed in Section 5, and in Section 6 the general
conclusions of this research and recommendations for future research
are drawn.

2. Literature review

2.1. Known variables related to deceleration in curve approach

In general, deceleration modelling studies show that the deceleration
in curve approach is correlated to the approaching tangent length, cross
section design, horizontal curve radius and deflection angle (Bobermin
et al., 2021; Farah et al., 2019; Nama et al., 2020; Sil et al., 2020; Vos
and Farah, 2022). The position where drivers start to decelerate is
correlated to the speed driven before the curve, visibility of guiding
elements such as tree lines or curve signs (i.e. available sight distances),
the cross section and number of lanes available, and the horizontal curve
radius itself (Vos et al., 2021b). In a survey study by Vos et al. (2021a)
drivers indicate that the number of lanes and road type are elements in
the road design that influence their speed choice during curve approach
besides the presence of signs. And indeed, these elements influence the
position where drivers start to decelerate before a curve (Vos et al.,
2021b), and have been found to influence speed in the curve itself as
well in numerous speed prediction studies (Calvi et al., 2018; Colom-
baroni et al., 2020; Montella et al., 2024). Furthermore, preceding
curves help to recognise the sharpness of an upcoming curve. Sil et al.
(2022) show how drivers distinguish between consecutive curves based
on the different radii and angles of consecutive curves, and Xu et al.
(2022) show how this has more effect if consecutive curves are closer to
each other. Driving task analysis research has resulted in descriptions of
how drivers anticipate and approach a curve (Campbell et al., 2012;
McKnight and Adams, 1970). In these descriptions, roadside signs or the
roadway scene which provides evidence of a curve are given as in-
dicators of curves, while during the approach itself drivers are thought
to adhere to the posted speed or estimate a safe speed from the deflection
angle and superelevation of the curve itself and other features in the
environment.

2.2. Curve perception and speed reduction

Both the driving task descriptions, and a recent eye-tracking exper-
iment which captured anticipatory fixations during curve approach (Vos
et al., 2023) show that the first cue drivers use is a change in the heading
of the roadway. This is thought to be a change in the patterns of visual
motion driver perceive as they move – i.e. optic flow – on the point in the
visual field where these patterns appear to converge – i.e. the Focus of
Expansion (Gibson, 1950). This means drivers see a change in the road
direction on the horizon and start decelerating after that. During the
1970 s the road picture of curves as it is perceived by the driver was
analysed using perspective drawings with sets of hyperbola (Springer
and Huizenga, 1975). From these perspective analysis it is known that
this change of direction is seen as a kink, and opens up and reveals
curvature when the driver gets closer to the curve. Brummelaar (1975)
provides the following equation to calculate the distance at which the
curve opens up:

Z2 = Rh(46h − 2a) (1)

where:

Z=approach distance at which the curve appears to be open (m).
Rh = horizontal radius of the curve (m).
h = height of the observer’s eye (m).
a = distance of the observer to the road edge (m).

So, equation (1) gives quantifiable information about the distance
from the observer to curve start (Z) at which the curve is perceived to
open and reveal its curvature. This equation only calculates road edges
as the perspective drawings only provided road edges, but recent eye-
tracking research (Vos et al., 2023) shows that other parallel lines or
edges such as tree lines or noise barriers running parallel to the curve are
also used by the driver to anticipate that curve. This is in line with
Gestalt principles of organisation which show parallel edges to the curve
are heuristically used to anticipate the trajectory of a curve (PIARC,
2016). To quantify the effect of parallel edges on curve perception, we
assume that the eye-height in equation (1) can also be used to alter the
height of the road edge, and thus of a parallel edge. Fig. 1 shows the sight
line as intended in equation (1), and the sight line used to calculate the
height of a parallel edge. If an eye-height of 1.1 m above the road is used,
a parallel edge of 2.2 m above the road results in the same perspective
line since it is mirrored at the eye height. Based on this approach, the
height of the parallel edge can be used to calculate the distance on which
the curve shows curvature. The distance of the driver to the edge has a
rather small influence in equation (1). So, if a distance of 5 m from the
driver to the parallel edge is set, equation (1) can be used to see what the
effects of different heights of parallel edges are on what drivers perceive.
This is shown in Fig. 1 using different lines for different heights. Fig. 1
furthermore shows the position where drivers start to decelerate related
to the horizontal radius based on an equation derived from analysing
speed profiles by Vos and Farah (2022):

posBP1 = 155*ln(Rh) − 1067 (2)

where:

posBP1 = position relative to curve start where drivers start to
decelerate (m)
Rh = horizontal radius of the curve (m).

Equation (2) does not consider the existence of a parallel edge, but
just estimates the position where drivers start to decelerate in front of a
curve generally.

Combining equations (1) and (2) in Fig. 1 shows whether or not the
curvature of the curve was visible before drivers started to decelerate.
When approaching curves with a horizontal radius of less than 400 m,
drivers start decelerating before the road itself shows curvature. A
parallel edge which is higher than the road itself could however still
show the curvature of the road ahead. For a radius of 300 m, a parallel
edge with a height of 3 m would show the curvature to drivers before
starting to decelerate, but for a radius of 200 m, a parallel edge of 7.5 m
is needed. It is unlikely that parallel edges this high are available. So,
particularly for curves with radii of 300 m and less, other cues than the
perceivable curvature are thought to be used by drivers to build up the
correct expectations on when to start decelerating during curve
approach towards an expected safe speed. To know which cues are
actually used by drivers, an understanding of the driving task during
curve approach is needed.

2.3. Driver expectations

Ranney (1994) positions steering and braking on the operational
driving task level. This means that anticipation in curve approachmostly
consists of skill-based behaviour that is fully automatised (Rasmussen,
1983) and mostly without awareness (Harms et al., 2019) based on what
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people have learned to expect (Theeuwes et al., 2012). These expecta-
tions are based on the development of mental categories, or schemata,
containing curve cues and corresponding safe speeds (Charlton and
Starkey, 2017b), which are built upon multiple episodes (Ghosh and
Gilboa, 2014) and hence relates to the experience of drivers and famil-
iarity with situations. In human information processing models (Wick-
ens et al., 2021), schemata reside in the long term memory (Plant and
Stanton, 2013) and therefore act as input for the working memory to
select the correct response based on perception as is illustrated in Fig. 2.
A schema helps drivers optimize their behaviour and make quick de-
cisions on a safe speed based on cues they perceptually receive and on
expectations stored in schemata (Charlton and Starkey, 2017a, 2017b;
Ranney, 1994).

2.4. Statistical learning

Expectations are built on regularities in the environment. Since
drivers spend much of their driving time on freeways, it can be assumed
they have passively learned about regularities in the road environment
(Theeuwes, 2021). These regularities are assumed to be extracted from
the environment by the drivers to build expectations through statistical
learning (Sherman et al., 2020). Statistical learning is thought of as a
cognitive mechanism to discover underlying structures and distributions
of these perceptual cues and their distributions (Frost et al., 2015) and is
known to help build schemata in temporal tasks such as spatial navi-
gation (Graves et al., 2022). Based on these schemata, drivers then come

to expect a certain safe speed given certain cues.
Research on how cognitive judgments compare with optimal statis-

tical inferences in real-world settings suggests that people adopt ex-
pectations in line with the statistics in the real world (Griffiths and
Tenenbaum, 2006; Seriès and Seitz, 2013). It has furthermore been
found that drivers also learn these regularities and differences for spatial
navigation (Chanales et al., 2017; Graves et al., 2022). We therefore
assume that drivers also infer a safe speed based on statistical learning of
regularities in the road environment (Theeuwes, 2021). Statistical
learning is best understood in Bayesian terms of probability (Tenenbaum
et al., 2011). This means drivers have a conjecture or belief about a
range of safe speeds, which is defined as a probability distribution, given
certain curve cues which are available as evidence. Fig. 2 shows how in
this research the human information processing is connected to a
Bayesian approach by using probability distributions as constructs to
resemble a driver’s schemata. The next section explains the Bayesian
approach, and the connections with human information processing.

2.5. Bayesian approach

In the Bayesian approach each safe speed, vi, can be associated with a
degree of belief P(vi) from a probabilistic standpoint. This is called a
Prior belief, and in a freeway curve approach, the Prior belief for the safe
speed in free flow conditions on a freeway tangent would be around 120
– 130 km/h. Based on experience, drivers are assumed to have learned
the likelihood of the appearance of different cues, c, given certain safe

Fig. 1. Analysing the perception of parallel edges in curves regarding their height. The top panel shows how equation (1) is used to calculate from which distance Z a
curve shows its curvature to drivers, based on the height of a parallel edge. The red line shows the edge of a noise barrier as an example. Since the eye-height above
the road surface can be mirrored we can use the height of the parallel edge minus the eye height to calculate Z. The bottom panel is a diagram showing the effect of
different heights of parallel edges on the visibility of curvature and the starting point of deceleration related to the horizontal radius. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

J. Vos et al.
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speeds on this tangent, such as speed signs. Using Bayes theorem, a Prior
belief about safe speed can be updated based on new evidence – thought
to be the perception of a cue − which results in a Posterior belief based on
the following equation:

P(vi|c) =
P(c|vi) • P(vi)

P(c)
=

P(c|vi) • P(vi)
∑

iP(vi) • P(c|vi)
(3)

where:

P(vi|c) = Posterior belief for safe speed given a certain cue
P(c|vi) = Likelihood of a cue appearing given a certain safe speed.
P(vi) = Prior belief for safe speed.
P(c) = Marginal probability of a cue appearing.
∑

iP(vi) • P(c|vi) = Sum of (Prior * likelihood) over all safe speeds.

Equation (3) shows the Posterior belief is the conditional probability
of a safe speed given a certain visual cue denoted as P(vi|c). It is
furthermore known that P(c|vi)*P(vi) = P(c, vi) which is the joint prob-
ability for a cue appearing together with a certain safe speed. This type
of inference is also referred to as belief updating (Feldman, 2013),
because new cues are assumed to lead drivers’ belief to evolve from a
Prior belief to a certain Posterior belief – or expectation – of the safe
speed in a curve. In this way, the belief about the safe speed, is gradually
updated by the cues towards a suitable safe speed for an upcoming
curve. Fig. 2 illustrates how likelihoods and beliefs are assumed to be
stored in schemata and hence resemble expectations. Thus, beliefs in
Bayesian terminology are translated to expectations in driver information
processing models. Using Bayesian statistics is hence not an additional
statistical model to estimate speeds, but a method to understand how
drivers build expectations.

Since several cues might indicate an upcoming curve, it is suitable to
develop a Bayesian belief network (BBN), since these are able to model
conditional dependence between the cues (Pearl, 1988). Such networks
are acyclic directed graphs in which nodes represent the random vari-
ables and connections represent the direct probabilistic dependence
among them. In general, the direction of influence in a Bayesian belief

network flows from parent nodes to child nodes. This means that the
state of a parent node affects the likelihood of the child node being in a
particular state. The conditional probability distributions are captured
in conditional probability tables (CPT’s) which describe the likelihood
of a particular node’s state, given the state of its parent nodes. Belief
updating in a BBN is induced by observing evidence. A node (cue) that
has been observed is called evidence, and by observing the evidence, the
probability distribution is updated towards a certainty and gets propa-
gated through the network, modifying the probability distribution of
other nodes (cues and expected safe speed). In this way, expectations
about safe speeds can be statistically modelled as posterior beliefs of safe
speeds, based on observed evidence of curve cues. This process is shown
in Fig. 3, where drivers starts off with an approaching speed and updates
their expectations of the upcoming safe speed (posterior belief) with
each cue received (evidence). Based on this updated belief, the driver is
assumed to adjust the operating speed, whenever this does not match the
belief of the upcoming safe speed. This process is known as prediction
error minimisation (Engström et al., 2018) as shown in Fig. 2. In this
process the driver resolves the difference in the belief about the up-
coming expected safe speed and the actual operating speed (i.e. pre-
diction error) by deceleration to minimize the risk of skidding in the

Fig. 2. Human information processing (squares) and Bayesian belief updating (ovals) with assumed connections in dashed arrows. The model of information
processing is simplified from Wickens et al. (2021) and includes the notion that schemata reside in long term memory (Plant and Stanton, 2013). This figure shows
how the perception of a cue provides evidence in Bayesian modelling. This evidence has a learned likelihood of appearing given certain safe speeds, which are
thought to resemble stored expectations (schemata). Using the prior probability of safe speeds, and the likelihood, the belief (expectation) is updated toward a
posterior belief upon which the driver is thought to select an appropriate response via prediction error minimisation (Engström et al., 2018). The box connecting the
belief update, shows example probability distributions of prior belief on safe speeds, the likelihood of the evidence and the following posterior belief given
that evidence.

Fig. 3. The process of updating the expected safe speed in a curve given the
received cues (C1, C2, C3, …, Cn) and adjusting the operating speed accordingly.

J. Vos et al.
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curve (Wilde, 1998) or feelings of discomfort (Summala, 2007).

3. Methods

3.1. Data collection and analysis

The database generated by Vos et al. (2021b) is used in this research
to model prior beliefs about expected safe speeds and the likelihoods of
cues (evidence) appearing given certain expected safe speeds. Each of
the 153 curves in the database has detailed information about its ge-
ometry and surroundings and is accompanied by about one million
unique free-flow speed profiles taken from High Frequency Floating Car
Data (HF-FCD) from a smart-phone navigation app called “Flitsmeister”.
The data was collected in the Netherlands, during March, April and
September 2020. No alterations to the infrastructure were made during
that period. Detector loop data was used to identify instances of free-
flow traffic (i.e. headways exceeding 5 s). Only the HF-FCD from these
periods was used in the analysis. This dataset is assumed to reflect
different schemata in which expectations are stored in the driver’s
memory, since schemata on safe speeds are built in the driver’s memory
based on multiple experiences (Charlton and Starkey, 2017b). For
different curve cues the database contains measured speeds, reflecting
the cues drivers perceive and the response (i.e., decelerating) the drivers
adhered to. Table 1 shows how the available cues are distributed among
the curves in the database. Speeds in preceding curves and the angles of
the curves were discretised into intervals of respectively 20 km/h and
100 gradients. The speeds were grouped into 20 km/h because this
ensures that each interval has enough data points to use in the model
and generate reliable marginal probabilities (e.g. to prevent having in-
tervals without data points). The variable “preceded by tangent” was
added to reflect tangents or large radii which do not impact the
approach speed of a curve. Since freeways in the Netherlands have
divided carriageways, the number of lanes is given for the carriageway
the curve is positioned in. Deflection angle was grouped in three cate-
gories that would be easily distinguishable by drivers (e.g. straight
corners) since exact angles are hard to perceive from a distance (Rie-
mersma, 1988), but direction (left or right) is. For each of the collected
free-flow speed profiles, we calculated the speed which the driver
adhered to in the curve. Since a single speed profile consists of a string of
speed measurements with a frequency of 1 Hz, we assume that the mode

of the measured speeds in the curve is the speed the driver deemed safe,
since this is the speed the driver drove the longest inside the curve. For
each of the curves, we then establish an 85th percentile of the modal
speeds driven in those curves. In transportation research, the 85th
percentile speeds are frequently employed. The selection of a specific
quantile is not critical as the various percentiles exhibit similar patterns
in the speed profile. The correlation between median speeds and the
85th percentile speeds in the data is remarkably robust and statistically
significant, with a correlation coefficient of 0.98 (t= 789.84, p< 0.001).
This underscores the limited sensitivity when using alternative quan-
tiles, because the probability distributions will have the same distribu-
tion, but with lower speeds when using median speeds.

The 85th percentile of the measured median speeds in curves have
been used as the independent variable for generating the probability
distributions of the cues represented in Table 1. This gives the first
probabilistic view on the expected safe speed for different curve cues
independently.

3.2. Modelling a Bayesian belief network

The modelling and analysis was done in the GeNIe Modeler (GeNIe
Modeler (Version 4.0.R2), 2022), which is an interface to the Structural
Modeling, Inference, and Learning Engine (SMILE) (Druzdzel, 1999).
The interface allows to use the dataset to learn and evaluate the Bayesian
belief networks (BBN). To model the variables in a BBN, we discretised
the speeds into intervals since speed cannot be modelled as a continuous
variable, as these do not have a linear distribution. We iterated the
interval-size, and an interval-size of 10 km/h was found most appro-
priate: smaller intervals gave intervals without enough data-points,
larger intervals showed less detail. We started by building and ana-
lysing a naïve Bayesian network (NBN), shown in Fig. 4. A NBN assumes
all variables to be independent, so using a NBN we can independently
test the strength of influence of each variable on the class label, which in
this case is the safe speed. The class label expected safe speed is the prior
belief, which can be updated by observed evidence of cues and calculate
the posterior belief of the expected safe speed given the observed evi-
dence using equation (3). The strength of influence is measured using
the average Euclidian distance between the expected safe speed and the
cues (Koiter, 2006) and therefore refers to the degree to which the
probability of a particular variable is influenced by another variable.

Table 1
Distribution of cues in the available database.

Cue N % Cue N %

Turning direction Speed sign present
- Left turning 48 31 % - Advice speed 50 km/h 10 7 %
- Right turning 105 69 % - Advice speed 60 km/h 8 5 %
Preceding roadway - Advice speed 70 km/h 9 6 %
- Main carriageway 43 28 % - Advice speed 80 km/h 3 2 %
- Connector road 50 33 % - Advice speed 90 km/h 8 5 %
- Deceleration lane 21 14 % - Speed limit 50 km/h 5 3 %
- Fork 13 8 % - Speed limit 60 km/h 1 1 %
- Weaving section 24 16 % - Speed limit 70 km/h 12 8 %
- Merge 2 1 % - Speed limit 80 km/h 4 3 %
Speed in preceding curve - Speed limit 90 km/h 2 1 %
- 60 – < 80 km/h 2 1 % - No speed signs present 91 59 %
- 80 – < 100 km/h 13 8 % Curve warning sign present
- 100 – < 120 km/h 26 17 % - Curve warning sign present 49 32 %
- 120 – < 140 km/h 11 7 % - No curve warning sign present 104 68 %
- Preceded by tangent 101 66 % Curve chevron signs present
Number of lanes in curve - Curve chevron signs present 48 31 %
- One 76 50 % - No curve chevron signs present 105 69 %
- Two 58 38 %
- Three 15 10 %
- Four 4 3 %
Deflection angle of curve
- 10 – < 100 grad 82 54 %
- 100 – < 200 grad 50 33 %
- 200 – < 310 grad 21 14 %

J. Vos et al.
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However, different cues might be interdependent of each other. For
example, the co-occurrence of particular signs or the tendency for forks
to have more lanes than deceleration lanes. So, an NBN probably does
not reflect how driver expectations are constructed, because these in-
terdependencies are assumed to be learned by the driver as well, as these
cues tend to be observed together. To investigate the interdependence of
the variables we have learned a Tree Augmented Naïve Bayes (TAN)
structure using the interdependencies in our dataset. The TAN algorithm
uses the NBN structure and adds connections between the different cues
to account for dependence, conditional on the expected safe speed
(Friedman et al., 1997). The TAN algorithm allows for one extra
connection between cues to be added based on the highest amount of
mutual information regarding the expected safe speed in the extra
connections.

3.3. Testing and validating

The learning and testing of the networks is done via an expectation
maximization (EM) algorithm which selects random values for param-
eters to learn the optimal values. A higher log-likelihood indicates a
better fit of the model to the data. Validating the TAN is done by using a
Leave One Out (LOO) procedure to test how well the network performs
when one record is left out in the learned data and see how well the TAN
predicts the expected safe speed for that left out curve. Furthermore, the
TAN is validated in two empirical case studies in which visual cues are
compared with actual speed profiles and the outcomes of the TAN for the
shown cues. Following that, various hypothetical cases are presented,
altering one variable at a time to observe the TAN’s response. Lastly, the
TAN’s validation includes assessing the sensitivity of several variables in
the dataset concerning their discretisation or interdependence.

4. Results

The following sub-sections describe the results of the data analysis
and modelling. Subsection 4.1 starts with the probability distributions of
individual cues, subsection 4.2 models these cues into Bayesian Belief
Networks (BBNs). These BBNs are tested and validated in section 4.3,
and section 4.4 shows the use of a BBN in several case studies.

4.1. Probability distributions of curve cues

For each available cue, the probability distribution of the measured
85th percentile median speeds is plotted. These are given in Fig. 5 and
can be interpreted as naïve Prior beliefs, so as independent variables.

Fig. 5 shows how the measured speeds are distributed along different
cues. Several cues show clear differences in the speed distributions. For
example, a 50 km/h speed sign or a large angle are associated with low
speeds, while a presence of 4 lanes would be associated with larger
speeds (i.e., no need to decelerate).

4.2. Bayesian belief networks

The NBN in Fig. 4 had its parameters learned based on the observed
data in the dataset. This resulted in an EM Log Likelihood of − 1286.58
and the strengths of influences given in Table 2. The average strength of
influence in Table 2 show a large value of the angle on the expected safe
speed, followed by the type of preceding roadway, presence of curve and
speed signs as well as the number of lanes. Other cues, such as warning
sign, preceding curve speed, and curve direction showed less strength of
influence.

Next, a tree augmented naïve Bayesian network (TAN) was learned
based on our data using expected safe speed as the class label. This
resulted in an EM Log Likelihood of − 1026.19. Other learning algo-
rithms (i.e. “Bayesian Search”, “PC”, “Greedy Thick Thinning”) led to
lower EM Log Likelihoods. The learned TAN is given in Fig. 6 and the
average strength of influences per connection are given in Table 3.

Since the type of preceding roadway influences the number of lanes
greatly, the number of lanes has a larger strength of influence on the safe
speed in the TAN than in the NBN. Furthermore, the interdependence
among the variables, leads to a lower influence of speed signs in the
TAN. The conditional probability tables (CPTs) for the TAN are given in
Appendix A.

4.3. Validation

The learned TAN shown in Fig. 6 underwent validation through three
distinct methods, namely cross-validation, case studies, and sensitivity
analysis. These approaches will be elaborated upon in the following
sections.

4.3.1. Cross-validation
We cross-validated the TAN using a Leave One Out (LOO) procedure

using our dataset, meaning the TAN structure was trained 153 times,
each time leaving one case out and predicting its expected safe speed on
the trained TAN of 152 cases. Overall, the class variable – expected safe
speed – was predicted correctly (i.e., within the same interval as the
measured 85th percentile median speed) 51 % overall, and for 82 %
within an average of 10 km/h offset (i.e., adjacent interval). The
confusion matrix is shown in Table 4, showing the variability around the
correct predictions for most expected safe speeds is better predicted in
the lower speeds than in the higher speeds.

4.3.2. Case studies
The cross-validation in the previous section was done using all

observable evidence upstream of the curve (cues) to predict an expected
safe speed inside the curve. The assumption, however, is that drivers
update their expectations about a safe speed during curve approach
using cues as they appear during curve approach as illustrated in Fig. 3.
The temporal process of belief updating during curve approach is tested
in two case studies, and is another way of validation of the TAN because
it is tested in untrained conditions – i.e. the TAN was trained using all
available cues of a curve simultaneously, while during curve approach
cues become visible separately. We present two curve approaches
providing the measured speed profiles using the data from Vos et al.
(2021b) and the available cues to the driver in four pictures along the

Fig. 4. The naive Bayesian network (NBN).

J. Vos et al.



Transportation Research Interdisciplinary Perspectives 27 (2024) 101178

7

approach. These cues are then set as evidence in our TAN, to see how the
resulting expected safe speeds (i.e., posterior belief about safe speed)
resembles the speed development in the actual speed profiles. The TAN
is shown in Fig. 7 without observed evidence, i.e. no visible cues.

The case studies show which evidence was set in the TAN by

underlining a specific definition of a node and setting its probability to
100 %. The expected safe speed is shown in the case studies as a prob-
ability distribution in red, using the distributions in the expected safe
speed intervals.

Case study 1 starts in picture B in Fig. 8 with a connector road visible
with two lanes in a curve in which the 85th percentile of the operating
speeds is between 100 and 120 km/h, no signs are visible, and no curve
angle or direction can be estimated of the upcoming curve. The expected
safe speed is between 80 and 120 km/h. Then in picture C it becomes
clear the connector road continues in one lane, the expected safe speed
drops to 60 to 120 km/h, which corresponds to a speed drop in the 15th
percentile speeds. Then the curve and its angle become visible in picture
D, which narrows the expected safe speed towards the lower speeds and
leads to a decrease in the 85th percentile operating speed. After seeing
the advisory speed of 60 km/h, together with warning and curve signs
before entering the curve in picture E, the expected safe speed shifts
drastically to a range between 60 and 70 km/h, and from that moment

Fig. 5. Probability distributions for the eight different variables (cues) related to the 85th percentile measured median speeds in a curve.

Table 2
Average strength of influence for each connection in NBN.

Parent Child Average strength of influence

Expected safe speed

Angle 0.4403
Preceding Roadway 0.3470
Curve sign 0.3181
Speed sign 0.3096
Number of lanes 0.3073
Warning sign 0.2074
Preceding curve speed 0.1792
Direction 0.1783

J. Vos et al.
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also the 15th percentile operating speeds starts to drop. Case study 2
starts in picture B with one lane on a fork – the right side of the block
markings. The expected safe speed in an upcoming curve is predicted
between 80 and 120 km/h, but since the drivers drive on a tangent, the
operating speed is relatively high, and then gradually lowered. Picture C
shows how the carriageway leading to the curve actually has two lanes
instead of the one lane on the preceding fork, so the expected safe speed
gets updated to a higher speed range, between 100 and 140 km/h. A
small increase in 15th percentile operating speeds is noticed here. Next,
the curve direction and angle become visible in picture D, this creates a
little difference in the probability distribution of the expected safe
speed. From this position onwards the measured operating speed starts
to drop. Once the speed and warning signs in picture E become visible,
the expected safe speed is updated to the range of 100 to 110 km/h, in
line with the 85th percentile operating speeds in the curve. See (Fig. 9).

Several hypothetical cases were tested in the TAN. The results are
given in Table 5 (and visually presented in Appendix B). Table 5 shows
how changing different elements in the design could change the ex-
pectations of drivers about a safe speed, as the column of expected safe
speeds show the expected safe speeds with the highest probability. Ap-
pendix B shows the different variabilities of expected safe speeds visu-
ally as resulting probability distributions.

4.3.3. Sensitivity analysis
Because the variables “preceding curve speed”, “angle”, and “ex-

pected safe speed” were discretised, we did a sensitivity analysis on the
intervals. First, we constructed a database including intervals of 10 km/
h for the speed in preceding curves speed and intervals of 50 gradients
for the deflection angle Training a Tree Augmented Naive Bayes (TAN)
on this database resulted in an EM Log Likelihood of − 1087, indicating a
poorer fit to the data compared to the previously presented TAN. Next,
we generated another database using 5 km/h intervals for the median
speed inside the curve and trained a TAN on it. The resulting EM Log
Likelihood was − 1030, which is nearly identical to the presented TAN.
However, this model exhibited more instances of 0 % probability be-
tween predicted speeds where the probability was higher than 0 %. This
suggests a less accurate representation of expectations, as multimodal
probability distributions may imply indecision or conflicting thoughts
among drivers. Such occurrences are unusual due to the subconscious
nature of speed adaptation.

The interdependence of specific signs to speed differences is covered
in Dutch guidelines for traffic control devices, based on the k-value for
speed differences between upstream of the curve and inside the curve
(Richtlijnen voor de bebakening en markering van wegen, 2015). This
suggests that these signs alone should be a good predictor of the safe
speed. To test this, a TAN was learned using only the preceding curve
speed, speed signs, warning signs and curve signs as nodes. The vali-
dation of this TAN using the LOO-procedure shows that the TAN only
has a correct prediction of the safe speed in 38 % of the cases. This is
lower than the 51 % in the TAN presented in Fig. 6, which shows the
influence of other variables, shown in Table 3, together with signs is
relevant to build expectations.

Fig. 6. The tree augmented naive Bayesian network (TAN), learned from the
data with the expected safe speed set as the class variable.

Table 3
Average strength of influence for each connection in the learned TAN.

Parent Child Average strength of
influence

Preceding roadway
type

Number of lanes 0.4458

Expected safe speed
Angle 0.4235

Number of lanes 0.3832

Preceding roadway
type

Preceding curve speed 0.3706

Preceding curve speed Angle 0.3564

Expected safe speed

Speed sign 0.3192

Preceding roadway
type

0.2907

Speed sign Preceding roadway
type

0.2818

Expected safe speed Preceding curve speed 0.2764

Speed sign

Warning sign 0.2500

Curve sign 0.2304

Direction 0.2083

Expected safe speed

Curve sign 0.1971

Direction 0.1865

Warning sign 0.1796

Table 4
Confusion matrix for cross validating the expected safe speed in the tree augmented naïve Bayesian network with the measured 85th percentile median speeds.

Predicted expected safe speed (km/h)

60 – 69 70 – 79 80 – 89 90 – 99 100 – 109 110 – 119 120 – 129 130 – 140

Measured 85th percentile median speeds (km/h)

60 – 69 14 3 0 0 0 0 0 0
70 – 79 2 5 2 0 0 0 0 0
80 – 89 0 0 7 2 1 0 0 0
90 – 99 1 0 1 17 5 1 1 0

100 – 109 0 0 0 7 16 6 5 0
110 – 119 0 0 0 6 9 8 3 2
120 – 129 0 0 0 3 3 3 6 2
130 – 140 0 0 0 0 0 4 2 6

J. Vos et al.
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5. Discussion

Since Bayesian statistics are thought to resemble how drivers build
their expectations, this approach can be used to model speed behaviour
in curve approach. These results can then be used pro-actively in
assessing the safety of a road design. This research starts by analysing
the measured 85th percentile speed probability distributions in a curve
dependent on the individual cues during curve approach. Several cues
have a zero probability for certain speeds. These include speed signs,
high number of lanes, forks, high preceding speeds and large curve
angles. When these cues are present, they reduce the probability of
certain speeds (e.g., low speeds for high number of lanes and high speeds
for large curve angles) to zero. These variables also tend to have a higher
strength of influence in the explored Bayesian Belief Networks (BBNs).
The deflection angle of the curve has a strong influence on the expected
safe speed in the curve, which is in line with the notion that increasing
angles are associated by drivers with tighter curve radii (Riemersma,
1988) and that the visible angle of the curve is related to how drivers
assess their expected safe speed in curves (Vos et al., 2021a). The total
angle of a curve might however be – partially – obscured. The visible
angle, which drivers are also assumed to derive from parallel edges, can
hence only be used as evidence during curve approach when completely
visible to the driver, calling for large sight distances. The preceding
roadway and the number of lanes are however clearly visible upon curve
approach, and, when these cues are analysed interdependently in a Tree
Augmented Naïve Bayes (TAN) structure, the preceding roadway and
number of lanes show a strong influence on the expected safe speed. In
case studies, where the TAN was applied in a temporal order along a
curve approach, the updated expected safe speeds for the upcoming
curve follows the actual measured operating speed profile, validating
how this TAN indeed mimics the curve approach behaviour by mini-
mising the prediction error through deceleration. Both the strength of
influence of the speed signs in the TAN, as well as the case studies show a
low influence of speed signs, even though the probability distributions of
speed signs show that measured 85th percentile speeds which deviate
much from the (advisory) speed limit have low probabilities and are
hence thought to have a large influence. This could be the result of a

high interdependency between the speed signs and the measures speeds
and underpins the findings by Vos et al. (2023) who showed that speed
signs are mostly used by drivers for confirmation for the need to
decelerate and not as an independent cue.

The cross-validation of the TAN shows that it is better suited for
predicting relatively low expected safe speeds, as the confusion matrix
shows more off-target predictions when the speeds get higher. This is in
line with the identified need for additional cues than perceivable cur-
vature when approaching smaller radii, since these are hard to perceive.
Better predictability of curves which have low operating speeds suggest
a more uniform curve approach – at least in this dataset – and therefore a
better self-explainability.

Finally, we mention some limitations. First, the database we have
used was not specifically designed for conducting this research. The
relative low number of curves and the high number of variables and
conditional probabilities led to several conditional probabilities which
are skewed to one or two available records, and hence do not reflect the
conditional probabilities of a cue. This is especially present for variables
which only have two data points, such as merges or 60 km/h speed
limits. However, BBNs are known to perform well with missing data,
because they develop probabilities for the missing data (Chen and Pol-
lino, 2012), reflecting low likelihood of appearing. Still, a larger set of
curves would give better insights into the conditional probabilities,
furthermore the conditional probability tables could be adjusted based
on expert knowledge. Also, driver experience and familiarity are not
present in the database, which makes it impossible to analyse in depth
which schema are learned by drivers. However, Vos et al. (2023) show
that familiarity of curves has no influence on the position of decelera-
tion, but does influence the type of fixations. This suggests that famil-
iarity of curves steers fixations (and perception), but not the reaction,
which is in line with the automatization of curve approach behaviour.

In addition, the dataset used to model expected safe speeds was
based only on data collected in the Netherlands (Vos et al., 2021b). This
means that the results only represent expectations about Dutch free-
ways. The methodology presented in this research, using a Bayesian
approach to modelling safe speed expectations, is universally employ-
able whenever enough data or expert knowledge is available on local

Fig. 7. The tree augmented naive Bayesian network with bar charts in each node showing the probabilities for each possible definition of that node, without having
any evidence set. The thickness of each connection (arrow) indicates its strength of influence.
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Fig. 8. Case study 1 of belief updating upon curve approach. Panel A shows the measured operating speeds in this curve approach and the positions of the pictures.
The pictures in panels B through E show the curve approach with the TAN next to it, updated with the visible cues and the resulting expected safe speed.
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Fig. 9. Case study 2 of belief updating upon curve approach. Panel A shows the measured operating speeds in this curve approach and the positions of the pictures.
The pictures in panels B through E show the curve approach with the TAN next to it, updated with the visible cues and the resulting expected safe speed.
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curve characteristics and driving speeds. Data used to build (local) speed
prediction models can also be used in tools like “GeNIe Modeler (Version
4.0.R2), 2022) to easily learn a location-specific TAN using the location-
specific cues in the available databases. It might however be needed to
change the continuous variables (like speed) into ordinal variables – e.g.
using intervals.

6. Conclusions

Estimating curve radii from a distance, which is needed to properly
decelerate, is difficult for drivers, especially for smaller radii. Therefore,
other cues are needed to assist drivers to build correct expectations
about a safe speed. By modelling the expected safe speed in an upcoming
curve, dependent on cues during curve approach in a Bayesian Belief
Network, we mimic driver’s expectations and curve speed approach
behaviour. The results show that the preceding type of roadway, and the
number of lanes, have a strong influence on the expectations of the safe
speed in an upcoming curve. But not as much influence as the deflection
angle of the curve, which, when visible using the roadway itself or
parallel edges such as tree lines, tells a lot about the range of safe speeds
to be expected. Speed signs on the contrary, seem to have a more
confirmatory use for the driver. The model can reflect the updating of
expected safe speeds in a temporal way during curve approach, resem-
bling operating speed profiles. We conclude that the Bayesian approach
to driver behaviour is a useful method in quantifiably modelling driver
behaviour. It can be used to pro-actively assess road safety, based on
infrastructural elements, since it helps to understand how drivers build
and use their expectations about a safe speed. Using the model in a
Dutch context, designers and safety auditors can check if a combination
of design elements preceding a curve, leads the driver to build a correct
expectation about the speed that can be safely driven through a curve. If
this expected safe speed does not reflect a design speed for an upcoming
curve, the expectations of the driver might deviate too much from the
actual curvature and might result in a too high speed during the curve
approach. This would then increase accident risks because of speed
differences among drivers or potential skidding. Dutch design guidelines
can be updated using such insights and relate curve design to the cues
the drivers are given when the approach a curve. This would make the
design process encompass not just only horizontal radius but also up-
stream elements, and hence and driver oriented. Because operational

speeds are highly correlated to horizontal radii (Farah et al., 2019; Vos
and Farah, 2022), this translates into specific horizontal radii being
linked to a certain set of design elements upstream and inside the curve
(e.g. preceding roadway, number of lanes, deflection angle and signs).
Because the cross-validation in Table 4 showed better fit for lower
speeds, these combinations of design elements are stricter for smaller
radii than for larger radii. In order to use the model in a non-Dutch
context, the Conditional Probability Tables need to be revised using
local expert knowledge or data on local curve characteristics and driving
speeds.
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Table 5
Expected safe speeds based on different definitions of the nodes in the tree augmented naive Bayesian network (visualisation of the respective TAN’s are given in
Appendix B).

# in appendix
B

Preceding roadway
type

Preceding curve
speed

Direction Number of
lanes

Angle Curve
sign

Warning
sign

Speed sign Expected safe
speed

A
Main carriageway

Tangent Right

One

Not visible

Not
present Not present Not present

120–129 km/h

B Two 130–140 km/h

C Deceleration lane

One

90–99 km/h

D Fork 90–99 km/h

E

Weaving section

70–79 km/h

F Two 120–129 km/h

G One

Present

60–69 km/h

H Two Present 90 km/h
advice

110–119 km/h

I
Connector road 100 – 120 km/h Left

One

Not
present

Not present Not present
100 – 109 km/h

J 10 – 100
grad

110 – 119 km/h

K

Deceleration lane Tangent Right
Not

visible Not visible Not sighted

100 – 109 km/h

L 200 – 310
grad

60 – 69 km/h
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Appendix A. – Conditional probability tables

Table 6
CPT of node “number of lanes”.

Number of lanes Preceding roadway: connector road

Expected safe speed (km/h)

060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

One 0.850 0.988 0.499 0.700 0.529 0.444 0.906 0.250
Two 0.033 0.004 0.499 0.300 0.412 0.222 0.031 0.250
Three 0.061 0.004 0.001 0.000 0.059 0.333 0.031 0.250
Four 0.056 0.004 0.001 0.000 0.000 0.000 0.031 0.250
Number of lanes Preceding roadway: main carriageway

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

One 0.498 0.009 0.250 0.001 0.200 0.125 0.250 0.000
Two 0.498 0.972 0.250 0.797 0.399 0.749 0.250 0.818
Three 0.002 0.009 0.250 0.200 0.399 0.125 0.375 0.091
Four 0.002 0.009 0.250 0.001 0.001 0.000 0.125 0.091
Number of lanes Preceding roadway: merge

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

One 0.250 0.250 0.250 0.250 0.250 0.031 0.031 0.250
Two 0.250 0.250 0.250 0.250 0.250 0.031 0.031 0.250
Three 0.250 0.250 0.250 0.250 0.250 0.031 0.031 0.250
Four 0.250 0.250 0.250 0.250 0.250 0.906 0.906 0.250
Number of lanes Preceding roadway: deceleration lane

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

One 0.972 0.031 0.988 0.832 0.997 0.906 0.332 0.250
Two 0.009 0.906 0.004 0.167 0.001 0.031 0.660 0.250
Three 0.009 0.031 0.004 0.001 0.001 0.031 0.004 0.250
Four 0.009 0.031 0.004 0.001 0.001 0.031 0.004 0.250
Number of lanes Preceding roadway: fork

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

One 0.250 0.250 0.906 0.972 0.491 0.399 0.009 0.031
Two 0.250 0.250 0.031 0.009 0.491 0.598 0.972 0.906
Three 0.250 0.250 0.031 0.009 0.009 0.001 0.009 0.031
Four 0.250 0.250 0.031 0.009 0.009 0.001 0.009 0.031
Number of lanes Preceding roadway: weaving section

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

One 0.999 0.988 0.250 0.988 0.399 0.250 0.009 0.250
Two 0.000 0.004 0.250 0.004 0.200 0.498 0.972 0.250
Three 0.000 0.004 0.250 0.004 0.399 0.250 0.009 0.250
Four 0.000 0.004 0.250 0.004 0.001 0.002 0.009 0.250

Table 7
CPT of node “direction”.

Direction Advice speed: 50 km/h

Expected safe speed (km/h)

060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Left 0.050 0.008 0.938 0.938 0.500 0.500 0.500 0.500
Right 0.950 0.992 0.063 0.063 0.500 0.500 0.500 0.500
Direction Advice speed: 60 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Left 0.008 0.981 0.664 0.500 0.500 0.500 0.500 0.500
Right 0.992 0.019 0.336 0.500 0.500 0.500 0.500 0.500
Direction Advice speed: 70 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Left 0.500 0.500 0.938 0.400 0.500 0.938 0.500 0.500
Right 0.500 0.500 0.063 0.600 0.500 0.063 0.500 0.500
Direction Advice speed: 80 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Left 0.500 0.500 0.500 0.500 0.938 0.500 0.500 0.500
Right 0.500 0.500 0.500 0.500 0.063 0.500 0.500 0.500
Direction Advice speed: 90 km/h

(continued on next page)
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Table 7 (continued )

Direction Advice speed: 50 km/h

Expected safe speed (km/h)

060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Left 0.500 0.500 0.500 0.938 0.500 0.981 0.664 0.500
Right 0.500 0.500 0.500 0.063 0.500 0.019 0.336 0.500
Direction Speed limit: 50 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Left 0.008 0.500 0.500 0.500 0.500 0.500 0.500 0.500
Right 0.992 0.500 0.500 0.500 0.500 0.500 0.500 0.500
Direction Speed limit: 60 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Left 0.500 0.063 0.500 0.500 0.500 0.500 0.500 0.500
Right 0.500 0.938 0.500 0.500 0.500 0.500 0.500 0.500
Direction Speed limit: 70 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Left 0.500 0.500 0.063 0.992 0.334 0.500 0.500 0.500
Right 0.500 0.500 0.938 0.008 0.666 0.500 0.500 0.500
Direction Speed limit: 80 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Left 0.500 0.500 0.500 0.063 0.664 0.500 0.500 0.500
Right 0.500 0.500 0.500 0.938 0.336 0.500 0.500 0.500
Direction Speed limit: 90 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Left 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
Right 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
Direction No speed limit

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Left 0.001 0.008 0.019 0.000 0.250 0.261 0.250 0.500
Right 0.999 0.992 0.981 1.000 0.750 0.739 0.750 0.500

Table 8
CPT of node “Curve sign”.

Curve sign Advice speed: 50 km/h

Expected safe speed (km/h)

060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Present 0.750 0.992 0.938 0.938 0.500 0.500 0.500 0.500
Not present 0.250 0.008 0.063 0.063 0.500 0.500 0.500 0.500
Curve sign Advice speed: 60 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Present 0.664 0.981 0.992 0.500 0.500 0.500 0.500 0.500
Not present 0.336 0.019 0.008 0.500 0.500 0.500 0.500 0.500
Curve sign Advice speed: 70 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Present 0.500 0.500 0.063 0.600 0.500 0.063 0.500 0.500
Not present 0.500 0.500 0.938 0.400 0.500 0.938 0.500 0.500
Curve sign Advice speed: 80 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Present 0.500 0.500 0.500 0.500 0.063 0.981 0.500 0.500
Not present 0.500 0.500 0.500 0.500 0.938 0.019 0.500 0.500
Curve sign Advice speed: 90 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Present 0.500 0.500 0.500 0.063 0.500 0.500 0.664 0.500
Not present 0.500 0.500 0.500 0.938 0.500 0.500 0.336 0.500
Curve sign Speed limit: 50 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Present 0.664 0.500 0.500 0.500 0.500 0.500 0.500 0.500
Not present 0.336 0.500 0.500 0.500 0.500 0.500 0.500 0.500
Curve sign Speed limit: 60 km/h

(continued on next page)
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Table 8 (continued )

Curve sign Advice speed: 50 km/h

Expected safe speed (km/h)

060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Present 0.500 0.938 0.500 0.500 0.500 0.500 0.500 0.500
Not present 0.500 0.063 0.500 0.500 0.500 0.500 0.500 0.500
Curve sign Speed limit: 70 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Present 0.500 0.500 0.938 0.664 0.168 0.500 0.019 0.500
Not present 0.500 0.500 0.063 0.336 0.832 0.500 0.981 0.500
Curve sign Speed limit: 80 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Present 0.500 0.500 0.500 0.938 0.008 0.500 0.500 0.500
Not present 0.500 0.500 0.500 0.063 0.992 0.500 0.500 0.500
Curve sign Speed limit: 90 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Present 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.019
Not present 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.981
Curve sign No speed limit

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Present 0.832 0.008 0.019 0.267 0.150 0.044 0.000 0.100
Not present 0.168 0.992 0.981 0.733 0.850 0.956 1.000 0.900

Table 9
CPT of node “Preceding roadway type”.

Preceding roadway type Advice speed: 50 km/h

Expected safe speed (km/h)

060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Connector road 0.196 0.331 0.896 0.896 0.167 0.167 0.167 0.167
Main carriageway 0.341 0.331 0.021 0.021 0.167 0.167 0.167 0.167
Merge 0.037 0.003 0.021 0.021 0.167 0.167 0.167 0.167
Deceleration lane 0.204 0.331 0.021 0.021 0.167 0.167 0.167 0.167
Fork 0.012 0.003 0.021 0.021 0.167 0.167 0.167 0.167
Weaving section 0.212 0.003 0.021 0.021 0.167 0.167 0.167 0.167
Preceding roadway type Advice speed: 60 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Connector road 0.331 0.969 0.659 0.167 0.167 0.167 0.167 0.167
Main carriageway 0.331 0.006 0.003 0.167 0.167 0.167 0.167 0.167
Merge 0.003 0.006 0.003 0.167 0.167 0.167 0.167 0.167
Deceleration lane 0.003 0.006 0.331 0.167 0.167 0.167 0.167 0.167
Fork 0.003 0.006 0.003 0.167 0.167 0.167 0.167 0.167
Weaving section 0.331 0.006 0.003 0.167 0.167 0.167 0.167 0.167
Preceding roadway type Advice speed: 70 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Connector road 0.167 0.167 0.896 0.399 0.969 0.021 0.167 0.167
Main carriageway 0.167 0.167 0.021 0.399 0.006 0.896 0.167 0.167
Merge 0.167 0.167 0.021 0.001 0.006 0.021 0.167 0.167
Deceleration lane 0.167 0.167 0.021 0.001 0.006 0.021 0.167 0.167
Fork 0.167 0.167 0.021 0.001 0.006 0.021 0.167 0.167
Weaving section 0.167 0.167 0.021 0.200 0.006 0.021 0.167 0.167
Preceding roadway type Advice speed: 80 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Connector road 0.167 0.167 0.167 0.167 0.896 0.006 0.167 0.167
Main carriageway 0.167 0.167 0.167 0.167 0.021 0.488 0.167 0.167
Merge 0.167 0.167 0.167 0.167 0.021 0.006 0.167 0.167
Deceleration lane 0.167 0.167 0.167 0.167 0.021 0.006 0.167 0.167
Fork 0.167 0.167 0.167 0.167 0.021 0.006 0.167 0.167
Weaving section 0.167 0.167 0.167 0.167 0.021 0.488 0.167 0.167
Preceding roadway type Advice speed: 90 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Connector road 0.167 0.167 0.167 0.896 0.006 0.006 0.003 0.167
Main carriageway 0.167 0.167 0.167 0.021 0.488 0.006 0.659 0.167

(continued on next page)
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Table 9 (continued )

Preceding roadway type Advice speed: 50 km/h

Expected safe speed (km/h)

060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Merge 0.167 0.167 0.167 0.021 0.006 0.006 0.003 0.167
Deceleration lane 0.167 0.167 0.167 0.021 0.488 0.006 0.003 0.167
Fork 0.167 0.167 0.167 0.021 0.006 0.488 0.331 0.167
Weaving section 0.167 0.167 0.167 0.021 0.006 0.488 0.003 0.167
Preceding roadway type Speed limit: 50 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Connector road 0.003 0.167 0.488 0.167 0.167 0.167 0.167 0.167
Main carriageway 0.331 0.167 0.006 0.167 0.167 0.167 0.167 0.167
Merge 0.003 0.167 0.006 0.167 0.167 0.167 0.167 0.167
Deceleration lane 0.331 0.167 0.006 0.167 0.167 0.167 0.167 0.167
Fork 0.003 0.167 0.488 0.167 0.167 0.167 0.167 0.167
Weaving section 0.331 0.167 0.006 0.167 0.167 0.167 0.167 0.167
Preceding roadway type Speed limit:60 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Connector road 0.167 0.021 0.167 0.167 0.167 0.167 0.167 0.167
Main carriageway 0.167 0.896 0.167 0.167 0.167 0.167 0.167 0.167
Merge 0.167 0.021 0.167 0.167 0.167 0.167 0.167 0.167
Deceleration lane 0.167 0.021 0.167 0.167 0.167 0.167 0.167 0.167
Fork 0.167 0.021 0.167 0.167 0.167 0.167 0.167 0.167
Weaving section 0.167 0.021 0.167 0.167 0.167 0.167 0.167 0.167
Preceding roadway type Speed limit: 70 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Connector road 0.167 0.167 0.021 0.331 0.499 0.167 0.006 0.167
Main carriageway 0.167 0.167 0.021 0.659 0.167 0.167 0.488 0.167
Merge 0.167 0.167 0.021 0.003 0.000 0.167 0.006 0.167
Deceleration lane 0.167 0.167 0.896 0.003 0.167 0.167 0.488 0.167
Fork 0.167 0.167 0.021 0.003 0.167 0.167 0.006 0.167
Weaving section 0.167 0.167 0.021 0.003 0.000 0.167 0.006 0.167
Preceding roadway type Speed limit: 80 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Connector road 0.167 0.167 0.167 0.896 0.659 0.167 0.167 0.167
Main carriageway 0.167 0.167 0.167 0.021 0.003 0.167 0.167 0.167
Merge 0.167 0.167 0.167 0.021 0.003 0.167 0.167 0.167
Deceleration lane 0.167 0.167 0.167 0.021 0.003 0.167 0.167 0.167
Fork 0.167 0.167 0.167 0.021 0.331 0.167 0.167 0.167
Weaving section 0.167 0.167 0.167 0.021 0.003 0.167 0.167 0.167
Preceding roadway type Speed limit: 90 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Connector road 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.006
Main carriageway 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.969
Merge 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.006
Deceleration lane 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.006
Fork 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.006
Weaving section 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.006
Preceding roadway type No speed sign present

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Connector road 0.333 0.003 0.488 0.267 0.450 0.391 0.083 0.000
Main carriageway 0.000 0.003 0.006 0.067 0.150 0.261 0.417 0.899
Merge 0.000 0.003 0.006 0.000 0.000 0.043 0.083 0.000
Deceleration lane 0.000 0.003 0.488 0.400 0.150 0.043 0.167 0.000
Fork 0.000 0.003 0.006 0.133 0.000 0.174 0.083 0.100
Weaving section 0.665 0.987 0.006 0.133 0.250 0.087 0.167 0.000
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Table 10
CPT of node “Expected safe speed”.

Expected safe speed (km/h)

060–069 0.111
070–079 0.059
080–089 0.066
090–099 0.170
100–109 0.222
110–119 0.183
120–129 0.111
130–140 0.079

Table 11
CPT of node “Speed sign”.

Speed sign Expected safe speed (km/h)

060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Advice speed 50 km/h 0.278 0.333 0.100 0.038 0.000 0.000 0.000 0.000
Advice speed 60 km/h 0.167 0.222 0.300 0.000 0.000 0.000 0.000 0.000
Advice speed 70 km/h 0.009 0.000 0.100 0.192 0.059 0.036 0.000 0.000
Advice speed 80 km/h 0.001 0.000 0.000 0.000 0.029 0.071 0.000 0.000
Advice speed 90 km/h 0.001 0.000 0.000 0.038 0.059 0.071 0.176 0.000
Speed limit 50 km/h 0.175 0.000 0.200 0.000 0.000 0.000 0.000 0.000
Speed limit 60 km/h 0.005 0.111 0.000 0.000 0.000 0.000 0.000 0.000
Speed limit 70 km/h 0.008 0.000 0.100 0.115 0.176 0.000 0.118 0.000
Speed limit 80 km/h 0.009 0.000 0.000 0.038 0.088 0.000 0.000 0.000
Speed limit 90 km/h 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.167
No speed sign present 0.340 0.333 0.200 0.577 0.588 0.821 0.706 0.833

Table 12
CPT of node “Preceding curve speed”.

Preceding curve speed (km/h) Preceding roadway: connector road

Expected safe speed (km/h)

060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

060–080 0.231 0.003 0.001 0.000 0.000 0.111 0.025 0.200
080–100 0.048 0.331 0.333 0.300 0.118 0.111 0.025 0.200
100–120 0.449 0.331 0.333 0.500 0.471 0.444 0.025 0.200
120–140 0.053 0.003 0.167 0.000 0.118 0.000 0.900 0.200
Tangent 0.219 0.331 0.167 0.200 0.294 0.333 0.025 0.200
Preceding curve speed (km/h) Preceding roadway: main carriageway

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

060–080 0.002 0.007 0.200 0.001 0.001 0.000 0.000 0.000
080–100 0.250 0.007 0.200 0.001 0.399 0.125 0.000 0.000
100–120 0.002 0.007 0.200 0.598 0.001 0.125 0.000 0.000
120–140 0.002 0.007 0.200 0.001 0.200 0.125 0.375 0.182
Tangent 0.746 0.970 0.200 0.399 0.399 0.624 0.624 0.818
Preceding curve speed (km/h) Preceding roadway: merge

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

060–080 0.200 0.200 0.200 0.200 0.200 0.025 0.025 0.200
080–100 0.200 0.200 0.200 0.200 0.200 0.025 0.025 0.200
100–120 0.200 0.200 0.200 0.200 0.200 0.025 0.025 0.200
120–140 0.200 0.200 0.200 0.200 0.200 0.025 0.025 0.200
Tangent 0.200 0.200 0.200 0.200 0.200 0.900 0.900 0.200
Preceding curve speed (km/h) Preceding roadway: deceleration lane

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

060–080 0.007 0.025 0.003 0.001 0.001 0.025 0.003 0.200
080–100 0.007 0.025 0.003 0.001 0.001 0.025 0.003 0.200
100–120 0.007 0.025 0.003 0.001 0.001 0.025 0.003 0.200
120–140 0.007 0.025 0.003 0.001 0.001 0.025 0.003 0.200
Tangent 0.970 0.900 0.988 0.998 0.996 0.900 0.988 0.200
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Table 12 (continued )

Preceding curve speed (km/h) Preceding roadway: connector road

Expected safe speed (km/h)

060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Preceding curve speed (km/h) Preceding roadway: fork
Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

060–080 0.200 0.200 0.025 0.007 0.007 0.001 0.007 0.025
080–100 0.200 0.200 0.025 0.007 0.007 0.001 0.007 0.025
100–120 0.200 0.200 0.025 0.007 0.007 0.001 0.007 0.025
120–140 0.200 0.200 0.025 0.007 0.007 0.001 0.007 0.025
Tangent 0.200 0.200 0.900 0.970 0.970 0.996 0.970 0.900
Preceding curve speed (km/h) Preceding roadway: weaving section

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

060–080 0.000 0.003 0.200 0.003 0.001 0.002 0.007 0.200
080–100 0.000 0.003 0.200 0.003 0.001 0.002 0.007 0.200
100–120 0.000 0.003 0.200 0.003 0.001 0.002 0.007 0.200
120–140 0.000 0.003 0.200 0.003 0.001 0.002 0.007 0.200
Tangent 0.998 0.988 0.200 0.988 0.996 0.994 0.970 0.200

Table 13
CPT of node “Curve angle”.

Curve angle (grad) Preceding curve speed: 060–080 km/h

Expected safe speed (km/h)

060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

010–100 0.114 0.333 0.333 0.333 0.333 0.792 0.333 0.333
100–200 0.549 0.333 0.333 0.333 0.333 0.167 0.333 0.333
200–300 0.336 0.333 0.333 0.333 0.333 0.042 0.333 0.333
Curve angle (grad) Preceding curve speed: 080–100 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

010–100 0.042 0.167 0.086 0.943 0.731 0.901 0.333 0.333
100–200 0.042 0.792 0.901 0.052 0.267 0.086 0.333 0.333
200–300 0.917 0.042 0.012 0.005 0.003 0.012 0.333 0.333
Curve angle (grad) Preceding curve speed: 100–120 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

010–100 0.012 0.042 0.086 0.132 0.622 0.974 0.333 0.333
100–200 0.012 0.042 0.901 0.743 0.378 0.025 0.333 0.333
200–300 0.975 0.917 0.012 0.125 0.000 0.002 0.333 0.333
Curve angle (grad) Preceding curve speed: 120–140 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

010–100 0.333 0.333 0.167 0.333 0.052 0.167 0.963 0.901
100–200 0.333 0.333 0.792 0.333 0.943 0.792 0.035 0.086
200–300 0.333 0.333 0.042 0.333 0.005 0.042 0.003 0.012
Curve angle (grad) Preceding curve speed: tangent

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

010–100 0.001 0.141 0.404 0.599 0.893 0.631 0.538 0.795
100–200 0.230 0.003 0.594 0.401 0.107 0.369 0.462 0.205
200–300 0.769 0.856 0.002 0.000 0.000 0.000 0.000 0.000
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Table 14
CPT of node “Warning sign”.

Warning sign Advice speed: 50 km/h

Expected safe speed (km/h)

060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Present 0.707 0.992 0.938 0.938 0.500 0.500 0.500 0.500
Not present 0.293 0.008 0.063 0.063 0.500 0.500 0.500 0.500
Warning sign Advice speed: 60 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Present 0.664 0.981 0.992 0.500 0.500 0.500 0.500 0.500
Not present 0.336 0.019 0.008 0.500 0.500 0.500 0.500 0.500
Warning sign Advice speed: 70 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Present 0.500 0.500 0.063 0.799 0.981 0.063 0.500 0.500
Not present 0.500 0.500 0.938 0.201 0.019 0.938 0.500 0.500
Warning sign Advice speed: 80 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Present 0.500 0.500 0.500 0.500 0.938 0.981 0.500 0.500
Not present 0.500 0.500 0.500 0.500 0.063 0.019 0.500 0.500
Warning sign Advice speed: 90 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Present 0.500 0.500 0.500 0.063 0.981 0.500 0.992 0.500
Not present 0.500 0.500 0.500 0.938 0.019 0.500 0.008 0.500
Warning sign Speed limit: 50 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Present 0.664 0.500 0.500 0.500 0.500 0.500 0.500 0.500
Not present 0.336 0.500 0.500 0.500 0.500 0.500 0.500 0.500
Warning sign Speed limit: 60 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Present 0.500 0.938 0.500 0.500 0.500 0.500 0.500 0.500
Not present 0.500 0.063 0.500 0.500 0.500 0.500 0.500 0.500
Warning sign Speed limit: 70 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Present 0.500 0.500 0.063 0.664 0.334 0.500 0.500 0.500
Not present 0.500 0.500 0.938 0.336 0.666 0.500 0.500 0.500
Warning sign Speed limit: 80 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Present 0.500 0.500 0.500 0.938 0.008 0.500 0.500 0.500
Not present 0.500 0.500 0.500 0.063 0.992 0.500 0.500 0.500
Warning sign Speed limit: 90 km/h

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Present 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
Not present 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
Warning sign No speed limit

Expected safe speed (km/h)
060–069 070–079 080–089 090–099 100–109 110–119 120–129 130–140

Present 0.001 0.008 0.019 0.067 0.100 0.087 0.000 0.100
Not present 0.999 0.992 0.981 0.933 0.900 0.913 1.000 0.900
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Appendix B. – Some relevant safe speed expectations

The letters to the left of the TANs represent the letters in Table 5.
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