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ABSTRACT
Retrieving accuratemicroseismic source locations induced by hydraulic-fracturing op-
erations is an important step to gain insights into the hydraulically stimulated reser-
voir volume. Recently, deep neural networks have been proposed that directly re-
cover source locations from the seismic waveforms. The optimal performance of the
proposed deep neural networks usually requires large training sets. The need for a
large training set can be circumvented if a previously trained deep neural network
can be used to start the training process with its weights instead of randomly initial-
ized weights. These weights can then be fine-tuned using a smaller training set, which
is also known as transfer learning . In this work, we implement a transfer learning
workflow to update the weights of a deep neural network that was initially trained
on a large synthetic dataset to localize microseismic events. We present two methods
of processing, namely one post-monitoring mode and one continuous mode where
the processing takes place during the monitoring period. We apply the methods to
field data from a hydraulic fracturing site in Texas, USA. In the first scenario, a sub-
set of the field data from the entire monitoring period is used to update the weights
of the deep neural network, which is then applied to the remaining data resulting in
mean and median distances of 227 and 182 m, respectively, compared to the results
of a good localization method. In the second scenario, the deep neural network is
updated daily with previously detected and located events and applied to the events
detected the following day. Since the observed data used for training generally do not
cover a wide range of source locations, we enrich the training set with synthetic data.
The addition of synthetics for transfer learning ensures that the updated deep neural
network provides accurate source locations for events with locations far from loca-
tions used during transfer learning. Transfer learning combining synthetic and real
data performs significantly better (more consistent) locations than transfer learning
without synthetics.

Key words: 3D, Neural network, Microseismic monitoring.

INTRODUCTION

The increasing demand for underground-related energy re-
sources, such as geothermal and unconventional oil and gas

∗E-mail:n.a.vinard@tudelft.nl

reservoirs, as well as the growing interest in CO2 sequestration
and hydrogen storage, requires reliable and fast methods to
monitor the seismic activity around the reservoir to both opti-
mize the underlying task and mitigate risks associated with in-
duced earthquakes (Gaucher et al., 2015; Li et al., 2020).Most
of the seismicity associated with these activities are weak in
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moment magnitudes,Mw, that is around and below zero (Van
Der Baan et al., 2013), and are called microseismic events as
they are not felt at the surface. Therefore, the signal-to-noise
ratio (S/N) is also poor, especially when detected by sensors
close to the surface (Li et al., 2019). Microseismic monitor-
ing systems are set in place to detect, localize and estimate
the source mechanisms and magnitudes of the induced events.
The hypocentre locations provide information about the hy-
draulically stimulated reservoir volume, or they can be used
to identify pre-existing fault systems.

In recent years, several machine learning and deep learn-
ing (DL) approaches have been proposed to identify hypocen-
tre locations. One area of application is focused on using ma-
chine learning and DL-based picking algorithms that are able
to pick arrival times nearly as good or even better than an
analyst at a fraction of the time required for manual picking
(Ma et al., 2020; Ross et al., 2018b, 2018a; Zhou et al., 2019;
Zhu and Beroza, 2019; Zhu et al., 2019; Zhang et al., 2020a).
Ross et al. (2018b) trained a convolutional neural network
(CNN) on earthquakes with labelled P-wave picks and first-
motion polarities to first detect the onset of the P-wave and
then determine the polarity of the P-wave. Ross et al. (2018a)
trained a CNN on millions of three-component hand-labelled
seismic records, which were split into records containing only
P-waves, S-waves and noise. The CNN was trained to classify
the input as a P-wave, S-wave or noise. Zhou et al. (2019) use
a CNN to first detect earthquakes and then pass the detected
waveforms to a recurrent neural network to pick P- and S-
wave arrivals. PhaseNet (Zhu and Beroza, 2019) is a modified
U-Net architecture (Ronneberger et al., 2015) applying one-
dimensional (1D) convolutions over three-component seismic
waveforms that return probabilities around the P-wave and S-
wave arrivals and noise. Zhu et al. (2019) develop a CNN that
can be trained on smaller training sets compared to previous
works that can be applied for P- and S-wave picking of after-
shocks. Zhang et al. (2020a) trained a CNN to classify wave-
forms and arrival time picking for microseismic data. To train
the CNN, they first convert the signal into the time-frequency
domain using the continuous wavelet transform. Ma et al.
(2020) propose a U-Net architecture for P- and S-wave classi-
fication on microseismic three-component data. First, the data
are preprocessed such that the waveforms show clearer arrival
times. Next, waveforms are converted to grey-scale images
and fed to the U-Net to pick the S- and P-phase arrivals.

Other DL algorithms directly return the source locations
without picking wave arrivals and directly relate observed
waveforms to locations (Kriegerowski et al., 2019; Mousavi
and Beroza, 2020; Van den Ende and Ampuero, 2020; Zhang

et al., 2020b). Kriegerowski et al. (2019) accomplished this by
training a CNN taking three-component seismic waveforms
from several stations as input and outputting the source loca-
tions in terms of their (x,y,z)-coordinates. Zhang et al. (2020b)
trained a deep neural network (DNN) with three-component
waveforms from multiple stations as input that returns the
source locations in terms of a three-dimensional (3D) proba-
bility density function. Van den Ende and Ampuero (2020)
propose the use of graph neural networks, which incorpo-
rate the spatial information of the seismic stations in addi-
tion to the seismic waveforms to determine the location of the
earthquakes as well as their magnitudes. Mousavi and Beroza
(2020) trained Bayesian neural networks to estimate the loca-
tion of earthquakes from single stations.

A considerable drawback of DL methods is that large
training datasets, which sample the model space well, are usu-
ally required to reach good performances. This limitation can
be overcome by using a previously trained DNN and refin-
ing it using a much smaller dataset. This is known as transfer
learning (TL) and is based on the idea that DNNs applied to
similar tasks share common features (Pan and Yang, 2009).
In the field of geophysics, TL has been applied to a variety of
problems. El Zini et al. (2019) used TL to detect bright spots in
seismic data by first pre-training a CNN on unlabelled seismic
data (unlabelled meaning that the information on whether a
bright spot is or is not present in the input is missing) and then
fine-tuning the network on amuch smaller labelled dataset. By
pre-training their CNN on unlabelled data, they circumvent
the constraint of labelled datasets required for supervised ma-
chine learning tasks. Chai et al. (2020) used a phase picker
previously trained on 0.7 million local earthquakes (tens of
kilometre distances between sources and receivers) (Zhu and
Beroza, 2019) and refined it to get better picks for micro-
seismic data recorded from a metre-scale project. This was
achieved using a small training dataset of 3500 seismograms.
In other works, TL was used by pre-training DNNs with large
synthetic datasets and then fine-tuning the DNNs with field
data.This has been done for the task of seismic trace interpola-
tion using a convolutional denoising autoencoder (Wang et al.,
2020) and for seismic fault detection using a CNN (Cunha
et al., 2020).

In this work, we apply TL to localize weak microseismic
events using waveforms as input. As a starting point, we use a
DNN that was trained with a large synthetic dataset and ap-
plied to a small field dataset to retrieve the source locations of
hydraulic-fracturing (HF) induced earthquakes (Vinard et al.,
2022). This was achieved using a modified version of a U-
Net (Ronneberger et al., 2015), a type of CNN originally

© 2022 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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developed for image segmentation, which is composed of both
an encoder and decoder. The encoder extracts useful features
in the input (waveforms), and the decoder maps the extracted
features into a 3D Gaussian distribution of location proba-
bility (Vinard et al., 2022). In the following, we refer to the
DNN that was trained on synthetic data as QNetSynth, where
Q stands for quake and Synth for synthetic. QNetSynth reli-
ably localizes the higher magnitude events; however, it fails
to accurately localize lower magnitude events. This is prob-
lematic for monitoring applications where the majority of the
events are low in magnitude, such as those observed in HF
monitoring. To improve QNetSynth’s performance, we apply
transfer learning by updating it with field data.We refer to this
updated version as QNet. Furthermore, we aim for QNet to
return more consistent locations compared to the diffraction
stacking locations.

To train the DNN, we need labelled data, meaning that
we need the input (waveforms) and the known output (source
locations), also called the label. This type of learning with
labelled data is called supervised learning. After training,
the QNet can receive new waveforms as input and return
source locations.

Training a DNN with synthetic data for the task of mi-
croseismic source localization can be useful in retrieving initial
locations of seismic events on real datasets. However, for low
S/N events such training is insufficient. To increase the source
location accuracy of the DNN trained on synthetic data, TL
using field data is investigated. Furthermore, we are interested
in both modes of processing: (1) post-monitoring processing
when data are processed after being acquired and (2) contin-
uous processing when the data are acquired while being pro-
cessed (e.g. near-real-time or real-time processing).

In the next section, we explain the transfer learning pro-
cess in more detail and how the DNN is evaluated. We also
discuss its application and illustrate how the methodology can
be applied to a dataset from a monitored hydraulic fracturing
site. The case study is investigated in both a post-monitoring
processing mode as well as a continuous acquisition mode.
Finally, we discuss limitations and potential of this approach
for future applications. Note that we do not necessarily aim
at improving the quality of the locations, but its automation
and consistency.

TRANSFER LEARNING

In this section, we describe the transfer learning (TL) process
used to predict the source locations using the synthetically
trained deep neural network (DNN) and QNetSynth. The

labelled training data consist of input-output pairs, which for
QNetSynth consisted of synthetic seismic waveforms as input
and their corresponding source locations represented as three-
dimensional (3D) Gaussian distributions as output. The peak
of the Gaussian distribution is taken at the source location,
(xs, ys, zs) of the event, and the standard deviation, σ , has a
fixed (input) value in all directions independent of the input
data. The Gaussian distribution is defined as

s(x, y, z) = exp
(

−
(
(x− xs)2

2σ 2
+ (y− ys)2

2σ 2
+ (z− zs)2

2σ 2

))
. (1)

The values in the output range from 0 to 1. In supervised
learning, the weights of a DNN are optimized by minimiz-
ing a loss function that computes the difference between the
label and the output generated by the DNN based on the cur-
rent weights. After training, the DNN can be applied to new
(unlabelled) data to return 3D Gaussian distributions. If the
weights of the DNN can extract the relevant features from the
input with ease, the returned Gaussian distribution will have
a peak value of 1 at the location expected by the DNN.

The architecture of QNetSynth is shown in Figure 1.
QNetSynth consists of convolutional layers in the encoder
where the input is gradually down-sampled as it moves further
down the convolutional layers. In the decoder, transposed con-
volutional layers gradually up-sample the previously down-
sampled input. Additionally, the architecture contains a few
skip connections that pass the output from layers in the en-
coder to the decoder by concatenating the encoder output with
the decoder output. The Adam algorithm (Kingma and Ba,
2015) was used to train QNeSynth using a learning rate (step
size) of 0.001, a batch size of 20 and the sigmoid cross-entropy
loss function. The height and width of all filters were set to
3, and the rectified linear unit (Nair and Hinton, 2010) was
used as the activation function. Furthermore, the standard de-
viation of the 3D Gaussian distribution was selected as 200
m. This is a hyperparameter that needs to be selected before
training, and it represents a trade-off between the resolution
and training convergence. For more details about QNetSynth,
we refer to Vinard et al. (2022).

Transfer learning for post-monitoring and continuous
acquisition mode

We investigate two possible applications, one that is suitable
for post-monitoring processing and the other that represents
a continuous acquisition mode. In both scenarios, alterna-
tive detection and localization methods are used to build a
field training set that can be used to update the weights of

© 2022 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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Figure 1 DNN architecture with seismic data as input and 3D lo-
cation output. An encoder (left) consists of convolutional layers with
red arrows denoting convolutions used for down-sampling. A decoder
(right) consists of transposed convolutional layers with red arrows
indicating transposed convolutions used for up-sampling. Grey hori-
zontal arrows denote skip connections.

QNetSynth. Alexandrov et al. (2020) detected and localized
the events used in this study. As the detection and localization
algorithm, the diffraction stacking (DS) algorithm (Anikiev
et al., 2014) was used and some of the DS-localized events
were further improved in a post-processing step by a relative
location (RL) method (Grechka et al., 2015) that requires a
set of master events. We refer to the latter method as DSRL.
For the post-monitoring scenario, we build a training set with
a subset of the DS-detected events as input (waveforms) and
we use the DS locations to create the corresponding labels.
QNetSynth is then updated using that training set, and this
updated network, QNet, is then applied to the remaining de-
tected events. The QNet predicted locations are then com-
pared to the DSRL locations. In the continuous acquisition
mode scenario, the hydraulic-fracturing (HF) operations are
still ongoing, and events are detected and localized by DS.

After the first day of operations, a training set can be built
from the DS-detected and DS-localized events, which is then
used for TL to update QNetSynth. The updated DNN, QNet,
can then be applied on the next day to retrieve locations of the
DS-detected events. After each day, the previous QNet can be
updated with new DS-detected and DS-localized events and
applied on the next day together with DS.

For the QNet to return good source locations on new
data, the training set needs to be similar to the new data. This
is a major challenge as source locations vary and change over
time, especially in HF operations. Since the field data used for
training may not cover all possible locations, the DNN will
be biased towards the locations in the field dataset used for
training and fail to generalize to other locations. This would
limit the applicability of the method. To overcome this issue,
we enrich the training set with synthetic data that were used
to train QNetSynth and cover the entire region of interest.

Transfer learning workflow

The general TL workflow is summarized by the flowchart in
Figure 2.We start the learning process with QNetSynth,which
will be equal to QNetPrev (where Prev stands for previous) in
the total TL flow. The training set is a combination of labelled
fields and labelled synthetic data. For the case of the labelled
field data, the source locations were computed by another
method (e.g. diffraction stacking). The synthetic database con-
tains all events that were used to train QNetSynth. Instead of
using all of the synthetic data, we randomly pick a subset of n
synthetic events and apply data augmentations (random bulk
time shifts, random muting of traces, adding field noise) to
the synthetics (see also Vinard et al. (2022)). The combination
of the augmented synthetic dataset with the field data forms
the training set that is used to update the weights of QNet-
Prev in the TL process. Note that at each epoch (training set
passed forward and backwards through the network to update
the weights) a new subset of n random synthetics is selected
from the synthetic database. The training set contains more
labelled synthetic data than field data; however, the synthetic
data used at each epoch are different due to random sampling
of events from the larger synthetic database and random data
augmentations,whereas the field data are always the same (we
tested different values of n to determine its optimal value). If
all of the synthetic data were used for TL at each epoch, the
field data would be underrepresented in the training set. This
would lead to a highly imbalanced training set (Chawla et al.,
2004), and the weights in the updated QNet would be biased
towards the synthetic data with few changes in its weights in

© 2022 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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Figure 2 Workflow describing TL to update weights of QNetPrev, applying QNet on new field data and possible further updating of QNet using
more field data.

favour of field data. After TL,QNet can be used to reconstruct
3D Gaussian distributions on new field data, where the wave-
forms are taken as input and the output is a 3D distribution as
shown in Figure 3. The TL process can be repeated whenever
an updating condition is met. In that case, the field dataset
used in training is enlarged with new events and QNet is set
as QNetPrev to repeat the TL process with the newest set of
weights. Again, here we take the source locations determined
by another method (e.g. DS) to create the labels for the new
set of events.

Updating QNetPrev only with the field dataset could lead
to overfitting, meaning that QNet can produce very good re-
sults on the training data but fail to accurately locate events in
areas where there were no samples in the training data. Com-
bining TL with both the field and the synthetic data helps to
reduce overfitting.

The data augmentations applied to the synthetic data are
used to increase the size of the dataset and also help in reduc-
ing overfitting. Random bulk time shifts and random muting

of traces are augmentations that are easy to implement and
also help the learning process by creating variability in the
data. The addition of field noise on top of the synthetics was
shown to be crucial for QNetSynth to localize field data events
(Vinard et al., 2022).

Transfer learning training and evaluation

During TL, we allow all the weights of QNetPrev to change.
Freezing parts of the weights during TL, that is prevent-
ing those weights to be updated during TL, did not result
in noticeable changes. Thus, we decided to allow all of the
weights to change. We use Tensorflow software (Abadi et al.,
2015) for training using the Adam optimizer (Kingma and
Ba, 2015). We set the learning rate (step size) to 0.001 and
use a batch size of 20 (the number of training examples that
are passed forward and backward through the network to up-
date the weights). The same learning rate and batch size were
used to train QNetSynth (Vinard et al., 2022). Note that the

© 2022 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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Figure 3 (a) Example of waveform input to QNet on the left and its output (cross sections taken at the maximum voxel in the map view and
the view from the south) on the right. The white star denotes the location computed by DS. Clipping is applied for visualization purposes only.
(b) A normal-moveout corrected version of the input waveform, created using the 1D velocity model used for DS to better visualize the signal.

input data (waveforms) are always (not only during training)
normalized by their maximum amplitude value before being
passed to the QNet.

During TL, we set a fixed number of epochs over which
to update the weights of QNetPrev. We compute a metric be-
tween the output generated by the DNN and the expected 3D
Gaussian distribution on the validation set at the end of every
epoch, and after training we save the weights that maximized
that metric over all epochs. As a metric, we use the Dice simi-
larity coefficient (CDice) (Dice, 1945), which is defined as

CDice(t, t̂ ) = 2
t ∩ t̂

t + t̂
, (2)

where t is the label, that is the 3D-Gaussian distribution de-
fined with its peak at the location given by the DS, and t̂ is the
3D output distribution produced by the QNet. As in Vinard
et al. (2022), we clip the values in both t and t̂ above 0.1 to
1 and the rest to 0 before computing the CDice. Thus, if there
is a perfect overlap the CDice value equals one and if there is
no overlap it is zero. As the loss function, we use the sigmoid
cross-entropy loss that was also used to train QNetSynth.

DATA

The field data used in this study were acquired in Texas, USA,
in 2010, during hydraulic-fracturing operations in the Bar-
nett Shale Formation in the Fort Worth basin. The monitoring

system used 543 vertical component geophones buried in
shallow boreholes, where each borehole contained three geo-
phones placed at 30, 45 and 60 m below the surface. The
system covered an area of approximately 144 km2. Alexan-
drov et al. (2020) generated a one-dimensional (1D) layered
P-velocity model from the site from sonic logs and computed
hypocentre locations of the events using a migration-type
diffraction-stacking (DS) technique (Anikiev et al., 2014) and
further refined the location of some events using a relative lo-
cation (RL) method (Grechka et al., 2015) using a set of 27
master events. The diffraction stacking and relative location,
DSRL, method improved the depth estimates of the events,
relocating them closer to the injection wells located between
2000 and 2200 m depth. However, the relative locations can
only be computed after the whole monitoring period since it
requires a set of master events, which are usually only avail-
able for postprocessing. This is why the DS locations are used
to create the labels during training.However, after training the
deep neural network’s (DNN) performance is compared to the
DSRL locations.

The signal-to-noise ratio (S/N) of the events in our dataset
is very low with the majority of events having an S/N below 1
dB, as summarized in Table 1. As Table 1 reveals, 622 events
have an S/N ratio below 0.77 dB, implying that on most traces
the signal is below the noise level. The signal for such events is
enhanced by diffraction stacking allowing those events to be
detected and located.

© 2022 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
Engineers.,Geophysical Prospecting, 1–16
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Table 1 S/N statistics of the 1245 field data events in dB, as taken
from the S/N computed by (Alexandrov et al., 2020)

Mean Std. Min. 25% 50% 75% Max.

0.87 0.55 0.40 0.64 0.77 0.96 9.31

Figure 4 Receiver locations (black triangles) and regions where events
can occur (shaded cuboid) extending from 5700 to 8300 m in Easting,
3700 to 5900 m in Northing and 1200 to 3000 m in depth. For the
simulation, this space is increased by 200 m in all directions. Black
lines represent the orientation of wells.

Synthetic data

QNetSynth was trained with synthetic data modelled with the
reflectivity method (Kennett and Kerry, 1979) with the soft-
ware ERZSOL3 (Kennett, 2005) using the layered P-velocity
model generated by (Alexandrov et al., 2020) and with the
same geophone locations defined in (Vinard et al., 2022).
For QNetSynth only 96 geophone locations were used mainly
to reduce computational and memory costs. QNetSynth was
trained with 51,200 synthetic events that cover the entire
event region. This region as well as the receiver locations and
well locations are shown in Figure 4. Within the region of in-
terest, random double-couple sources with centre frequencies
ranging between 20 and 24 Hz were modelled. The synthet-
ics were augmented with field noise, Gaussian noise varying
in amplitude per trace, random bulk time shifts and random
muting of traces during training. The size of the input data is
(1024× 96× 1), and the three-dimensional (3D) region where
events can occur is discretized to a shape of (128 × 96 × 64)
with a grid size of (23 m, 27 m, 34 m) in Easting, Northing
and depth, respectively. The label of each event is defined by
its 3D Gaussian distribution with the peak equal to 1 at the

source location and with a fixed standard deviation of 200 m
in all directions. This fixed standard deviation was chosen for
QNetSynth and found to be optimal for good convergence
and resolution (Vinard et al., 2022). For more details about
the synthetic data, we refer to Vinard et al. (2022).

Field data preprocessing

For the synthetic data, the label for the field data for training
is created in the same way, that is as a 3D Gaussian distribu-
tion with a standard deviation of 200 m. For the field data,
we use the locations retrieved by DS to create the Gaussian
distribution. We apply a band-pass filter of 5–50 Hz to the
detected field data (during both training and application of
new data). No denoising steps are performed on the data. Fi-
nally, note that all of the data used to train the DNN and to
make predictions were previously detected and confirmed as
true detections by Alexandrov et al. (2020).

Field data for post-monitoring application

In order to apply transfer learning, we need labelled field data.
Thus a preprocessing step that detects and localizes a number
of events is needed. In our case, the preprocessing step was car-
ried out by Alexandrov et al. (2020) and 1245 events were de-
tected and located after 9 days of monitoring. We divide these
events into field training, validation, and test sets. The labels
are created using the DS locations. The field-training and val-
idation sets are used during transfer learning (TL) to update
the weights of QNetSynth and to determine the weights that
maximized theCDice (equation 2) on the validation set over all
epochs. Finally, the test set is used to apply the updated QNet
to data not used during TL.

We randomly split the 1245 events using 60% for train-
ing, 20% for validation and 20% for testing. Thus 747 events
serve as a field-training set and 249 events each serve as val-
idation and test sets. This partitioning of the data is used for
the post-monitoring application. The DSRL-epicentre loca-
tions of the 1245 events are shown in Figure 5 together with
the well locations.

Field data for continuous acquisition modes

The methodology for continuous acquisition modes is based
on dividing the time into intervals (in our case study into
days) and using the labelled data from past intervals in TL
for the newest time intervals. In this case study, as new events
are DS detected and DS localized, we use those to update the

© 2022 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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Figure 5 Epicentre locations of 1245 DS-detected and DSRL-
localized events from the first to ninth day of monitoring. Each colour
represents an event recorded on a particular day. Well positions are
shown by black lines.

weights of the current model and apply it to events that are DS
detected the following day. Thus, after the first day of mon-
itoring we update QNetSynth with the DS-detected and DS-
localized data from the first day and apply the updated QNet
to localize the DS-detected events from the second day of mon-
itoring. Next, we updated the QNet after the second day of
monitoring with field data events that were DS detected and
DS localized during the first two days of monitoring. This pro-
cess was repeated until the last day of monitoring. Thus, the
TL process summarized in Figure 2 is looped once per day. The
events detected each day are randomly split into a field train-
ing and validation set with an 80/20% ratio. The field-training
dataset is used to update the weights of the network in com-
bination with the synthetic data for a fixed number of epochs.
At the end of each epoch, we compute theCDice over the entire
validation set and after training we select the weights from the
epoch that maximizes theCDice. It is important to regularly up-
date the DNN due to changing event locations that can affect
the performance of the DNN. The changes in DSRL-epicentre
locations from the first to the ninth day of monitoring (indi-
cated by colours) are shown in Figure 5. It can be observed
that the event locations change over time.

RESULTS

We present the results of both the post-monitoring and the
continuous acquisition mode source-localization applications.
Starting with QNetSynth, we apply TL to update its weights
using a combination of field and synthetic data.

Post-monitoring application

During transfer learning (TL), we use the 747 field data events
and synthetic data as training data. As mentioned above, the
labels are created using the locations recovered by diffraction
stacking (DS). However, we compare the QNet predicted lo-
cations to the DSRL locations as those are the more accu-
rate locations. We use 100 epochs for training and choose the
weights from the epoch that maximizes the CDice (equation 2)
on the validation set and named the updated deep neural net-
work (DNN), QNet. Increasing the number of epochs did not
bring any significant improvements. To create the training set,
a limited number of random synthetics were selected from the
synthetic database at each epoch. The synthetic database con-
tains 51,200 events, from which we randomly select a subset
at each epoch. Thus, at every epoch a new set of synthetic sam-
ples is picked and added to the field-data events used for train-
ing. We experimented with different numbers and obtained
the best results by randomly sampling 2000 events from the
synthetic database at each epoch.

After TL, QNet is ready to be applied to the test set. The
test set contains 249 events with moment magnitudes between
−0.59 and 1.52. In Figure 6, we show the locations retrieved
by QNet from the peak of the reconstructed distribution for
all 249 events in the test set compared to the DSRL locations.
Note that a grid pattern emerges in the DNN-predicted loca-
tions, which is due to the discrete 3D output space. In gen-
eral, the hypocentre locations returned by QNet match well
with the DSRL-localized events. The mean distances in the
hypocentre, epicentre and depth between the locations pro-
vided by QNet and DSRL are 227 m, 148 m, and 141 m, re-
spectively, with a median hypocentre distance of 182 m. The
depth locations returned by QNet are concentrated at depths
between 2000 and 2200 m for most events. This is also the
depth of the fractured interval.

The histogram (Fig. 7) of the location errors, computed
as the distances between QNet-located events (from the peak
of the distribution) and the DSRL locations shows that a ma-
jority of the events are located within 300 m from each other
with a sharp decrease in events with distances greater than
300 m away from the DSRL locations in the validation and
test sets. We take a closer look at those later events. We com-
pare their magnitudes and signal-to-noise ratios (S/Ns) with
the events located less than 300 m from the DSRL locations
in the test set as well as to the magnitudes and S/Ns present
in the field data used for training. We only plot the magni-
tudes between –0.6 and 1.0 and S/N between 0.4 and 1.9 in
order to better observe the events that were located at greater

© 2022 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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Figure 6 Locations predicted by QNet on the test set for the post-monitoring processing application plotted together with DSRL locations. Lines
connect locations of the same event predicted by QNet and DSRL. The left-side plot is the map view, and the right-side plot is the view from the
south.

Figure 7 Histogram showing the number of events located in different
distance bins of 100 m width as a function of the distances to the
DSRL locations in the test and validation sets.

distances from the DSRL locations; see Figure 8. We observe
that a majority of the events that are located more than 300
m from each other have low magnitudes and S/N. This is to
be expected since there are fewer events within that moment
magnitude and S/N range in the field-training set, and thus
fewer of those examples that the DNN can learn from.

Continuous acquisition mode

For the continuous acquisition mode, we update the DNN on
a daily basis, starting with the DNN that was trained on syn-
thetic data, QNetSynth. For labelling of the detected events,
we use the DS locations.

To investigate the added value of the synthetic data, we
apply TL excluding and including synthetic data. Starting with
QNetSynth and the events detected and located after the first
day of monitoring, we follow the scheme described in Fig-
ure 2: QNetSynth becomesQNetPrev and the field-data events
detected and localized on the preceding day by DS are used
to update the weights of QNetPrev. For the situation where
synthetic data are also used during TL, we randomly select a
new set of 2000 synthetic events at each epoch, as we did for
the post-monitoring application. We randomly create splits
of 80/20% of the field data events to serve as field training
and validation sets, respectively. After training for 100 epochs,
we again keep those weights that maximized the CDice on the
validation set. This updated model, QNet, is next applied to
data detected on the next day of monitoring. This process is
repeated until the last day of monitoring. We refer to the
QNets obtained with this iterative TL workflow without syn-
thetics as QNet1 and those updated with synthetics as QNet2.
TheCDice and loss curves over the training and validation sets
using data after the first day of operations are shown in Fig-
ure 9. The curves look similar for the remaining TL iterations.
The vertical dashed line shows the epoch at which the CDice

© 2022 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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(a) (b)

Figure 8 Histograms of moment magnitudes (left) and S/N (right) of events predicted at distances greater than 300 m (red) and less than 300 m
(blue) from DSRL locations in the test set and distributions in the training set (black).

Figure 9 CDice-curves (left) and loss curves (right) of training and validation sets during the first TL iteration in continuous acquisition mode.

value over the validation set reached its maximum value. The
training- and validation-loss curves are close to each other,
indicating that the model is not heavily overfitting, and the
validation loss in Figure 9 is steadier after 70 epochs.

After each TL iteration, we apply the updated QNets,
QNet1 and QNet2, to the same field data detected the fol-
lowing day and compare the results to the DSRL locations of
the events. Figure 10 shows the epicentre locations from the
second to the ninth day of monitoring separately for QNet1
and QNet2. The red dots are DSRL localizations, and the blue
dots represent locations retrieved by the QNets (QNet1 in the
first and the third columns and QNet2 in the second and the
fourth columns). The lines connect the DS localizations to the
locations predicted by the QNets.

With the exception of a few events, the epicentre locations
recovered by QNet2 on the second day of monitoring were
better compared to the DSRL locations compared to QNet1.
The DNN updated without synthetic data during TL, QNet1,
mislocates the small cluster of events located in the upper part
of the plot (the black circle in Fig. 10). A similar observation
can be made for the epicentres from the third day of monitor-
ing, where QNet1 does worse at localizing the small clusters
on the upper and lower parts of the plot whereas QNet2 does
much better with the exception of a few outliers. These prob-
lems can be explained by the lack of training samples in those
areas. This can be clearly observed on the fourth day of mon-
itoring when comparing the locations predicted by QNet1 to
those of QNet2. As the event locations up to the day used to
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Figure 10 Epicentres returned by QNet1 updated without synthetics (columns 1 and 3) and QNet2 updated with synthetics (columns 2 and 4)
from the second to the ninth day of monitoring. DSRL and respective DNN locations (QNet1 and QNet2) are connected by black lines.

update QNetPrev are always slightly different from the event
locations from the following day, QNet1 seems to always be
lagging behind slightly, as also observed throughout days 5 to
9 of monitoring.QNet2, however, can overcome this issue due
to the use of synthetic data, which well sample the locations
of interest.

The mean distance between all locations predicted by
QNet1 and the DSRL locations is 282 m. The mean epicentre
distance is 226 m. For QNet2, the mean hypocentre distance is
249 m and the mean epicentre distance is 167 m. These differ-
ences are large; however, note that DS locations and not DSRL
locations were used for training, and, furthermore, we can-
not be sure that the DSRL locations are true locations. Thus,
updating QNetPrev with the synthetic data that cover the en-
tire event region is more consistent with the DSRL-localized

events. This is especially important with continuous process-
ing where new events occur in regions where past events did
not occur and were therefore not part of the training set used
for TL. Figure 5 shows how the events migrate on a daily ba-
sis. The depth differences between the DSRL locations and the
predictions by QNet1 and QNet2 are similar at 146 and 151
m, respectively.

DISCUSS ION

In the introduction, we mentioned that QNetSynth (trained
purely with synthetics) failed to localize many of the lower
magnitude field-data events. In order to show how transfer
learning (TL) helps to improve the localization of field data
events, we compare the locations of QNetSynth with the daily
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Figure 11 Comparing QNetSynth with QNet2. (a) Moment magnitude versus distance and (b) peak value versus Euclidean distance between
the QNet locations and DSRL locations. QNetSynth is displayed by large red dots and QNet2 by small blue dots.

updated versions of QNet2, applied to the events recorded
from the second to the ninth day of monitoring. We plot the
moment magnitude of the events versus the distance between
the DSRL locations and the locations returned by both QNet2
and QNetSynth in Figure 11(a).We can see that QNet2 is able
to localize many of the lower magnitude events more accu-
rately than QNetSynth.

We consider the maximum value of the distribution to be
at the source location and refer to it as the peak value. We
can see from Figure 11(b), where the peak value of the out-
put is plotted with respect to the distance that the peak val-
ues are higher for QNet2. Thus by updating QNetSynth with
field data (and synthetics) the number of confidently localized
events increases. Based on Figure 11(b),we might consider set-
ting a threshold on the peak value to accept only events that
are above it. In practice, the threshold should be based on the
validation set. For now, we set a threshold to 0.5 for both
QNetSynth and QNet2 and compare the moment magnitude
distribution of the events that pass the threshold (Fig. 12). We
can see that most of the higher magnitude events for QNet-
Synth passed the threshold but that many of the lower magni-
tude events did not. Between moment magnitudes 0.6 to 1.6,
the same number of events passes the threshold for QNet-
Synth and QNet2. For magnitudes below 0.6, increasingly
more events pass the threshold in the case of QNet2 com-
pared to QNetSynth and no events with Mw below 0.3 pass
the threshold for QNetSynth whereas for QNet2 events down
to Mw between −0.6 and −0.5 pass the threshold. The mean
distance over all events recorded after the first day of moni-
toring is 688 m for QNetSynth and 249 m for QNet2. The

Figure 12 Magnitude distributions of events passing threshold 0.5 for
QNetSynth (red) and QNet2 (blue).

localization improved similarly comparing QNetSynth to
QNet: Over the test set of 249 events, the mean distance be-
tween QNetSynth locations and DSRL-locations is 747 m,
whereas for QNet the mean distance is 227 m.

In this study, we focus our attention on the locations of
detected microseismic events. For a practical situation, a de-
tection algorithm needs to be employed to first detect an event.
In this study, the diffraction stacking algorithm was used for
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Figure 13 QNet2 trained on the first four days of field data applied to events recorded on thesixth day. QNet2 receives seismic data as input
(records) and returns the 3D output (plan and section slice through maximum value). The white star denotes the DS location. Time increases
from the left column downwards and continues from the upper left column. Clipping was applied to better visualize events in records (not
applied during training and prediction).
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detection (Anikiev et al., 2014). Alternatively, several machine
learning based seismic event detection algorithms have been
successfully applied in recent years (Dokht et al., 2019; Meier
et al., 2019; Mousavi et al., 2019; Perol et al., 2018; Wu et al.,
2018).

During the supervised learning phase, our deep neural
network (DNN) was only trained with data containing events
and it learned to extract features from that input and map
it into a three-dimensional (3D) Gaussian distribution. Thus,
the QNet was not fully trained to differentiate between noise
and seismic events. However, if the input to the QNet con-
tains noise only, we do not expect it to return a 3D Gaus-
sian distribution with a high peak value. Therefore, the QNet
might serve as an event detector. To investigate this possibil-
ity, we took a time window of approximately 7 s around an
event recorded on the sixth day of monitoring. Next, we pass
QNet2 (trained with iterative TL up to day 5) chunks of 2.8 s
each shifted by 0.6 s from start to finish. The seismic data that
are used as input to QNet2 as well as its output are shown in
Figure 13. The predicted output is sliced horizontally and ver-
tically through the maximum output voxel. The peak of the
output distribution corresponding to noise is significantly be-
low 1 before the signal enters the time window, and the output
cannot be characterized as Gaussian. As soon as the signal ap-
pears on the first few receivers, the distribution’s peak value
is significantly higher and resembles a Gaussian distribution.
However, the peak of the distribution does not yet match with
the diffraction stacking (DS) location. In the two consecutive
time windows, the peak of the distribution is on top of the DS
location and the peak value is at its highest. Finally, at the later
time steps, as the first signals start passing the receiver array,
the distribution starts to change and eventually dissipates as
no signals are present in the input. We believe this method-
ology can be extended to provide the detection of seismic
events.

The synthetic data used to train QNetSynth and also
used in the TL scheme were generated using the same veloc-
ity model as used to localize the events by diffraction stack-
ing. The velocity model may not always be well known. If
the velocity is complex then to create the synthetics, we may
need to use a more computationally intensive method to com-
pute seismograms. Therefore, analysing how accurate the ve-
locity models need to be in order to train a DNN that is
able to provide good locations for field data is a recommen-
dation for further research. As is known from other meth-
ods, the accuracy of the locations depends on the velocity
model and we expect this to be the case for this method
as well.

In this study, we benefited from a well-known velocity
model. However, in general, the velocity model, especially if
used for simulating full waveform synthetic seismograms,may
not be well known. Further investigation of the accuracy of the
velocity model may help us to understand limitations of the
proposed methodology, but this is beyond the scope of this
study as we need to define the quality of the velocity model
for better judgement.

While creating our training, validation and test sets from
the field data, we randomly created the splits. Thus all three
sets roughly cover the same moment magnitudes. It would be
interesting to investigate the possibility of applying TL us-
ing high magnitude events in the first run and applying the
updated DNN to low magnitude events to test if it can ex-
trapolate its feature extraction and classification capacities to
those events.

In order to get an idea about the computational effort
needed for our approaches, generating 51,200 synthetics and
running 100 simulations in parallel takes roughly 7 days on
2.3 GHz Intel Xeon CPUs. The training time depends on the
size of the training set. A single epoch took approximately 60
s on a Tesla P100-PCIE-16GB GPU. Thus training for 100
epochs takes about 1.7 hours. Finally, applying the trained
QNet on a single event to generate the output takes 0.28 s
on a 3.1-GHz Dual-Core Intel Core i5 CPU. Hereby, we show
that it is feasible to apply this method on a daily basis.

CONCLUSIONS

In this work, we introduced a transfer learning (TL) scheme to
update a deep neural network previously trained on synthetic
data. The TL scheme can be either used a single time in a post-
monitoring situation or iteratively for continuous monitoring.
In the TL scheme, the QNet is updated using a combination
of labelled fields and labelled synthetic data. By updating the
QNet in this fashion, the number of confidently localized field-
data events at low magnitudes drastically increased. Further-
more,we showed the importance of keeping the synthetic data
during TL in order to provide accurate source locations in ar-
eas not yet covered by the field data used during training. Ad-
ditionally, we provide a framework to regularly apply TL in a
continuous data processing mode, which increases the local-
ization performance of the QNet over time.
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