

 0

.

Civil Engineering and Geosciences

Department of Geo-Engineering

M
a

s
te

r
o
f

S
c
ie

n
c
e
 T

h
e

s
is

Soil Constitutive Modelling
Using Neural Networks

Eleni Smyrniou

 i

 ii

Soil Constitutive Modelling Using
Neural Networks

By

Eleni Smyrniou

In partial fulfilment of the requirements for the degree of

Master of Science

In Geo-engineering

at the Delft University of Technology,

Thesis committee: Dr. P. J. Vardon, TU Delft

Dr. ir. F. C. Vossepoel, TU Delft

Dr.ir.T.Schweckendiek, TU Delft, Deltares

Company Supervisors: Dr. J. Nuttall, Deltares

Dr. B. Zuada Coelho, Deltares

 iii

 iv

PREFACE

This dissertation started in November 2017 in order to accomplish the requirements for the Geo-Engineering
Master’s degree at TU Delft. While working on the thesis I was able to acquire expertise on several fields and
further develop my programming skills. I believe this process has prepared me adequately to become a junior
engineer. Nevertheless, it would not be possible to deliver this thesis project on my own.

The thesis was conducted in collaboration with Deltares where I spend most of my time working on the project.
Our team consisted of Jonathan Nuttall who assisted me on a day to day basis with his Neural Network
knowledge. Furthermore, his critical thinking and general ability to point me to the right direction certainly kept
me exited for the project and is one of the reasons I was able to look at the project from many different
perspectives. The second member of the team was Bruno Zuada Coelho who assisted me in the Geotechnical
Engineering part of the project. His attention to detail and general knowledge and experience in soil behaviour
helped me resolve many issues I faced during the completion of the thesis project.

Also, I would like to thank the rest of my committee members P. Vardon, F. Vossepoel and T. Schweckendiek
for their insightful guidance against any major problems encountered or decisions that had to be taken.

Moreover, I would like to thank my friends and family for their support who stood by me throughout my years
as a student both in the Netherlands and in Greece.

Eleni Smyrniou, 2018

 1

Contents

PREFACE.. iv

Contents .. 1

Abstract... 3

Chapter 1. Introduction... 5

1.1 Thesis Background .. 5

1.2 Proposed solution .. 5

1.3 Research Question ... 5

1.4 Scope of work ... 5

1.5 Report Outline ... 6

Chapter 2. Literature Study .. 7

2.1 Neural Networks- Basic Structure and Computational Operation .. 7

2.1.1 Structure-The Neuron ... 7

2.1.2 Structure-Connections and Full Neural Network .. 8

2.1.3 Computational Operation- Feed Forward Neural Network ... 8

2.1.4 Computational Operation- The back propagation method .. 10

2.1.5 Computational Operation- Activation functions ... 11

2.2 Applications of Neural Networks in Geotechnical engineering .. 12

2.3 Creating an Neural Network ... 14

2.3.2 Determination of the Neural Network’s architecture .. 15

2.3.3 Validation ... 17

2.3.4 Neural Network Callbacks .. 18

2.4 Different Types of Neural Networks ... 19

2.4.1 Nested Neural Networks ... 19

2.4.2 Feedback/Recurrent Neural Networks .. 20

2.5 Neural Networks for Constitutive models ... 21

2.5.1 Recurrent Neural Networks .. 21

2.5.2 Nested Neural Network .. 21

2.6 Neural Networks and Finite Element Analysis ... 22

2.6.1 “Intelligent finite element method” (Javadi & Tan, 2006).. 22

2.6.2 “A self-learning finite element code” (Shin & Pande, 2000) .. 22

2.7 Conclusion of Literature Review .. 23

Chapter 3. First Approach- Generic Neural Network ... 24

3.1 Introduction ... 24

3.2 Methodology ... 24

3.2.1 Creating the dataset ... 24

3.2.2 Training Dataset .. 25

3.2.3 Creating the Generic Neural Network .. 27

3.3 Results ... 28

 2

3.3.1 Network Architecture ... 28

3.3.2 Results of the Dataset ... 30

3.3.3 Improve Neural Network with Feedback Prediction .. 35

3.4 Conclusions ... 39

Chapter 4. Second Approach-Component Based Modelling .. 40

4.1 Introduction ... 40

4.2 Methodology ... 40

4.2.1 Typical components of material models ... 40

4.2.2 Create the Training Datasets ... 42

4.2.3 Creation of Neural Networks .. 47

4.3 Results Linear- Elastic Model ... 49

4.3.1 Neural Network Model with One Direction as Input .. 49

4.3.2 Neural Network Model with Three Directions as Input .. 56

4.4 Linear- Elastic Perfectly Plastic Model ... 59

4.4.1 Defining Network Architecture and Training Results .. 59

4.4.2 Validation of Neural Network .. 63

4.5 Linear-Elastic Work hardening Model .. 72

4.5.1 Defining Network Architecture and Training Results .. 72

4.6 Conclusions of Component Based Neural Network Models ... 74

4.6.1 Linear- Elastic Neural Network .. 74

4.6.2 Linear-Elastic Perfectly-Plastic .. 75

4.6.3 Linear-Elastic Work-Hardening Model .. 76

Chapter 5. Discussion ... 77

Chapter 6. Conclusions... 80

Chapter 7. Recommendations for Future Research .. 82

Appendix A .. 84

Appendix B ... 86

Appendix C ... 87

Bibliography ... 89

 3

Abstract

Constitutive models are one of the main building blocks of the Finite Element Analysis that nowadays is used in
almost every geotechnical engineering project. Thus, finding realistic stress-strain behaviour models has been
one of the main fields of research in Geotechnical Engineering. However, constitutive equations have become
increasingly complex featuring 10 or more parameters as inputs with sometimes small correlations to physical
properties (Beaty & Byrne, 1998; Bauer, 1996). Thus, a more data driven approach can be determined to
account for that issue. In this thesis, that data driven approach will be attempted by using Neural Networks. The
main goal of the thesis is to access if Neural Networks can be used to model constitutive soil behaviour.
Specifically, two approaches are used to model stress-strain behaviour of soils.

The first approach is classified as a generic approach because the investigation is mostly focused on which
techniques of the Neural Network can help with the modelling of stress and strain behaviour. In that way the
Network can be thought of as a “black box”. The prediction after the training of the Neural Network is achieved
by dataset retrieved inputs and from inputs that are retrieved from the last step of the prediction. The latter has
the objective of replicating the prediction as it is achieved from a typical constitutive model. The aim is the
minimisation of errors after training. The feedback and the non-feedback predictions do not produce the same
results which imply that the network is sensitive towards a certain input. This is further validated by conducting
a sensitivity analysis and by looking into the activation of each node for certain loading cases. Dropout and
reassessing the inputs and outputs are attempted to resolve this issue but the results remain erroneous.

The second approach is to create a component based Neural Network. In this case a link is created between the
function of the neural Network and typical soil behaviour. The linear elastic model is modelled with a linear
activation function. In this case the network is successful in reproducing the full linear-elastic matrix. The linear
elastic perfectly plastic model is modelled by connected the linear elastic matrix with a ReLU layer as it is seen
in continuum mechanics. The Neural Network accurately predicts the stress-strain relationship. And it can be
used to also predict the stress path of “noisy” datasets. However, when trained with noise the signal added to the
training dataset is recognised as a pattern from the Neural Network. Finally, the work hardening model does not
successfully model the stress-strain relationship as it tends to exaggerate the contribution of the stress input
versus the strain input. All in all, this is an effort towards the development of a Neural Network constitutive
model with the final aim of producing data driven constitutive models.

 4

 5

Chapter 1. Introduction

Nowadays, structural analysis is one of the main tools used in geotechnical engineering to determine the fitness
of use for structures. From the development of Hooke’s law to the first formulation of the “Finite Element
Method” (Turner, Clough, Martin, & Topp, 1956) constitutive equations help relate stress with strain, the two
physical quantities mostly used when describing solid behaviour. Of course, this is also expanded to
Geotechnical Engineering where the solid is a geo-material and constitutive equations predict the behaviour of it.
Since, constitutive models become more and more complicated and require a number of parameters with little
physical correlation, the need for data driven constitutive models becomes apparent. In the following chapter the
background of the project is described together with the research goal, scope of work and the outline of the
thesis project.

1.1 Thesis Background
Constitutive equations are usually governed by the properties of a material and can be as simple as a linear
relationship or more complex and account for rate of response. The constitutive equations governing soil
behaviour have become increasingly complex. Many of them feature 10 or more parameters as inputs or possess
parameters that are hard to understand (Beaty & Byrne, 1998; Bauer, 1996). However, no matter the complexity
introduced to the model constitutive models are still mathematical models with parameters estimated from
laboratory or field data. Thus, they cannot capture with full accuracy the complexity of soil behaviour.
Therefore, investigating a more data-driven approach could address these issues, improving existing material
models.

Nowadays, artificial intelligence tools have been gathering more attention as they can solve complex problems
and are often highly efficient and accurate (Nilsson, 2009). There are a number of successful Artificial
intelligence tools that vary from fraud detection, image recognition, autonomous cars to competing at the
highest level in strategic game systems (such as chess and Go) (David, Netanyahu, & Wolf, 2016; Clark &
Storkey, 2015). Out of these tools Neural Networks seem to be one of the most promising and largely developed
Artificial intelligence tool. (Hern, 2016)

In relation to the constitutive models for soil the three most popular Artificial Intelligence methods include
genetic programming, evolutionary polynomial regression and artificial nested networks (ANN). Artificial
Neural Networks as stated before are largely developed and more promising than other techniques. Therefore,
the thesis will be focused on applications of Neural Networks regarding constitutive modelling.

1.2 Proposed solution
The need for a more data driven approach concerning constitutive modelling together with the recent successful
developments in Neural Networks (Brownlee, 2016; Shahin M. , 2012) gives rise to the thesis goal. This thesis
attempts to assess if it is possible to reproduce various constitutive models by using neural networks and in this
process investigate the process and the requirements of creating a successful Neural Network Soil Material
model.

1.3 Research Question
From the proposed solution part the scientific question of the thesis becomes clear. The general scientific
question of this thesis is “Can Neural Networks behave as successful constitutive material models?” From the
main research question more specific sub-questions can be formulated.

 Can Neural Network model typical behaviours captured in soil constitutive models? For example

loading- unloading- reloading of soil, linear elastic behaviour and soil hardening.
 How will the resulting Neural Network perform with if laboratory data or data retrieved from

constitutive models that exhibit more complex behaviour, are the input? For example data retrieved

from triaxial tests or from constitutive models like Hardening soil model or Cam-Clay model.

1.4 Scope of work
The objective of the thesis is to expand the knowledge on constitutive models created from Neural Networks
and discover if they are successful in modelling typical soil behaviour. The research will consist of three main
parts:

 6

1. Creating the datasets consisting of soil data. The dataset will be used for training and validating the
models. This will be done by using already validated and accepted material models (e.g. Linear-Elastic,
Mohr Coulomb)

2. Create generic Neural Networks. In this case the Network is treated as a black box the main focus is
concentrated on the Neural Network functions rather than the constitutive model behaviour.

3. Create Neural Networks that capture typical soil behaviours of each model. In this part attention is paid
to the inner workings of the Neural Network as well as the actual behaviour of the constitutive models.

In this study the main focus is to understand how soil behaviour relates to Neural Network computations
(activation functions, weights, and back-propagation) and in general understand what steps need to be followed
to create a successful Neural Network Material Soil model.

1.5 Report Outline
In Figure 1 the outline of the report can be observed. The thesis consists of three main parts. In Chapter 2 the
literature study, consists of the theoretical background of concerning Neural Networks. In Chapter 3 a generic
Neural Network will be attempted. The accuracy of the model is assessed together with its generalisation ability
and the final conclusions for the model. The second approach, Chapter 4, consists of component based
modelling. In this case the linear-elastic model, the linear-elastic perfectly-plastic model and the linear-elastic
work-hardening model are reproduced using specific parts of the Neural Network. A section with concluding
remarks and summary is added to each chapter. Finally, the discussion of the thesis is made in Chapter 5 and the
general conclusions of the thesis are made in Chapter 6. Finally, recommendations are made in the final part of
the thesis Chapter 7.

Figure 1 Reader's Guide

Introduction

Literature study
• Different types of Artificial intelligence in Geotechnical

engineering
• Basic formulation of Artificial Neural Networks
• Creating an ANN
• Different Types of ANN
• Applications of ANN in Geotechnical engineering
• ANN as a constitutive model
• How does the ANN fit into a Finite Element Analysis?

First Approach- Component
Based Modelling
• Introduction
• Methodology
• Results
• Conclusions

Second Approach- Component
Based Modelling
• Introduction
• Methodology
• Results
• Conclusions

Discussion

Conclusions Future work References

 7

Chapter 2. Literature Study

The Literature Study will focus on Neural Networks. The aim of the Literature Study is to gain an understanding
on how Neural Networks work, critically review the theory which will be needed for the analysis of the thesis’s
results and finally use the results of previous research to identify a promising direction for future research. The
first step of the literature review is an introduction to Neural Networks, thus their basic structure and
computational operations. Narrowing the scope of the literature study a list of typical applications of Neural
Networks in geotechnical engineering will be presented. By reviewing the papers that apply to constitutive
modelling the steps of creating a Neural Network for constitutive models will be identified and finally the main
types of Neural Networks found in literature will be reviewed as well. Finally, a review of how Neural
Networks are used in Finite Element Analysis will be made.

2.1 Neural Networks- Basic Structure and Computational Operation
Artificial Neural Networks are computing systems that are inspired by the biological equivalent neural networks
that are part of animal brains. These systems “learn” various tasks by comparing outputs either between them
(unsupervised learning) or with a target output the user provides. In that way the Neural Network creates their
own set of characteristics from the learning material they process.

2.1.1 Structure-The Neuron

The building blocks of this computational system (as of its biological equivalent) are the neurons. The neuron is
inspired by the biological neuron, in the sense that the functions performed by them are similar. Interconnected
neurons use electrical pulses to “communicate” with each other. The biological neuron has four basic
components (Figure 2) the dendrites, soma, axon and synapses. The neurons are connected with each other
through the synapses (of the first neuron) to the dendrites (of the second one). When the neurons synapses are
triggered by an electrical signal, the signal is processed in the soma of the cell, it travels through the axon and
finally the signal is released through an electrochemical contact from the synapses to the next neuron.

To be part of an Artificial Neural Network, the biological neuron (Figure 2) can be reduced to a mathematical
function. The artificial neuron (Figure 3) receives one or more inputs which are usually weighted and then
summed. After the summation the result is passed through a usually non-linear function called “activation
function”. Typical activation functions include the “linear”, “sigmoid”,”tanh” or “ReLU” functions.

Figure 2 Structure of the biological Neuron (Davies, 2002)

Figure 3 Processing Unit of Artificial Neuron

 8

2.1.2 Structure-Connections and Full Neural Network

To create a Neural Network the neurons described in chapter 2.1.1 will be connected to each other from inputs
to outputs. The Neural Network can also be defined in terms of layers. A layer of a Neural Network consists of a
specific amount of neurons and are usually fully connected to the neurons of the next layer. That means that
each neuron of a layer will be connected to each neuron of the adjacent layer (Figure 4). Typically, there are at
least three layers of neurons in each Network. The first is the input layer which is defined as the number of
inputs of the Neural Network. The last layer is called the output layer and the number of neurons corresponds to
the number of outputs of the network. The intermediate layers are the hidden layers of the network and are
selected arbitrary or by using techniques or rules discussed in the following chapters.

Figure 4 A typical structure of a Neural Network

2.1.3 Computational Operation- Feed Forward Neural Network

The Neural Network operates based on the concept that activations in one layer determine the activations of the
next layer. This process can be explained through a simplified example and then with added complexity. If we
consider a 3 layered network with one node as an input, two nodes as a hidden layer and one node as output the
following process will be followed (Figure 5):

 The weights are initialised randomly. After that the inputs are fed into the network. ([ܽଵ ܽଶ])
 The inputs are weighted according to weight corresponding to each of the neurons. The weighted input

is then summed and a bias is added to them.ሺݓଵܽଵ + ଶܽଶݓ + ܾଵሻ The bias acts as a threshold value and
thus it allows the activation function to be shifted left or right while the weights determine the
“steepness” of the activation function. The result of the above will be passed through an activation
function (e.g. sigmoid or linear)ሺ݂ሺ∑ ܽݓ + ܾଵଶ=ଵ ሻሻ.

 Then the result will be weighted once again and the bias and activation function of the last node will be

added to that to produce the last output. ݂ቀ݂ሺ∑ ܽݓ + ܾଵଶ=ଵ ሻቁݓଷ + ܾଶ

Moving forward from the example the general mathematical approach will be considered and formulated. Each
input of the input layer is connected to each neuron of the hidden layer and so on until the last output layer. All
of the inputs are given a certain activation that will be a number usually scaled between 0 and 1.

 [Ƚଵ Ƚଶ … Ƚ୬] (1)

Where n is the number of nodes in the input layer. A weight is then assigned to each one of the connections
between each of the neurons in the hidden layer and the neurons from the input layer. The weighted sum of all
of them is computed according to these weights. Thus, for each neuron in the hidden layer:

 Ƚଵwଵ + Ƚଶwଶ + +ڮ Ƚ୬w୬ (2)

Then a bias will be added to the results of equation 2. The bias is added so that the activation function can
become active only after a certain threshold value is reached. Therefore, the bias determines when the neuron
remains inactive.

 9

 Ƚଵwଵ + Ƚଶwଶ + +ڮ Ƚ୬w୬ + bଵ (3)

This weighted sum is passed through an activation function f (which is usually a sigmoid). In the case of the
sigmoid the output (equation 3) is between 0 and 1 and can be considered as a measure of how positive the
weighted sum is.

 fሺȽଵwଵ + Ƚଶwଶ + +ڮ Ƚ୬w୬ሻ (4)

If we consider the full architecture of the Neural Network in Figure 6 the full equation can be formulated. The
activations of each layer are organised as a vector. Where α(0) is referred to a specific layer of the Neural
Network.

 [
 ȽଵȽଶڭڭȽ୬]

 (5)

The weights are then organised as a matrix. Where each row of the matrix corresponds to the connections
between one layer and a particular neuron in the next layer.

 [w, w,ଵ … w,୬wଵ, wଵ,ଵ ڮ wଵ,୬ڭw୩, w୩,ଵڭ ⋱ …ڭ w୩,୬] [
 ȽଵȽଶڭڭȽ୬]

 (6)

Then the bias is added to equation 6.

 [w, w,ଵ … w,୬wଵ, wଵ,ଵ ڮ wଵ,୬ڭw୩, w୩,ଵڭ ⋱ …ڭ w୩,୬] [
 ȽଵȽଶڭڭȽ୬]

 + [
 bଵbଶڭڭb୬]

 (7)

Then equation 7 is wrapped around the selected activation function.

 f (
 [w, w,ଵ … w,୬wଵ, wଵ,ଵ ڮ wଵ,୬ڭw୩, w୩,ଵڭ ⋱ …ڭ w୩,୬] [

 ȽଵȽଶڭڭȽ୬]
 + [

 bଵbଶڭڭb୬]

)

 (8)

Equation 8 represents that the activation function will be applied to each specific component of the resulting
vector inside it. So the final feed-forward Neural Network equation will be:

 𝛂ሺଵሻ = fଵሺ𝐖ሺ−ሻ𝛂ሺሻ + 𝐛ሺሻሻ (9)

Finally for one hidden layer architecture the equation regarding the outputs will be:

 𝛂ሺଶሻ = fଶሺ𝐖ሺ−ሻfଵሺ𝐖ሺ−ሻ𝛂ሺሻ + 𝐛ሺሻሻ + 𝐛ሺሻሻ (10)

 10

Figure 5 Simple Neural Network example Feed-Forward method

Figure 6 Typical structure of neural Network

2.1.4 Computational Operation- The back propagation method

Training Neural Networks can be achieved with supervised or unsupervised learning. The difference between
them is that with supervised learning the network will try to minimize the errors between inputs and outputs by
adjusting the weights. Whereas in unsupervised learning the Neural Network does not have the ability to
calculate errors and thus the Neural Network will model the underlining structure of the data. In Geotechnical
applications Neural Networks are trained by using the method of supervised learning since the outputs of the
network are strictly defined.

As stated earlier, with the supervised training the Neural Network will try to improve its performance by
minimizing errors between the predicted and the actual output. Backpropagation is a method used in Neural
Networks to calculate the gradient of errors with the intention of adjusting the weights of the network.
(Goodfellow, Bengio, & Courville, 2016). To calculate the gradient of the errors a function needs to be defined.
This function is typically called “cost function” and it calculates the difference between the network output and
the expected output. A simple form of this function can be seen in equation 11. Where y(x) represents the output

 11

of the target function and y’(x) the prediction of the neural network, n is the number of training samples that the
training examples are going to be averaged to.

 E = ଵଶ୬ ∑ ‖yሺxሻ − y′ሺxሻ‖ଶ୶ (11)

The cost function is responsible for adjusting the weights according to its results. The first step is to calculate
the partial derivative of the error with respect to each weight in the network. The gradient of each weight is
essentially an indication of how much the change of a specific weight is affecting the final cost function.

 ∇E = ቀ ∂E∂୵భ , ∂E∂୵మ , … . , ∂E∂୵Nቁ (12)

To finally update the weights a learning rate λ is used. The negative notation in the gradient is used because the
aim of the training is to decrease the function E. The updated weights are derived by equation (13).

 w୬ୣ୵ = w୭୪ୢ − λ∇E (13)

If the cost function was represented in an x-y space, where x is the error and y are the weights, we would see
that is not a monotonic function and in that way it possesses various local minima (Swirszcz, Czarnecki, &
Pascanu, 2017). When the training of a neural network begins the weights are typically initialised randomly.
This might result in the loss function getting stuck in a local minimum and thus the resulting weights will not be
the smallest the network can achieve. (Figure 7)

Figure 7 Local minima problem

2.1.5 Computational Operation- Activation functions

In the previous chapters the term activation functions was quoted. In this chapter the use of activation functions
in Neural Networks is explained. As it is implied in chapter 2.1.3 activation functions define the output of a
neuron for a given set of inputs. The first activation functions were a type of step functions where the only
possible output is either 0 or 1 (in that way “ON” or “OFF”). Thus, if the input value was larger than a threshold
the output would be 1 and if it was less than the threshold the value is zero.

However, if the output of the Network should not be binary the step activation function is not useful. In this case
a linear activation function can be used. By using this type of activation function the aim of the network is to
model a straight line where the activation is proportional to the input. However, the problem with this activation
function is that if a gradient descent algorithm is used then the derivative of this function will be a constant
value. That implies that regardless of the layers of the network the final activation function of the last layer is a
linear function of the inputs. That means that if the network contains multiple layers they can be replaced by a
single layer because the ability of stacking layers is lost by the linearity of the activation functions. (Jordan,

 12

1995). However, if the final function modelled is linear then a network composed of linear activation functions
is useful.

In most Neural Network cases the activation functions are used to introduce non-linearity to the network. A non-
linear activation function is able to compute problems with using only a small amount of neurons. A sigmoid
function is the next choice. This type of function is non-linear but also has the ability to act as a step function
since after a certain number the result of the activation will either be 1 or 0. However, if the steepness of the
curve is large that will mean that small changes in the input values will result in large changes in the output
values. In addition, towards either end of the sigmoid function the values of the outputs tend to respond less to
changes of the inputs. The gradient of that region is, thus, vanishing. This issue is called the vanishing gradient
problem. In this case the network’s learning process is stopped or slowed down.

The final activation function used in this thesis is the ReLU. This function is non-linear, as values smaller than
zero will return a zero output. ReLU is usually less computationally expensive as it involves simpler
mathematical operations. However, ReLU is governed by the “dying ReLU problem”. In this case because of
the horizontal line it is possible that the gradient will return values of zero. That means that the specific weight
connections that are not “fired” will stop responding to the error variation and so they will stop training. The
leaky ReLU is a variation of this activation function that deals with this problem. In that case the line is slightly
inclined and thus the gradient will not be zero.

Table 1 Activation Functions

Name Plot Equation Range

Linear

݂ሺݔሻ = ሺ−∞,+∞ሻ ݔ

Step Function

݂ሺݔሻ = {Ͳ, ݔ < Ͳͳ, ݔ Ͳ ሺͲ,ͳሻ

Sigmoid

݂ሺݔሻ = ͳͳ + ݁−௫ ሺͲ,ͳሻ

Rectified Linear

Unit (ReLU)

݂ሺݔሻ = {Ͳ, ݔ < Ͳݔ, ݔ Ͳ (0, +∞)

Leaky rectified

linear unit (Leaky

ReLU)

݂ሺݔሻ = {Ͳ.ͲͲͳݔ, ݔ < Ͳݔ, ݔ Ͳ ሺ−∞,+∞ሻ

2.2 Applications of Neural Networks in Geotechnical engineering
A lot of successful studies exist that tackle geotechnical problems. In this section those studies are summarised
to determine popular Neural Network approaches to Geotechnical problems. Some of the studies are concerned
with pile foundations. An attempt is made by W.T. Chan (1995) to find an alternative pile driving formula
using Neural Networks. However, more successful applications are focused on recovering the axial capacity of
pile foundations (Shahin M. , 2010) , the lateral load capacity in clay soils (Das & Basudhar, 2006) in these
cases the Neural Networks used have simple architectures of one hidden layer and multiple inputs of soil
parameters. The next applications calculate the efficiency of pile groups (Hanna, Morcous, & Helmy, 2004) and

 13

the pullout capacity of anchors (Shahin & Jaksa, 2003) using fuzzy logic1. Those applications proved to be
equally or even more accurate than the formulas in the existing literature.

For determining the settlement of foundations in most cases a simple Neural Network is not accurate enough to
model this complex non-linear behaviour. In some cases Recurrent Neural Networks (RNN) are used to
produce more accurate predictions (Shahin M. , 2014). In this case CPT data are used as an extra input and as
the author suggests “the RNN can capture highly non-linear behaviour”. Neuro- fuzzy systems are also used to
predict the load-settlement curves of strip foundations (Provenzano, Ferlisi, & Musso, 2004) and to predict the
ultimate bearing capacity of shallow foundations (Padmini, Ilamparuthi, & Sudheer, 2008). The fuzzy Neural
Networks appear to be quite robust and respond well to experimental data in this case.

Studies for determining slope stability also exist. In the case of S.Kumar Das (2011) the Neural Network is
used as a classification algorithm. The aim is to classify the slopes between failure (represented by the number 0)
and safety (represented by the number 1). However, in other studies the stability problem is approached with
uncertain quantities. In this case the Neural Network approximates the limit state function which is linked to a
reliability method the final outcome of the framework is the failure probability (Cho, 2009). Ferentinou (2007)
aimed to uncover the inner working of the Neural Network that lead to a successful prediction with the
technique of self-organizing maps implemented together with the Neural Network.

For the determination of soil properties simpler Neural Networks can be implemented. For example the
unsaturated shear strength can be determined by only one hidden node layer with six inputs of sand, clay or silt
friction, void ratio, compacted w(%), cohesion (c’) and friction angle (Lee, Lee, & Kim, 2003). The same idea
is used by S.Kumar Das (2008) to determine the residual friction angle by multiple soil parameter inputs. Finally,
a PHD study is made by Obrzud (2009) to extrapolate constitutive parameters from in-situ soil data which is
also quite successful.

To access the liquefaction potential of soils M.H.Baziar (2007) used a large database of laboratory cyclic data
as well as cyclic liquefaction tests to predict the amount of strain required to trigger liquefaction.

Studies that model stress-strain relationships with Neural Networks also exist. Most of the networks are
recurrent with extra inputs of soil parameters (relative density, confining pressure etc.). The implementation is
quite simple and the results have a relative good fit. (Banimahd, Yasrobi, & Woodward, 2005; Zhu, Zaman, &
Anderson, 1998; Romo, García, Mendoza, & Taboada-Urtuzuástegui, 2001; Penumadu & Zhao, 1999; Johari,
Javadi, & Habibagahi, 2011; Bamdad & Habibagahi, 2003)

The applications for constitutive modelling start with J. Ghaboussi (1991). In this study the auto progressive
training of the Neural Network is implemented. The Neural Network is quite successful at modelling the
constitutive behaviour since the training is achieved by the global load-deflection response measured in a
structural test. The network is attached to an iterative non-linear finite element analysis so that the stress – strain
relationship can be gradually extracted to train the Neural Network. This idea is later expanded with the addition
of history points to the inputs and outputs of the Neural Network (Ghaboussi & Sidarta, 1998) which increases
the accuracy of the prediction. Chaboussi and Sidarta (1998) use the nested adaptive neural networks in an auto
progressive training with data from a wide variety of non-linear stress paths. This study reveals the effect on
predictions when testing data what were not included in the training. Another technique is later developed by
Amir H. Gandomi (2014) it is called the SelfSim method which is used for the inverse extraction of non-linear
material behaviour. The approach of Jorg F.Unger (2009) is to use different applications of Neural Networks to
help with implementing a multiscale analysis on reinforced concrete. Specifically, the Neural Network is used as
a material model between the concrete and the reinforcement. However, to apply this method, modifications had
to be made to the Netwon- Raphson iteration in the extrapolation and superposition of the elastic material. D.
Stefanos (2015) focuses on the training of a simple Neural Network with a 2D Cartesian strain vector as an input
and the Cartesian stress vector as an output. The test data in this case are created in PLAXIS using the
Hardening Soil model.

On more application of Neural Networks is to test the behaviour of diaphragm walls (Kung, Hsiao, Schuster, &
Juang, 2007). Specifically, the output of the network is the deflection of the diaphragm wall. In this case several
variables such as excavation depth, system stiffness, excavation width, shear strength; effective strength and
Young’s modulus are used as input to the network. The Neural Network is validated against in situ data.

1 “Fuzzy logic is a form of many-valued logic in which the truth values of variables may be any real number

between 0 and 1. It is employed to handle the concept of partial truth, where the truth value may range between

completely true and completely false.” (Novák, Perfilieva, & Mockor, 1999)

 14

For calculating the stress history Pradeed U.Kurup (2002) developed a Neural Network tool to calculate the
OCR values by using inputs of cone resistance (qt), total overburden pressure (σw), and several pore pressure
inputs on the cone and the hydrostatic pressure. Finally, as a result the OCR output values have a good accuracy.

From reviewing various Neural Network applications it can be concluded that there are 2 types of approaches
when dealing with Geotechnical problems and using Neural Networks. Firstly, geotechnical problems that have
as an output one value as a prediction and are not time depended can be easily trained by a Neural Network as
long as enough parameters are set as inputs. In the case that there are not enough parameters, the Neural
Network has the ability to be attached to probabilistic computational tools. The second type of Neural Networks
architecture has as a goal to model soil stress-strain relationships. This type of relationship requires the
implementation of an elaborate general framework. For these applications, usually the Neural Network is linked
to a finite element analysis which helps with fine tuning the weights of the Neural Network. However, it can be
observed that the link between the failure and success of the Neural Network model with the inner workings of
it is rarely made. Thus, the role of each node in the final prediction is not investigated. This will be an approach
investigated in this thesis. Finally, the versatility of the Neural Network tool and the amount of applications it
can be successfully implemented build a strong case in favour of the scientific question.

2.3 Creating an Neural Network
As stated earlier many consider Neural Networks to be black boxes (Benıtez, Castro, & Requena, 1997).
Therefore, many perceive the choices in developing a Neural Network are made arbitrary. To resolve this
common misconception the literature study at this point will focus on the steps followed to create a Neural
Network as they are defined in literature. The main steps in developing the Neural Network can be summarised
in Figure 8 (Maier & Dandy, 2000b). The main steps of the Neural Network are described in this section.
However, many of them are excluded from the following chapters (e.g. Choice of optimization method, Model
inputs) as they are already defined in literature and they are beyond the scope of the project.

Figure 8 Main steps in Neural Network development

2.3.1.1 Training and Testing Dataset Determination
The data sets created need to be further subdivided into subsets before they are used. The two main subsets are
the training and the testing subset. (Shahin & Jaksa, 2004b). The training one, as the name implies, will be used
to train the Neural Network. Thus, it will be used to adjust the weights to the optimum values. The testing
dataset consists of samples that the network is not trained on. This dataset will be used for validating the final
trained neural network.
Usually 80% of the data are assigned to the training subset and 20% to the validation. However, some studies
suggest that the data should be subdivided into three categories: training, testing and validation. The training
subset should contain 55% percent of the data and is used for adjusting the connection weights. The testing
subset contains 25% of the data and is used to check the model in different stages, and determines when to stop
the training process to avoid overfitting. The validation set contains 20% of the data and is used to check the
performance with relation to the environment. (Shahin & Jaksa, 2004b). These percentages are arbitrary but the
main concept behind the data division is that the training set should be representative of the data that the
network will be tested on (Maters, 1993). The dataset range used for the training should not be smaller than the
data set used for the actual application of the neural network. Thus, extreme values of the data should be located
in this testing dataset.

Performance criteria

• Training speed
• Processing speed during

recall
• Prediction accuracy, errors

Data sets

• Number of data sets (e.g.
two, three, holdout method)
• method for data division

Data preprocessing

• Scaling
• Tranformation to normallity
• Removal of nonstationarities

Model inputs

• Choice of variables
• Choice of lags

Model architecture

• Connection type
• Degree of connectivity

• Number of layers
• Number of nodes per layer (trial and
error ,constructive or pruning methods)

Stopping criteria

• Fixed number of iterations
• Training error

• Cross-validation

Choice of optimization method

• Local first order (e.g. back
propagation)

• Local second order
• Global

Validation

• Metrics
• Graphs

 15

However, if the training error is too small the model might be overfitting. In this case the model “memorises”
specific patterns in the training subsets that are not connected to the general behaviour of the dataset. Therefore,
a separate testing set needs to be created to test if the Neural Network avoided overfitting. This is the validation
subset as mentioned above. An example of overfitting data is presented in Figure 10. As the error in the training
data starts decreasing the error in the testing data is increasing (Bamdad & Habibagahi, 2003). There are certain
rules of thumb that exist to avoid overfitting networks. Firstly, the number of training samples should be larger
or equal to the number of weights. (Rogers & Dowla, 1994). However, others claim that overfitting does not
occur if the number of training samples is at least 30 times the number of free parameters and they define the
number of weights as w=(I+1)H+(H+1)O. Where H is the number of neurons in the hidden layers, I is the
number of inputs and O the number of outputs. (Amari, Murata, Muller, Finke, & Hua Yang, 1997)

Figure 9 Performance during training (Bamdad, 2003)

2.3.1.2 Data Pre-processing
Scaling the data is usually determined by the function the Neural Network is supposed to model. Some typical
methods of rescaling include:

 Normalisation: here the data are divided by a norm of the data. This technique aims to make the length
of the data equal to one. Typically normalising the data refers to rescaling by the minimum and range
of the data vector so that all the samples lie between 1 and 0.

 Standardizing: in this case the data vector is subtracted by a value that acts as a measure of location
and then it is divided by a value that acts as a measure of scale.

Generally many cases do not require scaling of the data as it can lead to loss of information, especially with
experimental data. However, in other cases the scaling of the input data vector is a good idea as Neural
Networks tent to favour larger sample values. Thus, this leads to poor generalisation as the weights are mostly
fitted to them. This is also the case for multiple inputs in a Neural Network. For example, if one input has a
range between 0 and 1, while another ranges between 0 and 100.000 then the Network will become partial to the
second input (Sarle, 1999). It is also stated that the “input/output dataset has to be distributed around the
midpoint of the interval in order to allow proper training of the neural network” (Koprinkova & Petrova, 1999).

2.3.2 Determination of the Neural Network’s architecture

The determination of the model’s architecture is achieved by selecting the optimum number of layers and nodes
in each of the layers. Most of the applications for Geotechnical engineer in literature use two hidden layers. In
general, for neural networks it is suggested that the first layer identifies the local features of the inputs and the
second layer the global ones.

Then the number of hidden nodes in each layer should be defined. In many studies the trial and error approach is
used for determining the model architecture. The model is trained using 1, 2, 3… 2I+1 hidden layer nodes (I is
the number of the input variables). Note that the number 2I+1 is the upper limit need to map any continuous
function for a network with I inputs (Caudill, 1988). An example is presented in Figure 10. In this case the
number of hidden nodes selected for the driven pile is 2 as it is considered to be the optimum and for drilled
shaft are 3 nodes (Shahin M. , 2010). It is also important to keep the hidden nodes to a minimum. As it is shown
in literature a large number of connection weights in a neural network will increase the likelihood of the model
to overfitting and reduces the chance of generalization (Shahin, Jaksa, & Maier), (Figure 12). In a different
study using Neural Networks to describe unsaturated soils the optimum number of nodes is found with a trial

 16

and error method but by decreasing the number of neurons from a high number while checking the error in the
network (Bamdad & Habibagahi, 2003). In the trial and error method different architectures are trained for a
large number of epochs. After an increment of epochs, the testing dataset is fed into the Neural Network and the
testing error is calculated. The optimum architecture can be found from this process as it can be seen in Figure
11 (Penumadu & Zhao, 1999).

However, systematic approaches exist that can determine automatically the network’s architecture. The adaptive
method of architecture determination is one of the automatic methods (Figure 13). The model starts with an
arbitrary and small number of nodes. During training, new nodes are added to the hidden layers and thus new
connection weights are generated. The training process continues so that the new connections obtain the
optimum weight values. While this process runs the old weights remain unchanged. Additional training cycles
are then performed where all the connection weights are allowed to change (Sidarta & Ghaboussi, 1998).

Another criterion used for determining the optimum number of hidden neurons is the Bayesian information
criterion (BIC) (Jiang, Mahadevan, & Yuan, 2016). In the end the criterion will select the simpler model (so the
model with the least parameters) that will also have a good fit of the data. The function that defines the criterion
is: ܥܫሺܬሻ = ሻߠሺܦʹ− + ݊log ሺܰ𝑎௫ሻ (Raftery & Kass, 1995). Θ represents all the parameters estimated by the
model. The np is the total number of parameters that will be updated in the model (e.g. the weights). D(Θ) is the
observed data log-likelihood function with regard to Θ. The model with the lowest BIC will be preferred.

Figure 10 Effects on number of hidden nodes on performance of ANN model (Shahin M. A., 2010)

Figure 11 Variation of error associated with a testing data set (Penumadu & Zhao, 1999)

 17

Figure 12 Performance during training (Bamdad, 2003)

Figure 13 the procedure for the adaptive evolution of the neural network architecture during training of the neural network material method.

(Sidarta & Ghaboussi, 1998)

2.3.3 Validation

After the training process is finished the model must be validated. The model is tested for its generalisation
abilities within the limits of the training data. This is tested by running the model with the validation subset.
The main criteria used to quantify the prediction performance of the model, are the coefficient of correlation (r),
the root mean squared error (RMSE) and the mean absolute error (MAE). The coefficient of correlation is a
measure of relative correlation and goodness-of-fit between predicted and observed data. With the RMSE error
the large errors receive greater attention while the MAE error is an absolute measure of error.

 r = ∑ ሺ୶i−୶̅ሻሺ୷i−୷̅ሻni=భ√∑ ሺ୶i−୶̅ሻమni=భ √∑ ሺ୷i−୷̅ሻమni=భ (14)

 RMSE = √ͳn ∑(y୨ − yĵ)ଶ୬
୨=ଵ (15)

 MAE = ଵ୬ ∑ |y୨ − yĵ|୬୨=ଵ (16)

The robustness of the model can be tested by performing a sensitivity study. In that way the response of the
model can be checked for different inputs. Hence it is checked if the model responds according to the
underlining physical process. (Shahin, Maier, & Jaksa, 2005) Another way to test the robustness of the Neural

 18

Network is with the connection weight approach. The concept is that in order to check the generalisation of the
Neural Network, the relationship of the generated and the relationship between input-connection-output should
be quantified. This can be achieved by determining the strength and direction of the connection weights
between them. Finally the Relative Contribution of each input can be calculated as a percentage. From the
equivalent physical relationships with the output can be evaluated (Kingston, Maier, & Lambert, 2005). The
metric of Relative Contribution is explained in detail in Appendix B.

Apart from the Relative Contribution another metric is the Relative Importance. This method proposed by
Garson (1991) and later modified by Goh (1995) partitions the Neural Network’s weights to determine the
relative importance of each input variable in the Neural Network. However, in the Garson’s algorithm the
absolute values of the connection weights are used to calculate the relative importance. This implies that the
direction of the relationship between inputs and outputs is not calculated. In addition, the Garson’s algorithm
can only be used for one hidden node layer. The calculation of the Relative Importance is explained in Appendix
C.

Usually the Validation process also includes graphs so that the reader can easily identify if the model was
successful in the end. For example in the measured and predicted values for each set of inputs-outputs are
plotted. The data should be located close to the 1:1 line or in the 10% lines (Figure 14), (Shahin M. , 2010).

Figure 14 Performance of the ANN driven piles model (Shahin M. , 2010)

2.3.4 Neural Network Callbacks

A callback is defined as “a set of functions to be applied at given stages of the training procedure of the Neural
Network”. A callback is usually used to view internal states and statistics of the model during training. Thus, it
helps to define if the Neural Network model is overfitting or if the actual problem is ill-posed.

2.3.4.1 Early Stopping
Early stopping is a form of regularization with the main purpose of avoiding overfitting. The goal of training a
neural network is to obtain the optimal generalisation performance. However, if the network is overfitting the
model will perform very accurately with data from the training dataset but poorly with data from the general
training dataset. (Morgan & Bourlard, 1990)

The concept of early stopping is that training will be stopped in the optimum level of error for the training and
validation data, thus, resulting in a network that has achieved generalisation. What is needed in this case is a
predicate that will define when the training is stopped. This is defined as the stopping criterion. A typically used
stopping criterion is the loss of the validation data.

2.3.4.2 Dropout
Dropout is a technique for preventing the overfitting of neural networks. When the training data are limited,
noisy and have complicated relationships, the Network is more prone to overfitting during training. All of these
features exist in soil data.

The idea behind the Dropout method is that it combines exponentially many different neural network
architectures efficiently. The term “dropout” refers to the dropping out connections between nodes in a neural
network. The removed connections are temporary removed from the network (Figure 15). The choice of which
connections are dropped out is made randomly.

 19

Figure 15 Dropout Neural Net Model. (a) A standard neural net with 2 hidden layers. (b) An example of a thinned net produced by applying

dropout to the network on the left. Crossed units have been dropped (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014)

2.4 Different Types of Neural Networks
Two main types of Neural Networks are observed in the literature for Geotechnical applications, apart from the
simple one described in chapter 2.1, the Nested Adaptive Network and the Recurrent Neural Network.

2.4.1 Nested Neural Networks

The material data can be described as a nested structure. (Sidarta & Ghaboussi, 1998) Modelling with a Nested
neural network (NNN) allows the user to take into consideration history point what account for the path
dependence of the material behaviour. This allows for a stepwise method of building and training the Neural
Network to represent the complex material behaviour. The NNN consists of several modules. A base module is
first created to represent the lowest function space in the material structure. The model is augmented by adding
modules thus forming a higher level NNN. The process of adding modules can be theoretically continued
indefinitely. All the modules represent a multi-layer feed-forward neural network. The process of creating the
NNN can be observed in Figure 17. In Figure 17 it is observed that when the new module is added the weights
of the previous modules are frozen as the new weights are adjusted.

Figure 16 Symbolic representation of a typical nested adaptive neural network (Sidarta & Ghaboussi, 1998)

 20

Figure 17 the evolution and training of a typical nested adaptive neural network material model with two history point modules. (Sidarta &

Ghaboussi, 1998)

2.4.2 Feedback/Recurrent Neural Networks

Several studies have used the Recurrent Neural Network (RNN) method for Geotechnical applications. (Bamdad
& Habibagahi, 2003), (Shahin M. , Load–Settlement Modeling of Axially Loaded Drilled Shafts Using CPT-
Based Recurrent Neural Networks, 2014), (Johari, Javadi, & Habibagahi, 2011), (Lefik, Some aspects of
application of artificial neural network for numerical modeling in civil engineering, 2013), (Najjar & Huang,
2007), (Ellis, Yao, Zhao, & Penumadu, 1995), (Ghaboussi & Jamshid, Neural network constitutive model for
rate-dependent materials, 2006), The RNN has two sets of input neurons: the plan units and the current state
units. At the beginning of the training process the first pattern of the input data is presented to the plan units
while the current state units are set to zero. Then the first training is conducted for the first set of data. The
output will be feed back into the model as a current state unit. An example of such a network can be seen in
Figure 18.

Figure 18 Architecture example of a RNN (Shahin M. , 2014)

 21

2.5 Neural Networks for Constitutive models
From reviewing the Neural Network applications in the last chapter it can be seen that successful applications of
Neural Network constitutive models exist in the literature. The reasons behind Neural Network being a
promising alternative are that: (Pernot & Lamarque, 1999)

 In the start of the program no assumptions are made for the constitutive model.

 It can solve the problem of constitutive law inversion.

 Experimental data can be used directly to form the constitutive model.

 The model can be retrained when new data become available.

These statements seem to reinforce the initial scientific question. However, to construct a methodology for
building a Neural Network constitutive model more insight has to be extracted from specific successful
constitutive model cases in the literature. The chapters that follow highlight important parts that make these
Neural Networks successful as well as the actual architecture of each Neural Network.

2.5.1 Recurrent Neural Networks

The first and most simple way to model constitutive stress-strain soil behaviour is through a Recurrent Neural
Network. Main issues that must be addressed when constitutive behaviour of soil is modelled are:

 Strain increments are always feed back to the model

 Avoiding overtraining of Neural Network

 The procedure to find the optimum size of a hidden layer

Recurrent Neural Network (RNN) is largely used in stress-strain definition. The current stress and strain levels
have a large influence on the next stress-strain state. In addition, some studies use additional soil parameters as
inputs (for example void ratio or confining pressure) to have more accurate results. (Penumadu & Zhao, 1999),
which is common practice among the RNN modelling stress-strain behaviour (Banimahd, Yasrobi, &
Woodward, 2005) . Another problem addressed by Lefik in 2003 is the size of the increments in the training
data. He notes that they should be as small as possible. (Lefik & Schrefler, 2003).In another study (Penumadu &
Zhao, 1999) the data used came from laboratory data for sand and gravel. The data were first divided into sand
and gravel datasets depending on their grain sizes. The sand database was further divided into sub-databases
depending on the value of their confining pressure. However, most of the RNN applications do not address the
“black-box problem2” so the connection between input and outputs remains unknown. However, it is proposed
that a sensitivity analysis will resolve this problem (Banimahd, Yasrobi, & Woodward, 2005).

Figure 19 Typical recurrent ANN based on soil constitutive model (Banimahd, Yasrobi, & Woodward, 2005)

2.5.2 Nested Neural Network

The Nested Neural Network is described in chapter 2.4.1. A Neural Network material model will not produce a
material stiffness matrix. When the Neural Network is implemented in a Finite Element (FE) code then this is a
disadvantage. Hashash (2004) addresses this problem by considering that the stiffness matrix can be extracted
from the relationship between stresses and strains (Equation 17) (Hashash, Jung, & Ghaboussi, 2004).

 ∂୬+ଵ∆σ୧∂୬+ଵ∆ε୧ = S୨σs୨ε Ⱦଷ ∑({ቀͳ − (σ୧NN୬+ଵ)ଶቁw୧୩σେ} × [∑{ሺͳ − (C୩୬+ଵ)ଶሻw୩୪େ}N
୪=ଵ {ቀͳ − (B୪୬+ଵ)ଶቁw୪୨ε}])Nେ

୩=ଵ (17)

2 In science, computing, and engineering, a black box is a device, system or object which can be viewed in terms of its inputs and outputs
(or transfer characteristics), without any knowledge of its internal workings.

 22

The stiffness matrix presented in Equation 17 can be used in FE analysis code for implicit methods like Netwon-
Raphson. In that way the material model constructed from a NANN is not a “black box” model.

 ܵ𝜎: State variable for stress. The resulting stress is calculated from the multiplication of the neural network results

with this value. 𝜎 = ܵ𝜎𝜎ேே ݓℎ݁݁ݎ − ͳ < 𝜎ேே < ͳ.
 ܵ𝜀: State variable for strain. This is used as a scaling factor for the strain. 𝜀ேே = 𝜀 ܵ𝜀⁄ − ݐℎܽݐ ℎܿݑݏ ͳ < 𝜀ேே < ͳ.

 ϐ: Constant for the sigmoid function tanh.

 ݓ: Connection weights between 1st hidden layer node ܤ and 2nd hidden layer nodeܥ.

 ݓ𝜀: Connection weights between input node strain 𝜀 and 1st hidden layer nodeܤ.
 ݓ𝜎 : Connection weights between output node stress 𝜎 and 2nd hidden layer nodeܥ.

 𝜎ேே: The output of the NN. The stress vector.

 ܥ: The values of the nodes of the 2nd hidden layer.
 ܤ: The values of the nodes of the 1st hidden layer.
 ܰܥ: Number of nodes of the 2nd layer.
 NB: Number of nodes of the 1st layer.

2.6 Neural Networks and Finite Element Analysis
In literature several attempts have been made to include Neural Networks in a Finite Element Analysis. It is
important to understand how Neural Networks fit into the Finite Element Analysis, because as a final result the
Neural Network Constitutive Models should be functional when part of the analysis. Thus, if they are not able to
be incorporated into the final framework then researching them has no practical application. In this section a
summary of these attempts will be presented.

2.6.1 “Intelligent finite element method” (Javadi & Tan, 2006)

The Neural Network is integrated in a finite element framework. In this methodology the Neural Network will
substitute a material model. In this case the Neural Network is trained a priori. The trained network is used
specifically in this case to predict the relationship between the stress and strain in the material. This is illustrated
in Figure 20. The third validation example in this case is an embankment of Mohr-Coulomb subjected to gravity
loading. In this case the soil parameters are obtained from triaxial tests in 5 soil samples. These values are feed
into the Neural Network and the Mohr-coulomb material model. However, the actual Neural Network is not
attached to the paper so the way that it was trained or how exactly it is implemented in the code is unknown.

Figure 20 Flow chart of the NeuroFE program (Javadi & Tan, 2006)

2.6.2 “A self-learning finite element code” (Shin & Pande, 2000)

In this paper the author aims to create a self-learning finite element code. Here an untrained Neural Network
constitutive model (NNCM) is embedded in the finite element code. The finite element code becomes straight
forward. The author points out that the NNCM requires a “priming constitutive matrix” to start the neural

 23

network. This matrix usually resembles a linear- elastic matrix of the material. In addition, the NNCM does not
require checking for yield computation of gradients of plastic flow rule, updating of yield surface and stress
integration algorithms. Therefore, a total stress vector can be simply calculated for a given total strain vector as
σ=NNCM(İ). In this case the non-linear incremental analysis is undertaken using a two-step staggered scheme.
IN the first step (Step 1 Figure 21) the boundary value problem is solved using a “pre-primed” NNCM. The
result is a displacement field from which a vector of displacements for the monitored points (įc

n) can be
assembled. The second step (Step II Figure 21) will produce the stresses and the displacements corresponding to
the delinquent displacement vector (įd

n) is defined by the equation įd
n = įc

n – įm
n . These data will be used to

train the NNCM. And in that way the finite element code is self-learning. The current stress-strain sets are
adjusted in the stress or strain correction scheme. In the strain correction the strain components corresponding to
the stress are calculated in Step I and updated in Step II. However, in the stress correction scheme stress,
components corresponding to the strain computed in Step I, are updated in Step II. Based on those schemes,
when the stress-strain pair become stationary and are within the limits of tolerance the self-learning procedure
can be stopped.

Figure 21 Flow chart of a self-learning FE code

2.7 Conclusion of Literature Review
The purpose of the literature review was, first, to understand the computational functions of Neural Networks.
After that the purpose of the literature study is to critically review the theory which will be needed for the
analysis of the thesis’s results and finally use the results of previous research to identify a promising direction
for future research. Through the literature review the typical methodology followed in the process of creating
Neural Networks is uncovered. This methodology will be followed throughout the thesis project. In addition,
upon reviewing the thesis certain untouched subjects are detected, these subjects are going to be investigated in
the thesis project. Most of the reviewed literature fails to deliver a model that is only dependent on the stress-
strain input. This will be the main focus of this study which stems from the initial goal of create a more data-
driven approach. In addition, an effort to understand why a Neural Network is successful or not usually is not
incorporated into the study. Therefore, the thesis will focus on the inner workings that make Neural Networks
fail or succeed.

 24

Chapter 3. First Approach- Generic

Neural Network

3.1 Introduction
The first attempt in creating a Neural Network material model will be a generic one. In this case the less
erroneous Neural Network architectures are achieved through attempting different number of nodes, activation
functions and with implementing other callbacks (e.g. dropout, early stopping). As it can be concluded from the
literature study little effort is made to link specific components of the material models to specific components of
the Neural Network (e.g. activation functions, layers, inputs). Thus, the approach is more generic and the Neural
Network can be seen in the end as a black box. However, it has been proved as a successful way to model
constitutive soil behaviour by the literature study.

3.2 Methodology
To answer the scientific question certain steps need to be defined in the methodology, as it is stated at chapter
2.2. The first step includes creating data for training and testing of the Neural Network, then different network
architectures will be tested. The architecture with the smallest errors will be selected as the optimum model
architecture (Shahin M. , 2010). The last step includes the validation process where the Network is tested
against data that were not included in the training dataset. The last step aims to assess whether the Network was
successful in uncovering the relationship between inputs-outputs without overfitting.

3.2.1 Creating the dataset

The dataset will be created with the Plaxis (2015) software. To create the data, in the Plaxis software, the
SoilTest environment is selected and specifically the General tab. In the General tab the user can define the
initial stresses and the strain increments of each phase. The training and testing datasets which are required for
the Neural Network’s training and validation have to capture the underlining mathematical relationship of each
one of the soil material models. Thus, the strain increments have to be selected randomly and the amount of
phases has to be large enough to capture the soil behaviour that the Neural Network aims to model.

To facilitate this process a Python script will be created so that Plaxis SoilTest (Figure 22) stresses and strain
increments can be imported from a .txt file. Thusly the increments of stress or strain can be selected randomly
and a large amount of them can be generated. Finally, the .txt file is formatted in a way that is recognised by the
software. The flowchart of this script can be observed in Figure 23.

Figure 22 The General tab of the Plaxis SoilTest environment

 25

.

Figure 23 Python script for Plaxis soil test

3.2.2 Training Dataset

The dataset consists of 250 strain increments selected randomly from a uniform distribution and ranging
between -5e-7 and 3e-7. The strains will be imposed only in the yy direction. The motivation behind this is that
there will be no shear stresses developing in the material and that the stresses in the xx direction will be equal to
the stresses in the zz. Thus, it is a way of simplifying the relationship the network will attempt to model.

To obtain the training data from Plaxis the material model and parameters have to be defined. In this example a
Mohr Coulomb material is selected. The reason being, that it is a relatively simple soil model. The parameters of
the soil model are displayed in Table 2. Note that these parameters will remain the same for all the datasets
created in this thesis unless stated otherwise.

The final Training dataset can be seen in figures Figure 24, Figure 25, Figure 26 and Figure 27. In Figure 24 the
p-q curve can be observed. In this figure the Mohr-Coulomb failure line can be noticed. In Figure 24 it can be

observed that the material will begin with a stress p = -100 ݇ܰ ݉ଶ⁄ and q =0݇ܰ ݉ଶ⁄ . As the stress increase the

follow the linear elastic relationship until the p-q combination reaches the failure line. Here the angle by which
failure is achieved allows the material to follow the Mohr-Coulomb failure line, resulting in work hardening of
the material. In Figure 25 and Figure 26 the actual relationship that the Neural Network will attempt to be fitted
can be observed. In the figures the initial loading linear elastic, the linear hardening and the loading unloading
parts are shown. Finally, in Figure 27 the strain inputs can be shown.

Table 2 Parameters of the Mohr-Coulomb model

Material Parameters Value Unit

Young’s Modulus E 1e6 ݇ܰ ݉ଶ⁄

Poisson’s Ratio ν 0.2 -

Strength Cohesion cref 5 ݇ܰ ݉ଶ⁄

Friction Angle φ 15 o

Dilation Angle ψ 0 o

 26

Figure 24 Training dataset p-q curve with failure line

Figure 25 Training Dataset Stress Strain curve

Figure 26 Training Dataset Stress Strain curve Zoomed

 27

Figure 27 Training Dataset strain increments Vs Steps

3.2.3 Creating the Generic Neural Network

To create the Neural Networks a number of programming languages are available with libraries that can be used
to facilitated the creation and training of Neural Networks. In this study the programming language Python will
be used. The library used is the TensorFlow software library that enables high performance numerical
computations. Finally Keras (Chollet, 2015) is used as API, written in Python that is able to run on top of
TensorFlow (Abadi, Agarwal, Barham, Brevdo, Chen, & Citro, 2015). The main reason behind these choices is
that these libraries and language are relatively easy to use and open sourced. Thus, a lot of material exists online
and they are continuously improving and developing due to their popularity among users.

The first step in creating the Neural Network is defining the inputs and the outputs of it. The approach is that the
Generic Neural Network should approximate a typical material model. Apart from the material model
parameters, that will be kept constant for all the dataset, typical inputs include the strain increments (in this case
dεyy) and the stress level (in this case σyy).

The neural network will be trained in a way that is depicted in Figure 28(a). However, like most material models
the actual way the data will be predicted can be seen in Figure 28(b). The stress level of the previous step is used
as an input for the next time step. Thus, for the model to be characterized as successful the results of case (b)
have to produce a good fit. The Neural Network prediction model of Figure 28(b) is referred as Feedback
prediction in the rest of the document.

Figure 28 (a) The Neural Network prediction when all the inputs are taken from file (b) The Neural Network when the strain increment is

taken from file and the stress state is set with a feedback prediction from the previous step

After defining inputs and outputs the architecture of the network needs to be defined. To find the optimum
network architecture different types of them will be tested. The process can be observed in Figure 29. First the
activation function of the nodes is selected. Then the number of layers in the network is defined and finally the
number of nodes in the layers. The model is trained after that and the relative metrics are calculated to validate

 28

the trained networks performance. These metrics include the mean absolute error, the squared mean error and
the coefficient of correlation.

Figure 29 Flowchart of architecture investigation

3.3 Results
The results of the generic neural network material model will be presented in this section. In the first part the
aim is to determine the optimum Neural Network architecture. In this part the errors computed will be referring
to the normal non-feedback prediction. After choosing the optimum Neural Network architecture the next step
includes evaluating the results of the network. The results of the Neural Network will be associated with the
inner workings of the Neural Network by calculating metrics like Relative Importance and Relative contribution
and by displaying the Networks weights.

3.3.1 Network Architecture

As stated in chapter 3.2 the Network’s architecture is first defined by the minimum errors and minimum amount
of neurons and layers so that the final trained network is obtained efficiently. In Figure 30 to Figure 32 these
errors can be observed. Each one of the figures represents a specific activation function that is applied to all of
the neurons of the layer. It can be observed that for all the activation functions the errors are smaller when there
is only one hidden node layer. The smallest errors can be noted for each of the graphs:

 In Figure 30 (ReLU activation function): 1 hidden layer, 4 nodes
 In Figure 31 (Sigmoid activation function): 1 hidden layer, 110 nodes
 In Figure 32 (Linear activation function): 1 hidden layer, 1 node

After accessing the number of layers of the Network the next step is to determine which activation function
performs better. From Figure 33 the optimum activation function is the Linear or the ReLU. For the Linear
activation function the optimum network architecture refers to one linear layer consisting of one node and for
the ReLU activation function the optimum size is the one layer with 4 nodes, architecture. The final architecture
is determined by the generalisation ability of the network. To determine this, a testing dataset will be created.
The testing dataset consists of data that are not included in the training dataset. The network architecture that
performs the best with the training dataset will be chosen as the optimum one. Table 3 contains the results of the
Neural Network with testing dataset the results of the Feedback Prediction are the ones that will determine the
optimum architecture. It is concluded that the ReLU architecture has the best generalisation ability.

Table 3 Results of testing dataset for the Linear and ReLU architectures

 ReLU Architecture Linear Architecture

Feedback Prediction Normal Prediction Feedback Prediction Normal Prediction

Mean Absolute Error 0.008832 1.68E-05 0.05767 1.67E-05

 29

Figure 30 Various architectures and their errors activation function ReLU

Figure 31 Various architectures and their errors activation function Sigmoid

Figure 32 Various architectures and their errors activation function Linear

 30

Figure 33 Comparison between different activation functions

3.3.2 Results of the Dataset

3.3.2.1 Results without Feedback Prediction
The next step is the validation process of the soil model. The final neural network will have two inputs and one
output with a hidden layer of 4 nodes with ReLU activation functions. The trained Neural Network connection
weights can be observed in Figure 34. In the figure the strongest connections are represented with a bolder
colour and the weakest ones with a lighter colour. Therefore, it is easily observed that the connections related to
the input of stress are stronger than the connection of strain. To verify this observation the relative contribution
and the relative importance of each output in terms of the weights will be calculated as described in chapter
2.3.3. In Figure 35 the results of this calculation can be seen. First of all, the relative contribution is calculated in
a different manner than the relative importance. Thus, their results are in fact different. However, what can be
observed in this case is that the contribution of the stress input is definitely bigger than the contribution of the
strain increment input. Therefore, the main contribution to the results comes from the stress level. It can be
concluded that in this network the stress level changes will have a greater effect in the results.

Figure 34 Trained Neural Network bolder connection represent higher weights

 31

Figure 35 Metrics for weight connections of the Generic Neural Network

The next step in reviewing the results it is validating with a testing dataset. The testing dataset is created in a
similar fashion with the training dataset. During training the loss (mean squared error) between actual and
predicted results of the network is monitored. The loss of the testing dataset is also calculated after the end of
each epoch. The network will uncover the mathematical relationship between inputs and output when both the
training and testing losses have converged to a certain value. In Figure 36 the losses for each epoch are
converged after epoch 10. Therefore, their general mathematical relationship is “discovered”. The error results
can also be seen in Table 4 where various metrics can be represented. As it can be expected the errors of the
testing dataset are larger than those of the testing. However, the final results (Figure 37, Figure 38) are still
acceptable. The correlation coefficient is very high in this case which proves that the target output and the
predicted results have a strong correlation with each other.

Table 4 Results of Metrics after training

` Training Dataset Testing Dataset

Mean Squared Error 5.52E-10 4.34E-10

Mean Absolute Error 1.86E-05 1.68E-05

Coefficient of Correlation 1.000 1.000

Figure 36 Losses during training for each epoch

 32

Figure 37 The training dataset results Stress Level Vs Strain Level

Figure 38 The testing dataset results Stress Level Vs Strain Level

3.3.2.2 Results with Feedback Prediction
After the validation of the data predicted without a feedback prediction the next step is to make the prediction
sensitive to the previous state. After the training of the model the prediction in this case is made by linking
outputs with inputs through a loop (Figure 28(b)). Firstly, the metrics produced after training will be observed in
Table 5. The feedback prediction seems to be very erroneous due to the fact that the strain increment’s relative
contribution is much smaller than the stresses. The result is that with a small error in the stresses has a huge
impact in the final output, while changes in the strain have smaller impact on the final output.

Table 5 Results of the Feedback prediction

No Feedback Prediction Feedback Prediction

Mean Squared Error 5.52E-10 0.0003

Mean Absolute Error 1.86E-05 0.0144

Coefficient of Correlation 1.000 0.99

To understand why the feedback prediction fails to give the same level of error to the outputs a sensitivity
analysis will be conducted to determine the spectrum of input variable contributions in the Neural Network. The
sensitivity analysis process involves varying each input variable across an entire range while holding all other
input variables constant. In Figure 39 the contribution plot for each of prediction variables is shown. In this case
each input is varied across the entire input range while all the other variables are held constant at some chosen
percentiles. In the first plot of Figure 39 the results for a varying stress level input can be observed. The stress
level input has a linear relationship with the stress level output. In this case the percentile of strain has little
effect on the results, because in all of the cases the same linear relationship is followed. On the other hand, the

 33

strain increment input will output almost a straight line. The percentile of stress input seems to be dominating
that relationship.

Figure 39 Contribution Plots from the sensitivity analysis illustrating the neural networks response curves to changes in each input with all

the variables held constant in different percentiles.

By setting the 80th percentile of stress and strain as a constant can be used to determine the range of possible
solutions. In Figure 40 the range of solutions can be observed. The strain input ranges between -2000 and

0݇ܰ ݉ଶ⁄ while the strain increment one between -444.4 to -443.6݇ܰ ݉ଶ⁄ .

Figure 40 Contribution Plots from the sensitivity analysis illustrating the neural networks response curves to changes in each input with all

the variables held constant in the 80th percentile.

 34

In Figure 41 the results of the sensitivity analysis with both of the inputs varying. The x and y axis are the inputs
of the Neural Network and the colour represents the output stress level. The inputs are selected randomly from a
normal distribution. It can be observed that the strain inputs do not have such a large effect on the output as the
stresses do.

Figure 41 Sensitivity analysis both inputs varying

From the observations made above we can conclude that the output’s lack of sensitivity in strain inputs makes
the feedback prediction erroneous. In Figure 42 and Figure 43 the actual results of the network can be observed.
As it was stated before the miscalculation is attributed to the fact that the stress increment has a greater affect in
the final results. However, Figure 43 suggests that the general trends of unloading and reloading are captured in
the Neural Network but the feedback prediction causes a drift in the results of the Network. Moreover, in Figure
42 it is observed that the feedback predicts an almost linear relationship between stresses and strains. This
suggests that the network does not distinguish between plasticity and elasticity.

Figure 42 The Training Dataset. The green line representing the feedback prediction

 35

Figure 43 The Training Dataset prediction Vs Steps. The green line representing the feedback prediction

Finally, the inner workings of the network are going to be investigated. The output of each neuron will be
calculated to determine how the Network reacts for different inputs. From Figure 42 it can be seen that the
feedback prediction approximates a straight line rather than following the hardening yield surface. This implies
that in the Network there are not specific patterns corresponding to the elastic and to the plastic behaviour. In
Figure 44 it can be seen that those different states are not represented by a different part of the network. The
only difference between the Networks is that the stress level input in case (b) is smaller thus the last node of the
hidden layer is less active.

Figure 44 The outputs of each node (a) elasticity (b) plasticity

All of the findings suggest that the network was not trained properly since most of the contribution comes from
the stress level input.

3.3.3 Improve Neural Network with Feedback Prediction

The feedback prediction has failed to produce an acceptable accuracy for the material model. However, several
techniques exist in literature that might be able to resolve the feedback prediction problem. The concept is that if
the errors in the training are really low then the feedback prediction errors will be minimised as well.

3.3.3.1 Different inputs and outputs
To improve the feedback of the model the model inputs and outputs have to be reconsidered. One way to
approach this problem is to find already successful models in literature and draw inspiration from them in terms
of inputs and outputs. The new input array will be consisted of ݀𝜀௬௬௧+ଵ, 𝜀௬௬௧ , 𝜎௬௬௧ and the output is changed
to ݀𝜎௬௬௧+ଵ. Thus, the strain level is added as an input and the stress increment in the next step is the new output.

 36

(Sidarta & Ghaboussi, 1998) To find a suitable architecture a similar approach will be implemented as it was in
chapter 3.3.1. This architecture might be more successful with the feedback prediction because the stress level
input will not have such a large correlation with the stress output. Thus, the contribution of the stress input will
be minimised.

Figure 45 The new inputs and outputs Training Dataset Errors

Figure 46 The new inputs and outputs Training Dataset Errors Feedback prediction

From Figure 45 the optimum architecture of the Neural Network constrict of three layers and 150 nodes.
However, these errors refer to a non-feedback prediction. Therefore, to determine the optimum architecture the
errors of the feedback prediction need to be defined. In Figure 46 the minimum error in the Feedback prediction
is achieved with architecture of 3 layers and 150 neurons. Figure 45 and Figure 46 have small differences with
each other in terms of errors. This implies that the issues of chapter 3.3.2.2 were resolved.

However, when the results are observed in Figure 47, it is concluded that this network does not perform more
accurately from the network in chapter 3.3.2.2. From the figure it can be seen that the feedback prediction will
perform better than the normal prediction. However, zooming into the graph it is easy to observe that the
prediction is still not accurate. Finally, the relative importance of each input can be calculated. In Figure 49 the
Relative contribution of the inputs reveals a balanced outcome with the strain level contributing more to the
output.

 37

Figure 47 Training dataset results New inputs and outputs

Figure 48 Zoomed training dataset results New inputs and outputs

Figure 49 Relative Contribution of each input- New inputs and Outputs

A sensitivity analysis is also performed to further evaluate the Neural Network. The sensitivity analysis is
implemented in a similar fashion as in chapter 3.3.2.2. The results can be observed in Figure 50. In Figure 50
the results of the Network when only one input is varying can be seen. From the first plot of the figure the
results of a varying stress level are observed. The relationship in this case is a decreasing response. Thus, a
decrease in the stress level input will lead in an increase in the stress increments no matter the percentile input
chosen. However, percentile inputs seem to have an effect on the range of responses. For example a small

 38

percentile input gives the ability to the output to vary significantly. The effect of the stress level is bigger than
expected. Theoretically, the stress level should be quite irrelevant to the stress increment output since the only
function of the stress input is to distinguish plastic from elastic behaviour. Moving on the second plot, where the
strain increment inputs vary, there is a linear relationship between the strain input and the stress output. It is also
noticed that the negative parts of the Inputs correspond to negative parts of the output. However, the percentile
inputs influence the stress increment output. Thus, high levels of stress level and strain level inputs will result in
non-zero stress increment output which is not correct from a constitutive model point of view. Finally, the last
plot shows the relationship between varying strain level input. It can be observed that the range of solutions
consists mostly of negative stress increment outputs. The response of the Network in this case is classified as
increasing because when the strain level increases the stress level increases as well. In addition, it is observed
that the percentile inputs in this case do not have a clear influence on the output.

Figure 50 Contribution Plots from the sensitivity analysis illustrating the neural networks response curves to changes in each input with all

the variables held constant in different percentiles.

3.3.3.2 Dropout
Dropout is described in chapter 2.3.4.2. Here it is stated that by implementing the Dropout method one can
check multiple network architectures efficiently. Thus, instead of increasing node and layer size, a large amount
of layer and nodes is chosen and then the Dropout method is applied to them. The initial architecture in this case
is chosen as 2 layers with 150 nodes per layer this architecture is chosen because it possesses a large number of
connections and thus more architecture will be tested through the dropout method. The rate of the dropout will
define how many of the connections between nodes to drop. In this case the rate will be 0.5 so 50% of the
connections will be deactivated randomly during training. However, in this case the Dropout technique did not
help with the generalization of results and thus the feedback prediction is still erroneous. In Table 6 the results
of the equivalent network without any dropout is presented. Although the errors are diminished they are not in
the order of magnitude that it is required.

 39

Table 6 Results of the Dropout Neural Network compared to a Full Connected one

 Dense Connection Dropout

Mean Absolute Error 0.0003 0.293

Mean Squared Error 0.0144 0.11

Coefficient of Correlation 0.99 0.009

3.4 Conclusions
In this chapter a generic Neural Network Constitutive Model is created. The first attempt is to create a Neural
Network consisting only of stress and strain inputs, in that way the Constitutive Model of the Neural Network
does not require soil parameters and thus represents a data driven approach. Several architectures are attempted
and the most efficient and accurate one is chosen. That architecture consists of one hidden layer of 4 neurons
with a ReLU activation function. Although the network performed satisfactory with a normal prediction the
feedback prediction proved to be quite erroneous. This is attributed to the fact that the contribution of the stress
inputs is significantly larger than the strain inputs. Therefore, the contribution of the stress input exceeds the
contribution of the strain input which will lead to a false estimation of the stress output during feedback. To
resolve this issue several methods are implemented. Different inputs and outputs are tested as well as the
regularisation method of Dropout. By altering the inputs and the outputs of the network the network was
successful in producing the same results with a normal and a feedback prediction. That finding reinforces the
idea that the first Neural Network was not successful because of the varying contributions of the inputs.

In all of the methods tested the error of the feedback prediction is too large for the Network to be successful.
Thus, the approach of creating a generic model has to be reassessed. As it can be implied from the approach of
this chapter the Neural Network was created by not taking into account how constitutive models work in detail.
That led to a Neural Network which overestimated the effect of one of the inputs. However, the next step would
be to link soil behaviour with Neural Network architectures. Soil constitutive models usually consist of different
components (e.g. spring element, dashpot element) that represent different soil behaviours (e.g. elasticity, creep).
When these components are linked together the full stress-strain relationship of the constitutive model can be
realised. In the same way the Neural Network constitutive model can be rearranged into components that are
then connected, to represent the full stress-strain relationship.

Nonetheless, there are more possible remedies for the problem of feedback prediction. One of those is adding
history stress points as inputs. In this way the stress level can correspond to a certain history input and thus the
feedback prediction can be defined more accurately (Ghaboussi, Pecknold, & Zhang, 1998). Another possibility
is to train the model by using a recurrent neural network. In this case the training is achieved with feedback and
the network might be more successful in uncovering the stress – strain relationship (Zhu, Zaman, & Anderson,
1998).

 40

Chapter 4. Second Approach-

Component Based Modelling

4.1 Introduction
The generic Neural Network material model created in Chapter 3 failed to capture the stress strain relationship
of the soil with the feedback prediction. To ensure a better prediction the “problem” has to be redefined. In this
case the “problem”, so whether Neural Network can model constitutive soil model is going to be assessed from
another perspective. Typical components of constitutive models will be identified. These components will be
modelled by using Neural Networks. The components will be linked together to create the full stress-strain
behaviour. In this chapter the material models created in this way are the linear-elastic model, the linear-elastic
perfectly-plastic and finally the linear elastic work-hardening. First, the choice of architecture for each Neural
Network is explained in chapter 4.2. In chapter 4.3 the results of the training and the validation of each Neural
Network model are explained. Finally, conclusions for each model are made in chapter 4.6.

4.2 Methodology
The first part of the methodology explains how components construct material models when they are linked
together. Furthermore, each of the constitutive soil models used in the Neural Network training process will be
explained in detail, so that the dataset corresponding to their behaviour can be created successfully. In the last
part of the methodology the idea behind each of the component based Neural Networks is described.

4.2.1 Typical components of material models

Conceptually all material models can be constructed by using three simple components (Figure 51 a, b and c)
shown in Figure 51 the spring, the dashpot3 and the slider. The linear elastic component (a) is modelled as a
reversible spring; the creep is represented as a dashpot element and the plasticity with a slider plastic resistance
element. From these components more complex soil behaviours can be formulated, such as plasticity or
viscoelasticity. Assembly of the components has been proven as a logical way of generating the soil behaviour
pattern. One of main scientific questions is if Neural Networks can behave as successful as material models. To
answer this question one has to consider if Neural Networks are able to capture the typical components of
material models. Thus, if different components of the soil material models can be represented by different parts
of a Neural Network then the hypothesis, that Neural Networks can model typical soil behaviour, is proven.

Figure 51 Basic components for material models. (a) Spring-reversible linear/nonlinear elasticity.

(b) Dashpot-linear/nonlinear creep. (c) Slider-plastic resistance (strain dependant).(d) Elasto-plactic model (e)Work-Hardening Plasticity

(f)Elastic viscoplactic assembly. (Zienkiewicz, 1985)

3 Dashpots are simple pistons combined – usually – with a hydraulic fluid. Examples of objects that include
dashpots are car shocks, bike shocks, and are found on some doors.

 41

4.2.1.1 Linear-Elastic
The linear elastic model is the equivalent of Hooke’s law. In this case stresses and strains are connected through
a linear relationship. In this case strains are completely reversible since the only state of the material is elastic.
The relationship can be expressed in the form of:

 σ′̇ = M̿ε̇ (18)

Where M is the stiffness matrix. Expressed from Hooke’s law the relationship becomes:

 [

σ୶୶σ୷୷σσ୷σ୶σ୶୷]

 = Eሺଵ+νሻሺͳ−ʹνሻ [
 ͳ − νννͲͲͲ

νͳ − ννͲͲͲ
ννͳ − νͲͲͲ

ͲͲͲͳ − ʹνͲͲ
ͲͲͲͲͳ − ʹνͲ

ͲͲͲͲͲͳ − ʹν]

[

ε୶୶ε୷୷εε୷ε୶ε୶୷]

 (19)

E’: Young’s Modulus

ν: Poisson’s Ratio

Thus, the relationship between stress and strain is represented by a straight line usually through the origin.
(Figure 52) The behaviour of the linear elastic material is further exemplified by the stress time and strain time
curves. In linear elastic behaviour when a soil body is subjected to a constant strain εo the stress will reach a
certain constant stress level σo. When the strain is removed at time T the stress will return to zero. (Figure 53)

Figure 52 The stress strain relationship of linear elastic

Figure 53 Linear-Elastic Stress-time curve

4.2.1.2 Linear-Elastic Perfectly-Plastic
A plastic material is defined by the fact that it does not undergo plastic deformation until certain yield stress has
been exceeded. In addition, if a material is classified as perfectly plastic (Figure 51c) no elasticity will occur
during loading. The stress-strain relationship is shown in Figure 54, under the influence of small stresses, no
deformation occurs; when the stress is increased the material will reach the yield stress of σo. Until the stress is
removed the material will remain at this constant stress level and the strain level accumulated by this process is
retained.

However, most soils are closer to elastic-plastic behaviour. Here the slider-plastic resistance can be represented
as a block of solid material on a flat horizontal surface. Thus, when a force is applied to it the block will not
move until the force exceeds the friction between the block and the flat surface. The ideal linear elastic
perfectly plastic model is show in Figure 51d.

There are two main components Mohr-Coulomb model. The elastic part which is described by Hooke’s law and
the Plastic part that is based on the Mohr-Coulomb failure criterion formulated in a non-associated plasticity
framework.

The plasticity results into non-reversible strains. The yield function, f, determines whether or not plasticity has
occurred. This is represented as a surface in stress space. For stress states represented by points in the yields
surface, the behaviour is purely elastic and all strains are reversible.

 42

Figure 54 The perfect plastic model Figure 55 The linear elastic perfectly plastic model

4.2.1.3 Linear-Elastic Work Hardening Model
In this model the elastic and plastic curves are assumed linear. If we consider a loading-unloading case the soil
element will be loaded until the yield stress level. If the loading continues the soil element will go into the
plastic region and thus will follow a plastic linear relationship. If the soil element is unloaded after some
deformation has taken place and then reloaded, the reloading portion will approximate a straight line of slope E
until the highest previously attained stress (the stress of the soil element before the loading began). Reloading
will follow the virgin curve. The highest stress before the unloading will be the new yield stress. The material is,
thus, considered as been strengthened or hardened by this plastic deformation. Therefore, work-hardening or
strain-hardening is the increase of stress with plastic deformation. The Ramberg Osgood formula can describe
this behaviour as:

 ε = σE + ȽσRE (σσR)୫
 (20)

α, m: dimensionless constraints
σR: reference stress
If m is very large the plastic strains will remain small until the stress approaches the yield stress and then
increases rapidly when stress exceeds yield stress. In the limit, as m becomes infinite, the strain is zero when
σ<σR, and is intermediate when σ=σR, while σ>σR would produce an infinite plastic strain and therefore
impossible. This limiting case accordingly describes a perfectly plastic solid with yield stress σR. Finally, the
stress-strain relations can be expressed as in equation and Figure 56(c):

 σ = { Eε for σ σR σR + E୲(ε − σR E⁄)for σ > σR (21)

Figure 56 The Material Models

From a continuum mechanics point of view, represented in Figure 51(e), the components corresponding to
plasticity are a spring and a friction component. To produce the final relationship seen in equation 21 these
components are connected in a parallel manner. The elasticity is represented by a linear component attached in-
series to the system.

4.2.2 Create the Training Datasets

The datasets are created in a similar fashion as in chapter 3.2.1 in the Plaxis software from the SoilTest function
and the General tab. Each one of the datasets, however, will be created differently. Furthermore, the material
parameters used in all of these cases are posted in Table 2.

 43

4.2.2.1 Linear Elastic

4.2.2.1.1 One Direction of Strain Input Dataset
The linear elastic model is created in Plaxis SoilTest function General tab. The strain increments (thus the inputs
to the Neural Network) are only considered in one direction. These increments are randomly selected from a
uniform distribution between -5e-7 and 3e-7. In Figure 57 the linear relationship between stresses and strains is
observed for all of the stress output directions. Directions XX and YY will have equal stress outputs since they
are governed by the same linear relationship. In Figure 58 the stress level with relation to the steps is presented.

Figure 57 The linear relationship between stress and strain

Figure 58 The stress level at each of the steps

4.2.2.1.2 Three Directions of Strains Inputs Dataset
The next dataset will be used for the Neural Network modelling three dimensions of inputs and outputs. Thus,
the inputs in the linear elastic material model consist of three directions of strain increments. Each of the
directions will consist of 200 increments that are selected randomly from a uniform distribution with limits -2e-
05 and 2e-05 (Figure 59). Imposing three random increments at a time will result in the final stresses as they are
presented in Figure 60. Each of the directions will follow a different stress path since the linear relationships
governing them are different from each other.

 44

Figure 59 Strain increments for the 3D elastic dataset

Figure 60 Stress Level of the 3 directional elastic dataset

4.2.2.2 Linear Elastic Perfectly Plastic
The next dataset created is the linear-elastic perfectly-plastic. In this case the soil element will reach perfect
plasticity. The aim of this dataset is to reach a constant yield stress level where no more stresses are allowed to
accumulate.

In this case the generation of strain increments will come from a random uniform distribution. However, in this
case the test is regarded as a “triaxial” test as it is defined in the PLAXIS software. Thus, one direction will be
the dominant one (direction y) with strain increments that will be randomly selected from a uniform distribution.
The two remaining directions will have an increment of half of the y directions in the opposite direction. The
result can be observed in the p-q curve (Figure 63) in this case the mean stress will remain constantly the same
and the deviatoric stress will vary from 0 to 67,22kPa depending on whether the soil element is loading or
unloading. In Figure 61 the stress strain relationship can be observed. The diagram has two parts an elastic
loading-unloading part and a plastic constant stress part.

 45

Figure 61 The training dataset's stress to strain relationship

Figure 62 The training dataset's stress to strain relationship Zoomed

Figure 63 p-q curve for the linear elastic perfectly plastic dataset. The black line represents the failure line of the material

 46

4.2.2.3 Linear Elastic Work Hardening Model
This dataset will be created in the same manner as the linear elastic. The strain increments are randomly selected
from a uniform distribution. The strains are imposed only in the y direction. In the p-q curve the mean stress
reaches the yield surface in a non-perpendicular manner because of this the stresses will follow the yield surface
thus resulting in work hardening of the material. The unloading reloading parts of the stress-strain relationship
exhibit the same behaviour as the elastic part of the model.

Figure 64 The work hardening model training dataset strain vs stress level

Figure 65 The work hardening model training dataset stress vs steps

Figure 66 The work hardening model, training dataset p-q curve

 47

4.2.3 Creation of Neural Networks

Creating material models as Neural Networks requires a combination of:

 Understanding the soil behaviour
 A clear problem definition
 An understanding of existing literature
 An understanding of how Neural Networks work
 Datasets that capture the behaviour that is modelled

Rather than creating one generic model an effort is made to create each of the Networks individually with
Neural Network architectures that are relevant to each material soil model. In that way the inner workings of the
Neural Network will be investigated in detail and in case the Networks fail to model these relationships the
reason behind the failure as well as the way to remedy issues will be easier to identify.

4.2.3.1 Linear-Elastic Model
The Linear Elastic model is relatively straight forward as it is described in chapter 4.2.1.1. This model is
described by a linear relationship. To model the linear elastic behaviour by using a Neural Network a linear
activation function will be chosen for the neurons. As it is observed in Figure 67 the model will start with a
relatively simple architecture and then complexity will be added to the Network in terms of input and output
directions. Starting with the Neural Network (a), that architecture describes the linear relationship between
stresses and strains but only in the y direction. As more directions of outputs are added the weights of the
network between the neuron and the output are responsible for modelling the linear relationship between each of
the outputs and the input. Finally, in model (d) the full stress strain relationship can be observed. Two new
neurons are added to represent the necessary connections from each input to each output. The choice of three
neurons will be further explained and validated in chapter 4.3.2.

Figure 67 (a) Neural Network 1 direction output (b) Neural Network 2 directions as output (c)Three directions as output (d) Three

directions as inputs and outputs of the Neural Network

4.2.3.2 Linear-Elastic Perfectly-Plastic – Mohr Coulomb
As it was discussed in chapter 4.2.1.2 the Linear Elastic Perfectly Plastic model can be considered as two
components in series with each other. In this case when the yield surface is reached the stress will remain in a
constant level. To incorporate this behaviour in the Neural Network the inputs should include the stress level.
Therefore, the inputs are the strain increment of the next step and the stress level of the previous step.

If the actual model is considered as component based, then the Neural Network can be thought as one as well.
Thus, the Linear Elastic architecture presented in chapter 4.2.3.1 can be expanded by another layer of neurons
and the additional stress level input discussed earlier. The activation function of the second layer should be a
ReLU. The ReLU activation function has the ability of returning a linear function if inputs are larger than zero
and a zero if the inputs are smaller of equal than zero. If we consider the scaling of the dataset the yield level are
zeros (smallest number of the dataset). In that way the linear-elastic prediction will be made first and then
depending on the stress level the prediction will be corrected if it reaches plasticity and return a single value for
yield stress.

 48

The main Neural Network architecture is presented in Figure 68. However, the structure of the ReLU layer has
to be defined. The number of neurons as well as layers will be defined with by which carries the least error after
training (Shahin M. , 2010). In this case the best architecture will be a combination of the smallest error with the
smallest possible amount of neurons. Errors can be measured as mentioned in chapter 2.3.3. The next step is to
validate the network by testing it against datasets with values not present in the training dataset. The inner
workings of the network will be also tested to understand the networks behaviour during plasticity and elasticity.
The outputs of each of the nodes are evaluated. To examine the network’s robustness extra testing datasets are
created with different initial stresses. Those datasets represent different stress paths that still fall under the
Linear-Elastic Perfectly-Plastic material model. The trained network will be tested against them and its
performance will be evaluated. In addition, the testing datasets will be used to retrain the model. The effect of
this is commented.

Finally, the Neural Network is tested against added noise. The noise data are created from a Gaussian
distribution and then added to the already existing dataset. The Network is retrained with the intention of
determining if the Neural Network recognises noise as a pattern in the dataset. Noise is added to the testing
datasets to evaluate their performance with a Neural Network that is trained without the use of noise.

Figure 68 Main concept architecture Neural Network for the Mohr Coulomb model

4.2.3.3 Linear-Elastic Work Hardening Model
In chapter 4.2.1.3 the work hardening stress-strain relationship is described. To produce a Neural Network
equivalent to the linear elastic work-hardening model the continuum mechanics approach is considered. When
the Neural Network and the material model put side by side (Figure 69 and Figure 70) it can be seen that the
first elastic spring component is modelled neuron with a linear activation function. Moving to the friction
component this relationship is modelled in a similar fashion as in chapter 4.2.3.2. Thus, consists of ReLU nodes
and layers. Finally, a linear component which does not have any weight connections with the friction part is
added. This part accounts for the linearity after the material reaches plasticity. The Neural Network is also in
accordance with the work-hardening equation. As all parts of equation 22 are represented by the Neural
Network.

 σ = { Eε for σ σR σR + E୲(ε − σR E⁄)for σ > σR (22)

Thus, the first step is to define a successful architecture for the Feedback prediction. The architecture with the
more efficient number of nodes and layers will be selected. The next step is to validate trained Neural Network
first in terms of the training dataset. Then the validation process can be resumed with computing the metrics of
the testing dataset. At this staged it will be obvious if generalisation has occurred in for the Neural Network. The
inner working of the Neural Network will be then discussed. That includes the weight contribution of each input
as well as when each node become active during plasticity or elasticity.

 49

Figure 69 Main concept architecture of the Neural Network Work Hardening Model

Figure 70 The components of the linear elastic work hardening model

4.3 Results Linear- Elastic Model
After training the Neural Networks the results can be evaluated for their accuracy. The generalisation ability of
each network will be tested by creating testing datasets. Also the Neural Networks will be evaluated by
performing a sensitivity analysis.

4.3.1 Neural Network Model with One Direction as Input

The linear elastic model is essentially a linear relationship between the stresses and the strains. Thus, in this case
the Neural Network will be considered as successful if the relationship between inputs and outputs has the same
gradient as the Hooke’s Law (chapter 4.2.1.1). In this example the Neural Network is trained by imposing
increments of strain in one direction. Thus, strain increments ݀𝜀௫௫ and ݀𝜀௭௭are zero and will not be included in
the equations describing the stress strain relationship. This implies that the stresses will be described by
equations 23, 24 and 25 . In the training dataset the Poisson’s ratio is set to ν=0.3 and the Young’s Modulus at

E=1e+6 ݇ܰ ݉ଶ⁄ . Thus the gradient of x and z direction will be 576923.07݇ܰ ݉ଶ⁄ and in the y direction

1346153.84݇ܰ ݉ଶ⁄ .

 𝜎௫௫ = ܧ ͳ − ሺͳݒ + ሻሺͳݒ − ሻ ݀𝜀௬௬ (23)ݒʹ

 𝜎௬௬ = ܧ ௩ሺଵ+௩ሻሺଵ−ଶ௩ሻ ݀𝜀௬௬ (24)

 𝜎௭௭ = ܧ ௩ሺଵ+௩ሻሺଵ−ଶ௩ሻ ݀𝜀௬௬ (25)

The input of the network needs to be scaled. In this case each feature will be scaled by its maximum absolute
value. This process is called Normalization. The scaling will estimate and translate each feature individually

 50

such that the maximal absolute value of each feature in the training set will be 1.0. The centre of the data is not
shifted, and thus does not destroy the sparsity of the data.

4.3.1.1 One Direction of Stress as Output
The first Neural Network in this case will be a model of equation 26. Thus, the first model only concerns the y
direction of stress and strain. The input of the network is the strain increment and the output of the model is the
stress increment. The fact that the output is a stress increment eliminates the possibility of errors occurring
through a feedback prediction. This incremental prediction can be applied in this case since the linear elastic
model will not reach failure, thus there is no need to have an indication of the stress level.

The network is observed in Figure 71. The Network only possesses two weights and biases are deactivated. The
network is trained with the dataset presented in chapter 4.2.2.1. After training the network the final connection
weights are obtained. In Table 7 the weights of the final trained network are shown. The relationship between
stresses and strains from the Network can be calculated from equation 26. The scaler is defined as the absolute
maximum value of the dataset (scaler = 9.8e-4). In this case only the inputs are scaled because the negative
values and the proximity between the values of the does not help establish a connection between inputs and
outputs.

Using equation 26 the success of the Network can be defined. The gradient between stresses and strains is
1346153.84. From the Neural Network the gradient calculated from equation 26 is 1350885.30. Thus the
percentage error of the Neural Network is 0.3%. 4

Figure 71 The linear-elastic Neural Network in one direction

Table 7 The weights of the trained Neural Network

Weights
w1 36.41
w2 36.36

 dσ୷୷ = wଵwଶ ୢεyyୱୡa୪ୣ୰ (26)

The results of the training dataset can be observed in Figure 72 and in Figure 73. In those figures it is observed
that the errors of the dataset are quite low. Thus the Neural Network was successful in uncovering the linear
relationship between stresses and strains.

Figure 72 Diagram of linear stress and strain relationships

4 In this case percentage error is defined as ݎݎݎ݁ ݁݃ܽݐ݊݁ܿݎ݁ = 𝑟ௗ௧−𝑎௧௨𝑎𝑎௧௨𝑎 ͳͲͲ%

 51

Figure 73 Stress versus steps for the training dataset

However, to complete the validation process different testing datasets are created. They are created in a similar
random fashion as the training dataset (using the same material parameters) but they consist of less strain
increments and different types of increment divisions through the steps. In PLAXIS the strain increment is
divided to steps. Different step sizes are selected to test if the Neural Network has captured the behaviour of the
soil model. The training can be characterized as successful since the Mean Absolute Errors of the testing are
lower than the training dataset’s Mean Absolute Error. This can be further validated by Figure 74, where all of
the predictions present a linear 1 by 1 relationship with their respective outputs.

Table 8 Results of different testing dataset as Mean absolute error

 Steps in PLAXIS Mean Absolute Error

Training Dataset 100 0.002122

Testing Dataset 1 100 0.001654

Testing Dataset 2 50 0.000540

Testing Dataset 3 20 0.000962

Testing Dataset 4 Random Uniform from 1 to 100 0.003617

Figure 74 Different testing datasets in 1by 1 comparisons

 52

4.3.1.2 Two directions as Outputs of the Neural Network
In this case the generalisation ability of the Linear Elastic Neural Network can be tested with attempting to
stepwise construct the full stress-strain linear elastic matrix. Since modelling the linear elastic model in the y
direction was successful the next step of this process is to add more directions gradually as an output to recreate
the linear relationships described in equation 23 and 22. The network in Figure 75 will be used for the training.
The scaling in this case will be the same as in chapter 4.3.1.1 thus scaler = 9.8e-4. In equations and the
mathematical relationships between stresses and strain as it is defined in the network can be seen. In table the
results of the training can be observed. The training gave a percentage error of related to the gradient equal to
0.005% with for the y direction and for the x direction 0.003%. Overall these errors are acceptable if they
validated through Figure 76 and Figure 77, where the prediction with the actual data coincide.

Figure 75 Neural Network with 2 directions as output

Table 9 Weights of the 2-direction Linear Elastic Model

w1 35.94
w2 36.84
w3 15.79

 dσ୷୷ = wଵwଶ ୢεyyୱୡa୪ୣ୰ (27)

 dσ୶୶ = wଵwଷ ୢεyyୱୡa୪ୣ୰ (28)

Table 10 Gradients of prediction and Hooke’s Law

 Hooke’s Law Neural Network Percentage Difference (%)
Gradient in the x 576917.66 576946.18 0.005
Gradient in the y 1346164.67 1346209 0.003

Figure 76 The training dataset linear relationship between stresses and strains

 53

Figure 77 Training dataset step Vs stresses in both directions

However, the Neural Network needs to be further validated through the testing datasets. In Table 11 the mean
absolute errors of the testing datasets are, almost for all the cases, smaller than the training ones. This can be
further verified by Figure 78 and Figure 79 where the 1 by 1 linear relationship between the prediction and the
actual data verify the success of the Neural Network.

Table 11 Results of different testing dataset as Mean absolute error

Steps in PLAXIS

Mean Absolute Error in
the y direction

Mean Absolute Error in
the x direction

Training Dataset 100 0.002164 0.000848

Testing Dataset 1 100 0.001829 0.000705

Testing Dataset 2 50 0.000675 0.000225

Testing Dataset 3 20 0.001663 0.000357

Testing Dataset 4 Random Uniform from 1 to 100 0.003784 0.001544

Figure 78 Testing Dataset results in the Y direction

 54

Figure 79 Testing Dataset results in the X direction

4.3.1.3 Three directions as Outputs of the Neural Network
The next step in the linear elastic model is to try to add the third dimension as an output of the Neural Network
model. The network in Figure 80 will be used for the training. The scaling in this case will be the same as in
chapter 4.3.1.1 thus the scaler is: scaler= 9.8e-4. In equations 29, 30 and 31 the relationships between stresses
and strains from the Neural Network can be derived. The gradient represented in these equations should be
similar with the gradients of the equations 23, 24 and 25 which are derived from the Hooke’s law. From Table
13 the gradients of each output can be observed as well as the errors between the Hooke’s law and the Neural
Network. From the table it is concluded that the Neural Network has been trained successfully. In Figure 81 and
Figure 82 the fit of the Network for all the outputs can be observed.

Figure 80 Neural Network with 3 directions as output

Table 12 Weights of the 2-direction Linear Elastic Model

w1 34.28
w2 38.63
w3 16.55
w4 16.55

 dσ୷୷ = wଵwଶ dε୷୷scaler (29)

 dσ୶୶ = wଵwଷ dε୷୷scaler (30)

 dσ = wଵwସ ୢεyyୱୡa୪ୣ୰ (31)

 55

Table 13 Gradients of prediction and Hooke’s Law

 Hooke’s Law Neural Network Percentage Difference (%)
Gradient in the x 1346195 1346165 0.002
Gradient in the y 576949.5 576917.7 0.005
Gradient in the z 576945.7 576917.7 0.005

Figure 81 The results of the Neural Network with 3 outputs. Stress Vs Steps

Figure 82 The results of the Neural Network with 3 directions as outputs. Stress Vs Strain

The generalisation ability of the Neural Network is finally validated through the testing datasets as it was done
in chapters 4.3.1.1and 4.3.1.2. In Table 14 the fact that the Neural Network has uncovered the general stress-
strain relationship is backed up by the low errors of the testing datasets, this can be further validated from
Appendix A. In Figure 127, Figure 128, Figure 129 the 1 by 1 linear relationship between the prediction and the
actual data verify the accuracy of the Neural Network.

 56

Table 14 Results of different testing dataset as Mean absolute error

Steps in PLAXIS

Mean Absolute
Error in the y

direction

Mean Absolute
Error in the x

direction

Mean Absolute
Error in the z

direction
Training Dataset 100 0.002149 0.00098 0.000954
Testing Dataset 1 100 0.001772 0.000827 0.000796
Testing Dataset 2 50 0.000656 0.000334 0.000309
Testing Dataset 3 20 0.001541 0.000881 0.000786

Testing Dataset 4
Random Uniform

from 1 to 100
0.003743 0.001665 0.001638

4.3.2 Neural Network Model with Three Directions as Input

Since the three previous models were successful in modelling the linear elastic behaviour the model can be
theoretically expand to full stress strain relationship in the three directions (xx, yy, zz). In this case the strains in
each step are imposed in these three directions and they are selected randomly from a uniform distribution. The
stresses and strains have linear relationships governing them. From equation 32 the equations 33, 34 and 35 are
derived. These equations represent the modelling target of the Neural Network. If the Neural Network
successfully models them then generalisation of the model has been achieved.

 [dσ୶୶dσ୷୷dσ] = Eሺͳ + νሻሺͳ− ʹνሻ [ͳ − ν ν νν ͳ − ν νν ν ͳ − ν] [dε୶୶dε୷୷dε] (32)

 dσ୶୶ = Eሺଵ+νሻሺͳ−ʹνሻ (dε୶୶ሺͳ − vሻ + ሺdε୷୷ + dεሻv) (33)

 dσ୷୷ = Eሺଵ+νሻሺͳ−ʹνሻ (dε୷୷ሺͳ − vሻ + ሺdε୶୶ + dεሻv) (34)

 dσ୶୶ = Eሺଵ+νሻሺͳ−ʹνሻ (dεሺͳ − vሻ + ሺdε୶୶ + dε୷୷ሻv) (35)

4.3.2.1 Neural Network with Three Directions as output
So far the hidden layer was been composed of only one neuron. In this case since the inputs are three it can be
assumed that the one neuron will not be able to capture the linear connections between inputs and outputs. To
determine the optimum number of neurons in the hidden layer training with 1, 2, 3 and 4 nodes is initiated. The
errors of the Neural Networks are documented and the final Loss per Epoch function can be graphed. From
Figure 83 the optimum number of nodes in the hidden layer can be defined. In this case both the 3 and 4 nodded
Neural Networks end up with the same final error. However, the 3 nodded hidden layer will be selected as it
leads to the same result by using less neurons. Thus, the final form of the network can be defined in Figure 84.

Figure 83 Training results for different number of nodes

 57

Figure 84 Neural Network Linear Elastic 3 inputs 3 outputs

In this Neural Network the biases are deactivated. Between the input and the hidden layer 9 weights exist (w1 to
w9), between the hidden layer and the output another 9 weights exist (w10 to w18). From the feed- forward
network definition the mathematical relationship between inputs and outputs can be defined. In equations the
relationship between stresses and strains can be observed. The aim of the training of the Neural Network is to
model the behaviour between stresses and strains as it can be observed in the linear-elastic Hooke’s Law Thus,
the weight matrix of the Neural Network should be the same as the Linear Elastic one. After the training of the
Neural Network the weight matrix is produced. The material matrix can be also calculated with v=0.3 and

E=1e+06݇ܰ ݉ଶ⁄ . In Table 15 the resulting matrices can be observed from the results of the Neural Network

model it is concluded that the relationship between stresses and strains was modelled successfully. Finally, the
actual fit of the results can be seen in Figure 85 as further validation.

 [dσ୶୶dσ୷୷dσ] = [wଵ wଵଵ wଵଶwଵଷ wଵସ wଵହwଵ wଵ wଵ଼] [wଵ wଶ wଷwସ wହ ww w଼ wଽ] [dε୶୶dε୷୷dε] (36)

 [dσ୶୶dσ୷୷dσ] = [wଵwଵ + wଵଷwଶ + wଵwଷ wଵwସ + wଵଷwହ + wଵw wଵw + wଵଷw଼ + wଵwଽwଵଵwଵ + wଵସwଶ + wଵwଷ wଵଵwସ + wଵସwହ + wଵw wଵଵw + wଵସw଼ + wଵwଽwଵଶwଵ + wଵହwଶ + wଵ଼wଷ wଵଶwସ + wଵହwହ + wଵ଼w wଵଶw + wଵହw଼ + wଵ଼wଽ] [dε୶୶dε୷୷dε] (37)

 [dσ୶୶dσ୷୷dσ] = Eሺͳ + νሻሺͳ− ʹνሻ [ͳ − ν ν νν ͳ − ν νν ν ͳ − ν] [dε୶୶dε୷୷dε] (38)

Table 15 Weight and Linear Elastic Matrix comparison

Linear Elastic Matrix Neural Network Weight Matrix Percentage Error between Matrices (%)
1346154 576923.1 576923.1 1345253 576538.4 576467.1 0.066 0.066 0.079
576923.1 1346154 576923.1 576383.2 1345218 576472 0.093 0.069 0.078
576923.1 576923.1 1346154 576451.3 576531.6 1345149 0.081 0.067 0.074

Figure 85 Results of stress level Vs Steps in three directions

 58

Finally, to fully validate the results of the model the Neural Network’s performance is calculated with 4
different testing datasets. In Table 16 the mean absolute error for all the datasets is shown. The testing dataset
have smaller errors than the training which gives the impression that the generalisation of the neural network
model is achieved. This is further validated by Figure 86 to Figure 88 where the 1 by 1 relationship of prediction
and actual data are shown. In all the datasets and directions the data are close to the linear line and thus there are
negligible errors between prediction and actual results.

Table 16 Results of different testing dataset as Mean absolute error

Steps in PLAXIS

Mean Absolute
Error in the y

direction

Mean Absolute
Error in the x

direction

Mean Absolute
Error in the z

direction

Training Dataset 100 0.035796 0.072889 0.03601

Testing Dataset 1 100 0.002772 0.002947 0.002314

Testing Dataset 2 50 0.001999 0.004165 0.003149

Testing Dataset 3 20 0.005361 0.009532 0.00831

Testing Dataset 4
Random Uniform

from 1 to 100
0.002033 0.004171 0.00343

Figure 86 The results of testing datasets in the direction XX

Figure 87 The results of testing datasets in the direction YY

 59

Figure 88 The results of testing datasets in the direction ZZ

4.4 Linear- Elastic Perfectly Plastic Model

4.4.1 Defining Network Architecture and Training Results

The Linear-Elastic Perfectly-Plastic model will be modelled as a Neural Network as it was discussed in chapter
4.2.3.2. Therefore, the first step is the determination of the architecture of the ReLU layer of the Neural Network.
The Neural Network is trained by using different architectures in the ReLU layer. The results can be observed in
Figure 89. From the figure it is observed that the smallest errors belong to the two layered 2 nodded architecture
or the three layers with 2 nodes architecture. The two layers with 2 nodes will be chosen as they represent
shallowest network.

Figure 89 The errors of the ReLU layer

In Figure 90 the final Neural Network is shown. In this figure the connections are sized according to the weights.
From the figure it can be seen that the stress level has a greater contribution than the strain increment in the
network. To quantify how the inputs are connected to the outputs the Relative Contribution of each input can be
calculated. Table 17 verifies what was seen in the figure. Thus, the stress level has a greater contribution to the
output than the strain increment.

Table 17 The Relative Contribution of each input

RC1
strain input

RC2
stress input

4.09% 95.9%

 60

To further validate and visualise the relative contribution to the Neural Network a sensitivity analysis will be
conducted, this will be accomplished in a similar fashion as in chapters 3.3.2.2 and 3.3.3.1. This is computed by
varying one of the inputs while the other one remains at a constant percentile value. In Figure 91 the results are
observed. From the first plot the effect of the stress level input can be observed. Here the stress level follows a
linear relationship until it reaches a plateau when stress inputs are smaller than -143 ݇ܰ ݉ଶ⁄ . This implies that
the Neural Network was successful in uncovering the ultimate stress level. However, it can be also concluded
that the percentile of the strain increment input has little effect on the final result. When reviewing the second
plot of the figure it can be observed that the percentile of stress input has a large influence on the output of the
Neural Network .When only one percentile is displayed for both cases the relationship when the strain is varied
can be observed closely (Figure 91). The strain input has a positive relationship with the stress output. This
means that a positive strain increment will result in an increase of the stress level output. In that way the
Network was successful in identifying the loading unloading behaviour.

In addition, the actual results can be observed in Figure 93 and Figure 94. In these figure the fit of the feedback
prediction (chapter 3.2.3) and regular prediction can be seen. Both of them perform adequately. In this case for
modelling the stress-strain relationship only the feedback prediction is of interest. To have a better
understanding of the accuracy of the model the maximum and minimum absolute difference will be calculated
as the dataset’s errors are not quite visible in Figure 93 and Figure 94 . The minimum absolute difference is
1.99e-6 and the maximum absolute difference is 0.09. In the order of magnitude of this specific problem this
error is acceptable.

Figure 90 The final training of the Neural Network larger weights are sized accordingly

Figure 91 Contribution Plots from the sensitivity analysis illustrating the neural networks response curves to changes in each input with all

the variables held constant in different percentiles.

 61

Figure 92 Contribution Plots from the sensitivity analysis illustrating the neural networks response curves to changes in each input with all

the variables held constant in the 80th percentile.

Figure 93 The Training Datasets Results with and without feedback prediction.

Figure 94 The Training Datasets Results with and without feedback prediction.

 62

However, to fully understand how the Neural Network of linear-elastic perfectly-plastic model performs a link
must be made between the inputs of the network the result and the output of each node. As it is described in
chapter 2.1.3 the output of each node is the sum of weighted inputs plus a bias passed through an activation
function. To understand the behaviour of the network the output of each node will be evaluated. The first step is
to identify the output of the network reacts to different inputs in order to link the perfectly plastic behaviour with
network inputs. It can be seen that the output of the network follows a ReLU trend (Figure 95). Thus, for stress
inputs smaller than -143݇ܰ ݉ଶ⁄ the output of the Network will always be the -143݇ܰ ݉ଶ⁄ . That means that the
network has uncovered the ultimate yield stress level.

The final step is to identify which neurons fire when the input is plastic and which when the input is elastic. For
the purpose of these observations the strain is kept at a constant value. The output of each node is calculated. In
Figure 96 the possible outputs of the nodes while changing the stress input are shown. In the figure it can be
seen that plasticity occurs when node N3 and node N5 have an output of zero. That is the reason behind the
results of Figure 95.

Figure 95 Testing the results of the Network

Figure 96 Outputs of each nodes

 63

Figure 97 (a) Nodes outputs when elasticity is occurring (b) Outputs of each node when plasticity is occurring

4.4.2 Validation of Neural Network

The validation process in this case will constrict of, firstly, validating against datasets with the same starting
stress level. Then the validation process will include datasets with different initial stresses and finally noise will
be incorporated in both testing and training of the dataset.

4.4.2.1 Validation with Similar Datasets
The next step in the validation process is to use testing datasets to check if the Neural Network achieved
generalisation. The testing datasets are created at PLAXIS in a similar fashion as in chapters 4.3.1.1, 4.3.1.2 and
4.3.1.3. In Table 18 the results of the testing prediction are appended. The testing results range within acceptable
errors so the network has uncovered the relationship between stresses and strains. The results can be observed in
detail in Figure 98 and Figure 99.

Table 18 Results of different testing dataset as Mean absolute error

Steps in PLAXIS

Mean Absolute
Error in the y

direction

Minimum Absolute
difference

Maximum
Absolute

Difference
Training Dataset 100 0.017425 1.99e-06 0.09

Testing Dataset 1 100 0.044726 5.13E-06 0.23

Testing Dataset 2 50 0.006943 2.36e-07 0.07

Testing Dataset 3 20 0.014159 5.13e-06 0.13

Testing Dataset 4
Random Uniform

from 1 to 100
0.031198 5.13e-06 0.12

 64

Figure 98Testing Datasets results Strain Level Vs Stress Level

Figure 99 Testing Datasets results Stress Level Vs Steps

4.4.2.2 Testing the Generalisation Ability – Different Initial Stresses
The trained Neural Network for Perfect Plasticity needs to be further evaluated for its robustness. The first step
is to evaluate the model when the initial stresses are different from the training dataset. In the training dataset
the starting stress vector is [𝜎௫௫ 𝜎௬௬ 𝜎௭௭] = [−ͳͲͲ −ͳͲͲ −ͳͲͲ] ݇ܰ ݉ଶ⁄ . The initial stress vectors can
be observed in Table 19. What is expected in this case is that the ultimate stress reached will be different in each
case. It can be observed from Figure 100 that the p-q relationship will result in a different ultimate stress level.

 65

Table 19 Testing Datasets with new initial Stresses

 σxx (݇ܰ ݉ଶ⁄) σyy (݇ܰ ݉ଶ⁄) σzz (݇ܰ ݉ଶ⁄)
Test Dataset 1 0 0 0
Test Dataset 2 -60 -60 -60
Test Dataset 3 -80 -80 -80
Test Dataset 4 -200 -200 -200

Figure 100 p q space of the test datasets

Each dataset is standardised by using the same maximum and minimum values of the training dataset (page 45).
The bounds of the testing dataset after scaling can be observed in the Table 20. The table suggests that scaling
with the minimum and maximum values of the training dataset results in data that are out of the [0,1] bounds.
Since the network is trained for values between 0 and 1 the result is expected to have low accuracy. Specifically
in the Testing Dataset 1 the stresses range between 3 and 3.35 which suggest that an ultimate stress level will
not be reached in the ReLU layer. The same can be suggested for testing datasets 2 and 3. Finally, in the testing
dataset 5 the stress level inputs and outputs are negative which might lead to the misinterpretation of the
network assuming that the soil element of the dataset is in plasticity.

Table 20 The bounds of the scaled Testing Datasets

 Input Stain increment Input Stress Level Output Stress Level
Testing Dataset 1 0 to 1 3 to 3.35 3 to 3.35
Testing Dataset 2 0 to 1 1.2 to 2.4 1.2 to 2.4
Testing Dataset 3 0 to 1 0.6 to 2.2 0.6 to 2.2
Testing Dataset 4 0 to 1 -3 to -0.5 -3 to -0.5

Observing the results the issues of the Neural Network can be uncovered (Figure 101, Figure 102). The Neural
Network fails to predict the correct ultimate stress level when the soil is in compression. The same value is the

results in all the graphs (Figure 101). That value is -143݇ܰ ݉ଶ⁄ , this value is the ultimate stress level of the

training dataset). This confirms that the Neural Network has this ultimate value as the maximum output. In
addition, the Neural Network fails to predict the ultimate stress during tension. This is expected as this
behaviour was not captured during training.

Specifically, in Figure 101 Datasets 1 and 2 fail to predict the failure surface of the tension, that leads to a
miscalculation of the stresses. Datasets 3 and 4 fail because the yield surface is not uncovered in the correct
stress level during compression. However, the scaling and the fact that the yield surface is not recognised seem
to be the biggest issues in this case. To resolve these issues first the standardisation of each training dataset can
be achieved by scaling the dataset with the maximum and minimum contained in them. Secondly, the network
(Figure 68) will be retrained with these values. In that way the Network’s architecture can be tested for different
initial stresses.

 66

The Neural Network (Figure 68) is retrained by using the data of each testing dataset. That will result in 4
different networks with different weights and biases. Each dataset is scaled individually with values between 0
and 1. The results can be observed in Figure 103 and Figure 104. Generally, the upper limit of the yield surface
is correctly discovered by the Neural Network after training. However, the ultimate stress level in terms of
tension is not identified in the same way. However, the Neural Networks have modelled the limit with a type of
polynomial function. That means that the yield surface is identified but a new architecture needs to be created to
take into account the tension side of the yield surface. Finally, the general unloading reloading behaviour is
captured adequately in the graphs. This concludes that the Network was able to uncover the general loading-
unloading-reloading behaviour of the dataset.

Figure 101 Results of the testing datasets stress Vs strain Level

Figure 102 Resultsof the testing datasets stress level Vs steps

 67

Figure 103 Results of training with the testing Datasets Stress Vs steps

Figure 104 Results of training with the testing Datasets Stress Vs Strain level

4.4.2.3 Testing the Generalisation Ability – Noise in the Training Dataset
The Neural Network’s generalisation ability is also tested with the implementation of noise in the test datasets
presented at chapter 4.4.2.2. The idea behind this is that noise can provide a first estimate on how the Neural
Network would react when tested with noisy laboratory or field data. Thus, adding noise to the dataset will give
a first estimation of how the network would perform with laboratory data (Morales, Luengo, Garcia, Lorena, de
Carvalho, & Herrera, 2017).

The noise will be created from a Gaussian distribution with a mean of 0 and a standard deviation of 1 (Figure
105). From Figure 105 it can be observed that the noise level is somewhat high in this case featuring maximum

stress levels of 3݇ܰ ݉ଶ⁄ . For each dataset a set of random numbers is selected and added to the inputs and

outputs. Thus, the final “noisy” dataset will be created as ݊𝑖ݐ݁ݏܽݐܽ݀ ݕݖ = ݐ݁ݏܽݐܽ݀ 𝑖݊݃ݐݎܽݐݏ + ,Box) .݁ݏ𝑖݊
Jenkins, Reinsel, & Ljung, 2016). After noise is added to them, the datasets are tested with the Neural Network.
The outcome can be observed in Figure 106 and Figure 107. From the figures it can be concluded that the noise
will not affect the final prediction when the Neural Network is trained by using non-noisy data. A comparison
with the errors of the normal datasets (calculated at chapter 4.4.2.1) can be seen in Table 21. As it is expected
the errors of the noisy datasets are magnified. However, they are still between logical bounds which prove the
generalisation ability of the network.

 68

Figure 105 The distribution of the Noise Numbers

Figure 106 Noisy Dataset testing results stress level Vs steps

Figure 107 Noisy Dataset testing results stress level Vs strain level

 69

Table 21 Results of different testing dataset with and without noise

 Mean Absolute Error in the y direction

Steps in PLAXIS Without Noise With Noise

Training Dataset 100 0.017 0.017

Testing Dataset 1 100 0.044 0.807

Testing Dataset 2 50 0.007 0.789

Testing Dataset 3 20 0.014 0.828

Testing Dataset 4
Random Uniform

from 1 to 100
0.031 0.797

The final step in this process is to determine how the Neural Network performs when noise is added to the
training dataset. A successful training in this case is defined as one where the Neural Network will not take into
account the noise as a pattern of the dataset. Thus, the resulting Neural Network should be similar to the one
produced in chapter 4.4.1. If this process is successful then the network can be trained by using noisy laboratory
data without processing them to reduce the noise before attempting training.

Firstly, the noise has to be determined. The noise is produced by a Gaussian distribution with a mean of 0. The
effect of noise in the data will be tested by training the Neural Network with different noise levels. The noise
level is determined by the standard deviation of the Gaussian distribution. The effects of noise can be observed
in Figure 108. It can be seen that the errors reduced significantly with a standard deviations smaller than 0.2.
This is a reasonable noise for the stress levels in the dataset. In Figure 109 and Figure 110 the training dataset
can be observed after the addition of noise.

Figure 108 Trained Neural Network error results with different noise levels

Figure 109 The training dataset with added noise

 70

Figure 110 The training dataset with added noise. Zoomed

According to the results it can be observed that the Neural Network has picked up noise as a part of the training
dataset (Figure 111). This makes the Feedback prediction challenging and in the end only the yield surface is
predicted correctly (Figure 112). However, it can be seen that the results of the feedback prediction although
erroneous produces a smooth prediction (Figure 113). Finally, the results of the testing dataset are observed
(Figure 114 and Figure 115). It is obvious that the noise training will result in a poorer generalisation than in the
chapter 4.4.1, as the errors are larger.

Figure 111 Trained Neural Network results zoomed. The training has pick up the noise

 71

Figure 112 Trained Neural Network with noise stress level Vs Strain level.

Figure 113 Trained Neural Network results zoomed. Feedback also depicted in the figure

Figure 114 The results of testing stress level Vs strain level

 72

Figure 115 The results of testing stress level Vs steps

4.5 Linear-Elastic Work hardening Model

4.5.1 Defining Network Architecture and Training Results

As it was done in chapter 4.4.1 the first step in the process is to define a successful architecture for the Feedback
prediction. Several numbers of nodes and layers were tested to find the optimum architecture; the activation
function chosen is the ReLU function. In Figure 116 the results can be observed, in this case the mean absolute
errors of the Feedback prediction are calculated. The mean absolute errors are calculated as in equation 16.
There are several architectures with low errors, for example the 4 layered 9 nodded one. However, the most
convenient in this case is the 1 layer with 6 nodded one because it will be more efficient to train.

The results of the Neural Network after training can be observed at Figure 117 and Figure 118. In the Figure 117
it can be observed that the stress unloading reloading behaviour is captured well in the Network. However, the
right stress levels are not reached in this case which leads to the Feedback prediction not finally capturing the
stress strain relationship (Figure 118). The main issue in this case is that the slope of the yield surface is not
captured by the feedback prediction. Therefore, the change from elasticity to plasticity is not captured correctly
by the network.

Figure 116 Errors after Training for ReLU activation functions

 73

Figure 117 The stress level Vs steps Work Hardening Model

Figure 118 The stress level Vs strain level Work Hardening Model

Nonetheless, the inner workings of the network have to be further analysed. Firstly, the Relative Contribution of
each input is evaluated from Table 22. It can be easily concluded that the input of stress has a bigger
contribution on the results than the strain increment input. This is further observed in Figure 119 where the
connection weights are observed, bigger weights appear with bolder colours in this case and thus the
connections of the strain increments appear weaker.

Table 22 The Relative Contribution of each input

RC1
strain input

RC2
stress input

1.26 % 98.74 %

 74

Figure 119 Neural Network Work hardening architecture bolder connections carry bigger weights

 Each of the node activations is observed for a loading case during plasticity and a loading case during elasticity
(Figure 120). The fact that the activation have no significant difference suggests that the Neural Network is
trained based on the stress level rather that identifying the difference between the elastic and the plastic part.

Figure 120 Activations of the Network during (a) elasticity (b) plasticity

4.6 Conclusions of Component Based Neural Network Models
After creating the Neural Network soil constitutive models their results were discussed in chapter 4.3. From
these results certain conclusions can be made for each of the Neural Networks as a whole.

4.6.1 Linear- Elastic Neural Network

The linear elastic model had a straightforward design as a neural network. Linear activation functions were used
in the nodes to model the linear relationship between inputs and outputs. The model can easily incorporate more
than one direction of stress outputs. The weight connections between the input and hidden layer are sufficient to
capture the different gradients describing the relationship of each input with the output. However, when more
directions are added to the output then the weight matrix has to be more complex since the influence of each of
the inputs has to be taken into account by the Network.

 75

For the results of the Network (chapter 4.3.2) it can be observed that a Network with three hidden nodes can
model the 3D stress-strain matrix adequately. Each of the connections corresponds to a certain value of the
linear-elastic matrix. From there the parameter estimation problem can be solved and the values of Young’s
Modulus (E) and Poisson’s ratio (v) can be easily retrieved through a simple mathematical operation.

ሺͳܧ + 𝜈ሻሺͳ−ʹ𝜈ሻ [ͳ − 𝜈 𝜈 𝜈𝜈 ͳ − 𝜈 𝜈𝜈 𝜈 ͳ − 𝜈] = ͳͲݓ] ͳͳݓ ͵ͳݓʹͳݓ ͳͶݓ ͳݓͳͷݓ ͳݓ [ͳͺݓ ͳݓ] ʹݓ Ͷݓ͵ݓ ͷݓ ݓݓ ͺݓ [ͻݓ [݀𝜀݀ݔݔ𝜀݀ݕݕ𝜀ݖݖ]

ሺͳܧ + 𝜈ሻሺͳ − ʹ𝜈ሻ [ͳ − 𝜈 𝜈 𝜈𝜈 ͳ − 𝜈 𝜈𝜈 𝜈 ͳ − 𝜈] = ଵݓଵݓ] + ଶݓଵଷݓ + ଷݓଵݓ ସݓଵݓ + ହݓଵଷݓ + ݓଵݓ ݓଵݓ + ଼ݓଵଷݓ + ଵݓଵଵݓଽݓଵݓ + ଶݓଵସݓ + ଷݓଵݓ ସݓଵଵݓ + ହݓଵସݓ + ݓଵݓ ݓଵଵݓ + ଼ݓଵସݓ + ଵݓଵଶݓଽݓଵݓ + ଶݓଵହݓ + ଷݓଵ଼ݓ ସݓଵଶݓ + ହݓଵହݓ + ݓଵ଼ݓ ݓଵଶݓ + ଼ݓଵହݓ + 𝐸௩ሺଵ+𝜈ሻሺଵ−ଶ𝜈ሻ :ݏݑଽ] ܶℎݓଵ଼ݓ = ଵݓଵଵݓ + ଶݓଵସݓ + ଷݓଵݓ = ͳ [1]ܭ

𝐸ሺଵ−௩ሻሺଵ+𝜈ሻሺଵ−ଶ𝜈ሻ :݀݊ܣ = ଵݓଵݓ + ଶݓଵଷݓ + ଷݓଵݓ = [2] ʹܭ

ͳ ÷ ʹ ↔ ʹܭͳܭ = ͳݒ − ݒ ↔ ݒ = ͳܭͳܭ + ʹܭ = ͷ͵ͺ͵,ʹሺͳ͵Ͷͷʹͷ͵ + ͷ͵ͺ͵,ʹሻ = Ͳ.ʹͻ

:ݕ𝑖݈݈݊ܽܨ ݀݊ܣ ܧ = ሺͳ + νሻሺͳ − ʹνሻKͳݒ = ͳͲͺͶʹ.ͺʹ

The parameters can be easily back calculated in this case which proves that the Neural Network has uncovered
the same relationship governing the inputs and the outputs. The Poisson’s ratio estimation is really accurate with
a percentage error of 3.33% and the Young’s modulus has a percentage error of 7.7%. It can also mean that
Neural Networks can be a useful tool in the fitting process of data since the process is fast with high accuracy.

Therefore, for all the input and output combinations tested with Neural Networks the results were accurate. The
reason behind this is that the nature of the problem is linear and well defined (strain increment inputs, stress
increment outputs).

All the datasets tested in chapter 4.3 are linear elastic. However, there are other forms of elasticity which is non-
linear. For example hyperelastic material models (W.Humrickhouse, 2009). The question raised for this type of
material is if the Neural Network consisting of linear layers would be able to model this type of behaviour. Or
will the non-linearity of the constitutive model require non-linear activation functions in the nodes of the
network?

4.6.2 Linear-Elastic Perfectly-Plastic

The linear-elastic perfectly-plastic dataset requires more complicated Neural Network architecture. Replicating
the continuum mechanics approach the friction element was defined by ReLU activation function. Moreover,
the architecture of that Neural Network was defined by the optimum amount of layers and nodes minimising the
error after training.

The network is then trained successfully with an architecture consisted of 2 layers with 2 neurons in each layer.
From assessing the inner workings of the network the main function of the network is identified. The network
extracts the ultimate yield surface level. When the yield surface is reached the ReLU layers will output a zero as
their activation. The final output will be the yield stress after summing all the layer outputs which have zero as
their activations. The final output will be the yield stress after the output is rescaled.

By testing different initial stresses as testing datasets, it is concluded that the network is not robust enough to
capture the full effect of the yield surface. This implies that it cannot be used for another stress path. However, if
the network is retrained the yield surface of the network is identified and the stress paths can be followed
accurately.

Finally, the “noisy” testing datasets perform well when tested with dataset trained without the use of noise data.
The noise is not recognised in this case as a pattern of the data. Nonetheless, the network was trained with a
dataset with noise is added to it. In this case the noise is recognised as a pattern for the network and although the
simple prediction is accurate the feedback prediction fails to follow. This suggests that this level of noise (taken
from a Gaussian distribution with a mean of 0 and a standard deviation of 0.2) is not producing a successful
result. Therefore, it is likely that the noise contained in laboratory data will also be recognised as a pattern from
the Neural Network.

 76

The drawback of this method can be identified in the different initial stresses. The Network is unable to identify
the yield surface. Be that as it may, the network can be expanded to recognise the yield surface by expanding the
training dataset to include more stress paths. Therefore, the training dataset should consist of several stress paths
and their constitutive parameters.

In addition, the Network was not successful in modelling the yield surface in tension. That is due to the fact that
the ReLU accounts only for one ultimate state. Nonetheless, if activation functions, that include two ultimate
states, are incorporated to the Neural Network then it will be able to model both the ultimate state of
compression and tension. Such activation functions are the Sigmoid and the Tanh because they possess two
ultimate state values (Figure 121).

Figure 121 The Activation Functions Sigmoid and Tanh

4.6.3 Linear-Elastic Work-Hardening Model

The hardening model is defined in the same continuum mechanics way as the perfectly-plastic one. The
plasticity part needs to be defined by an optimum architecture. After the errors are minimised the training
dataset is tested for its accuracy. The feedback prediction is not accurate in this case. The inner activations of the
nodes uncover the fact that the plasticity is indistinguishable from elasticity. Thus, the network makes a
prediction by only depending on the input of the stress level and does not take into account the input of the
strain increments. The reason behind this is the correlation between the inputs and the desired output.

During training the weights are optimised by the gradient of the error between target and predicted outputs
(chapter 2.1.4). In that way the weights will be corrected to the right value. However, certain weight connections
are more effective in producing the correct output of the network. In this case those connections refer to the
input of the stress level. That is the case because the correlation between input stress level and the output stress
level is quite strong. In Table 23 the coefficients of correlation between inputs and outputs are shown. It can be
seen that the stress input has a coefficient of correlation of 0.99 which implies that there is a strong linear
relationship between input and output (Rummel, 1976). On the other hand, the input of the strain increment has
a coefficient of correlation of 0.04 which suggests that there is no linear relationship between input and output.
Therefore, the network will unavoidably be trained with a major contribution corresponding to the stress level.
Thus, this type of issue can be attributed to the way the data were defined as inputs.

Table 23 Coefficient of Correlations between inputs and output

 Coefficient of Correlation with the Stress Output
Input Stress Level 0.99

Input Strain Increment 0.04

The next step is to consider possible solutions of this problem. The first one and quite simple solution is to
redefine the Neural Networks inputs and outputs. It can be calculated that the coefficient of correlation between
the strain level as an input and the stress level as an output is 0.99. Thus, those two values have a strong linear
relationship. The fact that both of them have this strong connection may resolve the issue of the partial
contribution of the inputs. If that is not the case then this issue can be resolved by using a Recurrent Neural
Network. If a Recurrent Network is used then the errors will be minimized to fit the feedback prediction rather
than the normal one.

 77

Chapter 5. Discussion

In this part of the thesis an attempt is made to interpret and describe the significance of the findings in light of
what was discussed in the literature study. The aim of the thesis, as it is stated in the Introduction is to assess if
the creation of a Neural Network Constitutive Model is possible, with the intention of creating a more data-
driven approach to constitutive models.

In the following section of the discussion the research questions posed in the Introduction are answered. The
first research question posed is if Neural Networks can behave as successful constitutive material models. From
the results of the component based model (especially chapters 4.3 and 4.4) and the results of the new input and
output setting in the generic model (chapter 3.3.3.1) it can be concluded that Neural Networks can in fact be
trained to behave as constitutive models. However, hardening stress-strain relationships proved to be more
challenging to model. Nonetheless, changing the inputs and outputs seems to be promising and is the most
accurate solution of this study for the work-hardening plasticity.

The second scientific question concerns the ability of Neural Networks to model typical soil behaviour, for
example elasticity or plasticity. Using component based modelling; plasticity and elasticity were modelled
successfully with Neural Networks. The loading-unloading behaviour was also captured by the Neural Network
material models. The hardening behaviour, however, was difficult to model and required a reassessment of
inputs and outputs. However, it was partially captured when new inputs and outputs were assigned to the model
(chapter 3.3.3.1).

The third and final question is if laboratory data can be used to train the Neural Network and produce a
successful constitutive model. Laboratory data were not used for training in this study, because their non-linear
and three-dimensional behaviour will not be captured with the Neural Networks created in this study.
Nonetheless, noise was added to the dataset to observe the network’s response to laboratory data. The “noisy”
dataset is used to train the Neural Network. After training, the Neural Network identified noise as a pattern of
behaviour in the dataset. This implies that training with laboratory data will result in uncovering a wrong
constitutive relationship. Therefore, training with laboratory data requires some pre-processing to eliminate the
noise.

After answering the scientific questions posed in the introduction, major findings of the thesis project are
discussed. The first major finding is that the generic Neural Network was unsuccessful in modelling the stress-
strain relationship. This is attributed to the varying contributions of the inputs to the output. This statement can
be generalised and it can be concluded that if the Network has multiple inputs then the weights will be adjusted
to put emphasis on the input that possesses the largest correlation with the output. Throughout the thesis there is
a strong linear connection between the stress input and stress output, but there is no linear connection between
strain input and stress output, something that was not captured by the Neural Network. In Figure 122 the results
of the feedback prediction on the increment of stress can be observed. It is seen that, for the Network’s
prediction, the increment of stress follows a certain linear relationship that does not distinguish elastic from
plastic behaviour. Therefore, the Generic Network (chapter 3.3.2.2) does not distinguish elasticity from
plasticity. Constitutive models possess functions that are able to distinguish plastic from elastic behaviour. Thus,
the behaviour of the Mohr Coulomb model is not captured correctly by the Network. This is further evaluated in
the sensitivity study in chapter 3.3.2.2. Finally, it was observed that this type of behaviour was not documented
in the literature study. Thus, it is significant to note that attempts similar to the generic Neural Network will not
be successful due to the high linear relationship between stress input and output.

The Network’s inputs and outputs were then altered to ݀𝜀௬௬௧+ଵ, 𝜀௬௬௧ , 𝜎௬௬௧ , that are the inputs, and ݀𝜎௬௬௧+ଵ, which is
the output. The results of the feedback and the normal prediction in this case are almost the same (Figure 45 and
Figure 46). In Table 24 the coefficient of correlation is presented together with the relative contribution for all
the inputs. The relative contribution seems to have an impact on the final Neural Network stress-strain
relationship output. The input with the smallest coefficient of correlation has the smallest relative contribution to
the network and vice-versa. The results can be observed in Figure 123, in the graph the plastic and elastic
components are distinguished from each other as two different linear relationships. This implies that the
Network performs closer to a real constitutive model. The stress increments can be divided into plastic and
elastic ones. Finally, this network is more successful during the feedback prediction as the increment of strain
plays an important role in determining the output. Although it is not a completely successful model it does lead
to important conclusions and is the most promising in this case. However, it suggests that a redefinition of input

 78

and outputs is required (Ghaboussi, Pecknold, & Zhang, 1998) or even more complex ways of training the
Neural Network (Gandomi & Yun, 2014; Unger & Könke, 2009).

Figure 122 Results of the Generic Neural Network

Table 24 Coefficient of Correlation and Relative Contribution

 Strain Increment Input Stress Level Input Strain Level Input
Coefficient of Correlation 0.98 0.007 0.004
Relative Contribution (%) 64 29.4 6.6

Figure 123 Results of Generic Neural Network with New Inputs and Outputs

In the case of the three-dimensional input the linear-elastic Neural Network model (chapter 4.3.2) has the ability
to reproduce the full linear-elastic matrix. From there it is a straightforward process to correlate the soil
parameters with the weights of the network. This suggests that parameters can be retrieved from a successfully
trained Neural Network. In addition, the linear-elastic model transitions easily from one to three directions of
inputs with the addition of proportional number of nodes to the Network (one linear node to one direction of
input and 3 linear nodes to three directions of input). This suggests that multiple directions of inputs can be
modelled with proportionally wider Neural Network layers.

Moreover, the successful linear-elastic perfectly-plastic Neural Network was trained for only a certain initial
stress. The Network was accurate in calculating the stress increment strain increment relationship which is seen
in Figure 124. Therefore, the unloading-reloading behaviour is captured accurately. In addition, the stress-strain
relationship with the output of stress successful as there is a clear divide between plasticity and elasticity. When
different initial stresses are chosen then the final ultimate stress level will not be the same as the training
dataset’s. In the case of different initial stresses the Neural Network should be retrained to adjust to the new
ultimate stress level. However, the training dataset can also be expanded to contain data from different initial
stresses with an initial stress as an extra input of the network.

 79

Figure 124 Results Component Based Model LEPP

In chapter 4.4.2.2 and specifically in page 71 the Neural Network of linear-elastic perfectly-plastic was
successful in training with the testing data from different stress paths. These datasets consisted of 6000 stress-
strain points. These datasets are 98% smaller than the training datasets. This suggests that the training dataset
can consist of 1/41 of the data and still be successful. Circling back to the statement made in the literature study
(chapter 2.3.1.1), this proves that the training set should be representative of the behaviour that the data are
attempting to model (Maters, 1993).

The main function of a soil material model is to be part of the Finite Element Analysis (FEA). In the FEA the
material models perform two specific functions. Firstly, they are used to update stress states given the current
stress-strain and the strain increment. In this case no integration scheme is required in the FEA when a Neural
Network is used for predictions. The Neural Network will automatically provide an updated state of stress for an
updated state of strain or strain increment. Numerically this process has the advantage that it eliminates the
errors associated with the use of a specific numerical integration scheme.

Secondly, they are used to calculate the material stiffness matrix for the constitutive relation (constitutive matrix
or Jacobian). Numerous approaches are suggested to deal with the lack of closed-form expressions for the
consistent tangent matrix (Wu, 1991; Zhang, 1996) . The most effective one is proposed by Hashash (2004). In
this study it is proposed that the stiffness matrix is calculated from the Neural Network. Since the Neural
Network provides a relationship between stresses and strains there is an implied stiffness matrix which can be
extracted from this relationship (this is also explained in chapter 2.5.2). As noted in the study (Hashash, Jung, &
Ghaboussi, 2004) “the use of the matrix is expected to lead to efficient convergence of the Neural integration in
the FE analysis”. In that way, the Neural Networks created can be integrated into a FEA if the relationship
between stress and strains in outputted as a stiffness matrix.

In addition, Chapter 2.6 of the literature study aims to report applications of Neural Networks in FEA. The
models created in this thesis can be part of the self-learning finite element code of H.S. Shin (2000) because the
only requirement in this case is that the network predicts stresses based on strains. On the other hand, the
“Intelligent Finite Element Method” (Javadi & Tan, 2006) requires the inverse solution of strain plus an output
of the elastic modulus. Furthermore, the input is referring in this case to the 3 principal stresses. Thus, the
Neural Networks need to be expanded to fit these two specific applications existing in literature.

It is also important to identify limitations of the study in this point. These limitations are significant as they
reveal where future research could be applied. A list of them is attached below:

1. The generic and work hardening Neural Networks did not produce successful results.
2. All the Networks apart from the linear elastic Neural Network have only one direction as output of the

network.
3. The linear-elastic perfectly-plastic model does not account for tension and different stress levels.
4. The minimum amount of training samples was not investigated in this study.

 80

Chapter 6. Conclusions

The goal of this thesis project was to determine whether Neural Networks can model constitutive soil behaviour.
Over the course of the thesis the goal became clearer as the methodology of each chapter defined the way that
the Neural Networks would be formulated. The scope of the project also became narrower in each chapter. This
can be easily observed from the difference between the goals of Chapter 3 and Chapter 4. The first approach
was to create a generic Neural Network by focussing mainly on how Neural Networks can help uncover the
stress-strain behaviour of a constitutive soil model. In Chapter 4 the scope becomes narrower as the Neural
Networks aim to model certain soil behaviour like elasticity or plasticity by a component based approach. These
network components can be linked together to create successful Neural Network constitutive models.

The main argument of the thesis is that Neural Networks can be used as a substitute for soil constitutive models.
The intention behind the main argument is that constitutive models are becoming more parameter depended
featuring sometimes more than ten soil parameters. This makes the need for data-driven constitutive models
essential. It can be concluded that constitutive models can be created with Neural Networks and those can be
accurate and successful as data driven material models, due to the fact that the inputs and the outputs of the
Network are only consisted of stresses and strains.

Hardening plasticity was not successfully modelled in this thesis. The reason behind this is that Networks
become sensitive towards one of the inputs. However, this sensitivity can be minimised through the use of pre-
processing techniques for the inputs, for example fuzzy rules (Jiang, Mahadevan, & Yuan, 2016).

Moreover, component based Neural Networks could be a solution to the “black box” problem of the Neural
Networks. If so these components can be used in the same way as the typical components of constitutive model.
Thus, they can be arranged to fit any type of soil behaviour. The difference between constitutive models and
Neural Networks, as they are defined in this study, is that Neural Networks do not require the input of soil
parameters but only the stress-strain data.

In addition, the effect that data have in the training of the Neural Network is prominent throughout the thesis.
Especially in Chapter 3 it can be seen that the Coefficient of Correlation of the inputs with the output has an
effect on the way the weights are adjusted in the Neural Network. This statement can be further examined in
Figure 125. In the Figure it can be observed that a low Coefficient of Correlation will result in a low Relative
Contribution and high Mean Absolute Errors. Therefore, it can be concluded that the network will be trained
towards the solution with the largest coefficient of correlation, which might not correspond to the solution that
the Neural Network intended to identify.

Figure 125 Summary of results for Neural Network Constitutive Models of the thesis

 81

Finally, as a closing statement of the conclusions is important to classify the Neural Networks as successful or
not successful and state for each one why that is the case. That can be summarised in Table 25 where all the
Networks created in this thesis are posted together with a characterisation of whether they are successful or not
and the reason why they are characterised as such. Finally, the chapters where each of these applications can be
found are posted as well.

Table 25 Summary of all the Neural Networks in the thesis

Neural Network
Is the Network

Successful?
Reason Chapter

Generic Not Successful Prediction sensitive to stress inputs. Feedback
prediction fails due to this sensitivity.

3.3.2

Generic New inputs

and outputs
Partially Successful

 Strong connection between the strain input
and the stress output.

 Stress input has a smaller contribution to the
output.

3.3.3.1

Linear-Elastic Successful

 Simple linear relationship between inputs and
outputs.

 Activation function the same as relationship
modelled.

4.3

Linear-Elastic

Perfectly-Plastic
Successful

 Ultimate stress level so plasticity is
represented by one number.

 Network can become inactive when plasticity
is reached.

 Activation function the same as the
relationship modelled.

4.4

Linear-Elastic

Work-Hardening
Not Successful

 Network is sensitive to the stress inputs.
 Feedback prediction fails because of the

sensitivity.
4.5

 82

Chapter 7. Recommendations for

Future Research

Although the thesis was able to answer the scientific questions posed in the Introduction, there are still
recommendations for future projects concerning Neural Networks and Constitutive Models.

 First of the effect of Recurrent Neural Networks on modelling hardening behaviour should be accessed.
By using a Recurrent Neural Network the Network is trained with the feedback prediction. Thus, the
cost function minimized in the back propagation algorithm will refer to the feedback prediction error.

 The main issue of the hardening model is that the network did not recognise any differences between
elasticity and plasticity. To help the Network identify this behaviour a decision Neural Network can be
added to the training framework. The decision Neural Network will use the input of stress level, strain
level and strain increment to predict whether the element is in plasticity or elasticity. This initial
Network will be trained separately from the Neural Network stress prediction model. The output of the
decision Network will be added as an extra input to the work hardening model. In that way the weights
during the training will navigate towards a solution concerning whether the soil element is in plastic or
elastic region. The suggested framework is shown in Figure 126.

Figure 126 Suggestion of Decision and prediction Neural Network

 The successful Neural Network of perfect-plasticity needs to be expanded to account for different
stress paths that will result in various ultimate stresses. That can be achieved if the Neural Network’s
training dataset is expanded to include more stress paths. In addition to that the initial stresses should
also be an input so that the Neural Network can distinguish different stress paths from each other. The
Network also needs to be expanded in terms of the stress and strain input and output directions to result
in a full direction vector. This can be achieved in the same way it was performed in 4.2.2.1.2. Thus, the
amount of neurons needs to be proportional to the amount of stress outputs.

 As it was stated in Chapter 4 the constitutive models are composed out of three main components, the
spring, the friction and the dashpot element. The dashpot element was not modelled by a Neural
Network in this thesis. Thus, in future projects an attempt should be made to create the dashpot
component. The dashpot is used to account for complex soil behaviour like creep and stress relaxation.

The equation governing the dashpot element is 𝜎 = ߟ ௗ𝜀ௗ௧. Therefore, the Neural Network in this case

should have as inputs the stress level and a “time” indication. The non-linearity of a Sigmoid activation
function together with the “staking” of multiple layers should be able to model this component.

 83

 The final step in the Neural Network implementation will be to use laboratory or field data to create
constitutive models. Here the most concerning element is the quality of the data. If the training dataset
is not smoothed then the solution of the Neural Network will incorporate “noise” as a pattern. In this
case the effects of noise should be explored thoroughly. Some of the questions that are worth looking
into are:

1. What level of noise will result in the network recognising noise as a pattern?
2. Are the epochs of training and the architecture of the network enabling in some way the

network’s noise identification?

As a general research direction it is important to focus the investigation towards the plasticity hardening
behaviour. Different input-output combinations should be implemented, as well as, pre-processing of those
inputs to help the network drift towards the aimed solution.

 84

Appendix A

In this appendix the Neural Network outputs of the linear elastic one input three output model are appended this
appendix refers to the Network found in chapter 4.3.1.3.

Figure 127 The Testing datasets results of the Z direction

Figure 128 The Testing datasets results of the X direction

 85

Figure 129 The Testing datasets results of the Y direction

 86

Appendix B

In this appendix the Relative Contribution metric will be explained. This metric aims to quantify the relationship
that has been modelled in the validation of a Neural Network, rather than using an error measure as the only
basis for assessment. This will give a first estimation on how the weights of a Neural Network control the
interactions between inputs and outputs in the Network. Thus, the contribution of each input can be determined
by the strength and direction of the connection weights between them. The Overall connection weight (Olden &
Jackson, 2002) is used in this case to determine the contribution of a certain input to the output.

To understand how this metric is calculated an example will be posted in this appendix. By examining Figure
130 the overall connection weight (OCW) of input 1 can be calculated by determining ܿ,ଵ and ܿ,ଵ . These are
the contribution of input 1 through the hidden node A and B. Summing them will result in the OCW1 as follows:

ܿ,ଵ = ,ଵݓ × ை, ܿ,ଵݓ = ,ଵݓ × 𝑊ଵܥܱ ை,ݓ = ܿ,ଵ + ܿ,ଵ

(39)

Figure 130 Example Neural Network

It can be observed that the OCW is only an approximation of the real relationship of an input. These metric does
not take into account the “reducing” effect activation function like the sigmoid have on the inputs and does not
account for the biases. However, Olden et al. (2002) found that the connection weight approach is able to model
each input’s importance and identify this as the best methodology in comparison to other commonly used
methods. The next step in this process is to define the Relative Contribution (RC) here the contribution of each
input is calculated by the percentage of each one to the sum of the absolute values of the OCWs as follows:

ଵܥܴ = |𝑊ଵܥܱ|𝑊ଵܥܱ + |𝑊ଶܥܱ| + 𝑊ଷ| (40)ܥܱ|

 87

Appendix C

In this chapter the Garson’s algorithm will be explained using an example Neural Network. The Network of the
example is shown in Figure 131.

Figure 131 Example Network

The first step in the Garson’s algorithm process is to define the weights matrix. In the matrix the weights
connecting the neurons between the input- hidden-output layers are shown.

Table 26 Neural Network Weight Matrix

Hidden Neuron Input A Input B Input C Output
Hidden 1 ݓ,ଵ ݓ,ଵ ݓ,ଵ ݓை,ଵ
Hidden 2 ݓ,ଶ ݓ,ଶ ݓ,ଶ ݓை,ଶ
Hidden 3 ݓ,ଷ ݓ,ଷ ݓ,ଷ ݓை,ଷ
Hidden 4 ݓ,ସ ݓ,ସ ݓ,ସ ݓை,ସ

Then for each Neuron i, the absolute value of the hidden-output layer connection weight is multiplied with the
absolute value of the hidden –input layer connection weight. This process is further explained in Table 27.

Table 27 Neural Network Connection Calculations

Hidden Neuron Input A Input B Input C
Hidden 1 ଵܲ = |,ଵݓ| × ை,ଵ| ଵܲݓ| = |,ଵݓ| × ை,ଵ| ଵܲݓ| = |,ଵݓ| × |ை,ଵݓ|
Hidden 2 ଶܲ = |,ଶݓ| × ை,ଶ| ଶܲݓ| = |,ଶݓ| × ை,ଶ| ଶܲݓ| = |,ଶݓ| × |ை,ଶݓ|
Hidden 3 ଷܲ = |,ଷݓ| × ை,ଷ| ଷܲݓ| = |,ଷݓ| × ை,ଷ| ଷܲݓ| = |,ଷݓ| × |ை,ଷݓ|
Hidden 4 ସܲ = |,ସݓ| × ை,ସ| ସܲݓ| = |,ସݓ| × ை,ସ| ସܲݓ| = |,ସݓ| × |ை,ସݓ|

For each of the hidden neurons of the Neural Network the partition calculated in Table 27 will be divided by the
sum for the entire input variable to obtain the Qij. For example, Qij = ଵܲ ሺ ଵܲ + ଵܲ + ଵܲሻ⁄ . Then these
outputs are summed for each of the inputs. Finally, the Sj will be divided by the sum of all the input variables.
This will be expressed as a percentage which finally gives the relative importance or distribution of all the
output weights attributable to a given input variable.

Finally, it is important to note that the Garson’s algorithm is only applied to one layered Neural Networks.

 88

Table 28 Neural Network Connection Calculations

Hidden
Neuron

Input A Input B Input C

Hidden 1 ଵܳ = ଵܲሺ ଵܲ + ଵܲ + ଵܲሻ ଵܳ = ଵܲሺ ଵܲ + ଵܲ + ଵܲሻ ଵܳ = ଵܲሺ ଵܲ + ଵܲ + ଵܲሻ

Hidden 2 ܳଶ = ଶܲሺ ଶܲ + ଶܲ + ଶܲሻ ܳଶ = ଶܲሺ ଶܲ + ଶܲ + ଶܲሻ ܳଶ = ଶܲሺ ଶܲ + ଶܲ + ଶܲሻ

Hidden 3 ܳଷ = ଷܲሺ ଷܲ + ଷܲ + ଷܲሻ ܳଷ = ଷܲሺ ଷܲ + ଷܲ + ଷܲሻ ܳଷ = ଷܲሺ ଷܲ + ଷܲ + ଷܲሻ

Hidden 4 ܳସ = ସܲሺ ସܲ + ସܲ + ସܲሻ ܳସ = ସܲሺ ସܲ + ସܲ + ସܲሻ ܳସ = ସܲሺ ସܲ + ସܲ + ସܲሻ

Sum ܵ = ଵܳ + ܳଶ + ܳଷ+ ܳସ
ܵ = ଵܳ + ܳଶ + ܳଷ+ ܳସ

ܵ = ଵܳ + ܳଶ + ܳଷ+ ܳସ

Table 29 Relative Importance Calculation

 Input A Input B Input C

Relative Importance (%) ܴܫ = ܵܵ + ܵ + ܵ ܫܴ = ܵܵ + ܵ + ܵ ܫܴ = ܵܵ + ܵ + ܵ

 89

Bibliography

(2015). PLAXIS 2D 2015, Manual. Plaxis Bv.

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., & Citro, C. (2015). TensorFlow: Large-scale
machine learning on heterogeneous systems.

Amari, S., Murata, N., Muller, K., Finke, M., & Hua Yang, H. (1997). Asymptotic Statistical Theory of
Overtraining and Cross-Validation. NEURAL NETWORKS, VOL. 8,, 985-995.

Bamdad, A., & Habibagahi, G. (2003). A neural network framework for mechanical behavior of unsaturated
soils. Can. Geotech. J. 40, 684–693.

Banimahd, M., Yasrobi, S., & Woodward, P. (2005). Artificial neural network for stress–strain behavior of
sandy soils: Knowledge based verification. Computers and Geotechnics 32, 377–386.

Bauer, E. (1996). Calibration of a comprehensive hypoplastic model for granular materials. Soils and

Foundations, 36(1), 13-36.

Baziar, M., & Jafarian, Y. (2007). Assessment of liquefaction triggering using strain energy concept and ANN
model: Capacity Energy. Soil Dynamics and Earthquake Engineering 27, 1056–1072.

Beaty, M., & Byrne, P. (1998). An effective stress model for predicting liquefaction. Geotechnical Earthquake

Engineering and Soil Dynamics III. ASCE Geo-technical Special Publication 75, 766-777.

Benıtez, J. M., Castro, J. L., & Requena, I. (1997). Are Artificial Neural Networks Black Boxes? IEEE

Transactions on Neural Networks , VOL. 8, 1156-1164.

Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2016). Time Series Analysis: Forecasting and

Control (Wiley Series in Probability and Statistics). New Jersey: Wiley.

Brownlee, J. (2016, July 14). 8 Inspirational Applications of Deep Learning. Retrieved from Machine Learning
Mastery: https://machinelearningmastery.com/inspirational-applications-deep-learning/

Caudill, M. (1988). Neural networks primer, part III. AI Expert 3, 53 - 59.

Chan, W. T., Chow, Y. K., & Liu, L. F. (1995). Neural Network : An Alternative to Pile Driving Formulas.
Computerd on Geotechnics 17, 135-156.

Cho, S. E. (2009). Probabilistic stability analyses of slopes using the ANN-based response surface. Computers

and Geotechnics 36, 787–797.

Chollet, F. (2015). Keras.

Clark, C., & Storkey, A. (2015). Training Deep Convolutional Neural Networks to Play Go. Iternational

Conference on Machine Learning. Lille , France: JMLR: W&CP volume 37.

Das, S. K., & Basudhar, P. K. (2006). Undrained lateral load capacity of piles in clay using artificial neural
network. Computers and Geotechnics 33, 454–459.

Das, S. K., & Basudhar, P. K. (2008). Prediction of residual friction angle of clays using artificial neural
network. Engineering Geology 100, 142–145.

Das, S. K., Biswal, R. K., Sivakugan, N., & Das, B. (2011). Classification of slopes and prediction of factor of
safety using differential evolution neural networks. Environ Earth Sci 64, 201–210.

David, O. E., Netanyahu, N. S., & Wolf, L. (2016). DeepChess: End-to-End Deep Neural Network.
International Conference on Artificial Neural Networks (ICANN).

Davies, M. (2002, 06 20). The Neuron: size comparison. Retrieved from
https://sites.ualberta.ca/~neuro/OnlineIntro/NeuronStructure.htm

 90

Ellis, G. W., Yao, C., Zhao, R., & Penumadu, D. (1995). Stress-Strain Modeling of Sands Using Artificial
Neural Networks. Journal of Geotechnical Engineering121.

Ferentinou, M., & Sakellariou, M. (2007). Computational intelligence tools for the prediction of slope
performance. Computers and Geotechnics 34, 362–384.

Filip Obrzud, R. (2009). Numerical Modeling and Neural Networks to Identify Constitutive Parameters from In

Situ Tests. Lausanne: École Polytechnique Fédérale de Lausanne.

Gandomi, A., & Yun, G. (2014). Coupled SelfSim and genetic programming fornon-linear material constitutive
modelling. Inverse Problems in Science and Engineering.

Garson, G. D. (1991). Interpreting neural-network connection weights. AI Expert 6, 46 - 51 .

Ghaboussi, J., & Jamshid, S. (2006). Neural network constitutive model for rate-dependent materials.
Computers & Structures 84, 955-963.

Ghaboussi, J., & Sidarta, D. (1998). Constitutive Modeling of Geomaterials from Non-uniform Material Tests.
Computers and Geotechnics, Vol. 22,, 53-71.

Ghaboussi, J., Garrett, G., & Wu, X. (1991). Knowledge Based Modeling of Material Behavior with Neural
Networks. Journal of Engineering Mechanics, Vol. 117.

Ghaboussi, J., Pecknold, D., & Zhang, M. (1998). Autoprogressive Training of Neural Network Constitutive
Models. International Journal For Numerial Methods in Engineering, 105Ð126.

Goh, A. (1995). Back-propagation neural networks for modeling complex systems. Artificial Intelligence in

Engineering, 143-151.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

Hanna, A., Morcous, G., & Helmy, M. (2004). Efficiency of pile groups installed in cohesionless soil using
artificial neural networks. Can. Geotech. J. 41, 1241–1249.

Hashash, Y. M., Jung, S., & Ghaboussi, J. (2004). Numerical implementation of a neural network based material
model in finite element analysis. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN

ENGINEERING, 989–1005.

Hern, A. (2016, June 28). Google says machine learning is the future. So I tried it myself. Retrieved from
theguardian: https://www.theguardian.com/technology/2016/jun/28/google-says-machine-learning-is-
the-future-so-i-tried-it-myself

Javadi, A. A., & Tan, T. P. (2006). Neural network for constitutive modelling in finite element analysis.

Jiang, X., Mahadevan, S., & Yuan, Y. (2016). Fuzzy stochastic neural network model for structural system.
Mechanical Systems and Signal Processing, 394–411.

Johari, A., Javadi, A., & Habibagahi, G. (2011). Modelling the mechanical behaviour of unsaturated soils using
a genetic algorithm-based neural network. Computers and Geotechnics 38, 2-13.

Jordan, M. (1995). Why the logistic function? A tutorial discussion on probabilities and neural networks. MIT
Computational Cognitive Science Report 9503.

Jung, S., & Ghaboussi, J. (2006). Neural Network Constitutive Model for Rate Dependent Materials. Computers

& Structures, v 84, 955-963.

Kalinli, A., Acar, M., & Gündüz, Z. (2011). New approaches to determine the ultimate bearing capacity of
shallow foundations based on artificial neural networks and ant colony optimization. Engineering

Geology 117, 29-38.

Kingston, G. B., Maier, H. R., & Lambert, M. F. (2005). Calibration and validation of neural networks to ensure
physically plausible hydrological modeling. Journal of Hydrology 314, 158–176.

 91

Koprinkova, P., & Petrova, M. (1999). Data-scaling problems in neural-network training. Engineering

Applications of Artificial Intelligence 12, 281-296.

Kung, G. T., Hsiao, C., Schuster, M., & Juang, C. H. (2007). A neural network approach to estimating
deflection of diaphragm. Computers and Geotechnics 34, 385–396.

Kurup, P. U., M.ASCE, & Dudani, N. K. (2002). Neural Networks for Profiling Stress History of Clays from
PCPT Data. Journal of Geotechnical and Geoenvironmental Engineering 128, 569-579.

Lee, S., Lee, S., & Kim, Y. (2003). An approach to estimate unsaturated shear strength using artificial neural
network and hyperbolic formulation. Computers and Geotechnics 30, 489-503.

Lefik, M. (2013). Some aspects of application of artificial neural network for numerical modeling in civil
engineering. The Journal of Polish Academy of Sciences 61.

Lefik, M., & Schrefler, B. (2003). Artificial neural network as an incremental non-linear constitutive model for
a finite element code. Comput. Methods Appl. Mech. Engrg. 192, 3265–3283.

Maier, H., & Dandy, G. (2000b). Neural networks for th eprediction and forecasting of water resources
variables:a review o fmodelling issues and applications. Environ. Modell. Softw.15, 101-124.

Maters, T. (1993). Practical Neural Network Recipes in C++. Academic Press.

Morales, P., Luengo, J., Garcia, L. P., Lorena, A. C., de Carvalho, A. C., & Herrera, F. (2017). Noisy Data in

Data Mining. Retrieved from Soft Computing and Intelligent Information Systems, A University of
Granada research group: http://sci2s.ugr.es/noisydata

Morgan, N., & Bourlard, H. (1990). Generalization and parameter estimation in feedforward nets: some
experiments. In Advances in neural information processing systems 2 (pp. 630-637). San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.

Najjar, Y. M., & Huang, C. (2007). Simulating the stress–strain behavior of Georgia kaolin via recurrent
neuronet approach. Computers and Geotechnics 34, 346–361.

Nilsson, N. (2009). The Quest for Artificial Intelligence a History of Ideas and Achievements. Cambridge
University Press.

Novák, V., Perfilieva, I., & Mockor, J. (1999). Mathematical Principles of Fuzzy Logic. Kluwer Academic
Publishers.

Olden, J. D., & Jackson, D. A. (2002). Illuminating the ‘black box’: a randomization approach for understanding
variable contributions in artificial neural networks. Ecological Modelling 154, 135-150.

Padmini, D., Ilamparuthi, K., & Sudheer, K. (2008). Ultimate bearing capacity prediction of shallow
foundations on cohesionless soils using neurofuzzy models. Computers and Geotechnics 35, 33–46.

Penumadu, D., & Zhao, R. (1999). Triaxial compression behavior of sand and gravel using arti®cial neural
networks (ANN). Computers and Geotechnics 24, 207±230.

Pernot, S., & Lamarque, C. (1999). Application of neural networks to the modelling of some constitutive laws.
Neural Networks 12, 371–392.

Provenzano, P., Ferlisi, S., & Musso, A. (2004). Interpretation of a model footing response through an adaptive
neural fuzzy inference system. Computers and Geotechnics 31, 251–266.

Raftery, A., & Kass, R. (1995). Bayes Factors. Journal of the American Statistical Association, 773-795.

Rogers, L., & Dowla, F. (1994). Optimization of groundwater remediation using artificial neural networks with
parallel solute transport modeling. Water resource Reasearch, 457–481.

Romo, M. P., García, S. R., Mendoza, M. J., & Taboada-Urtuzuástegui, V. (2001). Recurrent and Constructive-
Algorithm Networks For Sand Behavior Modeling. The International Journal of Geomechanics, 371–
387.

 92

Rummel, R. (1976). Understanding. Honolulu: Department of Political Science.

Samui, P. (2012). Three-Dimensional Site CharacterizationModel of Bangalore Using Support VectorMachine.
ISRN Soil Science.

Sarle, W. S. (1999). Ill-Conditioning in Neural Networks. NC,USA: SAS Institute Inc.

Shahin, M. ,., & Jaksa, M. (2004b). Data division for developing neural networks applied to geotechnical
engineering. Journal of Computing in Civil Engineering,18(2), 105-114.

Shahin, M. (2010). Intelligent computing for modeling axial capacity of pile foundations. Canadian

Geotechnical Journal 47, 230-243.

Shahin, M. (2012). Artificial Intelligence in Geotechnical Engineering: Applications, Modeling Aspects, and
Future Directions. In X. a. Yang, Metaheuristics in Water, Geotechnical and Transport Engineering
(pp. 169-194). London, UK: Elsevier Science.

Shahin, M. (2014). Load–Settlement Modeling of Axially Loaded Drilled Shafts Using CPT-Based Recurrent
Neural Networks. International Journal of Geomechanics 14.

Shahin, M. A., Jaksa, M. B., & Maier, H. R. (n.d.). State of the Art of Artificial Neural Networks in
Geotechnical Engineering. The Electronic Journal of Geotechnical Engineering (EJGE) 8.

Shahin, M. A., Maier, H. R., & Jaksa, M. (2005). Investigation into the Robustness of Artificial Neural
Networks for a Case Study in Civil Engineering. International Congress on Modeling and Simulation
(pp. 79-83). Melbourne: MODSIM 2005.

Shahin, M., & Jaksa, B. (2003). Modelling the pullout capacity of marquee ground anchors. University of
Adelaide.

Shin, H., & Pande, G. (2000). On self-learning finite element codes based on monitored response of structures.
Computers and Geotechnics 27, 161-178.

Sidarta, D., & Ghaboussi, J. (1998). A New Nested Adaptive Neural Networks (NANN) for Constitutive
Modeling. Computers and Geotechnics 22, 29-52.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A Simple Way
to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research 15, 1929-1958.

Stefanos, D., & Gyan. (2015). On Neural Network Constitutive Models for Geomaterials. Journal of Civil

Engineering Research 2015, 106-113.

Swirszcz, G., Czarnecki, W. M., & Pascanu, R. (2017). Local Minima in Training of Neural Networks. London,
UK: DeepMind.

Turner, M., Clough, R., Martin, H., & Topp, L. (1956). Stiffness and Deflection Analysis of Complex Structures.
Journal of the Aeronautical Sciences 23, 805-823.

Unger, J., & Könke, C. (2009). Neural networks as material models within a multiscale approach. Computers

and Structures, 1177–1186.

W.Humrickhouse, P. (2009, January). Hyperelastic Models for Granular Material. Ph.D. thesis. Fusion
Technology Institute University of Widconsin .

Wu, X. (1991). Neural network-based material modeling. Ph.D. Thesis. Urbana, IL: University of Illinois at
Urbana-Champaign.

Zhang, M. (1996). Neural networl material models determined from structural tests. Ph.D. Thesis. Urbana, IL:
University of Illinois at Urbana-Champaign.

Zhu, J., Zaman, M., & Anderson, S. (1998). Modeling of soil behavior with a recurrent neural network. Can.

Geotech. J. 35, 858–872.

 93

Zienkiewicz, O. (1985). Numerical Modelling and Geomechanings. In Z.Bazant, Mechancs of Geomaterials (pp.
471-499). Wiley.

 94

	PREFACE
	Contents
	Abstract
	Chapter 1. Introduction
	1.1 Thesis Background
	1.2 Proposed solution
	1.3 Research Question
	1.4 Scope of work
	1.5 Report Outline

	Chapter 2. Literature Study
	2.1 Neural Networks- Basic Structure and Computational Operation
	2.1.1 Structure-The Neuron
	2.1.2 Structure-Connections and Full Neural Network
	2.1.3 Computational Operation- Feed Forward Neural Network
	2.1.4 Computational Operation- The back propagation method
	2.1.5 Computational Operation- Activation functions

	2.2 Applications of Neural Networks in Geotechnical engineering
	2.3 Creating an Neural Network
	2.3.1.1 Training and Testing Dataset Determination
	2.3.1.2 Data Pre-processing
	2.3.2 Determination of the Neural Network’s architecture
	2.3.3 Validation
	2.3.4 Neural Network Callbacks
	2.3.4.1 Early Stopping
	2.3.4.2 Dropout

	2.4 Different Types of Neural Networks
	2.4.1 Nested Neural Networks
	2.4.2 Feedback/Recurrent Neural Networks

	2.5 Neural Networks for Constitutive models
	2.5.1 Recurrent Neural Networks
	2.5.2 Nested Neural Network

	2.6 Neural Networks and Finite Element Analysis
	2.6.1 “Intelligent finite element method” (Javadi & Tan, 2006)
	2.6.2 “A self-learning finite element code” (Shin & Pande, 2000)

	2.7 Conclusion of Literature Review

	Chapter 3. First Approach- Generic Neural Network
	3.1 Introduction
	3.2 Methodology
	3.2.1 Creating the dataset
	3.2.2 Training Dataset
	3.2.3 Creating the Generic Neural Network

	3.3 Results
	3.3.1 Network Architecture
	3.3.2 Results of the Dataset
	3.3.2.1 Results without Feedback Prediction
	3.3.2.2 Results with Feedback Prediction

	3.3.3 Improve Neural Network with Feedback Prediction
	3.3.3.1 Different inputs and outputs
	3.3.3.2 Dropout

	3.4 Conclusions

	Chapter 4. Second Approach-Component Based Modelling
	4.1 Introduction
	4.2 Methodology
	4.2.1 Typical components of material models
	4.2.1.1 Linear-Elastic
	4.2.1.2 Linear-Elastic Perfectly-Plastic
	4.2.1.3 Linear-Elastic Work Hardening Model

	4.2.2 Create the Training Datasets
	4.2.2.1 Linear Elastic
	4.2.2.1.1 One Direction of Strain Input Dataset
	4.2.2.1.2 Three Directions of Strains Inputs Dataset

	4.2.2.2 Linear Elastic Perfectly Plastic
	4.2.2.3 Linear Elastic Work Hardening Model

	4.2.3 Creation of Neural Networks
	4.2.3.1 Linear-Elastic Model
	4.2.3.2 Linear-Elastic Perfectly-Plastic – Mohr Coulomb
	4.2.3.3 Linear-Elastic Work Hardening Model

	4.3 Results Linear- Elastic Model
	4.3.1 Neural Network Model with One Direction as Input
	4.3.1.1 One Direction of Stress as Output
	4.3.1.2 Two directions as Outputs of the Neural Network
	4.3.1.3 Three directions as Outputs of the Neural Network

	4.3.2 Neural Network Model with Three Directions as Input
	4.3.2.1 Neural Network with Three Directions as output

	4.4 Linear- Elastic Perfectly Plastic Model
	4.4.1 Defining Network Architecture and Training Results
	4.4.2 Validation of Neural Network
	4.4.2.1 Validation with Similar Datasets
	4.4.2.2 Testing the Generalisation Ability – Different Initial Stresses
	4.4.2.3 Testing the Generalisation Ability – Noise in the Training Dataset

	4.5 Linear-Elastic Work hardening Model
	4.5.1 Defining Network Architecture and Training Results

	4.6 Conclusions of Component Based Neural Network Models
	4.6.1 Linear- Elastic Neural Network
	4.6.2 Linear-Elastic Perfectly-Plastic
	4.6.3 Linear-Elastic Work-Hardening Model

	Chapter 5. Discussion
	Chapter 6. Conclusions
	Chapter 7. Recommendations for Future Research
	Appendix A
	Appendix B
	Appendix C
	Bibliography

