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ARTICLE OPEN

Loading a quantum-dot based “Qubyte” register
C. Volk 1, A. M. J. Zwerver 1, U. Mukhopadhyay 1, P. T. Eendebak 2, C. J. van Diepen 1, J. P. Dehollain 1, T. Hensgens1, T. Fujita1,4,
C. Reichl3, W. Wegscheider3 and L. M. K. Vandersypen 1

Electrostatically defined quantum dot arrays offer a compelling platform for quantum computation and simulation. However,
tuning up such arrays with existing techniques becomes impractical when going beyond a handful of quantum dots. Here, we
present a method for systematically adding quantum dots to an array one dot at a time, in such a way that the number of electrons
on previously formed dots is unaffected. The method allows individual control of the number of electrons on each of the dots, as
well as of the interdot tunnel rates. We use this technique to tune up a linear array of eight GaAs quantum dots such that they are
occupied by one electron each. This new method overcomes a critical bottleneck in scaling up quantum-dot based qubit registers.

npj Quantum Information            (2019) 5:29 ; https://doi.org/10.1038/s41534-019-0146-y

INTRODUCTION
Quantum-dot based electron spin qubit systems1–3 have made
significant steps towards becoming a scalable platform for
quantum computation. Important landmarks include the realiza-
tion of 99.9%-fidelity single-qubit gates,4 the implementation of
two-qubit gates5–10 and two-qubit algorithms.11 Although a high
degree of control of the charge and spin degrees of freedom has
been shown, research has been mainly limited to single, double
and triple dot systems. Recently, control of the charge occupation
of four dot systems has been demonstrated12–15 and a single
electron could be controllably placed in a 3 × 3 array.16 However,
device specific approaches to tuning quantum dots will need to
be replaced by a systematic approach, as arrays become larger
with the scale-up of quantum-dot based quantum circuits.
The controlled formation and filling of large quantum dot (QD)

arrays poses multiple challenges. Individual gate voltages affect
not only the parameter they are designed to control, typically the
electrochemical potential of a specific QD or the tunnel barrier
between two adjacent QDs, but through capacitive cross-talk also
affect other electrochemical potentials and tunnel barriers.17

Furthermore, tuning devices is complicated by a disordered
potential landscape arising from charges trapped in randomly
located impurities and defects in the substrate and at the
surface.18,19 Finally, electrons are loaded into QDs from an
electron reservoir. When a target dot is separated from the
reservoir by one or more other dots, electrons are typically loaded
by co-tunneling, only virtually occupying the intermediate dots.
However, for more than three or four dots, the co-tunnel rates
become impractically low.
These challenges present themselves when measuring the

charge occupation in quantum dot arrays through conventional
charge stability diagrams. In such diagrams, the signal from a
charge sensor is recorded while sweeping two gate voltages,
resulting in a 2D plot that exhibits regions in gate voltage space
with a fixed number of electrons on each dot, separated by lines

indicating charge additions to the array, or charge transitions
between dots.17 Such a 2D plot corresponds to a plane in a multi-
dimensional space spanned by all the gate voltages. As arrays get
larger, when sweeping just two gate voltages, cross-talk leads to
slopes of charge transition lines that are almost parallel and hard
to distinguish. Assignment of charge transition lines to specific
dots is further complicated by non-uniform addition energies.
Furthermore, the intersections between different charge addition
lines can cluster together in a small gate voltage region. Finally,
the difficulty of loading electrons to dots far from the reservoir
leads to postponed loading of dots (latching) or to missing charge
addition lines.20 Those complications lead to plots that are difficult
to interpret.21

Cross-talk and the background disorder potential have been
compensated for in short dot arrays using so called virtual gates,
which are linear combinations of multiple gate voltages chosen
such that only a single electrochemical potential or tunnel barrier
is addressed.22 Virtual gates also make it possible to strategically
choose the measured 2D plane in gate-space, such that multi-dot
charge stability diagrams become easy to interpret.16,22,23 The
difficulty of loading electrons into large arrays has been
circumvented using additional reservoirs in between groups of
three dots.24 In another approach, an additional access point to a
reservoir was created halfway a linear array of five QDs.21 Instead
of loading electrons by co-tunneling, electrons can also be made
to sequentially tunnel through a chain of dots to reach their target
location,25 but this approach requires the chain of dots to be
already formed in the first place.
We explored several approaches to form long linear arrays in a

controlled way, such as forming individual single dots first and
stitching them together, stitching together double dots, or
starting with a large QD and then splitting it up into an array of
separate dots. However, we found it difficult to make these
approaches work well.
Here, we show the controlled filling of an array of eight QDs,

which we call a Qubyte register, using a method that is both
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conceptually simple and effective. Starting from a double dot, we
introduce the “n+ 1 method”, adding dots one by one using
virtual gates. Every new dot added adjacent to the existing array is
right next to a reservoir so the dot can be filled easily. The use of
virtual gates saves the charge occupation in the previously formed
dots while adding a new dot, and also keeps the charge stability
diagrams simple to interpret. (In the course of preparing this
manuscript, we became aware of closely related work on a linear
array of nine Si/SiGe QDs, see ref. 26) We show that we can locally
control the number of electrons on each dot down to the last
electron, and that we can set all interdot tunnel couplings to
typical values used in spin qubit experiments. Finally, we discuss
the limitations and potential pitfalls of the n+ 1 method.

RESULTS
Device and initial characterization
Figure 1a shows a scanning electron micrograph of a device
nominally identical to the one used in the experiment. The gate
layout has been adapted from previous triple and quadruple
quantum dot devices.14,23 On one side, 17 gates with a pitch of
80 nm are fabricated to control the tunnel barriers and electro-
chemical potentials of the QDs. The upper part of the sample
accommodates two sensing dots (SD) that are capacitively
coupled to the linear QD array. The circles indicate the intended
positions of the QDs. All measurements are carried out in a
dilution refrigerator with a base temperature below 20mK.
Initially, the device is characterized by DC transport measure-

ments. The pinch-off characteristics of the channel between each

of the plunger Pi or barrier Bi gates and the central gate D is
measured (see schematics in Fig. 1a) and single QDs are formed by
sweeping pairs of neighboring barrier gates. These measurements
confirm that all QDs, including the sensing dots, can be formed (if
not, the sample is considered unsuitable to host eight QDs).
Moreover, the pinch-off values determined for each gate act as
starting parameters for further tuning. In all subsequent measure-
ments, we probe the linear QD array via the two sensing dots,
which are sensitive to the number of electrons in the array, as well
as to their position in the array. The charge sensors are probed
using RF reflectometry (see Methods section).
To illustrate the difficulty of traditional tuning strategies, Fig. 1b

shows a charge stability diagram for a linear six-dot array (sextuple
dot) confined between the barrier gates B1 to B7. The charge
stability diagram has been recorded sweeping the voltages of
gates P2 and P7, i.e., the gates mostly coupled to the outer QDs. In
the diagram, charge addition lines with different slopes can be
identified. However, charge transitions with similar slopes can only
be assigned unambiguously to specific dots, after also stepping
other gate voltages (see e.g., the small difference in slope between
the transitions for dots 6 and 7). Even then, the complex pattern of
transitions in the center of the diagram makes it extremely difficult
to determine the charge occupation at every point in this gate
space. Moreover, cross-capacitances hinder local tuning of the
electrochemical potential and tunnel rates.

n + 1 method
To tune up a multi-dot array dot by dot, we make use of virtual
gates, which compensate for the cross-talk on the electrochemical
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Fig. 1 Device design and tuning principle. a Scanning electron micrograph of a device nominally identical to the one used in the experiment.
The scale bar measures 500 nm. The circles indicate the intended positions of eight quantum dots (QDs) that define a Qubyte register and of
two additional dots that are used for charge sensing. For the linear array, the designed dot-to-dot pitch is 160 nm. The plunger gates
connected to high-frequency lines are marked with blue triangles. The white squares indicate the position of the Fermi reservoirs. Two on-
board tank circuits for RF reflectometry readout are connected to each of the sensing dots. b Charge stability diagram of a sextuple dot
formed between barrier gates B1 and B7. The sum of the differential demodulated voltages of both sensing dots is plotted. The dashed lines
highlight charge transitions of each of the six QDs (the numbers refer to the labels in a). c Illustration of the potential landscape of a double
QD. Gates P4 and B4 are used to form a third QD. Capacitive cross-talk, indicated by the capacitor symbols, has not been compensated for.
Thus, these gates influence the potential of the other QDs as well (to avoid clutter, we did not draw any other capacitor symbols). d A double
QD is extended to a triple QD using the virtual plunger VP4 and barrier VB4. Due to cross-capacitance compensation, these parameters only
act locally on the potential landscape
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potentials that occurs when sweeping actual gate voltages (see
Fig. 1c, d). The virtual gates as used here do not compensate for
cross-talk effects on tunnel barriers. The virtual plunger gate VPi
directly corresponds to the electrochemical potential of QDi, up to
a lever arm. The compensation is performed to first order, so that
we can express the virtual gates as linear combinations of the
physical gate voltages, summarized by a cross-capacitance
matrix.5,22

The tuning procedure consists of the following steps, described
in more detail below:

1. Tune up a double quantum dot (DQD) and one sensing dot
with the traditional strategy.

2. Measure the cross-capacitance between all gates and the
electrochemical potentials of these three QDs and record
them in a cross-capacitance matrix. This matrix can now be
used to generate virtual gates.

3. Use the virtual plunger and barrier gates adjacent to the
existing dots to form the next QD without disturbing the
former.

4. Measure the cross-capacitance between all gates and the
electrochemical potential of the newly formed QD and place
these values in the corresponding row of the matrix.

5. Re-measure the cross-capacitances to the previously formed
QDs and update the matrix accordingly.

Steps 3–5 are repeated to extend the array, adding one QD at a
time.
Before we describe these five steps in more detail, we first

explain how the cross-capacitance matrix A= (αij) is used to create
virtual gates. For illustration purposes, we do this for the first three
dots, leaving out the outer barrier gates and the gates of the
sensing dots for simplicity. The following relationship expresses
how much each physical gate affects each virtual gate:

ΔVP1
ΔVB1
ΔVP2
ΔVB2
ΔVP3

0
BBBBBB@

1
CCCCCCA

¼

1 α12 α13 α14 α15

0 1 0 0 0

α31 α32 1 α34 α35

0 0 0 1 0

α51 α52 α53 α54 1

0
BBBBBB@

1
CCCCCCA

ΔP1
ΔB1
ΔP2
ΔB2
ΔP3

0
BBBBBB@

1
CCCCCCA

(1)

For convenience, we set the diagonal entries to 1 (dimensionless),
disregarding the lever arm. This implies we express virtual gates in
units of Volt, similar to the physical gates. Furthermore, since we
do not include cross-talk effects on tunnel barriers, the off-
diagonal matrix elements relating the physical gate voltages to
virtual barrier gates are set to zero. The inverse matrix expresses
the linear combination of physical gate voltages that is needed to
sweep a virtual gate. We note that the diagonal entries of the
inverse matrix do not need to be equal to 1.
We now turn to the five steps in the n+ 1 method. In step 1, we

form QD2, QD3 and the left sensing dot using conventional
methods. The resulting charge stability diagram is shown in Fig.
2a. The matrix A1 at this point is simply the identity matrix (this
matrix and the matrices produced in subsequent steps are shown
in the Supplementary information). For step 2, the matrix entries
for QD2, QD3 and the left sensing dot are determined by recording
how much an addition line for QDi in a Pi scan is displaced when
stepping any of the other plunger (barrier) gates Pj (Bj) by an
amount δV (see Supplementary Fig. S1). The ratio of the shift of
the charge transition line of QDi in the Pi scan and δV yields the
corresponding entry in the cross-capacitance matrix. We do this
for all eight plunger and nine barrier gates of the linear array, as
well as for the plunger gates of both sensing dots. The resulting
matrix is A2.
The effectiveness of the cross-talk compensation can be seen by

recording a charge stability diagram in the virtual gate space, i.e.,
using VP2 and VP3 as sweep parameters (see Fig. 2b). Ideally,

addition lines of QD2 and QD3 appear as orthogonal (horizontal
and vertical) lines. In practice, the compensation is not always
perfect because we extrapolate each cross-capacitance from just
two data points (see Supplementary Fig. S1), but it is usually good
enough.
To add the next QD (step 3), here QD4, we form a new tunnel

barrier using the neighboring virtual barrier gate, VB4. The pinch-
off values determined in DC transport indicate a suitable voltage
range to scan with the barrier gate. Optionally, we then monitor
the charge stability diagram VP2−VP3 while stepping VB4. Once
the barrier is raised sufficiently to form an additional QD, new
addition lines appear in the charge stability diagram (see arrows in
Fig. 2c). The charge transitions of the previously tuned QDs are

P  (mV)2
P

 (m
V

)
3

ΔVP  (mV)2

Δ
V

P
 (m

V
)

3

a b

c

-50 50
-50

50

(0,0) (1,0)

(0,1) (1,1)

Δ
V

B
 (m

V
)

4
Physical plunger and barrier gates sensor plungers

V
irt

ua
l p

lu
ng

er
 g

at
es

V
irt

. s
en

so
r

d

0

0

e

-170 -90
-170

-90

-130 -40 400
-40

40

-130 0

-40 400
-40

40

0

Δ
V

P
 (m

V
)

3

VP1
VP2
VP3
VP4
VP5
VP6
VP7
VP8

VX1
VX2

B P B P B P B P B P B P B P B P B0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 X X1 2

1.2

0

0.8

0.4

ΔVP  (mV)2 ΔVP  (mV)4

Fig. 2 Tuning method. a Charge stability diagram of a DQD in the
single electron regime. The charge sensor response (the differential
demodulated voltage, in arbitrary units, is plotted here and in similar
plots below) is plotted as a function of the plunger gate voltages P2
and P3. b Charge stability diagram of the same DQD recorded as a
function of the virtual plungers VP2 and VP3. c Charge stability
diagram where an additional QD has been formed to the right of the
DQD by raising the relevant tunnel barrier. The arrows indicate the
position of the addition lines of the newly formed dot. d
Differentiated demodulated charge sensor signal as a function of
virtual plunger VP4 and virtual barrier VB4. The charge addition lines
corresponding to the newly formed QD are clearly visible. No
transitions of the pre-existing dots are observed, due to the use of
virtual gates. e Visualization of the cross-capacitance matrix of the
eight-dot array. The entries of each row show how the virtual
plunger value (and hence the electrochemical potential) of a QD is
influenced by other gate voltages. The rows for virtual barrier gates
are omitted for simplicity. The plungers of both sensing dots are
included in the matrix
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only slightly affected, indicating the effectiveness of the virtual
gate concept.
We complete the tuning of the newly formed dot to the single

electron regime by measuring a charge stability diagram, here
sweeping virtual plunger VP4 versus virtual barrier VB4. A set of
diagonal lines indicates charge transitions of the newly formed QD
(see Fig. 2d). We can identify the last charge transition in the
bottom left of the figure. The cross-capacitance matrix is
unchanged, A3= A2.
Next, we update the cross-capacitance matrix (step 4). First, we

fill the row corresponding to VP4 in an otherwise unity matrix,
which gives A0

4. The effect of all VPj and VBj on VP4 is determined,
as described for the first double dot, with the distinction that we
now start from a set of virtual gates, expressed by matrix A2. We
then consolidate the virtual gates for dots 2–4 (and the first
sensing dot) into the matrix A4 ¼ A0

4A3.
Finally, in step 5, the matrix entries in A4 are updated to account

for reduced screening of the gate potentials when the two-
dimensional electron gas at the location of QD4 is depleted. To do
so, we remeasure the cross-talk from all the virtual plunger and
barrier gates to all the virtual plunger gates. This results in the
matrix A0

5, which represents a correction on A4 and is constructed
using the virtual gates expressed by A4. Therefore, the updated
cross-capacitance matrix A5 is found by matrix multiplication,
A5 ¼ A05A4. Additional dots, including the second sensing dot, are
formed by repeating steps 3 to 5.

Qubyte in the single electron regime
We apply the n+ 1 method to form a sextuple QD and octuple
QD. We start with a DQD confined between the barrier gates B1
and B3 and initially extend the array to the right. The
electrochemical potentials and thus the number of electrons
residing on all QDs can be independently controlled. The results
are verified by charge stability diagrams of neighboring pairs of
virtual plunger gates, see Fig. 3b–f, where the sextuple dot has
been initialized with one electron in each of the QDs. The gate
voltages at the center of all of these plots are identical. All data

sets have been acquired by fast voltage sweeps. Each plot can be
interpreted as a charge stability diagram of a DQD, independent
of the neighboring QDs. The virtual gates control the electro-
chemical potential of the DQD and the number of electrons can
be determined easily from the measurements. This set of
measurements contains the full information of the charge state
of the sextuple QD and is much easier to interpret and work with
than conventional charge stability diagrams, where multiple
charge addition lines, as well as interdot transitions, are visible
in a single plot. In fact, the data of Fig. 1b was taken for illustration
purposes only, after forming the sextuple dot using measure-
ments such as those in Fig. 3.
Following the same n+ 1 method, the sextuple QD is further

extended to an octuple QD array by adding another QD on each
side. Due to limitations of the experimental setup (see Methods
section for details), the plunger gates P1 and P8 are not connected
to high-frequency lines necessary to apply fast gate voltage
sweeps. Therefore, any measurement using virtual gates involving
these gates must rely on slow gate voltage sweeps. For this
reason, we first formed a sextuple dot in the center and only then
extended it to an octuple dot. Figure 3a, g show charge stability
diagrams as a function of VP1, VP2 and VP7, VP8, respectively,
completing the formation of the Qubyte register.
The cross-capacitance matrix for the octuple QD configuration

of Fig. 3 is shown in Fig. 2e. It visualizes the effect of plunger and
barrier gates on the electrochemical potential of all QDs. As
discussed, each row has been normalized such that the diagonal
elements are 1. In these units, the effect of the closest barrier
gates on the electrochemical potential of a QD is typically
between 0.9 and 1.1. This is in agreement with the device
geometry (see Fig. 1a) where the barrier gates are 30 nm longer
than the plunger gates, bringing them close to the expected QD
position. The influence of a neighboring plunger gate on a dot
potential is on the order of 0.4–0.5 and the one of the next-nearest
neighbor 0.15–0.2, so the coupling diminishes with distance, as
expected (Supplementary Fig. S2 plots the cross-capacitance
versus distance). The cross-capacitance to the sensing dots is small
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(typically below 0.1), but nevertheless it is relevant to correct for,
as the sensing dots are operated at a steep slope of a Coulomb
peak to maximize the charge detection sensitivity.
By means of the virtual barrier gates VBi, we can adjust the

interdot tunnel couplings while cross-capacitance correction
compensates the influence on the electrochemical potentials. To
determine the interdot tunnel coupling, we measure the charge
sensor response along the detuning axis across a single-electron
transition. Figure 3h shows an example for the (1, 1, 0, 1, 1, 1)–(1, 0,
1, 1, 1, 1) transition, where the numbers in brackets indicate the
number of charges on each of the six dots, from QD2 to QD7. The
data is fit according to a simple model considering broadening of
the transition due to tunnel coupling and thermal excitation,22,27

using a measured effective electron temperature of Te= 90mK.
The tunnel coupling for all pairs of neighboring dots has been
tuned to a range of 5 to 15 GHz (see Supplementary Fig. S3).
To further verify the validity of the n+ 1 method implemented

via the use of virtual gates, we record the charge stability diagram
of two neighboring dots, while all other dots are kept in Coulomb
blockade. One by one we step the virtual plunger gates of the
neighboring dots, which ideally should not affect the measured
charge stability diagram. Figure 4 depicts such a test for QD5 and
QD6. In panel (a) VP4 has been increased compared to panel (b)
and in panel (c) VP7 has been increased. The charge stability
diagram is not affected by small changes in neighboring
electrochemical potentials, which implies that the virtual gates
behave as expected and verifies that the charge stability diagram
indeed shows addition lines of the expected dots. The 5mV step
size was chosen large enough such that the functioning (or not) of
the virtual gates can be properly tested, while remaining well
below half the addition energy. A step (positive or negative) of
more than half the addition energy would change the electron
occupation. The same measurements are repeated for all QDs;
charge stability diagrams of neighboring QDs were measured
while the electrochemical potential of all other QDs has been
altered one by one. Data sets for all gate combinations are shown
in Supplementary Fig. S4, showing similar results as presented in
Fig. 4.
We note that it is not trivial that this method works flawlessly

and care has to be taken to ensure the electron occupation of
each dot is as intended. Specifically, it is important that the
neighboring QDs remain sufficiently far from any charge
transitions. This requires that the cross-capacitances are measured
with a reasonable accuracy, and that the neighboring QDs be
detuned from the Fermi level by more than the interdot capacitive
coupling energy. To illustrate this point, a set of charge stability
diagrams for QD4 and QD5 is shown in Fig. 5a–c, with increasing
values for VP6 per panel (The Supplementary video shows a similar
series of charge stability diagrams in steps of 0.5 mV in VP6.).

Figure 5a shows a reference plot of a clean charge stability
diagram. In Fig. 5b, the same gate voltages are scanned but VP6
has been changed by 10mV. Extra lines appear, which disappear
again when increasing VP6 further (Fig. 5c). The extra lines can be
understood if we inspect the charge stability diagram for QD5 and
QD6, which is depicted in Fig. 5d with arrows indicating the values
of QD6 used in panels (a–c). We see that arrow b, which
corresponds to the case of Fig. 5b, passes through an interdot
transition of QD5 and QD6, then intersects an addition line for QD6

(since the virtual gates are not perfect, this addition line is slightly
tilted) and finally cuts through another interdot transition of QD5

and QD6. These three crossings occur at the positions of the red
circles in Fig. 5b. By comparison, arrows a and c do not pass
through any charge transitions involving QD6. This set of data
makes clear how to avoid ambiguity in controlling and verifying
the number of electrons on each dot.
We can observe the same effects in classical simulations of the

charge stability diagrams. The simulation considers only three QDs
and adopts the constant interaction model,17 meaning the
charging energies and capacitive interdot coupling energies are
assumed to be constant. Imperfections of the cross-capacitance
matrix are taken into account in the model. Other effects, e.g.,
tunnel coupling, non-linearities of the cross-talk and latching
effects are neglected. Figure 5e shows a simulated charge stability
diagram for QD5 and QD6, with the arrows a, b and c at similar
locations as in the measurements of Fig. 5d. Figure 5f shows the
simulated charge stability diagram for QD4 and QD5, for the case
of arrow b. Similar to the data in Fig. 5b, we observe extra lines in
the simulated charge stability diagram, as arrow b passes through
interdot transitions and an addition line for QD6. While details
vary, in part because tunnel coupling is not included in the
simulation, the simulation results are in good qualitative agree-
ment with the experimental data.

DISCUSSION
We developed a powerful technique to tune an array of QDs one
by one and load it in the few electron regime. We apply this
method to tune up a linear array of eight quantum dots in GaAs
from scratch.
All charge stability diagrams have been acquired by fast voltage

sweeps. At low resolution and low averaging, sufficient for tuning
purposes, the acquisition time per panel is on the order of a few
100ms. High-quality data sets such as those shown in Fig. 3b–f
take approximately 10 s per panel. Based on these time scales,
creating a six-dot array following the n+ 1 method, starting from
measurement of the pinch-off characteristics of individual gates,
currently takes one to two days for an experienced user and a
well-behaved sample. This was confirmed on a second sample of
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the same design. We did observe that not all lithographically
similar devices are suitable to host eight QDs. During the initial DC
characterization, in some devices not all QDs could be formed
individually or some QDs seemed to be positioned under a gate
instead of in the channel. We note that this failure mode can be
identified at an early stage of measurements prior to running the
n+ 1 method. On the other hand, the method can cope with
limited uniformity in a device and a certain amount of disorder, as
seen from the variation in the pinch-off voltages in Supplementary
Table 1. Furthermore, the virtual gates technique facilitates tuning
of the tunnel couplings, which we showed could be tuned to a
relevant range for qubit operations in this device.
With regards to the scalability of this method, we make the

following observations. First, the cross-capacitance quickly drops
with distance between the gates and the dots. Therefore, only the
entries near the diagonal of the cross-capacitance matrix are
relevant and need to be determined. This implies a linear scaling
of the number of cross-capacitance elements as a function of the
number of dots. Second, as we relied on charge addition lines in
charge stability diagrams of neighboring QDs to determine the
number of electrons per dot, each of the QDs must be able to
exchange electrons with at least one of the reservoirs. QDs not
positioned at the end of the array need to exchange electrons via
co-tunneling, mediated by a virtual occupation of the QDs in
between.17 The co-tunnel rate scales inversely proportional with
the number of interdot tunnel barriers between a dot and the
nearest reservoir, as well as with the detuning of the dots in
between them.28 As a result, we found that it was important to
sufficiently open the existing interdot tunnel barriers before
adding the last few dots, to avoid excessive latching effects. Once
latching occurs, it becomes harder to reliably determine virtual
gates and open the tunnel barriers. However, this is by no means a
fundamental obstacle. When dots are formed one at a time, the
newly formed dot is immediately adjacent to a reservoir and can
thus be easily loaded. For dots in the interior, the n+ 1 method
we introduced in principle takes care of maintaining their
occupation through cross-talk compensation. If desired, verifying

the dot occupation in the interior of a long array after it is formed
can still be done, for instance by emptying the array (while not
removing it), followed by sequential tunneling of electrons to the
desired locations.25 Finally, we believe that the n+ 1 method is
not bound to a specific device geometry or material. In particular,
it is directly applicable to linear arrays in silicon based QD
devices26 and can be extended to two-dimensional QD arrays. The
n+ 1 method can become a standard method to conveniently
tune QD arrays and should lend itself well to automation.29,30

The data also shows the limitations of the current approach. We
correct for the cross-capacitance of plunger and barrier gates
influencing electrochemical potentials but not for the influence on
tunnel barriers. As a consequence, altering a virtual plunger gate
will affect neighboring barriers, as can be seen in Fig. 3b.
Increasing VP2 and VP3 increases the interdot tunnel coupling,
which can be deduced from the broadening of the interdot
transitions. In principle cross-capacitance effects on barriers can
also be taken into account, as was demonstrated recently for a
triple dot array.22 However, this task is not trivial since the
dependence of gate voltage to tunnel coupling is typically
exponential and thus the linear approximation of the cross-
capacitance matrix is only valid over a limited voltage range. As
we have shown in this work, adjusting the interdot tunnel
couplings individually is not a very difficult task, and this can be
implemented using automated tuning algorithms as well.31

Altogether, the n+ 1 method shown here enables future
experiments involving increasing numbers of electron spin qubits
in semiconductor quantum dot arrays. It addresses an important
bottleneck in scaling up quantum dot arrays and highlights the
potential of this approach for large-scale quantum computation
and simulation.

METHODS
The sample is fabricated from a silicon-doped GaAs/AlGaAs quantum well
grown by molecular beam epitaxy. A two-dimensional electron gas is
formed 90 nm below the surface. It shows a mobility of 1.6 × 106 cm2/Vs at
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an electron density of 1.9 × 1011 cm−2. A single layer of metallic gates
(Ti/Au), defined by electron-beam lithography, is biased with appropriate
voltages to selectively deplete the 2DEG underneath. During cooldown the
gates have been biased individually with positive voltages between +50
and +250mV to reduce charge noise18,19 and to improve the uniformity of
the pinch-off characteristics of the gates. Details on bias cooling and pinch-
off voltages are shown in Supplementary Table 1. On a second device
where we successfully applied the n+ 1 method, we used a uniform bias
cooldown voltage.
Plunger gates P2 to P8 of the array and the plunger gates of both sensing

dots (X1, X2) are connected to bias-tees on the printed circuit board with a
cut-off frequency of fC ≈ 0.3 Hz. This allows combining DC voltages and
nanosecond gate voltage pulses on the same gate. Due to limitations of
the experimental setup only eight gates (P2 - P7, X1, X2) could be connected
to high-frequency lines. The bias-tee at P8 limits the bandwidth to 0.3 Hz.
Low-pass filtered DC lines are connected to P1 (fC ≈ 150 kHz) and all barrier
gates (fC ≈ 5 kHz).
Except for the initial characterization using DC transport, RF reflecto-

metry is used, enabling fast, simultaneous read out of both charge sensors
by frequency multiplexing.32,33 As the capacitive coupling and thus the
sensitivity decreases with distance from the sensor, we read out both
sensors simultaneously to maximize the readout quality. The charge
stability diagrams shown in Figs. 2–5 show the signal from the nearest
charge detector. The sum of the derivative along both axis is plotted. In
Fig. 1b, the signals from the two charge sensors are added. LC tank circuits
based on home-built superconducting NbTiN inductors are connected to
the ohmic contacts of the sensing dots (see labels RF in Fig. 1a). RF tones
close to the resonance frequencies of the tank circuits, at 108.5 MHz and
171.9 MHz, are sent to the sample. The reflected signal is amplified at 4 K
and at room temperature, I/Q demodulated to baseband, filtered with a
1 MHz low-pass filter, and recorded with a fast data acquisition card.
Data has been acquired and analyzed using the open source python

packages QCoDeS available at https://qcodes.github.io/Qcodes and QTT
(Quantum Technology Toolbox) available at https://github.com/QuTech-
Delft/qtt.

DATA AVAILABILITY
Datasets and analysis scripts supporting the findings of this study are available at
https://doi.org/10.5281/zenodo.2620418.34
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