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Abstract 

Constitutive models are one of the main building blocks of the Finite Element Analysis that nowadays is used in 
almost every geotechnical engineering project. Thus, finding realistic stress-strain behaviour models has been 
one of the main fields of research in Geotechnical Engineering. However, constitutive equations have become 
increasingly complex featuring 10 or more parameters as inputs with sometimes small correlations to physical 
properties (Beaty & Byrne, 1998; Bauer, 1996). Thus, a more data driven approach can be determined to 
account for that issue. In this thesis, that data driven approach will be attempted by using Neural Networks. The 
main goal of the thesis is to access if Neural Networks can be used to model constitutive soil behaviour. 
Specifically, two approaches are used to model stress-strain behaviour of soils. 

The first approach is classified as a generic approach because the investigation is mostly focused on which 
techniques of the Neural Network can help with the modelling of stress and strain behaviour. In that way the 
Network can be thought of as a “black box”. The prediction after the training of the Neural Network is achieved 
by dataset retrieved inputs and from inputs that are retrieved from the last step of the prediction. The latter has 
the objective of replicating the prediction as it is achieved from a typical constitutive model. The aim is the 
minimisation of errors after training. The feedback and the non-feedback predictions do not produce the same 
results which imply that the network is sensitive towards a certain input. This is further validated by conducting 
a sensitivity analysis and by looking into the activation of each node for certain loading cases. Dropout and 
reassessing the inputs and outputs are attempted to resolve this issue but the results remain erroneous. 

The second approach is to create a component based Neural Network. In this case a link is created between the 
function of the neural Network and typical soil behaviour. The linear elastic model is modelled with a linear 
activation function. In this case the network is successful in reproducing the full linear-elastic matrix. The linear 
elastic perfectly plastic model is modelled by connected the linear elastic matrix with a ReLU layer as it is seen 
in continuum mechanics. The Neural Network accurately predicts the stress-strain relationship. And it can be 
used to also predict the stress path of “noisy” datasets. However, when trained with noise the signal added to the 
training dataset is recognised as a pattern from the Neural Network. Finally, the work hardening model does not 
successfully model the stress-strain relationship as it tends to exaggerate the contribution of the stress input 
versus the strain input. All in all, this is an effort towards the development of a Neural Network constitutive 
model with the final aim of producing data driven constitutive models. 
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Chapter 1. Introduction 

Nowadays, structural analysis is one of the main tools used in geotechnical engineering to determine the fitness 
of use for structures. From the development of Hooke’s law to the first formulation of the “Finite Element 
Method” (Turner, Clough, Martin, & Topp, 1956) constitutive equations help relate stress with strain, the two 
physical quantities mostly used when describing solid behaviour. Of course, this is also expanded to 
Geotechnical Engineering where the solid is a geo-material and constitutive equations predict the behaviour of it. 
Since, constitutive models become more and more complicated and require a number of parameters with little 
physical correlation, the need for data driven constitutive models becomes apparent. In the following chapter the 
background of the project is described together with the research goal, scope of work and the outline of the 
thesis project. 

1.1 Thesis Background 
Constitutive equations are usually governed by the properties of a material and can be as simple as a linear 
relationship or more complex and account for rate of response. The constitutive equations governing soil 
behaviour have become increasingly complex. Many of them feature 10 or more parameters as inputs or possess 
parameters that are hard to understand (Beaty & Byrne, 1998; Bauer, 1996). However, no matter the complexity 
introduced to the model constitutive models are still mathematical models with parameters estimated from 
laboratory or field data. Thus, they cannot capture with full accuracy the complexity of soil behaviour. 
Therefore, investigating a more data-driven approach could address these issues, improving existing material 
models. 

Nowadays, artificial intelligence tools have been gathering more attention as they can solve complex problems 
and are often highly efficient and accurate (Nilsson, 2009). There are a number of successful Artificial 
intelligence tools that vary from fraud detection, image recognition, autonomous cars to competing at the 
highest level in strategic game systems (such as chess and Go) (David, Netanyahu, & Wolf, 2016; Clark & 
Storkey, 2015). Out of these tools Neural Networks seem to be one of the most promising and largely developed 
Artificial intelligence tool. (Hern, 2016)  

In relation to the constitutive models for soil the three most popular Artificial Intelligence methods include 
genetic programming, evolutionary polynomial regression and artificial nested networks (ANN). Artificial 
Neural Networks as stated before are largely developed and more promising than other techniques. Therefore, 
the thesis will be focused on applications of Neural Networks regarding constitutive modelling.  

1.2 Proposed solution 
The need for a more data driven approach concerning constitutive modelling together with the recent successful 
developments in Neural Networks (Brownlee, 2016; Shahin M. , 2012)  gives rise to the thesis goal. This thesis 
attempts to assess if it is possible to reproduce various constitutive models by using neural networks and in this 
process investigate the process and the requirements of creating a successful Neural Network Soil Material 
model.  

1.3 Research Question 
From the proposed solution part the scientific question of the thesis becomes clear. The general scientific 
question of this thesis is “Can Neural Networks behave as successful constitutive material models?” From the 
main research question more specific sub-questions can be formulated.  

 Can Neural Network model typical behaviours captured in soil constitutive models? For example 

loading- unloading- reloading of soil, linear elastic behaviour and soil hardening. 
 How will the resulting Neural Network perform with if laboratory data or data retrieved from 

constitutive models that exhibit more complex behaviour, are the input? For example data retrieved 

from triaxial tests or from constitutive models like Hardening soil model or Cam-Clay model. 

1.4 Scope of work 
The objective of the thesis is to expand the knowledge on constitutive models created from Neural Networks 
and discover if they are successful in modelling typical soil behaviour. The research will consist of three main 
parts: 
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1. Creating the datasets consisting of soil data. The dataset will be used for training and validating the 
models. This will be done by using already validated and accepted material models (e.g. Linear-Elastic, 
Mohr Coulomb) 

2. Create generic Neural Networks. In this case the Network is treated as a black box the main focus is 
concentrated on the Neural Network functions rather than the constitutive model behaviour.  

3. Create Neural Networks that capture typical soil behaviours of each model. In this part attention is paid 
to the inner workings of the Neural Network as well as the actual behaviour of the constitutive models. 

In this study the main focus is to understand how soil behaviour relates to Neural Network computations 
(activation functions, weights, and back-propagation) and in general understand what steps need to be followed 
to create a successful Neural Network Material Soil model. 

1.5 Report Outline 
In Figure 1 the outline of the report can be observed.  The thesis consists of three main parts. In Chapter 2 the 
literature study, consists of the theoretical background of concerning Neural Networks. In Chapter 3 a generic 
Neural Network will be attempted. The accuracy of the model is assessed together with its generalisation ability 
and the final conclusions for the model. The second approach, Chapter 4, consists of component based 
modelling. In this case the linear-elastic model, the linear-elastic perfectly-plastic model and the linear-elastic 
work-hardening model are reproduced using specific parts of the Neural Network. A section with concluding 
remarks and summary is added to each chapter. Finally, the discussion of the thesis is made in Chapter 5 and the 
general conclusions of the thesis are made in Chapter 6. Finally, recommendations are made in the final part of 
the thesis Chapter 7. 

 

Figure 1 Reader's Guide 
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Chapter 2. Literature Study 

The Literature Study will focus on Neural Networks. The aim of the Literature Study is to gain an understanding 
on how Neural Networks work, critically review the theory which will be needed for the analysis of the thesis’s 
results and finally use the results of previous research to identify a promising direction for future research. The 
first step of the literature review is an introduction to Neural Networks, thus their basic structure and 
computational operations. Narrowing the scope of the literature study a list of typical applications of Neural 
Networks in geotechnical engineering will be presented. By reviewing the papers that apply to constitutive 
modelling the steps of creating a Neural Network for constitutive models will be identified and finally the main 
types of Neural Networks found in literature will be reviewed as well. Finally, a review of how Neural 
Networks are used in Finite Element Analysis will be made.   

2.1 Neural Networks- Basic Structure and Computational Operation 
Artificial Neural Networks are computing systems that are inspired by the biological equivalent neural networks 
that are part of animal brains. These systems “learn” various tasks by comparing outputs either between them 
(unsupervised learning) or with a target output the user provides. In that way the Neural Network creates their 
own set of characteristics from the learning material they process. 

2.1.1 Structure-The Neuron 

The building blocks of this computational system (as of its biological equivalent) are the neurons. The neuron is 
inspired by the biological neuron, in the sense that the functions performed by them are similar.  Interconnected 
neurons use electrical pulses to “communicate” with each other. The biological neuron has four basic 
components (Figure 2) the dendrites, soma, axon and synapses. The neurons are connected with each other 
through the synapses (of the first neuron) to the dendrites (of the second one). When the neurons synapses are 
triggered by an electrical signal, the signal is processed in the soma of the cell, it travels through the axon and 
finally the signal is released through an electrochemical contact from the synapses to the next neuron. 

To be part of an Artificial Neural Network, the biological neuron (Figure 2) can be reduced to a mathematical 
function. The artificial neuron (Figure 3) receives one or more inputs which are usually weighted and then 
summed. After the summation the result is passed through a usually non-linear function called “activation 
function”. Typical activation functions include the “linear”, “sigmoid”,”tanh” or “ReLU” functions. 

 

Figure 2 Structure of the biological Neuron (Davies, 2002) 

 

Figure 3 Processing Unit of Artificial Neuron 
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2.1.2 Structure-Connections and Full Neural Network 

To create a Neural Network the neurons described in chapter 2.1.1 will be connected to each other from inputs 
to outputs. The Neural Network can also be defined in terms of layers. A layer of a Neural Network consists of a 
specific amount of neurons and are usually fully connected to the neurons of the next layer. That means that 
each neuron of a layer will be connected to each neuron of the adjacent layer (Figure 4). Typically, there are at 
least three layers of neurons in each Network. The first is the input layer which is defined as the number of 
inputs of the Neural Network. The last layer is called the output layer and the number of neurons corresponds to 
the number of outputs of the network. The intermediate layers are the hidden layers of the network and are 
selected arbitrary or by using techniques or rules discussed in the following chapters. 

 

Figure 4 A typical structure of a Neural Network 

2.1.3 Computational Operation- Feed Forward Neural Network 

The Neural Network operates based on the concept that activations in one layer determine the activations of the 
next layer. This process can be explained through a simplified example and then with added complexity. If we 
consider a 3 layered network with one node as an input, two nodes as a hidden layer and one node as output the 
following process will be followed (Figure 5): 

 The weights are initialised randomly. After that the inputs are fed into the network. ([ܽଵ ܽଶ]) 
 The inputs are weighted according to weight corresponding to each of the neurons. The weighted input 

is then summed and a bias is added to them.ሺݓଵܽଵ + ଶܽଶݓ + ܾଵሻ The bias acts as a threshold value and 
thus it allows the activation function to be shifted left or right while the weights determine the 
“steepness” of the activation function. The result of the above will be passed through an activation 
function (e.g. sigmoid or linear)ሺ݂ሺ∑ ܽݓ + ܾଵଶ=ଵ ሻሻ. 

 Then the result will be weighted once again and the bias and activation function of the last node will be 

added to that to produce the last output. ݂ቀ݂ሺ∑ ܽݓ + ܾଵଶ=ଵ ሻቁݓଷ + ܾଶ 

Moving forward from the example the general mathematical approach will be considered and formulated. Each 
input of the input layer is connected to each neuron of the hidden layer and so on until the last output layer. All 
of the inputs are given a certain activation that will be a number usually scaled between 0 and 1.  

 [Ƚଵ Ƚଶ … Ƚ୬]   (1) 

Where n is the number of nodes in the input layer. A weight is then assigned to each one of the connections 
between each of the neurons in the hidden layer and the neurons from the input layer. The weighted sum of all 
of them is computed according to these weights. Thus, for each neuron in the hidden layer: 

 Ƚଵwଵ + Ƚଶwଶ + +ڮ Ƚ୬w୬ (2) 

Then a bias will be added to the results of equation 2. The bias is added so that the activation function can 
become active only after a certain threshold value is reached. Therefore, the bias determines when the neuron 
remains inactive. 
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 Ƚଵwଵ + Ƚଶwଶ + +ڮ Ƚ୬w୬ + bଵ (3) 

This weighted sum is passed through an activation function f (which is usually a sigmoid). In the case of the 
sigmoid the output (equation 3) is between 0 and 1 and can be considered as a measure of how positive the 
weighted sum is. 

 fሺȽଵwଵ + Ƚଶwଶ + +ڮ Ƚ୬w୬ሻ (4) 

If we consider the full architecture of the Neural Network in Figure 6 the full equation can be formulated. The 
activations of each layer are organised as a vector. Where α(0) is referred to a specific layer of the Neural 
Network. 

 [   
 ȽଵȽଶڭڭȽ୬]  

   (5) 

 

The weights are then organised as a matrix. Where each row of the matrix corresponds to the connections 
between one layer and a particular neuron in the next layer. 

 [w, w,ଵ … w,୬wଵ, wଵ,ଵ ڮ wଵ,୬ڭw୩, w୩,ଵڭ ⋱ …ڭ w୩,୬] [   
 ȽଵȽଶڭڭȽ୬]  

     (6) 

Then the bias is added to equation 6. 

 [w, w,ଵ … w,୬wଵ, wଵ,ଵ ڮ wଵ,୬ڭw୩, w୩,ଵڭ ⋱ …ڭ w୩,୬] [   
 ȽଵȽଶڭڭȽ୬]  

   + [  
  bଵbଶڭڭb୬]  

  
 (7) 

Then equation 7  is wrapped around the selected activation function. 

 f ( 
 [w, w,ଵ … w,୬wଵ, wଵ,ଵ ڮ wଵ,୬ڭw୩, w୩,ଵڭ ⋱ …ڭ w୩,୬] [   

 ȽଵȽଶڭڭȽ୬]  
   + [  

  bଵbଶڭڭb୬]  
  
) 
 

 (8) 

Equation 8 represents that the activation function will be applied to each specific component of the resulting 
vector inside it. So the final feed-forward Neural Network equation will be: 

 𝛂ሺଵሻ = fଵሺ𝐖ሺ−ሻ𝛂ሺሻ + 𝐛ሺሻሻ   (9) 

Finally for one hidden layer architecture the equation regarding the outputs will be: 

 𝛂ሺଶሻ = fଶሺ𝐖ሺ−ሻfଵሺ𝐖ሺ−ሻ𝛂ሺሻ + 𝐛ሺሻሻ   + 𝐛ሺሻሻ   (10) 
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Figure 5 Simple Neural Network example Feed-Forward method 

  

Figure 6 Typical structure of neural Network 

2.1.4 Computational Operation- The back propagation method 

Training Neural Networks can be achieved with supervised or unsupervised learning. The difference between 
them is that with supervised learning the network will try to minimize the errors between inputs and outputs by 
adjusting the weights. Whereas in unsupervised learning the Neural Network does not have the ability to 
calculate errors and thus the Neural Network will model the underlining structure of the data. In Geotechnical 
applications Neural Networks are trained by using the method of supervised learning since the outputs of the 
network are strictly defined. 

As stated earlier, with the supervised training the Neural Network will try to improve its performance by 
minimizing errors between the predicted and the actual output. Backpropagation is a method used in Neural 
Networks to calculate the gradient of errors with the intention of adjusting the weights of the network. 
(Goodfellow, Bengio, & Courville, 2016). To calculate the gradient of the errors a function needs to be defined. 
This function is typically called “cost function” and it calculates the difference between the network output and 
the expected output. A simple form of this function can be seen in equation 11. Where y(x) represents the output 
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of the target function and y’(x) the prediction of the neural network, n is the number of training samples that the 
training examples are going to be averaged to.  

 E = ଵଶ୬ ∑ ‖yሺxሻ − y′ሺxሻ‖ଶ୶     (11) 

The cost function is responsible for adjusting the weights according to its results. The first step is to calculate 
the partial derivative of the error with respect to each weight in the network. The gradient of each weight is 
essentially an indication of how much the change of a specific weight is affecting the final cost function.  

 ∇E = ቀ ∂E∂୵భ , ∂E∂୵మ , … . , ∂E∂୵Nቁ   (12) 

To finally update the weights a learning rate λ is used. The negative notation in the gradient is used because the 
aim of the training is to decrease the function E. The updated weights are derived by equation (13). 

 w୬ୣ୵ = w୭୪ୢ − λ∇E (13) 

If the cost function was represented in an x-y space, where x is the error and y are the weights, we would see 
that is not a monotonic function and in that way it possesses various local minima (Swirszcz, Czarnecki, & 
Pascanu, 2017). When the training of a neural network begins the weights are typically initialised randomly. 
This might result in the loss function getting stuck in a local minimum and thus the resulting weights will not be 
the smallest the network can achieve. (Figure 7) 

 

Figure 7 Local minima problem  

2.1.5 Computational Operation- Activation functions 

In the previous chapters the term activation functions was quoted. In this chapter the use of activation functions 
in Neural Networks is explained. As it is implied in chapter 2.1.3 activation functions define the output of a 
neuron for a given set of inputs. The first activation functions were a type of step functions where the only 
possible output is either 0 or 1 (in that way “ON” or “OFF”). Thus, if the input value was larger than a threshold 
the output would be 1 and if it was less than the threshold the value is zero.   

However, if the output of the Network should not be binary the step activation function is not useful. In this case 
a linear activation function can be used. By using this type of activation function the aim of the network is to 
model a straight line where the activation is proportional to the input. However, the problem with this activation 
function is that if a gradient descent algorithm is used then the derivative of this function will be a constant 
value. That implies that regardless of the layers of the network the final activation function of the last layer is a 
linear function of the inputs. That means that if the network contains multiple layers they can be replaced by a 
single layer because the ability of stacking layers is lost by the linearity of the activation functions. (Jordan, 



  12 
 

1995). However, if the final function modelled is linear then a network composed of linear activation functions 
is useful. 

In most Neural Network cases the activation functions are used to introduce non-linearity to the network. A non-
linear activation function is able to compute problems with using only a small amount of neurons. A sigmoid 
function is the next choice. This type of function is non-linear but also has the ability to act as a step function 
since after a certain number the result of the activation will either be 1 or 0. However, if the steepness of the 
curve is large that will mean that small changes in the input values will result in large changes in the output 
values. In addition, towards either end of the sigmoid function the values of the outputs tend to respond less to 
changes of the inputs. The gradient of that region is, thus, vanishing. This issue is called the vanishing gradient 
problem. In this case the network’s learning process is stopped or slowed down.  

The final activation function used in this thesis is the ReLU. This function is non-linear, as values smaller than 
zero will return a zero output. ReLU is usually less computationally expensive as it involves simpler 
mathematical operations. However, ReLU is governed by the “dying ReLU problem”. In this case because of 
the horizontal line it is possible that the gradient will return values of zero. That means that the specific weight 
connections that are not “fired” will stop responding to the error variation and so they will stop training. The 
leaky ReLU is a variation of this activation function that deals with this problem. In that case the line is slightly 
inclined and thus the gradient will not be zero.  

Table 1 Activation Functions 

Name Plot Equation Range 

Linear 

 

݂ሺݔሻ =  ሺ−∞,+∞ሻ ݔ

Step Function 

 

݂ሺݔሻ = {Ͳ, ݔ   < Ͳͳ, ݔ    Ͳ ሺͲ,ͳሻ 

Sigmoid 

 

݂ሺݔሻ = ͳͳ + ݁−௫ ሺͲ,ͳሻ 

Rectified Linear 

Unit (ReLU) 
 

݂ሺݔሻ = {Ͳ, ݔ   < Ͳݔ, ݔ    Ͳ (0, +∞) 

Leaky rectified 

linear unit (Leaky 

ReLU) 
 

݂ሺݔሻ = {Ͳ.ͲͲͳݔ, ݔ   < Ͳݔ, ݔ    Ͳ  ሺ−∞,+∞ሻ 

 

2.2 Applications of Neural Networks in Geotechnical engineering 
A lot of successful studies exist that tackle geotechnical problems. In this section those studies are summarised 
to determine popular Neural Network approaches to Geotechnical problems. Some of the studies are concerned 
with pile foundations. An attempt is made by W.T. Chan (1995) to find an alternative pile driving formula 
using Neural Networks. However, more successful applications are focused on recovering the axial capacity of 
pile foundations (Shahin M. , 2010) , the lateral load capacity in clay soils (Das & Basudhar, 2006) in these 
cases the Neural Networks used have simple architectures of one hidden layer and multiple inputs of soil 
parameters. The next applications calculate the efficiency of pile groups (Hanna, Morcous, & Helmy, 2004) and 
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the pullout capacity of anchors (Shahin & Jaksa, 2003) using fuzzy logic1. Those applications proved to be 
equally or even more accurate than the formulas in the existing literature.   

For determining the settlement of foundations in most cases a simple Neural Network is not accurate enough to 
model this complex non-linear behaviour.  In some cases Recurrent Neural Networks (RNN) are used to 
produce more accurate predictions (Shahin M. , 2014). In this case CPT data are used as an extra input and as 
the author suggests “the RNN can capture highly non-linear behaviour”. Neuro- fuzzy systems are also used to 
predict the load-settlement curves of strip foundations (Provenzano, Ferlisi, & Musso, 2004) and to predict the 
ultimate bearing capacity of shallow foundations (Padmini, Ilamparuthi, & Sudheer, 2008). The fuzzy Neural 
Networks appear to be quite robust and respond well to experimental data in this case. 

Studies for determining slope stability also exist. In the case of S.Kumar Das (2011) the Neural Network is 
used as a classification algorithm. The aim is to classify the slopes between failure (represented by the number 0) 
and safety (represented by the number 1). However, in other studies the stability problem is approached with 
uncertain quantities. In this case the Neural Network approximates the limit state function which is linked to a 
reliability method the final outcome of the framework is the failure probability (Cho, 2009). Ferentinou (2007) 
aimed to uncover the inner working of the Neural Network that lead to a successful prediction with the 
technique of self-organizing maps implemented together with the Neural Network. 

For the determination of soil properties simpler Neural Networks can be implemented. For example the 
unsaturated shear strength can be determined by only one hidden node layer  with six inputs of sand, clay or silt 
friction, void ratio, compacted w(%), cohesion (c’)  and friction angle (Lee, Lee, & Kim, 2003). The same idea 
is used by S.Kumar Das (2008) to determine the residual friction angle by multiple soil parameter inputs. Finally, 
a PHD study is made by Obrzud (2009) to extrapolate constitutive parameters from in-situ soil data which is 
also quite successful.  

To access the liquefaction potential of soils M.H.Baziar (2007) used a large database of laboratory cyclic data 
as well as cyclic liquefaction tests to predict the amount of strain required to trigger liquefaction.  

Studies that model stress-strain relationships with Neural Networks also exist. Most of the networks are 
recurrent with extra inputs of soil parameters (relative density, confining pressure etc.). The implementation is 
quite simple and the results have a relative good fit. (Banimahd, Yasrobi, & Woodward, 2005; Zhu, Zaman, & 
Anderson, 1998; Romo, García, Mendoza, & Taboada-Urtuzuástegui, 2001; Penumadu & Zhao, 1999; Johari, 
Javadi, & Habibagahi, 2011; Bamdad & Habibagahi, 2003) 

The applications for constitutive modelling start with J. Ghaboussi (1991). In this study the auto progressive 
training of the Neural Network is implemented. The Neural Network is quite successful at modelling the 
constitutive behaviour since the training is achieved by the global load-deflection response measured in a 
structural test. The network is attached to an iterative non-linear finite element analysis so that the stress – strain 
relationship can be gradually extracted to train the Neural Network. This idea is later expanded with the addition 
of history points to the inputs and outputs of the Neural Network (Ghaboussi & Sidarta, 1998) which increases 
the accuracy of the prediction. Chaboussi and Sidarta (1998) use the nested adaptive neural networks in an auto 
progressive training with data from a wide variety of non-linear stress paths. This study reveals the effect on 
predictions when testing data what were not included in the training.  Another technique is later developed by 
Amir H. Gandomi (2014) it is called the SelfSim method which is used for the inverse extraction of non-linear 
material behaviour. The approach of Jorg F.Unger (2009) is to use different applications of Neural Networks to 
help with implementing a multiscale analysis on reinforced concrete. Specifically, the Neural Network is used as 
a material model between the concrete and the reinforcement. However, to apply this method, modifications had 
to be made to the Netwon- Raphson iteration in the extrapolation and superposition of the elastic material. D. 
Stefanos (2015) focuses on the training of a simple Neural Network with a 2D Cartesian strain vector as an input 
and the Cartesian stress vector as an output. The test data in this case are created in PLAXIS using the 
Hardening Soil model. 

On more application of Neural Networks is to test the behaviour of diaphragm walls (Kung, Hsiao, Schuster, & 
Juang, 2007). Specifically, the output of the network is the deflection of the diaphragm wall. In this case several 
variables such as excavation depth, system stiffness, excavation width, shear strength; effective strength and 
Young’s modulus are used as input to the network. The Neural Network is validated against in situ data. 

                                                           
1 “Fuzzy logic is a form of many-valued logic in which the truth values of variables may be any real number 

between 0 and 1. It is employed to handle the concept of partial truth, where the truth value may range between 

completely true and completely false.” (Novák, Perfilieva, & Mockor, 1999) 
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For calculating the stress history Pradeed U.Kurup (2002) developed a Neural Network tool to calculate the 
OCR values by using inputs of cone resistance (qt), total overburden pressure (σw), and several pore pressure 
inputs on the cone and the hydrostatic pressure. Finally, as a result the OCR output values have a good accuracy.  

From reviewing various Neural Network applications it can be concluded that there are 2 types of approaches 
when dealing with Geotechnical problems and using Neural Networks. Firstly, geotechnical problems that have 
as an output one value as a prediction and are not time depended can be easily trained by a Neural Network as 
long as enough parameters are set as inputs. In the case that there are not enough parameters, the Neural 
Network has the ability to be attached to probabilistic computational tools. The second type of Neural Networks 
architecture has as a goal to model soil stress-strain relationships. This type of relationship requires the 
implementation of an elaborate general framework. For these applications, usually the Neural Network is linked 
to a finite element analysis which helps with fine tuning the weights of the Neural Network. However, it can be 
observed that the link between the failure and success of the Neural Network model with the inner workings of 
it is rarely made. Thus, the role of each node in the final prediction is not investigated. This will be an approach 
investigated in this thesis. Finally, the versatility of the Neural Network tool and the amount of applications it 
can be successfully implemented build a strong case in favour of the scientific question. 

2.3 Creating an Neural Network 
As stated earlier many consider Neural Networks to be black boxes (Benıtez, Castro, & Requena, 1997). 
Therefore, many perceive the choices in developing a Neural Network are made arbitrary. To resolve this 
common misconception the literature study at this point will focus on the steps followed to create a Neural 
Network as they are defined in literature. The main steps in developing the Neural Network can be summarised 
in Figure 8 (Maier & Dandy, 2000b). The main steps of the Neural Network are described in this section. 
However, many of them are excluded from the following chapters (e.g. Choice of optimization method, Model 
inputs) as they are already defined in literature and they are beyond the scope of the project.  

 

Figure 8 Main steps in Neural Network development 

2.3.1.1 Training and Testing Dataset Determination 
The data sets created need to be further subdivided into subsets before they are used. The two main subsets are 
the training and the testing subset. (Shahin & Jaksa, 2004b). The training one, as the name implies, will be used 
to train the Neural Network. Thus, it will be used to adjust the weights to the optimum values. The testing 
dataset consists of samples that the network is not trained on. This dataset will be used for validating the final 
trained neural network. 
Usually 80% of the data are assigned to the training subset and 20% to the validation. However, some studies 
suggest that the data should be subdivided into three categories: training, testing and validation. The training 
subset should contain 55% percent of the data and is used for adjusting the connection weights. The testing 
subset contains 25% of the data and is used to check the model in different stages, and determines when to stop 
the training process to avoid overfitting. The validation set contains 20% of the data and is used to check the 
performance with relation to the environment. (Shahin & Jaksa, 2004b). These percentages are arbitrary but the 
main concept behind the data division is that the training set should be representative of the data that the 
network will be tested on (Maters, 1993). The dataset range used for the training should not be smaller than the 
data set used for the actual application of the neural network. Thus, extreme values of the data should be located 
in this testing dataset. 

Performance criteria 

• Training speed 
• Processing speed during 

recall 
• Prediction accuracy, errors 

Data sets  

• Number of data sets (e.g. 
two, three, holdout method) 
• method for data division 

Data preprocessing 

• Scaling 
• Tranformation to normallity  
• Removal of nonstationarities 

Model inputs 

• Choice of variables 
• Choice of lags 

Model architecture  

• Connection type  
• Degree of connectivity  

• Number of layers  
• Number of nodes per layer (trial and 
error ,constructive or pruning methods) 

Stopping criteria 

• Fixed number of iterations 
• Training error 

• Cross-validation 

Choice of optimization method 

• Local first order (e.g. back 
propagation) 

• Local second order  
• Global 

Validation 

• Metrics  
• Graphs 
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However, if the training error is too small the model might be overfitting. In this case the model “memorises” 
specific patterns in the training subsets that are not connected to the general behaviour of the dataset. Therefore, 
a separate testing set needs to be created to test if the Neural Network avoided overfitting. This is the validation 
subset as mentioned above. An example of overfitting data is presented in Figure 10. As the error in the training 
data starts decreasing the error in the testing data is increasing (Bamdad & Habibagahi, 2003).  There are certain 
rules of thumb that exist to avoid overfitting networks. Firstly, the number of training samples should be larger 
or equal to the number of weights. (Rogers & Dowla, 1994). However, others claim that overfitting does not 
occur if the number of training samples is at least 30 times the number of free parameters and they define the 
number of weights as w=(I+1)H+(H+1)O. Where H is the number of neurons in the hidden layers, I is the 
number of inputs and O the number of outputs. (Amari, Murata, Muller, Finke, & Hua Yang, 1997)  

 

Figure 9 Performance during training (Bamdad, 2003) 

2.3.1.2 Data Pre-processing 
Scaling the data is usually determined by the function the Neural Network is supposed to model. Some typical 
methods of rescaling include: 

 Normalisation: here the data are divided by a norm of the data. This technique aims to make the length 
of the data equal to one. Typically normalising the data refers to rescaling by the minimum and range 
of the data vector so that all the samples lie between 1 and 0. 

 Standardizing: in this case the data vector is subtracted by a value that acts as a measure of location 
and then it is divided by a value that acts as a measure of scale.  

Generally many cases do not require scaling of the data as it can lead to loss of information, especially with 
experimental data. However, in other cases the scaling of the input data vector is a good idea as Neural 
Networks tent to favour larger sample values. Thus, this leads to poor generalisation as the weights are mostly 
fitted to them. This is also the case for multiple inputs in a Neural Network. For example, if one input has a 
range between 0 and 1, while another ranges between 0 and 100.000 then the Network will become partial to the 
second input (Sarle, 1999). It is also stated that the “input/output dataset has to be distributed around the 
midpoint of the interval in order to allow proper training of the neural network” (Koprinkova & Petrova, 1999). 

2.3.2 Determination of the Neural Network’s architecture  

The determination of the model’s architecture is achieved by selecting the optimum number of layers and nodes 
in each of the layers. Most of the applications for Geotechnical engineer in literature use two hidden layers. In 
general, for neural networks it is suggested that the first layer identifies the local features of the inputs and the 
second layer the global ones. 

Then the number of hidden nodes in each layer should be defined. In many studies the trial and error approach is 
used for determining the model architecture. The model is trained using 1, 2, 3… 2I+1 hidden layer nodes (I is 
the number of the input variables). Note that the number 2I+1 is the upper limit need to map any continuous 
function for a network with I inputs (Caudill, 1988). An example is presented in Figure 10. In this case the 
number of hidden nodes selected for the driven pile is 2 as it is considered to be the optimum and for drilled 
shaft are 3 nodes (Shahin M. , 2010). It is also important to keep the hidden nodes to a minimum. As it is shown 
in literature a large number of connection weights in a neural network will increase the likelihood of the model 
to overfitting and reduces the chance of generalization (Shahin, Jaksa, & Maier), (Figure 12).  In a different 
study using Neural Networks to describe unsaturated soils the optimum number of nodes is found with a trial 
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and error method but by decreasing the number of neurons from a high number while checking the error in the 
network (Bamdad & Habibagahi, 2003). In the trial and error method different architectures are trained for a 
large number of epochs. After an increment of epochs, the testing dataset is fed into the Neural Network and the 
testing error is calculated. The optimum architecture can be found from this process as it can be seen in Figure 
11 (Penumadu & Zhao, 1999). 

However, systematic approaches exist that can determine automatically the network’s architecture. The adaptive 
method of architecture determination is one of the automatic methods (Figure 13). The model starts with an 
arbitrary and small number of nodes. During training, new nodes are added to the hidden layers and thus new 
connection weights are generated. The training process continues so that the new connections obtain the 
optimum weight values. While this process runs the old weights remain unchanged. Additional training cycles 
are then performed where all the connection weights are allowed to change (Sidarta & Ghaboussi, 1998).  

Another criterion used for determining the optimum number of hidden neurons is the Bayesian information 
criterion (BIC) (Jiang, Mahadevan, & Yuan, 2016). In the end the criterion will select the simpler model (so the 
model with the least parameters) that will also have a good fit of the data. The function that defines the criterion 
is: ܥܫሺܬሻ = ሻߠሺܦʹ−  + ݊log ሺܰ𝑎௫ሻ (Raftery & Kass, 1995). Θ represents all the parameters estimated by the 
model. The np is the total number of parameters that will be updated in the model (e.g. the weights). D(Θ) is the 
observed data log-likelihood function with regard to Θ. The model with the lowest BIC will be preferred.  

 

Figure 10 Effects on number of hidden nodes on performance of ANN model (Shahin M. A., 2010) 

 

Figure 11 Variation of error associated with a testing data set (Penumadu & Zhao, 1999) 
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Figure 12  Performance during training (Bamdad, 2003) 

 

Figure 13 the procedure for the adaptive evolution of the neural network architecture during training of the neural network material method. 

(Sidarta & Ghaboussi, 1998) 

2.3.3 Validation 

After the training process is finished the model must be validated. The model is tested for its generalisation 
abilities within the limits of the training data. This is tested by running the model with the validation subset.  
The main criteria used to quantify the prediction performance of the model, are the coefficient of correlation (r), 
the root mean squared error (RMSE) and the mean absolute error (MAE). The coefficient of correlation is a 
measure of relative correlation and goodness-of-fit between predicted and observed data. With the RMSE error 
the large errors receive greater attention while the MAE error is an absolute measure of error.  

 r = ∑ ሺ୶i−୶̅ሻሺ୷i−୷̅ሻni=భ√∑ ሺ୶i−୶̅ሻమni=భ √∑ ሺ୷i−୷̅ሻమni=భ     (14) 

 RMSE = √ͳn ∑(y୨ − yĵ)ଶ୬
୨=ଵ  (15) 

 MAE =  ଵ୬ ∑ |y୨ − yĵ|୬୨=ଵ    (16) 

The robustness of the model can be tested by performing a sensitivity study.  In that way the response of the 
model can be checked for different inputs. Hence it is checked if the model responds according to the 
underlining physical process. (Shahin, Maier, & Jaksa, 2005) Another way to test the robustness of the Neural 
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Network is with the connection weight approach. The concept is that in order to check the generalisation of the 
Neural Network, the relationship of the generated and the relationship between input-connection-output should 
be quantified.  This can be achieved by determining the strength and direction of the connection weights 
between them.  Finally the Relative Contribution of each input can be calculated as a percentage. From the 
equivalent physical relationships with the output can be evaluated (Kingston, Maier, & Lambert, 2005). The 
metric of Relative Contribution is explained in detail in Appendix B. 

Apart from the Relative Contribution another metric is the Relative Importance. This method proposed by 
Garson (1991) and later modified by Goh (1995) partitions the Neural Network’s weights to determine the 
relative importance of each input variable in the Neural Network. However, in the Garson’s algorithm the 
absolute values of the connection weights are used to calculate the relative importance. This implies that the 
direction of the relationship between inputs and outputs is not calculated. In addition, the Garson’s algorithm 
can only be used for one hidden node layer. The calculation of the Relative Importance is explained in Appendix 
C.  

Usually the Validation process also includes graphs so that the reader can easily identify if the model was 
successful in the end.  For example in the measured and predicted values for each set of inputs-outputs are 
plotted. The data should be located close to the 1:1 line or in the 10% lines (Figure 14), (Shahin M. , 2010). 

 

Figure 14 Performance of the ANN driven piles model (Shahin M. , 2010) 

2.3.4 Neural Network Callbacks 

A callback is defined as “a set of functions to be applied at given stages of the training procedure of the Neural 
Network”. A callback is usually used to view internal states and statistics of the model during training. Thus, it 
helps to define if the Neural Network model is overfitting or if the actual problem is ill-posed. 

2.3.4.1 Early Stopping 
Early stopping is a form of regularization with the main purpose of avoiding overfitting. The goal of training a 
neural network is to obtain the optimal generalisation performance. However, if the network is overfitting the 
model will perform very accurately with data from the training dataset but poorly with data from the general 
training dataset. (Morgan & Bourlard, 1990) 

The concept of early stopping is that training will be stopped in the optimum level of error for the training and 
validation data, thus, resulting in a network that has achieved generalisation. What is needed in this case is a 
predicate that will define when the training is stopped. This is defined as the stopping criterion. A typically used 
stopping criterion is the loss of the validation data. 

2.3.4.2 Dropout 
Dropout is a technique for preventing the overfitting of neural networks. When the training data are limited, 
noisy and have complicated relationships, the Network is more prone to overfitting during training. All of these 
features exist in soil data.  

The idea behind the Dropout method is that it combines exponentially many different neural network 
architectures efficiently. The term “dropout” refers to the dropping out connections between nodes in a neural 
network. The removed connections are temporary removed from the network (Figure 15). The choice of which 
connections are dropped out is made randomly.  



  19 
 

 

Figure 15 Dropout Neural Net Model. (a) A standard neural net with 2 hidden layers. (b) An example of a thinned net produced by applying 

dropout to the network on the left. Crossed units have been dropped (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014) 

2.4 Different Types of Neural Networks 
Two main types of Neural Networks are observed in the literature for Geotechnical applications, apart from the 
simple one described in chapter 2.1, the Nested Adaptive Network and the Recurrent Neural Network. 

2.4.1 Nested Neural Networks 

The material data can be described as a nested structure. (Sidarta & Ghaboussi, 1998) Modelling with a Nested 
neural network (NNN) allows the user to take into consideration history point what account for the path 
dependence of the material behaviour. This allows for a stepwise method of building and training the Neural 
Network to represent the complex material behaviour. The NNN consists of several modules. A base module is 
first created to represent the lowest function space in the material structure. The model is augmented by adding 
modules thus forming a higher level NNN. The process of adding modules can be theoretically continued 
indefinitely. All the modules represent a multi-layer feed-forward neural network. The process of creating the 
NNN can be observed in Figure 17. In Figure 17 it is observed that when the new module is added the weights 
of the previous modules are frozen as the new weights are adjusted. 

 

Figure 16  Symbolic representation of a typical nested adaptive neural network (Sidarta & Ghaboussi, 1998) 
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Figure 17 the evolution and training of a typical nested adaptive neural network material model with two history point modules. (Sidarta & 

Ghaboussi, 1998) 

2.4.2 Feedback/Recurrent Neural Networks 

Several studies have used the Recurrent Neural Network (RNN) method for Geotechnical applications. (Bamdad 
& Habibagahi, 2003), (Shahin M. , Load–Settlement Modeling of Axially Loaded Drilled Shafts Using CPT-
Based Recurrent Neural Networks, 2014), (Johari, Javadi, & Habibagahi, 2011), (Lefik, Some aspects of 
application of artificial neural network for numerical modeling in civil engineering, 2013), (Najjar & Huang, 
2007), (Ellis, Yao, Zhao, & Penumadu, 1995), (Ghaboussi & Jamshid, Neural network constitutive model for 
rate-dependent materials, 2006), The RNN has two sets of input neurons: the plan units and the current state 
units. At the beginning of the training process the first pattern of the input data is presented to the plan units 
while the current state units are set to zero. Then the first training is conducted for the first set of data. The 
output will be feed back into the model as a current state unit. An example of such a network can be seen in 
Figure 18.  

 

Figure 18 Architecture example of a RNN (Shahin M. , 2014) 
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2.5 Neural Networks for Constitutive models 
From reviewing the Neural Network applications in the last chapter it can be seen that successful applications of 
Neural Network constitutive models exist in the literature. The reasons behind Neural Network being a 
promising alternative are that: (Pernot & Lamarque, 1999) 

 In the start of the program no assumptions are made for the constitutive model. 

 It can solve the problem of constitutive law inversion. 

 Experimental data can be used directly to form the constitutive model. 

 The model can be retrained when new data become available. 

These statements seem to reinforce the initial scientific question. However, to construct a methodology for 
building a Neural Network constitutive model more insight has to be extracted from specific successful 
constitutive model cases in the literature. The chapters that follow highlight important parts that make these 
Neural Networks successful as well as the actual architecture of each Neural Network. 

2.5.1 Recurrent Neural Networks 

The first and most simple way to model constitutive stress-strain soil behaviour is through a Recurrent Neural 
Network. Main issues that must be addressed when constitutive behaviour of soil is modelled are: 

 Strain increments are always feed back to the model 

 Avoiding overtraining of Neural Network 

 The procedure to find the optimum  size of a hidden layer 

Recurrent Neural Network (RNN) is largely used in stress-strain definition. The current stress and strain levels 
have a large influence on the next stress-strain state.  In addition, some studies use additional soil parameters as 
inputs (for example void ratio or confining pressure) to have more accurate results. (Penumadu & Zhao, 1999), 
which is common practice among the RNN modelling stress-strain behaviour (Banimahd, Yasrobi, & 
Woodward, 2005) . Another problem addressed by Lefik in 2003 is the size of the increments in the training 
data. He notes that they should be as small as possible. (Lefik & Schrefler, 2003).In another study (Penumadu & 
Zhao, 1999) the data used came from laboratory data for sand and gravel. The data were first divided into sand 
and gravel datasets depending on their grain sizes. The sand database was further divided into sub-databases 
depending on the value of their confining pressure. However, most of the RNN applications do not address the 
“black-box problem2” so the connection between input and outputs remains unknown. However, it is proposed 
that a sensitivity analysis will resolve this problem (Banimahd, Yasrobi, & Woodward, 2005). 

 

Figure 19 Typical recurrent ANN based on soil constitutive model (Banimahd, Yasrobi, & Woodward, 2005) 

2.5.2 Nested Neural Network 

The Nested Neural Network is described in chapter 2.4.1.  A Neural Network material model will not produce a 
material stiffness matrix. When the Neural Network is implemented in a Finite Element (FE) code then this is a 
disadvantage.  Hashash (2004) addresses this problem by considering that the stiffness matrix can be extracted 
from the relationship between stresses and strains (Equation 17) (Hashash, Jung, & Ghaboussi, 2004).  

 ∂୬+ଵ∆σ୧∂୬+ଵ∆ε୧ = S୨σs୨ε  Ⱦଷ ∑({ቀͳ − ( σ୧NN୬+ଵ )ଶቁw୧୩σେ} × [∑{ሺͳ − ( C୩୬+ଵ )ଶሻw୩୪େ}N
୪=ଵ {ቀͳ − ( B୪୬+ଵ )ଶቁw୪୨ε}])Nେ

୩=ଵ  (17) 

                                                           
2 In science, computing, and engineering, a black box is a device, system or object which can be viewed in terms of its inputs and outputs 
(or transfer characteristics), without any knowledge of its internal workings. 
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The stiffness matrix presented in Equation 17 can be used in FE analysis code for implicit methods like Netwon-
Raphson. In that way the material model constructed from a NANN is not a “black box” model. 

 ܵ𝜎: State variable for stress. The resulting stress is calculated from the multiplication of the neural network results 

with this value. 𝜎 = ܵ𝜎𝜎ேே   ݓℎ݁݁ݎ   − ͳ < 𝜎ேே  < ͳ. 
 ܵ𝜀: State variable for strain. This is used as a scaling factor for the strain. 𝜀ேே = 𝜀 ܵ𝜀⁄ − ݐℎܽݐ ℎܿݑݏ    ͳ < 𝜀ேே < ͳ. 

 ϐ: Constant for the sigmoid function tanh. 

 ݓ: Connection weights between 1st hidden layer node ܤ and 2nd hidden layer nodeܥ. 

 ݓ𝜀: Connection weights between input node strain 𝜀 and 1st hidden layer nodeܤ. 
 ݓ𝜎 : Connection weights between output node stress 𝜎  and 2nd hidden layer nodeܥ. 

 𝜎ேே: The output of the NN. The stress vector. 

 ܥ: The values of the nodes of the 2nd hidden layer. 
 ܤ: The values of the nodes of the 1st hidden layer. 
 ܰܥ: Number of nodes of the 2nd layer. 
 NB: Number of nodes of the 1st layer. 

2.6 Neural Networks and Finite Element Analysis 
In literature several attempts have been made to include Neural Networks in a Finite Element Analysis. It is 
important to understand how Neural Networks fit into the Finite Element Analysis, because as a final result the 
Neural Network Constitutive Models should be functional when part of the analysis. Thus, if they are not able to 
be incorporated into the final framework then researching them has no practical application. In this section a 
summary of these attempts will be presented.  

2.6.1 “Intelligent finite element method” (Javadi & Tan, 2006) 

The Neural Network is integrated in a finite element framework. In this methodology the Neural Network will 
substitute a material model. In this case the Neural Network is trained a priori. The trained network is used 
specifically in this case to predict the relationship between the stress and strain in the material. This is illustrated 
in Figure 20. The third validation example in this case is an embankment of Mohr-Coulomb subjected to gravity 
loading. In this case the soil parameters are obtained from triaxial tests in 5 soil samples.  These values are feed 
into the Neural Network and the Mohr-coulomb material model. However, the actual Neural Network is not 
attached to the paper so the way that it was trained or how exactly it is implemented in the code is unknown.  

 

Figure 20 Flow chart of the NeuroFE program (Javadi & Tan, 2006) 

2.6.2 “A self-learning finite element code” (Shin & Pande, 2000) 

In this paper the author aims to create a self-learning finite element code. Here an untrained Neural Network 
constitutive model (NNCM) is embedded in the finite element code. The finite element code becomes straight 
forward. The author points out that the NNCM requires a “priming constitutive matrix” to start the neural 
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network. This matrix usually resembles a linear- elastic matrix of the material. In addition, the NNCM does not 
require checking for yield computation of gradients of plastic flow rule, updating of yield surface and stress 
integration algorithms. Therefore, a total stress vector can be simply calculated for a given total strain vector as 
σ=NNCM(İ). In this case the non-linear incremental analysis is undertaken using a two-step staggered scheme. 
IN the first step (Step 1 Figure 21) the boundary value problem is solved using a “pre-primed” NNCM. The 
result is a displacement field from which a vector of displacements for the monitored points (įc

n) can be 
assembled. The second step (Step II Figure 21) will produce the stresses and the displacements corresponding to 
the delinquent displacement vector (įd

n) is defined by the equation įd
n = įc

n – įm
n . These data will be used to 

train the NNCM. And in that way the finite element code is self-learning. The current stress-strain sets are 
adjusted in the stress or strain correction scheme. In the strain correction the strain components corresponding to 
the stress are calculated in Step I and updated in Step II. However, in the stress correction scheme stress, 
components corresponding to the strain computed in Step I, are updated in Step II.  Based on those schemes, 
when the stress-strain pair become stationary and are within the limits of tolerance the self-learning procedure 
can be stopped.  

 

Figure 21 Flow chart of a self-learning FE code 

2.7 Conclusion of Literature Review 
The purpose of the literature review was, first, to understand the computational functions of Neural Networks. 
After that the purpose of the literature study is to critically review the theory which will be needed for the 
analysis of the thesis’s results and finally use the results of previous research to identify a promising direction 
for future research. Through the literature review the typical methodology followed in the process of creating 
Neural Networks is uncovered. This methodology will be followed throughout the thesis project. In addition, 
upon reviewing the thesis certain untouched subjects are detected, these subjects are going to be investigated in 
the thesis project. Most of the reviewed literature fails to deliver a model that is only dependent on the stress-
strain input. This will be the main focus of this study which stems from the initial goal of create a more data-
driven approach. In addition, an effort to understand why a Neural Network is successful or not usually is not 
incorporated into the study. Therefore, the thesis will focus on the inner workings that make Neural Networks 
fail or succeed.  
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Chapter 3. First Approach- Generic 

Neural Network 

3.1 Introduction 
The first attempt in creating a Neural Network material model will be a generic one. In this case the less 
erroneous Neural Network architectures are achieved through attempting different number of nodes, activation 
functions and with implementing other callbacks (e.g. dropout, early stopping). As it can be concluded from the 
literature study little effort is made to link specific components of the material models to specific components of 
the Neural Network (e.g. activation functions, layers, inputs). Thus, the approach is more generic and the Neural 
Network can be seen in the end as a black box. However, it has been proved as a successful way to model 
constitutive soil behaviour by the literature study. 

3.2 Methodology 
To answer the scientific question certain steps need to be defined in the methodology, as it is stated at chapter 
2.2. The first step includes creating data for training and testing of the Neural Network, then different network 
architectures will be tested. The architecture with the smallest errors will be selected as the optimum model 
architecture (Shahin M. , 2010). The last step includes the validation process where the Network is tested 
against data that were not included in the training dataset. The last step aims to assess whether the Network was 
successful in uncovering the relationship between inputs-outputs without overfitting. 

3.2.1 Creating the dataset 

The dataset will be created with the Plaxis (2015) software. To create the data, in the Plaxis software, the 
SoilTest environment is selected and specifically the General tab. In the General tab the user can define the 
initial stresses and the strain increments of each phase. The training and testing datasets which are required for 
the Neural Network’s training and validation have to capture the underlining mathematical relationship of each 
one of the soil material models. Thus, the strain increments have to be selected randomly and the amount of 
phases has to be large enough to capture the soil behaviour that the Neural Network aims to model.  

To facilitate this process a Python script will be created so that Plaxis SoilTest (Figure 22) stresses and strain 
increments can be imported from a .txt file. Thusly the increments of stress or strain can be selected randomly 
and a large amount of them can be generated. Finally, the .txt file is formatted in a way that is recognised by the 
software. The flowchart of this script can be observed in Figure 23. 

 

Figure 22 The General tab of the Plaxis SoilTest environment 
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.  

Figure 23 Python script for Plaxis soil test  

3.2.2 Training Dataset 

The dataset consists of 250 strain increments selected randomly from a uniform distribution and ranging 
between -5e-7 and 3e-7.  The strains will be imposed only in the yy direction. The motivation behind this is that 
there will be no shear stresses developing in the material and that the stresses in the xx direction will be equal to 
the stresses in the zz. Thus, it is a way of simplifying the relationship the network will attempt to model. 

To obtain the training data from Plaxis the material model and parameters have to be defined. In this example a 
Mohr Coulomb material is selected. The reason being, that it is a relatively simple soil model. The parameters of 
the soil model are displayed in Table 2. Note that these parameters will remain the same for all the datasets 
created in this thesis unless stated otherwise.   

The final Training dataset can be seen in figures Figure 24, Figure 25, Figure 26 and Figure 27. In Figure 24 the 
p-q curve can be observed. In this figure the Mohr-Coulomb failure line can be noticed. In Figure 24 it can be 

observed that the material will begin with a stress p = -100 ݇ܰ ݉ଶ⁄  and q =0݇ܰ ݉ଶ⁄ . As the stress increase the 

follow the linear elastic relationship until the p-q combination reaches the failure line. Here the angle by which 
failure is achieved allows the material to follow the Mohr-Coulomb failure line, resulting in work hardening of 
the material. In Figure 25 and Figure 26 the actual relationship that the Neural Network will attempt to be fitted 
can be observed. In the figures the initial loading linear elastic, the linear hardening and the loading unloading 
parts are shown. Finally, in Figure 27 the strain inputs can be shown. 

Table 2 Parameters of the Mohr-Coulomb model 

Material Parameters Value Unit 

Young’s Modulus E 1e6 ݇ܰ ݉ଶ⁄  

Poisson’s Ratio ν 0.2 - 

Strength Cohesion cref 5 ݇ܰ ݉ଶ⁄  

Friction Angle φ 15 o 

Dilation Angle ψ 0 o 
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Figure 24 Training dataset p-q curve with failure line 

 

Figure 25 Training Dataset Stress Strain curve 

 

Figure 26 Training Dataset Stress Strain curve Zoomed 
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Figure 27 Training Dataset strain increments Vs Steps 

3.2.3 Creating the Generic Neural Network 

To create the Neural Networks a number of programming languages are available with libraries that can be used 
to facilitated the creation and training of Neural Networks. In this study the programming language Python will 
be used. The library used is the TensorFlow software library that enables high performance numerical 
computations. Finally Keras (Chollet, 2015) is used as API, written in Python that is able to run on top of 
TensorFlow (Abadi, Agarwal, Barham, Brevdo, Chen, & Citro, 2015). The main reason behind these choices is 
that these libraries and language are relatively easy to use and open sourced. Thus, a lot of material exists online 
and they are continuously improving and developing due to their popularity among users. 

The first step in creating the Neural Network is defining the inputs and the outputs of it. The approach is that the 
Generic Neural Network should approximate a typical material model. Apart from the material model 
parameters, that will be kept constant for all the dataset, typical inputs include the strain increments (in this case 
dεyy) and the stress level (in this case σyy).  

The neural network will be trained in a way that is depicted in Figure 28(a). However, like most material models 
the actual way the data will be predicted can be seen in Figure 28(b). The stress level of the previous step is used 
as an input for the next time step. Thus, for the model to be characterized as successful the results of case (b) 
have to produce a good fit. The Neural Network prediction model of Figure 28(b) is referred as Feedback 
prediction in the rest of the document. 

 

Figure 28 (a) The Neural Network prediction when all the inputs are taken from file (b) The Neural Network when the strain increment is 

taken from file and the stress state is set with a feedback prediction from the previous step 

After defining inputs and outputs the architecture of the network needs to be defined. To find the optimum 
network architecture different types of them will be tested. The process can be observed in Figure 29. First the 
activation function of the nodes is selected. Then the number of layers in the network is defined and finally the 
number of nodes in the layers. The model is trained after that and the relative metrics are calculated to validate 
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the trained networks performance. These metrics include the mean absolute error, the squared mean error and 
the coefficient of correlation.  

 

Figure 29 Flowchart of architecture investigation 

3.3 Results 
The results of the generic neural network material model will be presented in this section. In the first part the 
aim is to determine the optimum Neural Network architecture. In this part the errors computed will be referring 
to the normal non-feedback prediction. After choosing the optimum Neural Network architecture the next step 
includes evaluating the results of the network. The results of the Neural Network will be associated with the 
inner workings of the Neural Network by calculating metrics like Relative Importance and Relative contribution 
and by displaying the Networks weights.  

3.3.1 Network Architecture 

As stated in chapter 3.2 the Network’s architecture is first defined by the minimum errors and minimum amount 
of neurons and layers so that the final trained network is obtained efficiently. In Figure 30 to Figure 32 these 
errors can be observed. Each one of the figures represents a specific activation function that is applied to all of 
the neurons of the layer. It can be observed that for all the activation functions the errors are smaller when there 
is only one hidden node layer.  The smallest errors can be noted for each of the graphs: 

 In Figure 30 (ReLU activation function): 1 hidden layer, 4 nodes  
 In Figure 31 (Sigmoid activation function): 1 hidden layer, 110 nodes  
 In Figure 32 (Linear activation function): 1 hidden layer, 1 node  

After accessing the number of layers of the Network the next step is to determine which activation function 
performs better. From Figure 33 the optimum activation function is the Linear or the ReLU. For the Linear 
activation function the optimum network architecture refers to one linear layer consisting of one node and for 
the ReLU activation function the optimum size is the one layer with 4 nodes, architecture. The final architecture 
is determined by the generalisation ability of the network. To determine this, a testing dataset will be created. 
The testing dataset consists of data that are not included in the training dataset. The network architecture that 
performs the best with the training dataset will be chosen as the optimum one. Table 3 contains the results of the 
Neural Network with testing dataset the results of the Feedback Prediction are the ones that will determine the 
optimum architecture. It is concluded that the ReLU architecture has the best generalisation ability. 

Table 3 Results of testing dataset for the Linear and ReLU architectures 

 ReLU Architecture Linear Architecture 

Feedback Prediction Normal Prediction Feedback Prediction Normal Prediction 

Mean Absolute Error 0.008832 1.68E-05 0.05767 1.67E-05 
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Figure 30 Various architectures and their errors activation function ReLU 

 

Figure 31 Various architectures and their errors activation function Sigmoid 

 

Figure 32 Various architectures and their errors activation function Linear 
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Figure 33 Comparison between different activation functions 

3.3.2 Results of the Dataset 

3.3.2.1 Results without Feedback Prediction 
The next step is the validation process of the soil model. The final neural network will have two inputs and one 
output with a hidden layer of 4 nodes with ReLU activation functions. The trained Neural Network connection 
weights can be observed in Figure 34. In the figure the strongest connections are represented with a bolder 
colour and the weakest ones with a lighter colour. Therefore, it is easily observed that the connections related to 
the input of stress are stronger than the connection of strain. To verify this observation the relative contribution 
and the relative importance of each output in terms of the weights will be calculated as described in chapter 
2.3.3. In Figure 35 the results of this calculation can be seen. First of all, the relative contribution is calculated in 
a different manner than the relative importance. Thus, their results are in fact different. However, what can be 
observed in this case is that the contribution of the stress input is definitely bigger than the contribution of the 
strain increment input. Therefore, the main contribution to the results comes from the stress level. It can be 
concluded that in this network the stress level changes will have a greater effect in the results.  

 

Figure 34 Trained Neural Network bolder connection represent higher weights 
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Figure 35 Metrics for weight connections of the Generic Neural Network 

The next step in reviewing the results it is validating with a testing dataset. The testing dataset is created in a 
similar fashion with the training dataset. During training the loss (mean squared error) between actual and 
predicted results of the network is monitored. The loss of the testing dataset is also calculated after the end of 
each epoch. The network will uncover the mathematical relationship between inputs and output when both the 
training and testing losses have converged to a certain value. In Figure 36 the losses for each epoch are 
converged after epoch 10. Therefore, their general mathematical relationship is “discovered”. The error results 
can also be seen in Table 4 where various metrics can be represented. As it can be expected the errors of the 
testing dataset are larger than those of the testing. However, the final results (Figure 37, Figure 38) are still 
acceptable. The correlation coefficient is very high in this case which proves that the target output and the 
predicted results have a strong correlation with each other. 

Table 4 Results of Metrics after training 

` Training Dataset Testing Dataset 

Mean Squared Error 5.52E-10 4.34E-10 

Mean Absolute Error 1.86E-05 1.68E-05 

Coefficient of Correlation 1.000 1.000 

 

 

Figure 36 Losses during training for each epoch 
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Figure 37 The training dataset results Stress Level Vs Strain Level 

 

Figure 38 The testing dataset results Stress Level Vs Strain Level 

3.3.2.2 Results with Feedback Prediction 
After the validation of the data predicted without a feedback prediction the next step is to make the prediction 
sensitive to the previous state. After the training of the model the prediction in this case is made by linking 
outputs with inputs through a loop (Figure 28(b)). Firstly, the metrics produced after training will be observed in 
Table 5. The feedback prediction seems to be very erroneous due to the fact that the strain increment’s relative 
contribution is much smaller than the stresses. The result is that with a small error in the stresses has a huge 
impact in the final output, while changes in the strain have smaller impact on the final output. 

Table 5 Results of the Feedback prediction 

 
No Feedback Prediction Feedback Prediction 

Mean Squared Error 5.52E-10 0.0003 

Mean Absolute Error 1.86E-05 0.0144 

Coefficient of Correlation 1.000 0.99 

 
To understand why the feedback prediction fails to give the same level of error to the outputs a sensitivity 
analysis will be conducted to determine the spectrum of input variable contributions in the Neural Network. The 
sensitivity analysis process involves varying each input variable across an entire range while holding all other 
input variables constant. In Figure 39 the contribution plot for each of prediction variables is shown. In this case 
each input is varied across the entire input range while all the other variables are held constant at some chosen 
percentiles.  In the first plot of Figure 39 the results for a varying stress level input can be observed. The stress 
level input has a linear relationship with the stress level output. In this case the percentile of strain has little 
effect on the results, because in all of the cases the same linear relationship is followed. On the other hand, the 
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strain increment input will output almost a straight line. The percentile of stress input seems to be dominating 
that relationship. 

 

Figure 39 Contribution Plots from the sensitivity analysis illustrating the neural networks response curves to changes in each input with all 

the variables held constant in different percentiles. 

By setting the 80th percentile of stress and strain as a constant can be used to determine the range of possible 
solutions. In Figure 40 the range of solutions can be observed. The strain input ranges between -2000 and 

0݇ܰ ݉ଶ⁄  while the strain increment one between -444.4 to -443.6݇ܰ ݉ଶ⁄ .  

 

Figure 40 Contribution Plots from the sensitivity analysis illustrating the neural networks response curves to changes in each input with all 

the variables held constant in the 80th percentile. 



  34 
 

In Figure 41 the results of the sensitivity analysis with both of the inputs varying. The x and y axis are the inputs 
of the Neural Network and the colour represents the output stress level. The inputs are selected randomly from a 
normal distribution. It can be observed that the strain inputs do not have such a large effect on the output as the 
stresses do.  

 

Figure 41 Sensitivity analysis both inputs varying 

From the observations made above we can conclude that the output’s lack of sensitivity in strain inputs makes 
the feedback prediction erroneous. In Figure 42 and Figure 43 the actual results of the network can be observed. 
As it was stated before the miscalculation is attributed to the fact that the stress increment has a greater affect in 
the final results. However, Figure 43 suggests that the general trends of unloading and reloading are captured in 
the Neural Network but the feedback prediction causes a drift in the results of the Network.  Moreover, in Figure 
42 it is observed that the feedback predicts an almost linear relationship between stresses and strains. This 
suggests that the network does not distinguish between plasticity and elasticity. 

 

Figure 42 The Training Dataset. The green line representing the feedback prediction 
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Figure 43 The Training Dataset prediction Vs Steps. The green line representing the feedback prediction 

Finally, the inner workings of the network are going to be investigated. The output of each neuron will be 
calculated to determine how the Network reacts for different inputs. From Figure 42 it can be seen that the 
feedback prediction approximates a straight line rather than following the hardening yield surface. This implies 
that in the Network there are not specific patterns corresponding to the elastic and to the plastic behaviour. In 
Figure 44 it can be seen that those different states are not represented by a different part of the network. The 
only difference between the Networks is that the stress level input in case (b) is smaller thus the last node of the 
hidden layer is less active. 

 

Figure 44 The outputs of each node (a) elasticity (b) plasticity 

All of the findings suggest that the network was not trained properly since most of the contribution comes from 
the stress level input. 

3.3.3 Improve Neural Network with Feedback Prediction 

The feedback prediction has failed to produce an acceptable accuracy for the material model. However, several 
techniques exist in literature that might be able to resolve the feedback prediction problem. The concept is that if 
the errors in the training are really low then the feedback prediction errors will be minimised as well. 

3.3.3.1 Different inputs and outputs 
To improve the feedback of the model the model inputs and outputs have to be reconsidered. One way to 
approach this problem is to find already successful models in literature and draw inspiration from them in terms 
of inputs and outputs. The new input array will be consisted of ݀𝜀௬௬௧+ଵ, 𝜀௬௬௧ , 𝜎௬௬௧  and the output is changed 
to ݀𝜎௬௬௧+ଵ. Thus, the strain level is added as an input and the stress increment in the next step is the new output. 
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(Sidarta & Ghaboussi, 1998) To find a suitable architecture a similar approach will be implemented as it was in 
chapter 3.3.1. This architecture might be more successful with the feedback prediction because the stress level 
input will not have such a large correlation with the stress output. Thus, the contribution of the stress input will 
be minimised. 

 

Figure 45 The new inputs and outputs Training Dataset Errors 

 

Figure 46 The new inputs and outputs Training Dataset Errors Feedback prediction 

From Figure 45 the optimum architecture of the Neural Network constrict of three layers and 150 nodes. 
However, these errors refer to a non-feedback prediction. Therefore, to determine the optimum architecture the 
errors of the feedback prediction need to be defined. In Figure 46 the minimum error in the Feedback prediction 
is achieved with architecture of 3 layers and 150 neurons. Figure 45 and Figure 46 have small differences with 
each other in terms of errors. This implies that the issues of chapter 3.3.2.2 were resolved.  

However, when the results are observed in Figure 47, it is concluded that this network does not perform more 
accurately from the network in chapter 3.3.2.2. From the figure it can be seen that the feedback prediction will 
perform better than the normal prediction. However, zooming into the graph it is easy to observe that the 
prediction is still not accurate. Finally, the relative importance of each input can be calculated. In Figure 49 the 
Relative contribution of the inputs reveals a balanced outcome with the strain level contributing more to the 
output.  
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Figure 47 Training dataset results New inputs and outputs 

 

Figure 48 Zoomed training dataset results New inputs and outputs 

 

Figure 49 Relative Contribution of each input- New inputs and Outputs 

A sensitivity analysis is also performed to further evaluate the Neural Network. The sensitivity analysis is 
implemented in a similar fashion as in chapter 3.3.2.2.  The results can be observed in Figure 50. In Figure 50 
the results of the Network when only one input is varying can be seen. From the first plot of the figure the 
results of a varying stress level are observed. The relationship in this case is a decreasing response. Thus, a 
decrease in the stress level input will lead in an increase in the stress increments no matter the percentile input 
chosen. However, percentile inputs seem to have an effect on the range of responses. For example a small 
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percentile input gives the ability to the output to vary significantly. The effect of the stress level is bigger than 
expected. Theoretically, the stress level should be quite irrelevant to the stress increment output since the only 
function of the stress input is to distinguish plastic from elastic behaviour. Moving on the second plot, where the 
strain increment inputs vary, there is a linear relationship between the strain input and the stress output. It is also 
noticed that the negative parts of the Inputs correspond to negative parts of the output. However, the percentile 
inputs influence the stress increment output. Thus, high levels of stress level and strain level inputs will result in 
non-zero stress increment output which is not correct from a constitutive model point of view. Finally, the last 
plot shows the relationship between varying strain level input. It can be observed that the range of solutions 
consists mostly of negative stress increment outputs.  The response of the Network in this case is classified as 
increasing because when the strain level increases the stress level increases as well. In addition, it is observed 
that the percentile inputs in this case do not have a clear influence on the output. 

 

Figure 50 Contribution Plots from the sensitivity analysis illustrating the neural networks response curves to changes in each input with all 

the variables held constant in different percentiles. 

3.3.3.2 Dropout 
Dropout is described in chapter 2.3.4.2. Here it is stated that by implementing the Dropout method one can 
check multiple network architectures efficiently. Thus, instead of increasing node and layer size, a large amount 
of layer and nodes is chosen and then the Dropout method is applied to them. The initial architecture in this case 
is chosen as 2 layers with 150 nodes per layer this architecture is chosen because it possesses a large number of 
connections and thus more architecture will be tested through the dropout method. The rate of the dropout will 
define how many of the connections between nodes to drop. In this case the rate will be 0.5 so 50% of the 
connections will be deactivated randomly during training. However, in this case the Dropout technique did not 
help with the generalization of results and thus the feedback prediction is still erroneous. In Table 6 the results 
of the equivalent network without any dropout is presented. Although the errors are diminished they are not in 
the order of magnitude that it is required. 
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Table 6 Results of the Dropout Neural Network compared to a Full Connected one 

 Dense Connection Dropout 

Mean Absolute Error 0.0003 0.293 

Mean Squared Error 0.0144 0.11 

Coefficient of Correlation 0.99 0.009 

 

3.4 Conclusions 
In this chapter a generic Neural Network Constitutive Model is created. The first attempt is to create a Neural 
Network consisting only of stress and strain inputs, in that way the Constitutive Model of the Neural Network 
does not require soil parameters and thus represents a data driven approach. Several architectures are attempted 
and the most efficient and accurate one is chosen. That architecture consists of one hidden layer of 4 neurons 
with a ReLU activation function. Although the network performed satisfactory with a normal prediction the 
feedback prediction proved to be quite erroneous. This is attributed to the fact that the contribution of the stress 
inputs is significantly larger than the strain inputs. Therefore, the contribution of the stress input exceeds the 
contribution of the strain input which will lead to a false estimation of the stress output during feedback. To 
resolve this issue several methods are implemented. Different inputs and outputs are tested as well as the 
regularisation method of Dropout. By altering the inputs and the outputs of the network the network was 
successful in producing the same results with a normal and a feedback prediction. That finding reinforces the 
idea that the first Neural Network was not successful because of the varying contributions of the inputs.  

In all of the methods tested the error of the feedback prediction is too large for the Network to be successful. 
Thus, the approach of creating a generic model has to be reassessed. As it can be implied from the approach of 
this chapter the Neural Network was created by not taking into account how constitutive models work in detail. 
That led to a Neural Network which overestimated the effect of one of the inputs. However, the next step would 
be to link soil behaviour with Neural Network architectures. Soil constitutive models usually consist of different 
components (e.g. spring element, dashpot element) that represent different soil behaviours (e.g. elasticity, creep). 
When these components are linked together the full stress-strain relationship of the constitutive model can be 
realised. In the same way the Neural Network constitutive model can be rearranged into components that are 
then connected, to represent the full stress-strain relationship. 

Nonetheless, there are more possible remedies for the problem of feedback prediction. One of those is adding 
history stress points as inputs. In this way the stress level can correspond to a certain history input and thus the 
feedback prediction can be defined more accurately (Ghaboussi, Pecknold, & Zhang, 1998). Another possibility 
is to train the model by using a recurrent neural network. In this case the training is achieved with feedback and 
the network might be more successful in uncovering the stress – strain relationship (Zhu, Zaman, & Anderson, 
1998).   
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Chapter 4. Second Approach-

Component Based Modelling 

4.1 Introduction 
The generic Neural Network material model created in Chapter 3 failed to capture the stress strain relationship 
of the soil with the feedback prediction. To ensure a better prediction the “problem” has to be redefined. In this 
case the “problem”, so whether Neural Network can model constitutive soil model is going to be assessed from 
another perspective. Typical components of constitutive models will be identified. These components will be 
modelled by using Neural Networks. The components will be linked together to create the full stress-strain 
behaviour. In this chapter the material models created in this way are the linear-elastic model, the linear-elastic 
perfectly-plastic and finally the linear elastic work-hardening. First, the choice of architecture for each Neural 
Network is explained in chapter 4.2.  In chapter 4.3 the results of the training and the validation of each Neural 
Network model are explained. Finally, conclusions for each model are made in chapter 4.6. 

4.2 Methodology 
The first part of the methodology explains how components construct material models when they are linked 
together. Furthermore, each of the constitutive soil models used in the Neural Network training process will be 
explained in detail, so that the dataset corresponding to their behaviour can be created successfully. In the last 
part of the methodology the idea behind each of the component based Neural Networks is described.  

4.2.1 Typical components of material models 

Conceptually all material models can be constructed by using three simple components (Figure 51 a, b and c) 
shown in Figure 51 the spring, the dashpot3 and the slider. The linear elastic component (a) is modelled as a 
reversible spring; the creep is represented as a dashpot element and the plasticity with a slider plastic resistance 
element. From these components more complex soil behaviours can be formulated, such as plasticity or 
viscoelasticity. Assembly of the components has been proven as a logical way of generating the soil behaviour 
pattern. One of main scientific questions is if Neural Networks can behave as successful as material models. To 
answer this question one has to consider if Neural Networks are able to capture the typical components of 
material models. Thus, if different components of the soil material models can be represented by different parts 
of a Neural Network then the hypothesis, that Neural Networks can model typical soil behaviour, is proven. 

 

Figure 51 Basic components for material models. (a) Spring-reversible linear/nonlinear elasticity. 

(b) Dashpot-linear/nonlinear creep. (c) Slider-plastic resistance (strain dependant).(d) Elasto-plactic model (e)Work-Hardening Plasticity  

(f)Elastic viscoplactic assembly.  (Zienkiewicz, 1985) 

                                                           
3 Dashpots are simple pistons combined – usually – with a hydraulic fluid. Examples of objects that include 
dashpots are car shocks, bike shocks, and are found on some doors. 
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4.2.1.1 Linear-Elastic 
The linear elastic model is the equivalent of Hooke’s law. In this case stresses and strains are connected through 
a linear relationship. In this case strains are completely reversible since the only state of the material is elastic. 
The relationship can be expressed in the form of: 

 σ′̇ = M̿ε̇   (18) 

Where M is the stiffness matrix. Expressed from Hooke’s law the relationship becomes: 

 [  
   
σ୶୶σ୷୷σσ୷σ୶σ୶୷]  

   = Eሺଵ+νሻሺͳ−ʹνሻ [   
  ͳ − νννͲͲͲ

νͳ − ννͲͲͲ
ννͳ − νͲͲͲ

ͲͲͲͳ − ʹνͲͲ
ͲͲͲͲͳ − ʹνͲ

ͲͲͲͲͲͳ − ʹν]   
  
[  
   
ε୶୶ε୷୷εε୷ε୶ε୶୷]  

      (19) 

E’: Young’s Modulus  

ν: Poisson’s Ratio 

Thus, the relationship between stress and strain is represented by a straight line usually through the origin. 
(Figure 52) The behaviour of the linear elastic material is further exemplified by the stress time and strain time 
curves. In linear elastic behaviour when a soil body is subjected to a constant strain εo the stress will reach a 
certain constant stress level σo. When the strain is removed at time T the stress will return to zero. (Figure 53) 

  
Figure 52 The stress strain relationship of linear elastic 

 
Figure 53 Linear-Elastic Stress-time curve 

 
 

4.2.1.2 Linear-Elastic Perfectly-Plastic 
A plastic material is defined by the fact that it does not undergo plastic deformation until certain yield stress has 
been exceeded. In addition, if a material is classified as perfectly plastic (Figure 51c) no elasticity will occur 
during loading. The stress-strain relationship is shown in Figure 54, under the influence of small stresses, no 
deformation occurs; when the stress is increased the material will reach the yield stress of σo. Until the stress is 
removed the material will remain at this constant stress level and the strain level accumulated by this process is 
retained.  

However, most soils are closer to elastic-plastic behaviour.  Here the slider-plastic resistance can be represented 
as a block of solid material on a flat horizontal surface.  Thus, when a force is applied to it the block will not 
move until the force exceeds the friction between the block and the flat surface.  The ideal linear elastic 
perfectly plastic model is show in Figure 51d.  

There are two main components Mohr-Coulomb model. The elastic part which is described by Hooke’s law and 
the Plastic part that is based on the Mohr-Coulomb failure criterion formulated in a non-associated plasticity 
framework. 

The plasticity results into non-reversible strains. The yield function, f, determines whether or not plasticity has 
occurred. This is represented as a surface in stress space. For stress states represented by points in the yields 
surface, the behaviour is purely elastic and all strains are reversible. 
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Figure 54 The perfect plastic model Figure 55 The linear elastic perfectly plastic model 

 

4.2.1.3 Linear-Elastic Work Hardening Model 
In this model the elastic and plastic curves are assumed linear. If we consider a loading-unloading case the soil 
element will be loaded until the yield stress level. If the loading continues the soil element will go into the 
plastic region and thus will follow a plastic linear relationship. If the soil element is unloaded after some 
deformation has taken place and then reloaded, the reloading portion will approximate a straight line of slope E 
until the highest previously attained stress (the stress of the soil element before the loading began). Reloading 
will follow the virgin curve. The highest stress before the unloading will be the new yield stress. The material is, 
thus, considered as been strengthened or hardened by this plastic deformation. Therefore, work-hardening or 
strain-hardening is the increase of stress with plastic deformation. The Ramberg Osgood formula can describe 
this behaviour as: 

 ε = σE + ȽσRE ( σσR)୫
 (20) 

α, m: dimensionless constraints 
σR: reference stress 
If m is very large the plastic strains will remain small until the stress approaches the yield stress and then 
increases rapidly when stress exceeds yield stress. In the limit, as m becomes infinite, the strain is zero when 
σ<σR, and is intermediate when σ=σR, while σ>σR would produce an infinite plastic strain and therefore 
impossible. This limiting case accordingly describes a perfectly plastic solid with yield stress σR. Finally, the 
stress-strain relations can be expressed as in equation and Figure 56(c): 
 

 σ = { Eε  for σ  σR σR + E୲(ε − σR E⁄ )for σ > σR    (21) 

 

 

Figure 56 The Material Models 

From a continuum mechanics point of view, represented in Figure 51(e), the components corresponding to 
plasticity are a spring and a friction component. To produce the final relationship seen in equation 21 these 
components are connected in a parallel manner. The elasticity is represented by a linear component attached in-
series to the system.  

4.2.2 Create the Training Datasets 

The datasets are created in a similar fashion as in chapter 3.2.1 in the Plaxis software from the SoilTest function 
and the General tab. Each one of the datasets, however, will be created differently. Furthermore, the material 
parameters used in all of these cases are posted in Table 2. 
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4.2.2.1 Linear Elastic 

4.2.2.1.1 One Direction of Strain Input Dataset 
The linear elastic model is created in Plaxis SoilTest function General tab. The strain increments (thus the inputs 
to the Neural Network) are only considered in one direction. These increments are randomly selected from a 
uniform distribution between -5e-7 and 3e-7. In Figure 57 the linear relationship between stresses and strains is 
observed for all of the stress output directions. Directions XX and YY will have equal stress outputs since they 
are governed by the same linear relationship. In Figure 58 the stress level with relation to the steps is presented. 

 

Figure 57 The linear relationship between stress and strain 

 

Figure 58 The stress level at each of the steps 

4.2.2.1.2 Three Directions of Strains Inputs Dataset 
The next dataset will be used for the Neural Network modelling three dimensions of inputs and outputs. Thus, 
the inputs in the linear elastic material model consist of three directions of strain increments. Each of the 
directions will consist of 200 increments that are selected randomly from a uniform distribution with limits -2e-
05 and 2e-05 (Figure 59). Imposing three random increments at a time will result in the final stresses as they are 
presented in Figure 60. Each of the directions will follow a different stress path since the linear relationships 
governing them are different from each other.  
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Figure 59 Strain increments for the 3D elastic dataset 

 

Figure 60 Stress Level of the 3 directional elastic dataset 

4.2.2.2 Linear Elastic Perfectly Plastic 
The next dataset created is the linear-elastic perfectly-plastic. In this case the soil element will reach perfect 
plasticity. The aim of this dataset is to reach a constant yield stress level where no more stresses are allowed to 
accumulate. 

In this case the generation of strain increments will come from a random uniform distribution. However, in this 
case the test is regarded as a “triaxial” test as it is defined in the PLAXIS software. Thus, one direction will be 
the dominant one (direction y) with strain increments that will be randomly selected from a uniform distribution. 
The two remaining directions will have an increment of half of the y directions in the opposite direction. The 
result can be observed in the p-q curve (Figure 63) in this case the mean stress will remain constantly the same 
and the deviatoric stress will vary from 0 to 67,22kPa depending on whether the soil element is loading or 
unloading. In Figure 61 the stress strain relationship can be observed. The diagram has two parts an elastic 
loading-unloading part and a plastic constant stress part. 
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Figure 61 The training dataset's stress to strain relationship 

 

Figure 62 The training dataset's stress to strain relationship Zoomed 

 

Figure 63 p-q curve for the linear elastic perfectly plastic dataset. The black line represents the failure line of the material 
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4.2.2.3 Linear Elastic Work Hardening Model 
This dataset will be created in the same manner as the linear elastic. The strain increments are randomly selected 
from a uniform distribution. The strains are imposed only in the y direction. In the p-q curve the mean stress 
reaches the yield surface in a non-perpendicular manner because of this the stresses will follow the yield surface 
thus resulting in work hardening of the material. The unloading reloading parts of the stress-strain relationship 
exhibit the same behaviour as the elastic part of the model. 

 

Figure 64 The work hardening model training dataset strain vs stress level 

 

Figure 65 The work hardening model training dataset stress vs steps 

 

Figure 66 The work hardening model, training dataset p-q curve 
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4.2.3 Creation of Neural Networks 

Creating material models as Neural Networks requires a combination of: 

 Understanding the soil behaviour 
 A clear problem definition 
 An understanding of existing literature 
 An understanding of how Neural Networks work 
 Datasets that capture the behaviour that is modelled 

Rather than creating one generic model an effort is made to create each of the Networks individually with 
Neural Network architectures that are relevant to each material soil model. In that way the inner workings of the 
Neural Network will be investigated in detail and in case the Networks fail to model these relationships the 
reason behind the failure as well as the way to remedy issues will be easier to identify.  

4.2.3.1 Linear-Elastic Model 
The Linear Elastic model is relatively straight forward as it is described in chapter 4.2.1.1. This model is 
described by a linear relationship. To model the linear elastic behaviour by using a Neural Network a linear 
activation function will be chosen for the neurons. As it is observed in Figure 67 the model will start with a 
relatively simple architecture and then complexity will be added to the Network in terms of input and output 
directions. Starting with the Neural Network (a), that architecture describes the linear relationship between 
stresses and strains but only in the y direction. As more directions of outputs are added the weights of the 
network between the neuron and the output are responsible for modelling the linear relationship between each of 
the outputs and the input. Finally, in model (d) the full stress strain relationship can be observed.  Two new 
neurons are added to represent the necessary connections from each input to each output. The choice of three 
neurons will be further explained and validated in chapter 4.3.2. 

 

Figure 67 (a) Neural Network 1 direction output (b) Neural Network 2 directions as output (c)Three directions as output (d) Three 

directions as inputs and outputs of the Neural Network 

4.2.3.2 Linear-Elastic Perfectly-Plastic – Mohr Coulomb 
As it was discussed in chapter 4.2.1.2 the Linear Elastic Perfectly Plastic model can be considered as two 
components in series with each other. In this case when the yield surface is reached the stress will remain in a 
constant level. To incorporate this behaviour in the Neural Network the inputs should include the stress level. 
Therefore, the inputs are the strain increment of the next step and the stress level of the previous step. 

If the actual model is considered as component based, then the Neural Network can be thought as one as well. 
Thus, the Linear Elastic architecture presented in chapter 4.2.3.1 can be expanded by another layer of neurons 
and the additional stress level input discussed earlier. The activation function of the second layer should be a 
ReLU. The ReLU activation function has the ability of returning a linear function if inputs are larger than zero 
and a zero if the inputs are smaller of equal than zero. If we consider the scaling of the dataset the yield level are 
zeros (smallest number of the dataset). In that way the linear-elastic prediction will be made first and then 
depending on the stress level the prediction will be corrected if it reaches plasticity and return a single value for 
yield stress. 
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The main Neural Network architecture is presented in Figure 68. However, the structure of the ReLU layer has 
to be defined. The number of neurons as well as layers will be defined with by which carries the least error after 
training (Shahin M. , 2010). In this case the best architecture will be a combination of the smallest error with the 
smallest possible amount of neurons. Errors can be measured as mentioned in chapter 2.3.3. The next step is to 
validate the network by testing it against datasets with values not present in the training dataset. The inner 
workings of the network will be also tested to understand the networks behaviour during plasticity and elasticity. 
The outputs of each of the nodes are evaluated.  To examine the network’s robustness extra testing datasets are 
created with different initial stresses. Those datasets represent different stress paths that still fall under the 
Linear-Elastic Perfectly-Plastic material model. The trained network will be tested against them and its 
performance will be evaluated. In addition, the testing datasets will be used to retrain the model. The effect of 
this is commented.  

Finally, the Neural Network is tested against added noise. The noise data are created from a Gaussian 
distribution and then added to the already existing dataset. The Network is retrained with the intention of 
determining if the Neural Network recognises noise as a pattern in the dataset. Noise is added to the testing 
datasets to evaluate their performance with a Neural Network that is trained without the use of noise. 

 

Figure 68 Main concept architecture Neural Network for the Mohr Coulomb model 

4.2.3.3 Linear-Elastic Work Hardening Model 
In chapter 4.2.1.3 the work hardening stress-strain relationship is described. To produce a Neural Network 
equivalent to the linear elastic work-hardening model the continuum mechanics approach is considered.  When 
the Neural Network and the material model put side by side (Figure 69 and Figure 70) it can be seen that the 
first elastic spring component is modelled neuron with a linear activation function. Moving to the friction 
component this relationship is modelled in a similar fashion as in chapter 4.2.3.2. Thus, consists of ReLU nodes 
and layers. Finally, a linear component which does not have any weight connections with the friction part is 
added. This part accounts for the linearity after the material reaches plasticity. The Neural Network is also in 
accordance with the work-hardening equation. As all parts of equation 22 are represented by the Neural 
Network. 

 σ = { Eε  for σ  σR σR + E୲(ε − σR E⁄ )for σ > σR    (22) 

Thus, the first step is to define a successful architecture for the Feedback prediction. The architecture with the 
more efficient number of nodes and layers will be selected. The next step is to validate trained Neural Network 
first in terms of the training dataset. Then the validation process can be resumed with computing the metrics of 
the testing dataset. At this staged it will be obvious if generalisation has occurred in for the Neural Network. The 
inner working of the Neural Network will be then discussed. That includes the weight contribution of each input 
as well as when each node become active during plasticity or elasticity.  
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Figure 69 Main concept architecture of the Neural Network Work Hardening Model 

 

Figure 70 The components of the linear elastic work hardening model 

4.3 Results Linear- Elastic Model 
After training the Neural Networks the results can be evaluated for their accuracy. The generalisation ability of 
each network will be tested by creating testing datasets. Also the Neural Networks will be evaluated by 
performing a sensitivity analysis. 

4.3.1 Neural Network Model with One Direction as Input  

The linear elastic model is essentially a linear relationship between the stresses and the strains. Thus, in this case 
the Neural Network will be considered as successful if the relationship between inputs and outputs has the same 
gradient as the Hooke’s Law (chapter 4.2.1.1). In this example the Neural Network is trained by imposing 
increments of strain in one direction. Thus, strain increments ݀𝜀௫௫ and ݀𝜀௭௭are zero and will not be included in 
the equations describing the stress strain relationship. This implies that the stresses will be described by 
equations 23, 24 and 25 . In the training dataset the Poisson’s ratio is set to ν=0.3 and the Young’s Modulus at 

E=1e+6 ݇ܰ ݉ଶ⁄ . Thus the gradient of x and z direction will be 576923.07݇ܰ ݉ଶ⁄  and in the y direction 

1346153.84݇ܰ ݉ଶ⁄ . 

 𝜎௫௫ = ܧ ͳ − ሺͳݒ + ሻሺͳݒ −  ሻ ݀𝜀௬௬   (23)ݒʹ

 𝜎௬௬ = ܧ ௩ሺଵ+௩ሻሺଵ−ଶ௩ሻ ݀𝜀௬௬   (24) 

 𝜎௭௭ = ܧ ௩ሺଵ+௩ሻሺଵ−ଶ௩ሻ ݀𝜀௬௬   (25) 

 
The input of the network needs to be scaled. In this case each feature will be scaled by its maximum absolute 
value. This process is called Normalization. The scaling will estimate and translate each feature individually 
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such that the maximal absolute value of each feature in the training set will be 1.0. The centre of the data is not 
shifted, and thus does not destroy the sparsity of the data. 

4.3.1.1 One Direction of Stress as Output 
The first Neural Network in this case will be a model of equation 26. Thus, the first model only concerns the y 
direction of stress and strain. The input of the network is the strain increment and the output of the model is the 
stress increment. The fact that the output is a stress increment eliminates the possibility of errors occurring 
through a feedback prediction. This incremental prediction can be applied in this case since the linear elastic 
model will not reach failure, thus there is no need to have an indication of the stress level. 

The network is observed in Figure 71. The Network only possesses two weights and biases are deactivated. The 
network is trained with the dataset presented in chapter 4.2.2.1. After training the network the final connection 
weights are obtained. In Table 7 the weights of the final trained network are shown. The relationship between 
stresses and strains from the Network can be calculated from equation 26. The scaler is defined as the absolute 
maximum value of the dataset (scaler = 9.8e-4). In this case only the inputs are scaled because the negative 
values and the proximity between the values of the does not help establish a connection between inputs and 
outputs. 

Using equation 26 the success of the Network can be defined. The gradient between stresses and strains is 
1346153.84. From the Neural Network the gradient calculated from equation 26 is 1350885.30. Thus the 
percentage error of the Neural Network is 0.3%. 4 

 

Figure 71  The linear-elastic Neural Network in one direction 

Table 7 The weights of the trained Neural Network  

Weights 
w1 36.41 
w2 36.36 

 

 dσ୷୷ = wଵwଶ ୢεyyୱୡa୪ୣ୰    (26) 

The results of the training dataset can be observed in Figure 72 and in Figure 73. In those figures it is observed 
that the errors of the dataset are quite low. Thus the Neural Network was successful in uncovering the linear 
relationship between stresses and strains. 

 

Figure 72 Diagram of linear stress and strain relationships 

                                                           
4 In this case percentage error is defined as ݎݎݎ݁ ݁݃ܽݐ݊݁ܿݎ݁ = 𝑟ௗ௧−𝑎௧௨𝑎𝑎௧௨𝑎 ͳͲͲ% 
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Figure 73 Stress versus steps for the training dataset 

However, to complete the validation process different testing datasets are created. They are created in a similar 
random fashion as the training dataset (using the same material parameters) but they consist of less strain 
increments and different types of increment divisions through the steps. In PLAXIS the strain increment is 
divided to steps. Different step sizes are selected to test if the Neural Network has captured the behaviour of the 
soil model. The training can be characterized as successful since the Mean Absolute Errors of the testing are 
lower than the training dataset’s Mean Absolute Error. This can be further validated by Figure 74, where all of 
the predictions present a linear 1 by 1 relationship with their respective outputs. 

Table 8 Results of different testing dataset as Mean absolute error 

 Steps in PLAXIS Mean Absolute Error 

Training Dataset 100 0.002122 

Testing Dataset 1 100 0.001654 

Testing Dataset 2 50 0.000540 

Testing Dataset 3 20 0.000962 

Testing Dataset 4 Random Uniform from 1 to 100 0.003617 

 

 

Figure 74 Different testing datasets in 1by 1 comparisons 
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4.3.1.2 Two directions as Outputs of the Neural Network 
In this case the generalisation ability of the Linear Elastic Neural Network can be tested with attempting to 
stepwise construct the full stress-strain linear elastic matrix. Since modelling the linear elastic model in the y 
direction was successful the next step of this process is to add more directions gradually as an output to recreate 
the linear relationships described in equation 23 and 22.  The network in Figure 75 will be used for the training. 
The scaling in this case will be the same as in chapter 4.3.1.1 thus scaler = 9.8e-4. In equations and the 
mathematical relationships between stresses and strain as it is defined in the network can be seen. In table the 
results of the training can be observed. The training gave a percentage error of related to the gradient equal to 
0.005% with for the y direction and for the x direction 0.003%. Overall these errors are acceptable if they 
validated through Figure 76 and Figure 77, where the prediction with the actual data coincide.   

 

Figure 75 Neural Network with 2 directions as output 

Table 9 Weights of the 2-direction Linear Elastic Model 

w1 35.94 
w2 36.84 
w3 15.79 

 

 dσ୷୷ = wଵwଶ ୢεyyୱୡa୪ୣ୰    (27) 

 dσ୶୶ = wଵwଷ ୢεyyୱୡa୪ୣ୰    (28) 

Table 10 Gradients of prediction and Hooke’s Law 

 Hooke’s Law Neural Network Percentage Difference (%) 
Gradient in the x 576917.66 576946.18 0.005 
Gradient in the y 1346164.67 1346209 0.003 

 

 

Figure 76 The training dataset linear relationship between stresses and strains 
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Figure 77 Training dataset step Vs stresses in both directions 

However, the Neural Network needs to be further validated through the testing datasets. In Table 11 the mean 
absolute errors of the testing datasets are, almost for all the cases, smaller than the training ones. This can be 
further verified by Figure 78 and Figure 79 where the 1 by 1 linear relationship between the prediction and the 
actual data verify the success of the Neural Network. 

Table 11 Results of different testing dataset as Mean absolute error 

 
Steps in PLAXIS 

Mean Absolute Error in 
the y direction 

Mean Absolute Error in 
the x direction 

Training Dataset 100 0.002164 0.000848 

Testing Dataset 1 100 0.001829 0.000705 

Testing Dataset 2 50 0.000675 0.000225 

Testing Dataset 3 20 0.001663 0.000357 

Testing Dataset 4 Random Uniform from 1 to 100 0.003784 0.001544 

 

 

Figure 78 Testing Dataset results in the Y direction 
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Figure 79 Testing Dataset results in the X  direction 

4.3.1.3 Three directions as Outputs of the Neural Network 
The next step in the linear elastic model is to try to add the third dimension as an output of the Neural Network 
model. The network in Figure 80 will be used for the training. The scaling in this case will be the same as in 
chapter 4.3.1.1 thus the scaler is: scaler= 9.8e-4.  In equations 29, 30 and 31 the relationships between stresses 
and strains from the Neural Network can be derived. The gradient represented in these equations should be 
similar with the gradients of the equations 23, 24 and 25 which are derived from the Hooke’s law. From Table 
13 the gradients of each output can be observed as well as the errors between the Hooke’s law and the Neural 
Network. From the table it is concluded that the Neural Network has been trained successfully. In Figure 81 and 
Figure 82 the fit of the Network for all the outputs can be observed.  

 

 

Figure 80 Neural Network with 3 directions as output 

Table 12 Weights of the 2-direction Linear Elastic Model 

w1 34.28 
w2 38.63 
w3 16.55 
w4 16.55 

 

 dσ୷୷ = wଵwଶ dε୷୷scaler (29) 

 dσ୶୶ = wଵwଷ dε୷୷scaler (30) 

 dσ = wଵwସ ୢεyyୱୡa୪ୣ୰   (31) 
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Table 13 Gradients of prediction and Hooke’s Law 

  Hooke’s Law Neural Network Percentage Difference (%) 
Gradient in the x 1346195 1346165 0.002 
Gradient in the y 576949.5 576917.7 0.005 
Gradient in the z 576945.7 576917.7 0.005 

 

 

Figure 81 The results of the Neural Network with 3 outputs. Stress Vs Steps 

 

Figure 82 The results of the Neural Network with 3 directions as outputs. Stress Vs Strain 

The generalisation ability of the Neural Network is finally validated through the testing datasets as it was done 
in chapters 4.3.1.1and 4.3.1.2. In Table 14 the fact that the Neural Network has uncovered the general stress-
strain relationship is backed up by the low errors of the testing datasets, this can be further validated from 
Appendix A. In Figure 127, Figure 128, Figure 129 the 1 by 1 linear relationship between the prediction and the 
actual data verify the accuracy of the Neural Network. 
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Table 14 Results of different testing dataset as Mean absolute error 

 
Steps in PLAXIS 

Mean Absolute 
Error in the y 

direction 

Mean Absolute 
Error in the x 

direction 

Mean Absolute 
Error in the z 

direction 
Training Dataset 100 0.002149 0.00098 0.000954 
Testing Dataset 1 100 0.001772 0.000827 0.000796 
Testing Dataset 2 50 0.000656 0.000334 0.000309 
Testing Dataset 3 20 0.001541 0.000881 0.000786 

Testing Dataset 4 
Random Uniform 

from 1 to 100 
0.003743 0.001665 0.001638 

 

4.3.2 Neural Network Model with Three Directions as Input  

Since the three previous models were successful in modelling the linear elastic behaviour the model can be 
theoretically expand to full stress strain relationship in the three directions (xx, yy, zz). In this case the strains in 
each step are imposed in these three directions and they are selected randomly from a uniform distribution. The 
stresses and strains have linear relationships governing them. From equation 32 the equations 33, 34 and 35 are 
derived. These equations represent the modelling target of the Neural Network. If the Neural Network 
successfully models them then generalisation of the model has been achieved.  

 [dσ୶୶dσ୷୷dσ] = Eሺͳ + νሻሺͳ− ʹνሻ [ͳ − ν ν νν ͳ − ν νν ν ͳ − ν] [dε୶୶dε୷୷dε] (32) 

 dσ୶୶ = Eሺଵ+νሻሺͳ−ʹνሻ (dε୶୶ሺͳ − vሻ + ሺdε୷୷ + dεሻv)     (33) 

 dσ୷୷ = Eሺଵ+νሻሺͳ−ʹνሻ (dε୷୷ሺͳ − vሻ + ሺdε୶୶ + dεሻv)   (34) 

 dσ୶୶ = Eሺଵ+νሻሺͳ−ʹνሻ (dεሺͳ − vሻ + ሺdε୶୶ + dε୷୷ሻv)   (35) 

 

4.3.2.1 Neural Network with Three Directions as output 
So far the hidden layer was been composed of only one neuron. In this case since the inputs are three it can be 
assumed that the one neuron will not be able to capture the linear connections between inputs and outputs. To 
determine the optimum number of neurons in the hidden layer training with 1, 2, 3 and 4 nodes is initiated. The 
errors of the Neural Networks are documented and the final Loss per Epoch function can be graphed. From 
Figure 83 the optimum number of nodes in the hidden layer can be defined. In this case both the 3 and 4 nodded 
Neural Networks end up with the same final error. However, the 3 nodded hidden layer will be selected as it 
leads to the same result by using less neurons. Thus, the final form of the network can be defined in Figure 84. 

 

Figure 83 Training results for different number of nodes 
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Figure 84 Neural Network Linear Elastic 3 inputs 3 outputs 

In this Neural Network the biases are deactivated. Between the input and the hidden layer 9 weights exist (w1 to 
w9), between the hidden layer and the output another 9 weights exist (w10 to w18). From the feed- forward 
network definition the mathematical relationship between inputs and outputs can be defined. In equations the 
relationship between stresses and strains can be observed. The aim of the training of the Neural Network is to 
model the behaviour between stresses and strains as it can be observed in the linear-elastic Hooke’s Law Thus, 
the weight matrix of the Neural Network should be the same as the Linear Elastic one. After the training of the 
Neural Network the weight matrix is produced. The material matrix can be also calculated with v=0.3 and 

E=1e+06݇ܰ ݉ଶ⁄ .  In Table 15 the resulting matrices can be observed from the results of the Neural Network 

model it is concluded that the relationship between stresses and strains was modelled successfully. Finally, the 
actual fit of the results can be seen in Figure 85 as further validation. 

 [dσ୶୶dσ୷୷dσ] = [wଵ wଵଵ wଵଶwଵଷ wଵସ wଵହwଵ wଵ wଵ଼] [wଵ wଶ wଷwସ wହ ww w଼ wଽ] [dε୶୶dε୷୷dε] (36) 

 [dσ୶୶dσ୷୷dσ] = [wଵwଵ + wଵଷwଶ + wଵwଷ wଵwସ + wଵଷwହ + wଵw wଵw + wଵଷw଼ + wଵwଽwଵଵwଵ + wଵସwଶ + wଵwଷ wଵଵwସ + wଵସwହ + wଵw wଵଵw + wଵସw଼ + wଵwଽwଵଶwଵ + wଵହwଶ + wଵ଼wଷ wଵଶwସ + wଵହwହ + wଵ଼w wଵଶw + wଵହw଼ + wଵ଼wଽ] [dε୶୶dε୷୷dε] (37) 

 [dσ୶୶dσ୷୷dσ] = Eሺͳ + νሻሺͳ− ʹνሻ [ͳ − ν ν νν ͳ − ν νν ν ͳ − ν] [dε୶୶dε୷୷dε] (38) 

 

Table 15 Weight and Linear Elastic Matrix comparison 

Linear Elastic Matrix Neural Network Weight Matrix Percentage Error between Matrices (%) 
1346154 576923.1 576923.1 1345253 576538.4 576467.1 0.066 0.066 0.079 
576923.1 1346154 576923.1 576383.2 1345218 576472 0.093 0.069 0.078 
576923.1 576923.1 1346154 576451.3 576531.6 1345149 0.081 0.067 0.074 
 

 

Figure 85 Results of stress level Vs Steps in three directions 
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Finally, to fully validate the results of the model the Neural Network’s performance is calculated with 4 
different testing datasets. In Table 16 the mean absolute error for all the datasets is shown. The testing dataset 
have smaller errors than the training which gives the impression that the generalisation of the neural network 
model is achieved. This is further validated by Figure 86 to Figure 88 where the 1 by 1 relationship of prediction 
and actual data are shown. In all the datasets and directions the data are close to the linear line and thus there are 
negligible errors between prediction and actual results. 

Table 16 Results of different testing dataset as Mean absolute error 

 
Steps in PLAXIS 

Mean Absolute 
Error in the y 

direction 

Mean Absolute 
Error in the x 

direction 

Mean Absolute 
Error in the z 

direction 

Training Dataset 100 0.035796 0.072889 0.03601 

Testing Dataset 1 100 0.002772 0.002947 0.002314 

Testing Dataset 2 50 0.001999 0.004165 0.003149 

Testing Dataset 3 20 0.005361 0.009532 0.00831 

Testing Dataset 4 
Random Uniform 

from 1 to 100 
0.002033 0.004171 0.00343 

 

 

Figure 86 The results of testing datasets in the direction XX 

 

Figure 87 The results of testing datasets in the direction YY 
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Figure 88 The results of testing datasets in the direction ZZ 

4.4 Linear- Elastic Perfectly Plastic Model 

4.4.1 Defining Network Architecture and Training Results 

The Linear-Elastic Perfectly-Plastic model will be modelled as a Neural Network as it was discussed in chapter 
4.2.3.2. Therefore, the first step is the determination of the architecture of the ReLU layer of the Neural Network. 
The Neural Network is trained by using different architectures in the ReLU layer. The results can be observed in 
Figure 89. From the figure it is observed that the smallest errors belong to the two layered 2 nodded architecture 
or the three layers with 2 nodes architecture.  The two layers with 2 nodes will be chosen as they represent 
shallowest network. 

 

Figure 89 The errors of the ReLU layer 

In Figure 90 the final Neural Network is shown. In this figure the connections are sized according to the weights. 
From the figure it can be seen that the stress level has a greater contribution than the strain increment in the 
network. To quantify how the inputs are connected to the outputs the Relative Contribution of each input can be 
calculated.  Table 17 verifies what was seen in the figure. Thus, the stress level has a greater contribution to the 
output than the strain increment. 

Table 17 The Relative Contribution of each input 

RC1 
strain input 

RC2 
stress input 

4.09% 95.9% 
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To further validate and visualise the relative contribution to the Neural Network a sensitivity analysis will be 
conducted, this will be accomplished in a similar fashion as in chapters 3.3.2.2 and 3.3.3.1. This is computed by 
varying one of the inputs while the other one remains at a constant percentile value. In Figure 91 the results are 
observed. From the first plot the effect of the stress level input can be observed. Here the stress level follows a 
linear relationship until it reaches a plateau when stress inputs are smaller than -143 ݇ܰ ݉ଶ⁄  . This implies that 
the Neural Network was successful in uncovering the ultimate stress level. However, it can be also concluded 
that the percentile of the strain increment input has little effect on the final result. When reviewing the second 
plot of the figure it can be observed that the percentile of stress input has a large influence on the output of the 
Neural Network .When only one percentile is displayed for both cases the relationship when the strain is varied 
can be observed closely (Figure 91).  The strain input has a positive relationship with the stress output. This 
means that a positive strain increment will result in an increase of the stress level output. In that way the 
Network was successful in identifying the loading unloading behaviour. 

In addition, the actual results can be observed in Figure 93 and Figure 94. In these figure the fit of the feedback 
prediction (chapter 3.2.3) and regular prediction can be seen. Both of them perform adequately. In this case for 
modelling the stress-strain relationship only the feedback prediction is of interest. To have a better 
understanding of the accuracy of the model the maximum and minimum absolute difference will be calculated 
as the dataset’s errors are not quite visible in Figure 93 and Figure 94 . The minimum absolute difference is 
1.99e-6 and the maximum absolute difference is 0.09. In the order of magnitude of this specific problem this 
error is acceptable. 

 

Figure 90 The final training of the Neural Network larger weights are sized accordingly 

 

Figure 91 Contribution Plots from the sensitivity analysis illustrating the neural networks response curves to changes in each input with all 

the variables held constant in different percentiles. 
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Figure 92  Contribution Plots from the sensitivity analysis illustrating the neural networks response curves to changes in each input with all 

the variables held constant in the 80th percentile. 

 

Figure 93 The Training Datasets Results with and without feedback prediction. 

 

Figure 94 The Training Datasets Results with and without feedback prediction. 
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However, to fully understand how the Neural Network of linear-elastic perfectly-plastic model performs a link 
must be made between the inputs of the network the result and the output of each node. As it is described in 
chapter 2.1.3 the output of each node is the sum of weighted inputs plus a bias passed through an activation 
function. To understand the behaviour of the network the output of each node will be evaluated. The first step is 
to identify the output of the network reacts to different inputs in order to link the perfectly plastic behaviour with 
network inputs. It can be seen that the output of the network follows a ReLU trend (Figure 95). Thus, for stress 
inputs smaller than -143݇ܰ ݉ଶ⁄  the output of the Network will always be the -143݇ܰ ݉ଶ⁄ . That means that the 
network has uncovered the ultimate yield stress level.  

The final step is to identify which neurons fire when the input is plastic and which when the input is elastic. For 
the purpose of these observations the strain is kept at a constant value. The output of each node is calculated. In 
Figure 96 the possible outputs of the nodes while changing the stress input are shown. In the figure it can be 
seen that plasticity occurs when node N3 and node N5 have an output of zero. That is the reason behind the 
results of Figure 95.  

 

Figure 95 Testing the results of the Network 

 

Figure 96 Outputs of each nodes 
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Figure 97 (a) Nodes outputs when elasticity is occurring (b) Outputs of each node when plasticity is occurring 

4.4.2 Validation of Neural Network  

The validation process in this case will constrict of, firstly, validating against datasets with the same starting 
stress level. Then the validation process will include datasets with different initial stresses and finally noise will 
be incorporated in both testing and training of the dataset. 

4.4.2.1 Validation with Similar Datasets 
The next step in the validation process is to use testing datasets to check if the Neural Network achieved 
generalisation. The testing datasets are created at PLAXIS in a similar fashion as in chapters 4.3.1.1, 4.3.1.2 and 
4.3.1.3. In Table 18 the results of the testing prediction are appended. The testing results range within acceptable 
errors so the network has uncovered the relationship between stresses and strains. The results can be observed in 
detail in Figure 98 and Figure 99. 

Table 18 Results of different testing dataset as Mean absolute error 

 
Steps in PLAXIS 

Mean Absolute 
Error in the y 

direction 

Minimum Absolute 
difference 

Maximum 
Absolute 

Difference 
Training Dataset 100 0.017425 1.99e-06 0.09 

Testing Dataset 1 100 0.044726 5.13E-06 0.23 

Testing Dataset 2 50 0.006943 2.36e-07 0.07 

Testing Dataset 3 20 0.014159 5.13e-06 0.13 

Testing Dataset 4 
Random Uniform 

from 1 to 100 
0.031198 5.13e-06 0.12 
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Figure 98Testing Datasets results Strain Level Vs Stress Level 

 

Figure 99 Testing Datasets results Stress Level Vs Steps 

4.4.2.2 Testing the Generalisation Ability – Different Initial Stresses 
The trained Neural Network for Perfect Plasticity needs to be further evaluated for its robustness. The first step 
is to evaluate the model when the initial stresses are different from the training dataset. In the training dataset 
the starting stress vector is [𝜎௫௫ 𝜎௬௬ 𝜎௭௭] = [−ͳͲͲ −ͳͲͲ −ͳͲͲ] ݇ܰ ݉ଶ⁄ . The initial stress vectors can 
be observed in Table 19. What is expected in this case is that the ultimate stress reached will be different in each 
case. It can be observed from Figure 100 that the p-q relationship will result in a different ultimate stress level. 
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Table 19  Testing Datasets with new initial Stresses 

 σxx (݇ܰ ݉ଶ⁄ ) σyy (݇ܰ ݉ଶ⁄ ) σzz (݇ܰ ݉ଶ⁄ ) 
Test Dataset 1 0 0 0 
Test Dataset 2 -60 -60 -60 
Test Dataset 3 -80 -80 -80 
Test Dataset 4 -200 -200 -200 

 

Figure 100 p q space of the test datasets 

Each dataset is standardised by using the same maximum and minimum values of the training dataset (page 45). 
The bounds of the testing dataset after scaling can be observed in the Table 20. The table suggests that scaling 
with the minimum and maximum values of the training dataset results in data that are out of the [0,1] bounds. 
Since the network is trained for values between 0 and 1 the result is expected to have low accuracy. Specifically 
in the Testing Dataset 1 the stresses range between 3 and 3.35 which suggest that an ultimate stress level will 
not be reached in the ReLU layer. The same can be suggested for testing datasets 2 and 3. Finally, in the testing 
dataset 5 the stress level inputs and outputs are negative which might lead to the misinterpretation of the 
network assuming that the soil element of the dataset is in plasticity. 

Table 20 The bounds of the scaled Testing Datasets 

 Input Stain increment Input Stress Level Output Stress Level 
Testing Dataset 1 0 to 1 3 to 3.35 3 to 3.35 
Testing Dataset 2 0 to 1 1.2 to 2.4 1.2 to 2.4 
Testing Dataset 3 0 to 1 0.6 to 2.2 0.6 to 2.2 
Testing Dataset 4 0 to 1 -3 to -0.5 -3 to -0.5 

 
Observing the results the issues of the Neural Network can be uncovered (Figure 101, Figure 102). The Neural 
Network fails to predict the correct ultimate stress level when the soil is in compression. The same value is the 

results in all the graphs (Figure 101). That value is -143݇ܰ ݉ଶ⁄  , this value is the ultimate stress level of the 

training dataset). This confirms that the Neural Network has this ultimate value as the maximum output. In 
addition, the Neural Network fails to predict the ultimate stress during tension. This is expected as this 
behaviour was not captured during training.  

Specifically, in Figure 101 Datasets 1 and 2 fail to predict the failure surface of the tension, that leads to a 
miscalculation of the stresses. Datasets 3 and 4 fail because the yield surface is not uncovered in the correct 
stress level during compression. However, the scaling and the fact that the yield surface is not recognised seem 
to be the biggest issues in this case. To resolve these issues first the standardisation of each training dataset can 
be achieved by scaling the dataset with the maximum and minimum contained in them. Secondly, the network 
(Figure 68) will be retrained with these values. In that way the Network’s architecture can be tested for different 
initial stresses. 
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The Neural Network (Figure 68) is retrained by using the data of each testing dataset. That will result in 4 
different networks with different weights and biases. Each dataset is scaled individually with values between 0 
and 1.  The results can be observed in Figure 103 and Figure 104. Generally, the upper limit of the yield surface 
is correctly discovered by the Neural Network after training. However, the ultimate stress level in terms of 
tension is not identified in the same way. However, the Neural Networks have modelled the limit with a type of 
polynomial function. That means that the yield surface is identified but a new architecture needs to be created to 
take into account the tension side of the yield surface. Finally, the general unloading reloading behaviour is 
captured adequately in the graphs. This concludes that the Network was able to uncover the general loading-
unloading-reloading behaviour of the dataset. 

 

Figure 101 Results of the testing datasets stress Vs strain Level 

 

Figure 102 Resultsof the testing datasets stress level Vs steps 



  67 
 

 

Figure 103 Results of training with the testing Datasets Stress Vs steps 

 

Figure 104 Results of training with the testing Datasets Stress Vs Strain level  

4.4.2.3 Testing the Generalisation Ability – Noise in the Training Dataset 
The Neural Network’s generalisation ability is also tested with the implementation of noise in the test datasets 
presented at chapter 4.4.2.2. The idea behind this is that noise can provide a first estimate on how the Neural 
Network would react when tested with noisy laboratory or field data. Thus, adding noise to the dataset will give 
a first estimation of how the network would perform with laboratory data (Morales, Luengo, Garcia, Lorena, de 
Carvalho, & Herrera, 2017). 

The noise will be created from a Gaussian distribution with a mean of 0 and a standard deviation of 1 (Figure 
105). From Figure 105 it can be observed that the noise level is somewhat high in this case featuring maximum 

stress levels of 3݇ܰ ݉ଶ⁄ .  For each dataset a set of random numbers is selected and added to the inputs and 

outputs. Thus, the final “noisy” dataset will be created as ݊𝑖ݐ݁ݏܽݐܽ݀ ݕݖ = ݐ݁ݏܽݐܽ݀ 𝑖݊݃ݐݎܽݐݏ +  ,Box) .݁ݏ𝑖݊
Jenkins, Reinsel, & Ljung, 2016). After noise is added to them, the datasets are tested with the Neural Network. 
The outcome can be observed in Figure 106 and Figure 107. From the figures it can be concluded that the noise 
will not affect the final prediction when the Neural Network is trained by using non-noisy data. A comparison 
with the errors of the normal datasets (calculated at chapter 4.4.2.1) can be seen in Table 21. As it is expected 
the errors of the noisy datasets are magnified. However, they are still between logical bounds which prove the 
generalisation ability of the network. 
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Figure 105 The distribution of the Noise Numbers 

 

Figure 106 Noisy Dataset testing results stress level Vs steps 

 

Figure 107 Noisy Dataset testing results stress level Vs strain level 
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Table 21 Results of different testing dataset with and without noise 

 
 Mean Absolute Error in the y direction 

Steps in PLAXIS Without Noise With Noise 

Training Dataset 100 0.017 0.017 

Testing Dataset 1 100 0.044 0.807 

Testing Dataset 2 50 0.007 0.789 

Testing Dataset 3 20 0.014 0.828 

Testing Dataset 4 
Random Uniform 

from 1 to 100 
0.031 0.797 

 

The final step in this process is to determine how the Neural Network performs when noise is added to the 
training dataset. A successful training in this case is defined as one where the Neural Network will not take into 
account the noise as a pattern of the dataset. Thus, the resulting Neural Network should be similar to the one 
produced in chapter 4.4.1. If this process is successful then the network can be trained by using noisy laboratory 
data without processing them to reduce the noise before attempting training. 

Firstly, the noise has to be determined. The noise is produced by a Gaussian distribution with a mean of 0. The 
effect of noise in the data will be tested by training the Neural Network with different noise levels. The noise 
level is determined by the standard deviation of the Gaussian distribution. The effects of noise can be observed 
in Figure 108. It can be seen that the errors reduced significantly with a standard deviations smaller than 0.2. 
This is a reasonable noise for the stress levels in the dataset. In Figure 109 and Figure 110 the training dataset 
can be observed after the addition of noise. 

 

Figure 108 Trained Neural Network error results with different noise levels 

 

Figure 109 The training dataset with added noise 
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Figure 110 The training dataset with added noise. Zoomed 

According to the results it can be observed that the Neural Network has picked up noise as a part of the training 
dataset (Figure 111). This makes the Feedback prediction challenging and in the end only the yield surface is 
predicted correctly (Figure 112). However, it can be seen that the results of the feedback prediction although 
erroneous produces a smooth prediction (Figure 113). Finally, the results of the testing dataset are observed 
(Figure 114 and Figure 115). It is obvious that the noise training will result in a poorer generalisation than in the 
chapter 4.4.1, as the errors are larger. 

 

Figure 111 Trained Neural Network results zoomed. The training has pick up the noise 
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Figure 112 Trained Neural Network with noise stress level Vs Strain level. 

 

Figure 113 Trained Neural Network results zoomed. Feedback also depicted in the figure 

 

Figure 114 The results of testing stress level Vs strain level 
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Figure 115 The results of testing stress level Vs steps 

4.5 Linear-Elastic Work hardening Model 

4.5.1 Defining Network Architecture and Training Results 

As it was done in chapter 4.4.1 the first step in the process is to define a successful architecture for the Feedback 
prediction. Several numbers of nodes and layers were tested to find the optimum architecture; the activation 
function chosen is the ReLU function. In Figure 116 the results can be observed, in this case the mean absolute 
errors of the Feedback prediction are calculated. The mean absolute errors are calculated as in equation 16. 
There are several architectures with low errors, for example the 4 layered 9 nodded one. However, the most 
convenient in this case is the 1 layer with 6 nodded one because it will be more efficient to train.   

The results of the Neural Network after training can be observed at Figure 117 and Figure 118. In the Figure 117 
it can be observed that the stress unloading reloading behaviour is captured well in the Network. However, the 
right stress levels are not reached in this case which leads to the Feedback prediction not finally capturing the 
stress strain relationship (Figure 118).  The main issue in this case is that the slope of the yield surface is not 
captured by the feedback prediction. Therefore, the change from elasticity to plasticity is not captured correctly 
by the network. 

 

Figure 116 Errors after Training for ReLU activation functions 
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Figure 117 The stress level Vs steps Work Hardening Model 

 

Figure 118 The stress level Vs strain level Work Hardening Model 

Nonetheless, the inner workings of the network have to be further analysed. Firstly, the Relative Contribution of 
each input is evaluated from Table 22. It can be easily concluded that the input of stress has a bigger 
contribution on the results than the strain increment input. This is further observed in Figure 119 where the 
connection weights are observed, bigger weights appear with bolder colours in this case and thus the 
connections of the strain increments appear weaker. 

Table 22 The Relative Contribution of each input 

RC1 
strain input 

RC2 
stress input 

1.26 % 98.74 % 
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Figure 119 Neural Network Work hardening architecture bolder connections carry bigger weights 

 Each of the node activations is observed for a loading case during plasticity and a loading case during elasticity 
(Figure 120). The fact that the activation have no significant difference suggests that the Neural Network is 
trained based on the stress level rather that identifying the difference between the elastic and the plastic part. 

 

Figure 120 Activations of the Network during (a) elasticity (b) plasticity 

4.6 Conclusions of Component Based Neural Network Models 
After creating the Neural Network soil constitutive models their results were discussed in chapter 4.3. From 
these results certain conclusions can be made for each of the Neural Networks as a whole.  

4.6.1 Linear- Elastic Neural Network 

The linear elastic model had a straightforward design as a neural network. Linear activation functions were used 
in the nodes to model the linear relationship between inputs and outputs. The model can easily incorporate more 
than one direction of stress outputs.  The weight connections between the input and hidden layer are sufficient to 
capture the different gradients describing the relationship of each input with the output. However, when more 
directions are added to the output then the weight matrix has to be more complex since the influence of each of 
the inputs has to be taken into account by the Network. 
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For the results of the Network (chapter 4.3.2) it can be observed that a Network with three hidden nodes can 
model the 3D stress-strain matrix adequately. Each of the connections corresponds to a certain value of the 
linear-elastic matrix. From there the parameter estimation problem can be solved and the values of Young’s 
Modulus (E) and Poisson’s ratio (v) can be easily retrieved through a simple mathematical operation.  

ሺͳܧ + 𝜈ሻሺͳ−ʹ𝜈ሻ [ͳ − 𝜈 𝜈 𝜈𝜈 ͳ − 𝜈 𝜈𝜈 𝜈 ͳ − 𝜈] = ͳͲݓ] ͳͳݓ ͵ͳݓʹͳݓ ͳͶݓ ͳݓͳͷݓ ͳݓ [ͳͺݓ ͳݓ] ʹݓ Ͷݓ͵ݓ ͷݓ ݓݓ ͺݓ [ͻݓ [݀𝜀݀ݔݔ𝜀݀ݕݕ𝜀ݖݖ] 

ሺͳܧ + 𝜈ሻሺͳ − ʹ𝜈ሻ [ͳ − 𝜈 𝜈 𝜈𝜈 ͳ − 𝜈 𝜈𝜈 𝜈 ͳ − 𝜈] = ଵݓଵݓ] + ଶݓଵଷݓ + ଷݓଵݓ ସݓଵݓ + ହݓଵଷݓ + ݓଵݓ ݓଵݓ + ଼ݓଵଷݓ + ଵݓଵଵݓଽݓଵݓ + ଶݓଵସݓ + ଷݓଵݓ ସݓଵଵݓ + ହݓଵସݓ + ݓଵݓ ݓଵଵݓ + ଼ݓଵସݓ + ଵݓଵଶݓଽݓଵݓ + ଶݓଵହݓ + ଷݓଵ଼ݓ ସݓଵଶݓ + ହݓଵହݓ + ݓଵ଼ݓ ݓଵଶݓ + ଼ݓଵହݓ + 𝐸௩ሺଵ+𝜈ሻሺଵ−ଶ𝜈ሻ    :ݏݑଽ] ܶℎݓଵ଼ݓ = ଵݓଵଵݓ  + ଶݓଵସݓ + ଷݓଵݓ =  ͳ  [1]ܭ

𝐸ሺଵ−௩ሻሺଵ+𝜈ሻሺଵ−ଶ𝜈ሻ    :݀݊ܣ = ଵݓଵݓ + ଶݓଵଷݓ + ଷݓଵݓ =  [2]  ʹܭ

ͳ ÷ ʹ ↔ ʹܭͳܭ  = ͳݒ  − ݒ  ↔ ݒ = ͳܭͳܭ  + ʹܭ =  ͷ͵ͺ͵,ʹሺͳ͵Ͷͷʹͷ͵ + ͷ͵ͺ͵,ʹሻ = Ͳ.ʹͻ 

:ݕ𝑖݈݈݊ܽܨ ݀݊ܣ ܧ = ሺͳ + νሻሺͳ − ʹνሻKͳݒ = ͳͲͺͶʹ.ͺʹ 

The parameters can be easily back calculated in this case which proves that the Neural Network has uncovered 
the same relationship governing the inputs and the outputs. The Poisson’s ratio estimation is really accurate with 
a percentage error of 3.33% and the Young’s modulus has a percentage error of 7.7%.  It can also mean that 
Neural Networks can be a useful tool in the fitting process of data since the process is fast with high accuracy. 

Therefore, for all the input and output combinations tested with Neural Networks the results were accurate. The 
reason behind this is that the nature of the problem is linear and well defined (strain increment inputs, stress 
increment outputs). 

All the datasets tested in chapter 4.3 are linear elastic. However, there are other forms of elasticity which is non-
linear. For example hyperelastic material models (W.Humrickhouse, 2009). The question raised for this type of 
material is if the Neural Network consisting of linear layers would be able to model this type of behaviour. Or 
will the non-linearity of the constitutive model require non-linear activation functions in the nodes of the 
network? 

4.6.2 Linear-Elastic Perfectly-Plastic 

The linear-elastic perfectly-plastic dataset requires more complicated Neural Network architecture. Replicating 
the continuum mechanics approach the friction element was defined by ReLU activation function. Moreover, 
the architecture of that Neural Network was defined by the optimum amount of layers and nodes minimising the 
error after training. 

The network is then trained successfully with an architecture consisted of 2 layers with 2 neurons in each layer. 
From assessing the inner workings of the network the main function of the network is identified. The network 
extracts the ultimate yield surface level. When the yield surface is reached the ReLU layers will output a zero as 
their activation. The final output will be the yield stress after summing all the layer outputs which have zero as 
their activations. The final output will be the yield stress after the output is rescaled. 

By testing different initial stresses as testing datasets, it is concluded that the network is not robust enough to 
capture the full effect of the yield surface. This implies that it cannot be used for another stress path. However, if 
the network is retrained the yield surface of the network is identified and the stress paths can be followed 
accurately. 

Finally, the “noisy” testing datasets perform well when tested with dataset trained without the use of noise data. 
The noise is not recognised in this case as a pattern of the data. Nonetheless, the network was trained with a 
dataset with noise is added to it. In this case the noise is recognised as a pattern for the network and although the 
simple prediction is accurate the feedback prediction fails to follow. This suggests that this level of noise (taken 
from a Gaussian distribution with a mean of 0 and a standard deviation of 0.2) is not producing a successful 
result. Therefore, it is likely that the noise contained in laboratory data will also be recognised as a pattern from 
the Neural Network. 
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The drawback of this method can be identified in the different initial stresses. The Network is unable to identify 
the yield surface. Be that as it may, the network can be expanded to recognise the yield surface by expanding the 
training dataset to include more stress paths. Therefore, the training dataset should consist of several stress paths 
and their constitutive parameters. 

In addition, the Network was not successful in modelling the yield surface in tension. That is due to the fact that 
the ReLU accounts only for one ultimate state. Nonetheless, if activation functions, that include two ultimate 
states, are incorporated to the Neural Network then it will be able to model both the ultimate state of 
compression and tension. Such activation functions are the Sigmoid and the Tanh because they possess two 
ultimate state values (Figure 121). 

 

Figure 121 The Activation Functions Sigmoid and Tanh 

4.6.3 Linear-Elastic Work-Hardening Model 

The hardening model is defined in the same continuum mechanics way as the perfectly-plastic one. The 
plasticity part needs to be defined by an optimum architecture. After the errors are minimised the training 
dataset is tested for its accuracy. The feedback prediction is not accurate in this case. The inner activations of the 
nodes uncover the fact that the plasticity is indistinguishable from elasticity. Thus, the network makes a 
prediction by only depending on the input of the stress level and does not take into account the input of the 
strain increments. The reason behind this is the correlation between the inputs and the desired output. 

During training the weights are optimised by the gradient of the error between target and predicted outputs 
(chapter 2.1.4). In that way the weights will be corrected to the right value. However, certain weight connections 
are more effective in producing the correct output of the network. In this case those connections refer to the 
input of the stress level. That is the case because the correlation between input stress level and the output stress 
level is quite strong. In Table 23 the coefficients of correlation between inputs and outputs are shown. It can be 
seen that the stress input has a coefficient of correlation of 0.99 which implies that there is a strong linear 
relationship between input and output (Rummel, 1976). On the other hand, the input of the strain increment has 
a coefficient of correlation of 0.04 which suggests that there is no linear relationship between input and output. 
Therefore, the network will unavoidably be trained with a major contribution corresponding to the stress level. 
Thus, this type of issue can be attributed to the way the data were defined as inputs.  

Table 23 Coefficient of Correlations between inputs and output 

 Coefficient of Correlation with the Stress Output 
Input Stress Level 0.99 

Input Strain Increment 0.04 
 
The next step is to consider possible solutions of this problem. The first one and quite simple solution is to 
redefine the Neural Networks inputs and outputs. It can be calculated that the coefficient of correlation between 
the strain level as an input and the stress level as an output is 0.99. Thus, those two values have a strong linear 
relationship. The fact that both of them have this strong connection may resolve the issue of the partial 
contribution of the inputs. If that is not the case then this issue can be resolved by using a Recurrent Neural 
Network. If a Recurrent Network is used then the errors will be minimized to fit the feedback prediction rather 
than the normal one.  
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Chapter 5. Discussion 

In this part of the thesis an attempt is made to interpret and describe the significance of the findings in light of 
what was discussed in the literature study. The aim of the thesis, as it is stated in the Introduction is to assess if 
the creation of a Neural Network Constitutive Model is possible, with the intention of creating a more data-
driven approach to constitutive models. 

In the following section of the discussion the research questions posed in the Introduction are answered. The 
first research question posed is if Neural Networks can behave as successful constitutive material models.  From 
the results of the component based model (especially chapters 4.3 and 4.4) and the results of the new input and 
output setting in the generic model (chapter 3.3.3.1) it can be concluded that Neural Networks can in fact be 
trained to behave as constitutive models. However, hardening stress-strain relationships proved to be more 
challenging to model. Nonetheless, changing the inputs and outputs seems to be promising and is the most 
accurate solution of this study for the work-hardening plasticity.  

The second scientific question concerns the ability of Neural Networks to model typical soil behaviour, for 
example elasticity or plasticity. Using component based modelling; plasticity and elasticity were modelled 
successfully with Neural Networks. The loading-unloading behaviour was also captured by the Neural Network 
material models. The hardening behaviour, however, was difficult to model and required a reassessment of 
inputs and outputs. However, it was partially captured when new inputs and outputs were assigned to the model 
(chapter 3.3.3.1).  

The third and final question is if laboratory data can be used to train the Neural Network and produce a 
successful constitutive model. Laboratory data were not used for training in this study, because their non-linear 
and three-dimensional behaviour will not be captured with the Neural Networks created in this study. 
Nonetheless, noise was added to the dataset to observe the network’s response to laboratory data. The “noisy” 
dataset is used to train the Neural Network. After training, the Neural Network identified noise as a pattern of 
behaviour in the dataset. This implies that training with laboratory data will result in uncovering a wrong 
constitutive relationship. Therefore, training with laboratory data requires some pre-processing to eliminate the 
noise. 

After answering the scientific questions posed in the introduction, major findings of the thesis project are 
discussed. The first major finding is that the generic Neural Network was unsuccessful in modelling the stress-
strain relationship. This is attributed to the varying contributions of the inputs to the output.  This statement can 
be generalised and it can be concluded that if the Network has multiple inputs then the weights will be adjusted 
to put emphasis on the input that possesses the largest correlation with the output. Throughout the thesis there is 
a strong linear connection between the stress input and stress output, but there is no linear connection between 
strain input and stress output, something that was not captured by the Neural Network. In Figure 122 the results 
of the feedback prediction on the increment of stress can be observed. It is seen that, for the Network’s 
prediction, the increment of stress follows a certain linear relationship that does not distinguish elastic from 
plastic behaviour. Therefore, the Generic Network (chapter 3.3.2.2) does not distinguish elasticity from 
plasticity. Constitutive models possess functions that are able to distinguish plastic from elastic behaviour. Thus, 
the behaviour of the Mohr Coulomb model is not captured correctly by the Network. This is further evaluated in 
the sensitivity study in chapter 3.3.2.2. Finally, it was observed that this type of behaviour was not documented 
in the literature study. Thus, it is significant to note that attempts similar to the generic Neural Network will not 
be successful due to the high linear relationship between stress input and output.   

The Network’s inputs and outputs were then altered to ݀𝜀௬௬௧+ଵ, 𝜀௬௬௧ , 𝜎௬௬௧  , that are the inputs, and ݀𝜎௬௬௧+ଵ, which is 
the output. The results of the feedback and the normal prediction in this case are almost the same (Figure 45 and 
Figure 46). In Table 24 the coefficient of correlation is presented together with the relative contribution for all 
the inputs. The relative contribution seems to have an impact on the final Neural Network stress-strain 
relationship output. The input with the smallest coefficient of correlation has the smallest relative contribution to 
the network and vice-versa. The results can be observed in Figure 123, in the graph the plastic and elastic 
components are distinguished from each other as two different linear relationships. This implies that the 
Network performs closer to a real constitutive model. The stress increments can be divided into plastic and 
elastic ones. Finally, this network is more successful during the feedback prediction as the increment of strain 
plays an important role in determining the output. Although it is not a completely successful model it does lead 
to important conclusions and is the most promising in this case. However, it suggests that a redefinition of input 
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and outputs is required (Ghaboussi, Pecknold, & Zhang, 1998) or even more complex ways of training the 
Neural Network (Gandomi & Yun, 2014; Unger & Könke, 2009). 

 

Figure 122 Results of the Generic Neural Network 

Table 24 Coefficient of Correlation and Relative Contribution 

 Strain Increment Input Stress Level Input Strain Level Input 
Coefficient of Correlation 0.98 0.007 0.004 
Relative Contribution (%) 64 29.4 6.6 

 

 

Figure 123 Results of Generic Neural Network with New Inputs and Outputs 

In the case of the three-dimensional input the linear-elastic Neural Network model (chapter 4.3.2) has the ability 
to reproduce the full linear-elastic matrix. From there it is a straightforward process to correlate the soil 
parameters with the weights of the network. This suggests that parameters can be retrieved from a successfully 
trained Neural Network. In addition, the linear-elastic model transitions easily from one to three directions of 
inputs with the addition of proportional number of nodes to the Network (one linear node to one direction of 
input and 3 linear nodes to three directions of input). This suggests that multiple directions of inputs can be 
modelled with proportionally wider Neural Network layers.  

Moreover, the successful linear-elastic perfectly-plastic Neural Network was trained for only a certain initial 
stress. The Network was accurate in calculating the stress increment strain increment relationship which is seen 
in Figure 124. Therefore, the unloading-reloading behaviour is captured accurately. In addition, the stress-strain 
relationship with the output of stress successful as there is a clear divide between plasticity and elasticity. When 
different initial stresses are chosen then the final ultimate stress level will not be the same as the training 
dataset’s. In the case of different initial stresses the Neural Network should be retrained to adjust to the new 
ultimate stress level. However, the training dataset can also be expanded to contain data from different initial 
stresses with an initial stress as an extra input of the network. 
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Figure 124 Results Component Based Model LEPP 

In chapter 4.4.2.2 and specifically in page 71 the Neural Network of linear-elastic perfectly-plastic was 
successful in training with the testing data from different stress paths. These datasets consisted of 6000 stress-
strain points. These datasets are 98% smaller than the training datasets. This suggests that the training dataset 
can consist of 1/41 of the data and still be successful. Circling back to the statement made in the literature study 
(chapter 2.3.1.1), this proves that the training set should be representative of the behaviour that the data are 
attempting to model (Maters, 1993).  

The main function of a soil material model is to be part of the Finite Element Analysis (FEA). In the FEA the 
material models perform two specific functions. Firstly, they are used to update stress states given the current 
stress-strain and the strain increment. In this case no integration scheme is required in the FEA when a Neural 
Network is used for predictions. The Neural Network will automatically provide an updated state of stress for an 
updated state of strain or strain increment. Numerically this process has the advantage that it eliminates the 
errors associated with the use of a specific numerical integration scheme.  

Secondly, they are used to calculate the material stiffness matrix for the constitutive relation (constitutive matrix 
or Jacobian).  Numerous approaches are suggested to deal with the lack of closed-form expressions for the 
consistent tangent matrix (Wu, 1991; Zhang, 1996) . The most effective one is proposed by Hashash (2004). In 
this study it is proposed that the stiffness matrix is calculated from the Neural Network. Since the Neural 
Network provides a relationship between stresses and strains there is an implied stiffness matrix which can be 
extracted from this relationship (this is also explained in chapter 2.5.2). As noted in the study (Hashash, Jung, & 
Ghaboussi, 2004) “the use of the matrix is expected to lead to efficient convergence of the Neural integration in 
the FE analysis”. In that way, the Neural Networks created can be integrated into a FEA if the relationship 
between stress and strains in outputted as a stiffness matrix. 

In addition, Chapter 2.6 of the literature study aims to report applications of Neural Networks in FEA. The 
models created in this thesis can be part of the self-learning finite element code of H.S. Shin (2000) because the 
only requirement in this case is that the network predicts stresses based on strains. On the other hand, the 
“Intelligent Finite Element Method” (Javadi & Tan, 2006) requires the inverse solution of strain plus an output 
of the elastic modulus. Furthermore, the input is referring in this case to the 3 principal stresses. Thus, the 
Neural Networks need to be expanded to fit these two specific applications existing in literature. 

It is also important to identify limitations of the study in this point. These limitations are significant as they 
reveal where future research could be applied. A list of them is attached below: 

1. The generic and work hardening Neural Networks did not produce successful results. 
2. All the Networks apart from the linear elastic Neural Network have only one direction as output of the 

network. 
3. The linear-elastic perfectly-plastic model does not account for tension and different stress levels. 
4. The minimum amount of training samples was not investigated in this study.  
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Chapter 6. Conclusions 

The goal of this thesis project was to determine whether Neural Networks can model constitutive soil behaviour. 
Over the course of the thesis the goal became clearer as the methodology of each chapter defined the way that 
the Neural Networks would be formulated. The scope of the project also became narrower in each chapter. This 
can be easily observed from the difference between the goals of Chapter 3 and Chapter 4. The first approach 
was to create a generic Neural Network by focussing mainly on how Neural Networks can help uncover the 
stress-strain behaviour of a constitutive soil model. In Chapter 4 the scope becomes narrower as the Neural 
Networks aim to model certain soil behaviour like elasticity or plasticity by a component based approach. These 
network components can be linked together to create successful Neural Network constitutive models.  

The main argument of the thesis is that Neural Networks can be used as a substitute for soil constitutive models. 
The intention behind the main argument is that constitutive models are becoming more parameter depended 
featuring sometimes more than ten soil parameters. This makes the need for data-driven constitutive models 
essential. It can be concluded that constitutive models can be created with Neural Networks and those can be 
accurate and successful as data driven material models, due to the fact that the inputs and the outputs of the 
Network are only consisted of stresses and strains. 

Hardening plasticity was not successfully modelled in this thesis. The reason behind this is that Networks 
become sensitive towards one of the inputs. However, this sensitivity can be minimised through the use of pre-
processing techniques for the inputs, for example fuzzy rules (Jiang, Mahadevan, & Yuan, 2016). 

Moreover, component based Neural Networks could be a solution to the “black box” problem of the Neural 
Networks. If so these components can be used in the same way as the typical components of constitutive model. 
Thus, they can be arranged to fit any type of soil behaviour. The difference between constitutive models and 
Neural Networks, as they are defined in this study, is that Neural Networks do not require the input of soil 
parameters but only the stress-strain data.  

In addition, the effect that data have in the training of the Neural Network is prominent throughout the thesis. 
Especially in Chapter 3 it can be seen that the Coefficient of Correlation of the inputs with the output has an 
effect on the way the weights are adjusted in the Neural Network. This statement can be further examined in 
Figure 125. In the Figure it can be observed that a low Coefficient of Correlation will result in a low Relative 
Contribution and high Mean Absolute Errors. Therefore, it can be concluded that the network will be trained 
towards the solution with the largest coefficient of correlation, which might not correspond to the solution that 
the Neural Network intended to identify.    

 

Figure 125 Summary of results for Neural Network Constitutive Models of the thesis 
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Finally, as a closing statement of the conclusions is important to classify the Neural Networks as successful or 
not successful and state for each one why that is the case. That can be summarised in Table 25 where all the 
Networks created in this thesis are posted together with a characterisation of whether they are successful or not 
and the reason why they are characterised as such. Finally, the chapters where each of these applications can be 
found are posted as well. 

Table 25 Summary of all the Neural Networks in the thesis 

Neural Network 
Is the Network 

Successful?  
Reason Chapter 

Generic Not Successful  Prediction sensitive to stress inputs. Feedback 
prediction fails due to this sensitivity. 

3.3.2 

Generic New inputs 

and outputs 
Partially Successful 

 Strong connection between the strain input 
and the stress output. 

 Stress input has a smaller contribution to the 
output. 

3.3.3.1 

Linear-Elastic Successful 

 Simple linear relationship between inputs and 
outputs. 

 Activation function the same as relationship 
modelled. 

4.3 

Linear-Elastic 

Perfectly-Plastic 
Successful 

 Ultimate stress level so plasticity is 
represented by one number. 

 Network can become inactive when plasticity 
is reached. 

 Activation function the same as the 
relationship modelled. 

4.4 

Linear-Elastic  

Work-Hardening 
Not Successful 

 Network is sensitive to the stress inputs. 
 Feedback prediction fails because of the 

sensitivity. 
4.5 
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Chapter 7. Recommendations for 

Future Research 

Although the thesis was able to answer the scientific questions posed in the Introduction, there are still 
recommendations for future projects concerning Neural Networks and Constitutive Models.  

 First of the effect of Recurrent Neural Networks on modelling hardening behaviour should be accessed. 
By using a Recurrent Neural Network the Network is trained with the feedback prediction. Thus, the 
cost function minimized in the back propagation algorithm will refer to the feedback prediction error. 

 The main issue of the hardening model is that the network did not recognise any differences between 
elasticity and plasticity. To help the Network identify this behaviour a decision Neural Network can be 
added to the training framework. The decision Neural Network will use the input of stress level, strain 
level and strain increment to predict whether the element is in plasticity or elasticity. This initial 
Network will be trained separately from the Neural Network stress prediction model. The output of the 
decision Network will be added as an extra input to the work hardening model. In that way the weights 
during the training will navigate towards a solution concerning whether the soil element is in plastic or 
elastic region. The suggested framework is shown in Figure 126. 

 

Figure 126 Suggestion of Decision and prediction Neural Network 

 The successful Neural Network of perfect-plasticity needs to be expanded to account for different 
stress paths that will result in various ultimate stresses. That can be achieved if the Neural Network’s 
training dataset is expanded to include more stress paths. In addition to that the initial stresses should 
also be an input so that the Neural Network can distinguish different stress paths from each other.  The 
Network also needs to be expanded in terms of the stress and strain input and output directions to result 
in a full direction vector. This can be achieved in the same way it was performed in 4.2.2.1.2. Thus, the 
amount of neurons needs to be proportional to the amount of stress outputs. 

 As it was stated in Chapter 4 the constitutive models are composed out of three main components, the 
spring, the friction and the dashpot element. The dashpot element was not modelled by a Neural 
Network in this thesis. Thus, in future projects an attempt should be made to create the dashpot 
component. The dashpot is used to account for complex soil behaviour like creep and stress relaxation. 

The equation governing the dashpot element is 𝜎 = ߟ ௗ𝜀ௗ௧. Therefore, the Neural Network in this case 

should have as inputs the stress level and a “time” indication. The non-linearity of a Sigmoid activation 
function together with the “staking” of multiple layers should be able to model this component.   
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 The final step in the Neural Network implementation will be to use laboratory or field data to create 
constitutive models. Here the most concerning element is the quality of the data. If the training dataset 
is not smoothed then the solution of the Neural Network will incorporate “noise” as a pattern. In this 
case the effects of noise should be explored thoroughly. Some of the questions that are worth looking 
into are: 

1.  What level of noise will result in the network recognising noise as a pattern? 
2. Are the epochs of training and the architecture of the network enabling in some way the 

network’s noise identification?  

As a general research direction it is important to focus the investigation towards the plasticity hardening 
behaviour. Different input-output combinations should be implemented, as well as, pre-processing of those 
inputs to help the network drift towards the aimed solution.  
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Appendix A  

In this appendix the Neural Network outputs of the linear elastic one input three output model are appended this 
appendix refers to the Network found in chapter 4.3.1.3. 

 

Figure 127 The Testing datasets results of the Z direction 

 

Figure 128 The Testing datasets results of the X direction 



  85 
 

 

Figure 129 The Testing datasets results of the Y direction 
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Appendix B 

In this appendix the Relative Contribution metric will be explained. This metric aims to quantify the relationship 
that has been modelled in the validation of a Neural Network, rather than using an error measure as the only 
basis for assessment. This will give a first estimation on how the weights of a Neural Network control the 
interactions between inputs and outputs in the Network. Thus, the contribution of each input can be determined 
by the strength and direction of the connection weights between them. The Overall connection weight (Olden & 
Jackson, 2002) is used in this case to determine the contribution of a certain input to the output.  

To understand how this metric is calculated an example will be posted in this appendix. By examining Figure 
130 the overall connection weight (OCW) of input 1 can be calculated by determining ܿ,ଵ and ܿ,ଵ . These are 
the contribution of input 1 through the hidden node A and B. Summing them will result in the OCW1 as follows: 

 

ܿ,ଵ = ,ଵݓ × ை, ܿ,ଵݓ = ,ଵݓ × 𝑊ଵܥܱ ை,ݓ = ܿ,ଵ + ܿ,ଵ 

(39) 

 

 

Figure 130 Example Neural Network 

It can be observed that the OCW is only an approximation of the real relationship of an input. These metric does 
not take into account the “reducing” effect activation function like the sigmoid have on the inputs and does not 
account for the biases. However, Olden et al. (2002) found that the connection weight approach is able to model 
each input’s importance and identify this as the best methodology in comparison to other commonly used 
methods. The next step in this process is to define the Relative Contribution (RC) here the contribution of each 
input is calculated by the percentage of each one to the sum of the absolute values of the OCWs as follows: 

ଵܥܴ  = |𝑊ଵܥܱ|𝑊ଵܥܱ + |𝑊ଶܥܱ| +  𝑊ଷ| (40)ܥܱ|
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Appendix C 

In this chapter the Garson’s algorithm will be explained using an example Neural Network. The Network of the 
example is shown in Figure 131.  

 

Figure 131 Example Network 

The first step in the Garson’s algorithm process is to define the weights matrix. In the matrix the weights 
connecting the neurons between the input- hidden-output layers are shown. 

Table 26 Neural Network Weight Matrix 

Hidden Neuron Input A Input B Input C Output 
Hidden 1 ݓ,ଵ ݓ,ଵ ݓ,ଵ ݓை,ଵ 
Hidden 2 ݓ,ଶ ݓ,ଶ ݓ,ଶ ݓை,ଶ 
Hidden 3 ݓ,ଷ ݓ,ଷ ݓ,ଷ ݓை,ଷ 
Hidden 4 ݓ,ସ ݓ,ସ ݓ,ସ ݓை,ସ 

 

Then for each Neuron i, the absolute value of the hidden-output layer connection weight is multiplied with the 
absolute value of the hidden –input layer connection weight. This process is further explained in Table 27. 

Table 27 Neural Network Connection Calculations 

Hidden Neuron Input A Input B Input C 
Hidden 1 ଵܲ = |,ଵݓ| × ை,ଵ| ଵܲݓ| = |,ଵݓ| × ை,ଵ| ଵܲݓ| = |,ଵݓ| ×  |ை,ଵݓ|
Hidden 2 ଶܲ = |,ଶݓ| × ை,ଶ| ଶܲݓ| = |,ଶݓ| × ை,ଶ| ଶܲݓ| = |,ଶݓ| ×  |ை,ଶݓ|
Hidden 3 ଷܲ = |,ଷݓ| × ை,ଷ| ଷܲݓ| = |,ଷݓ| × ை,ଷ| ଷܲݓ| = |,ଷݓ| ×  |ை,ଷݓ|
Hidden 4 ସܲ = |,ସݓ| × ை,ସ| ସܲݓ| = |,ସݓ| × ை,ସ| ସܲݓ| = |,ସݓ| ×  |ை,ସݓ|

 

For each of the hidden neurons of the Neural Network the partition calculated in Table 27 will be divided by the 
sum for the entire input variable to obtain the Qij. For example,  Qij = ଵܲ ሺ ଵܲ + ଵܲ + ଵܲሻ⁄ . Then these 
outputs are summed for each of the inputs. Finally, the Sj will be divided by the sum of all the input variables. 
This will be expressed as a percentage which finally gives the relative importance or distribution of all the 
output weights attributable to a given input variable. 

Finally,  it is important to note that the Garson’s algorithm is only applied to one layered Neural Networks.  
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Table 28 Neural Network Connection Calculations 

Hidden 
Neuron 

Input A Input B Input C 

Hidden 1 ଵܳ = ଵܲሺ ଵܲ + ଵܲ + ଵܲሻ ଵܳ = ଵܲሺ ଵܲ + ଵܲ + ଵܲሻ ଵܳ = ଵܲሺ ଵܲ + ଵܲ + ଵܲሻ 

Hidden 2 ܳଶ = ଶܲሺ ଶܲ + ଶܲ + ଶܲሻ ܳଶ = ଶܲሺ ଶܲ + ଶܲ + ଶܲሻ ܳଶ = ଶܲሺ ଶܲ + ଶܲ + ଶܲሻ 

Hidden 3 ܳଷ = ଷܲሺ ଷܲ + ଷܲ + ଷܲሻ ܳଷ = ଷܲሺ ଷܲ + ଷܲ + ଷܲሻ ܳଷ = ଷܲሺ ଷܲ + ଷܲ + ଷܲሻ 

Hidden 4 ܳସ = ସܲሺ ସܲ + ସܲ + ସܲሻ ܳସ = ସܲሺ ସܲ + ସܲ + ସܲሻ ܳସ = ସܲሺ ସܲ + ସܲ + ସܲሻ 

Sum ܵ = ଵܳ + ܳଶ + ܳଷ+ ܳସ 
ܵ = ଵܳ + ܳଶ + ܳଷ+ ܳସ 

ܵ = ଵܳ + ܳଶ + ܳଷ+ ܳସ  

 

Table 29 Relative Importance Calculation 

 Input A Input B Input C 

Relative Importance (%) ܴܫ = ܵܵ + ܵ + ܵ ܫܴ  = ܵܵ + ܵ + ܵ ܫܴ  = ܵܵ + ܵ + ܵ 
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