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A B S T R A C T   

Auxetic materials, materials demonstrating negative Poisson’s ratio, have revolutionized the use of materials in 
industries, as they demonstrate superb acoustic response, fracture resistance, and energy absorption. For the first 
time, this study embraces the free vibration of conical shells consisting of an auxetic core with and without ring 
support under various boundary conditions. First, the material characteristics of the auxetic core are calculated 
by means of a micromechanical approach. Afterwards, the kinematic motion equations of the conical shell are 
derived utilizing the first-order shear deformation theory. Finally, the governing equations are solved using the 
powerful generalized differential quadrature element method (GDQEM). The primary goal of this paper is to 
study the role of implementing an auxetic core as well as ring support in determining the vibrational behavior of 
the structure. The results of the study showed that the honeycomb interior angle and the presence of ring support 
can significantly affect the natural frequency of the structure. Lower frequencies can be reached as the interior 
angle increases. The importance of ring position is found to be highly dependent on the longitudinal mode shapes 
of vibration. The impact of ring position on natural frequencies is affected by the semi-vertex angle of the cone, 
and a shift in frequency peaks can be observed by increasing the semi-vertex angle.   

1. Introduction 

The value of Poisson’s ratio plays a vital role in industrial products. 
Biomedical implants, aircraft parts [1], energy production facilities, and 
sports equipment are examples of applications where every element 
deformation needs to be addressed carefully. With exponential growth 
in manufacturing technologies, the application of new types of artificial 
materials, such as metamaterials, is increasing rapidly. Auxetics are an 
important type of metamaterials which, unlike conventional materials, 
show a negative Poisson’s ratio. In other words, the auxetic meta-
materials do not shrink laterally under the uniaxial extension, but they 
show expansion [1]. This has led to some interesting mechanical and 
physical properties, such as superb acoustic response, improved energy 
absorption capability, and enhanced shear modulus and fracture 
toughness [2]. 

Employing a theoretical scheme, Dirrenberger et al. [3] studied the 
effective elastic characteristics of anisotropic three auxetic microstruc-
tures. In another comprehensive research, an idealized 3D re-entrant 
auxetic structure was studied analytically, numerically, and 

experimentally [4]. They implemented Euler-Bernoulli and Timoshenko 
beam theories for their analytical study. Auxetic meta-biomaterials have 
been studied in terms of mechanical and fatigue performances as they 
can potentially improve implant-bone biological and physical interac-
tion [4–8]. In another experimental work, Plewa et al. [9] analyzed 
planar and tubular auxetic patterns fabricated by the additive 
manufacturing (AM) technique. Through a discrete homogenization 
scheme, the properties of composite materials made of auxetic in-
clusions (hexachiral and hexagonal reentrant lattices) were studied by 
Assidi and Ganghoffer [10]. Kochmann and Venturini [11] implemented 
structural elements with rotational degrees of freedom as a design 
principle for finitely strained composites made of stiff inclusions in a 
hyperelastic matrix. Furthermore, auxetic structures show excellent 
energy absorption [12] and impact resistance performance [13]. In 
another work, Nedoushan et al. [14] presented a fully triangular ar-
chitecture based on anti-tetra chiral configuration to enhance structural 
stiffness. Jiang et al. [15] investigated the effect of using multilayer 
orthogonal auxetic reinforcement in polyurethane foam matrix on the 
failure of composite panels, demonstrating extraordinary damping and 
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large range of deformation performance. Li et al. [16] combined auxetic 
materials as a reinforcing agent inside incompressible soft elements to 
create composites with enhanced indentation stiffness and impact 
resistance. 

As mentioned above, auxetic structures are unique patterns to be 
used in many industrial applications. Many researchers, therefore, have 
studied the dynamic and static characteristics of multi-layered lami-
nated composite panels made of or combined with auxetic components. 
For example, vibration and nonlinear dynamic response of sandwich 
panels with auxetic core were studied by Duc et al. [17]. In terms of 
auxetic plates, Lim investigated the vibrations and buckling behaviors of 
circular auxetic plates [18]. Nonlinear chaotic oscillations of composite 
beams with auxetic carbon nanotube reinforcement were studied by 
Parhi et al. [19]. The effect of auxeticity on energy absorption and 
low-velocity impact behavior of sandwich structures was investigated by 
Jiang and Hu in an experimental work [20]. The post-buckling behavior 
of an auxetic beam was studied by Dabbagh and Ebrahimi [21], and 
showed that utilizing small auxeticity angles results in more strength-
ened buckling characteristics. Moreover, the effect of auxetic layers’ 
thicknesses on the deflection of a laminated composite with an auxetic 
ply was investigated by Ebrahimi et al. [22]. Similarly, Hajmohammad 
et al. [23] surveyed face sheets with auxetic core blast characteristics, 
which improved the dynamic behavior. Recently, with the help of Dif-
ferential Quadrature Method (DQM), Behravan Rad [24] studied the 
effect of auxetic structures on the static bending of functionally graded 
circular plates. Regarding the nonlinear dynamic characteristics of 
sandwich beams, Li et al. [25] reported that auxetic parameters can 
significantly influence the dynamic response of the structure. Further-
more, they analyzed their proposed model, 3D double-V meta-lattice 
core and FG GRC facesheets, in case of low-velocity impact [26]. Further 
studies regarding dynamic behaviors of auxetic material with a with 
negative Poisson’s ratio can be found in literature [27–30]. 

Speaking of DQM, many efforts have been made toward analyzing 
composite laminates or sandwich panels using the Generalized Differ-
ential Quadrature (GDQ) and similar methods. For example, Tornabene 
et al. [31] analyzed damaged configurations and static behavior of 
composite structures using the GDQ method. In another research, the 
generalized differential quadrature element method (GDQEM) was used 
to estimate the frequencies of a plate reinforced with graphene platelets 
[32]. Moreover, Bagheri et al. used GDQ to evaluate the free vibration 
behavior of a joined conical–cylindrical–conical shell structure [33]. 
More studies concerning the DQM technique in composite structures can 
be found in Refs. [34–41]. The presence of a ring in a shell is also an 
interesting topic of research, which has a beneficial impact on vibration 
characteristics and frequency response of the system [42]. Hou et al. 

[43], therefore, examined the free vibration of a conical shell consisting 
of an intermediate ring support utilizing GDQEM. Similarly, using the 
First-order Shear Deformation Theory (FSDT), the free vibration of an 
isotropic homogeneous shell containing a middle ring was analyzed with 
the help of GDQ by Bagheri et al. [44]. Furthermore, Dong et al. [45], 
using a support ring as a controller, studied the free vibration behavior 
of a conical shell. Their study used a modified version of GDQEM which 
was combined with trigonometric expansion (TE) analysis. 

Looking at the previous works, it can be seen that the effect of the 
middle ring on isotropic shells is studied [44]; moreover, the analysis of 
auxetic honeycomb core in panels and truncated conical sandwich shells 
have also been conducted in [46–48]. Furthermore, various solution 
methods such as Galerkin, GDQ and Rayleigh-Ritz can be found exces-
sively in the investigations [49–52]. To the best of the author’s knowl-
edge, an analytical study on the effect of auxeticity on the vibration 
behavior of conical shells with (and without) ring support is lacking in 
the literature. Due to the presence of this deficiency in the studies and 
the importance of conical shells as an essential part of aircraft, offshore, 
and tubular structures [53], the present manuscript studies the free vi-
bration of conical sandwich panels with auxetic cores utilizing powerful 
GDQEM. 

To this aim, first and foremost, the material properties of the auxetic 
ply are found through a micromechanical technique. Next, employing 
the first-order theory of shells, the governing equations are obtained for 
a conical sandwich shell. Later, two sets of governing equations, one for 
the lower segment and one for the upper segment (i.e. elements) of the 
cone, are considered, and the boundary conditions imposed by the ring 
as well as the continuity condition at that region, are taken into account. 
Finally, the GDQEM is employed to solve the system of equations related 
to the eigenvalue problem. The solution is performed for various com-
binations of simply supported (S) and clamped (C) boundary conditions. 
Parametric studies are performed to evaluate the effect of the main cone 
angle as well as the unit cell internal angle on the natural frequency of 
the cone. 

2. Methodology 

2.1. Shell structure description 

A three-layered sandwich conical shell stiffened with an intermedi-
ate ring, including two skin layers made of isotropic material and the 
core layer made of re-entrant auxetic metamaterial with a negative 
Poisson’s ratio, was considered for this study. The geometry described 
above is schematically depicted in Fig. 1. The origin of the coordinate 
system (x, s, z) is set to be at the highest point of the mid-plane of the 

Fig. 1. The geometry and dimensions of a conical shell with an auxetic core. The extreme cases of θ = 30◦ and θ = 60◦ are demonstrated visually.  
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core of the sandwich panel. The range of change of the variables was 
hence 0 ≤ x ≤ L, 0 ≤ s ≤ 2π, and − h /2 ≤ z ≤ h /2. The conical shell 
structure was reinforced by the ring support at x = a. The parameters R1, 
R2, and R3 denote the radii of the smallest section, the ring section, and 
the largest section of the cone. 

2.2. Core material characteristics 

First and foremost, it is important to have analytical relationships for 
the mechanical properties of the auxetic core in terms of its micro-
structural dimensions shown in Fig. 1. The effective material properties 
of the considered re-entrant auxetic structure are as follows [54]: 

E(c)
1 = E

κ3(λ − sinθ)
cosθ[1 + (tan2θ + λsec2θ

)
κ2],

E(c)
2 = E

κ3

cosθ(tan2θ + κ2)(λ − sinθ)
,

G(c)
12 = G

κ3

λ1(1 + 2λ)cosθ
,

G(c)
23 = G

κcosθ
λ − sinθ

,

G(c)
13 = G

κ3

2cosθ

[
λ − sinθ
1 + 2λ

+
λ + 2sin2θ
2(λ − sinθ)

]

,

ν(c)
12 = −

sinθ(1 − κ2)(λ − sinθ)
cos2θ

[
1 +

(
tan2θ + sec2θλ

)
κ2], ν

(c)
21 =

− sinθ(1 − κ2)

(tan2θ + κ2)(λ − sinθ)
,

ρc = ρ κ(λ + 2)
2cosθ(λ− sinθ)

(1)  

where λ = e/l and κ = t/l. The subscript "c" represents the properties 
related to the core layer. In the above equations, t denotes the thickness 
of the cell walls, and e and l stand for horizontal and inclined cell wall 
lengths, respectively. Moreover, E, G, and ρ represent Young’s modulus, 
shear modulus, and density of the material that the auxetic core is made 
of, respectively. It is worth mentioning that the resulting properties 
achieved from the above definitions can have uncertainties due to the 
possibility of the presence of uncertainty in the value of the input pa-
rameters. In the present study, the ideal situation with no uncertainty in 
input variables has been considered. Having said that, the readers 
interested in uncertainty analysis are referred to [55–58]. 

2.3. The governing equations 

The FSDT theory is employed for each truncated cone element (i.e. 
segment) to formulate the governing equations of the conical sandwich 
shell. The subscript i = 1, 2 refer to each element (i.e. segment) of the 
conical shell. Accordingly, the displacement field of a generic point in 
the shell structure can be written as [44,59]: 

ui(x, s, z, t) = ui
0(x, s, t) + zφi

x(x, s, t)
vi(x, s, z, t) = vi

0(x, s, t) + zφi
s(x, s, t)

wi(x, s, z, t) = wi
0(x, s, t)

(2)  

where the displacement components in the axial x, circumferential s, 
and radial z directions are denoted by u, v, and w, respectively. φx and φs 
stand for normal transverse rotation about s and x. The strain field on 
any point of the sandwich conical shell can be written as 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εi
xx

εi
ss

γi
xs

γi
xz

γi
sz

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εi
xx0

εi
ss0

γi
xs0

γi
xz0

γi
sz0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ z

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κi
xx

κi
ss

κi
xs

κi
xz

κi
sz

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)  

where the strain components and curvature changes are defined by: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εi
xx0

εi
ss0

γi
xs0

γi
xz0

γi
sz0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui
0,x

vi
0,s

R
+

ui
0

R
sin(α) + wi

0

R
cos(α)

vi
0,x +

ui
0,s

R
−

vi
0

R
sin(α)

wi
0,x + φi

x

wi
0,s

R
−

vi
0

R
cos(α) + φi

s

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)  

and 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κi
xx

κi
ss

κi
xs

κi
xz

κi
sz

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φi
x,x

φi
s,s

R
+

φi
x

R
sin(α)

φi
x,s

R
+ φi

s,x −
φi

s

R
sin(α)

0

0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)  

in which, derivative with respect to x and s are shown with subscript ‘, x’ 
and ‘, s’, respectively. where α denotes the semi-vertex angle of the cone. 
By assuming the case of linear elasticity, the stress resultants can be 
derived as 
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ni
x

Ni
s

Ni
xs

Mi
x

Mi
s

Mi
xs

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B26

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

εi
xx0

εi
ss0

γi
xs0

κi
xx

κi
ss

κi
xs

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
Qi

s

Qi
x

⎤

⎦ = kC

[
A44 A45

A45 A55

]
⎡

⎣
γi

sz

γi
xz

⎤

⎦

(6)  

where kC represents the transverse shear correction factor that results in 
a more accurate estimation of the solution. In this study, kC is assumed to 
be 5/6 [60–62]. The coefficients Aij, Bij, and Dij are the components of 
the extensional, coupling, and bending stiffness matrices of the conical 
sandwich shell, respectively. In other words: 

(
Aij,Bij,Dij

)
=

∫ − hC/2

− h/2
Qij

(
1, z, z2)dz +

∫ hC/2

− hC/2
QC

ij

(
1, z, z2)dz

+

∫ h/2

hC/2
Qij

(
1, z, z2)dz (7) 
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where hc stands for the core thickness. Moreover, the stiffness co-
efficients of the auxetic core and isotropic skin layers can be written as 
follows 

QC
11 =

EC
1

1 − υC
12υC

21
,QC

12 =
υC

12EC
2

1 − υC
12υC

21
,

QC
22 =

EC
2

1 − υC
12υC

21
,QC

44 = GC
23,QC

55 = QC
66 = GC

12,

Q11 =
E

1 − υ2,Q12 =
υE

1 − υ2,Q22 = Q11

Q44 = Q55 = Q66 =
E

2(1 + υ)

(8)  

where υ stands for Poisson’s ratio. Lastly, utilizing Hamilton’s principle, 
the equations of motion of the conical sandwich shell can be found as 
[59]: 

Ni
x,x +

1
R

Ni
xs,s +

(
Ni

x − Ni
s

) sin(α)
R

= I0üi
0 + I1φ̈i

x

Ni
xs,x +

1
R

Ni
s,s + Qi

s
cos(α)

R
+ 2Ni

xs
sin(α)

R
= I0v̈i

0 + I1φ̈i
s

Qi
x,x +

1
R

Qi
s,s + Qi

x
sin(α)

R
+ Ni

s
cos(α)

R
= I0ẅi

0

Mi
x,x +

1
R

Mi
xs,s +

(
Mi

x − Mi
s

) sin(α)
R

− Qx = I1üi
0 + I2φ̈i

x

Mi
xs,x +

1
R

Mi
s,s + 2Mi

xs
sin(α)

R
− Qs = I0v̈i

0 + I1φ̈i
s

(9)  

where I0, I1, and I2 are the mass moments of inertia, which are defined as 

(I0, I1, I2) =

∫ − hc/2

− h/2
ρ
(
1, z, z2)dz +

∫ hc/2

− hc/2
ρc( 1, z, z2)dz +

∫ h/2

hc/2
ρ
(
1, z, z2)dz

(10) 

The parameter R represents the radius of any point on the shell along 
the axial direction for each cone element i = 1, 2 and is equal to: 

R = Ri + xsin(α) (11) 

Employing the separation of variables technique in correlation with 
Fourier series expansion according to [63,64], the displacement and 
rotation components can be written as: 

ui
0(x, s, t) = Ui(x)cos(ns)eiωt

vi
0(x, s, t) = Vi(x)sin(ns)eiωt

wi
0(x, s, t) = Wi(x)cos(ns)eiωt

φi
x(x, s, t) = Φi

X(x)cos(ns)eiωt

φi
s(x, s, t) = Φi

S(x)sin(ns)eiωt

(12)  

where U, V, W, Φx  and Φs are unknown functions. n denotes the 
circumferential wave number of the associated mode shape, and ω is the 
natural frequency. By substituting Eq. (6) into Eq. (9), and utilizing Eq. 
(12) to separate variables, and then by integrating through circumfer-
ential direction from 0 to 2π, the two-dimensional problem (x, s) is 
reduced to a one-dimensional problem, and the variable s can be elim-
inated. The governing equations can, therefore, be expressed as [59]: 

Ψ111U+Ψ112U,x +Ψ113U,xx +Ψ121V +Ψ122V,x +Ψ131W +Ψ132W,x +Ψ141ΦX+

Ψ142ΦX,x +Ψ143ΦX,xx +Ψ151ΦS +Ψ152ΦS,x + I0ω2R2U+ I1ω2R2ΦX = 0,
Ψ211U+Ψ212U,x +Ψ221V +Ψ222V,x +Ψ223V,xx +Ψ231W +Ψ241ΦX+

Ψ242ΦX,x +Ψ251ΦS +Ψ252ΦS,x +Ψ253ΦS,xx + I0ω2R2V + I1ω2R2ΦS = 0,
Ψ311U+Ψ312U,x +Ψ321V +Ψ331W +Ψ241ΦX +Ψ332W,x +Ψ333W,xx +Ψ341ΦX+

Ψ342ΦX,x +Ψ351ΦS + I0ω2R2W = 0,
Ψ411U+Ψ412U,x +Ψ413U,xx +Ψ421V +Ψ422V,x +Ψ431W +Ψ432W,x +Ψ441ΦX+

Ψ442ΦX,x +Ψ443ΦX,xx +Ψ451ΦS +Ψ452ΦS,x + I1ω2R2U+ I2ω2R2ΦX = 0,
Ψ511U+Ψ512U,x +Ψ521V +Ψ522V,x +Ψ523V,xx +Ψ531W +Ψ541ΦX+

Ψ542ΦX,x +Ψ551ΦS +Ψ552ΦS,x +Ψ553ΦS,xx + I1ω2R2V + I2ω2R2ΦS = 0.
(13)  

where Ψ can be written as [59]: 

Ψ111 = − A66n2 − A22sin2α,Ψ112 = A11Rsinα

Ψ113 = A11R2,Ψ121 = − A66n sinα − A22n sinα

Ψ122 = (A12 + A66)nR,Ψ131 = − A22sinα cosα,Ψ132 = A12Rcosα

Ψ141 = − B66n2 − B22sin2α,Ψ142 = B11Rsinα,Ψ143 = B11R2

Ψ151 = − B66nsinα − B22nsinα,Ψ152 = (B12 + B66)nR

Ψ211 = − A66nsinα − A22nsinα,Ψ212 = − (A12 + A66)nR

Ψ221 = − A22n2 − A66sin2α − kcA44cos2α

Ψ222 = A66Rsinα,Ψ231 = − A22ncosα − kcA44ncosα

Ψ241 = − B22nsinα − B66nsinα,Ψ242 = − (B12 + B66)nR

Ψ251 = − B22n2 − B66sin2α + kcA44Rcosα

Ψ252 = B66Rsinα,Ψ253 = B66R2,Ψ311 = − A22cosαsinα

Ψ312 = − A12Rcosα,Ψ321 = − A22ncosα − kcA44ncosα

Ψ331 = − kcA44n2 − A22cos2α,Ψ332 = kcA55Rsinα

Ψ333 = kcA55R2,Ψ341 = kcA55Rsinα − B22cosαsinα

Ψ342 = − B12Rcosα + kcA55R2,Ψ351 = kcA44nR − B22ncosα

Ψ411 = − B66n2 − B22sin2α,Ψ412 = B11Rsinα

Ψ413 = B11R2,Ψ421 = − B66nsinα − B22nsinα

Ψ422 = (B12 + B66)nR,Ψ431 = − B22cosαsinα

Ψ432 = − kcA55R2 − B12Rcosα,Ψ441 = − D66n2 − D22sin2α − kcA55R2

Ψ442 = D11Rsinα,Ψ443 = D11R2

Ψ451 = − D66nsinα − D22nsinα2,Ψ452 = (D12 + D66)nR

Ψ511 = − B22nsinα − B66nsinα,Ψ512 = − (B12 + B66)nR

Ψ521 = − B22n2 + kcA44Rcosα − B66sin2α,Ψ522 = B66Rsinα

Ψ523 = B66R2,Ψ531 = − B22ncosα + kcA44nR

Ψ541 = − D22ncosα − D66nsinα,Ψ542 = − (D12 + D66)nR

Ψ551 = − D22n2 − D66sin2α − kcA44R2,Ψ552 = D66Rsinα

Ψ553 = D66R2

(14)  

2.4. Continuity and boundary conditions 

Due to the presence of the ring and hence the implementation of two 
sets of governing equations, the continuity conditions of displacements 
and stresses need to be met at the interface of two cone elements. The 
essential continuity conditions are [44]: 

w1
0 = 0,w2

0 = 0,
u1

0 = u2
0, v1

0 = v2
0,

φ1
x = φ2

x ,φ
1
s = φ2

s

(15) 

Moreover, the natural continuity conditions must be satisfied simi-
larly as 

N1
xx = N2

xx,M
1
xx = M2

xx,

N1
xs = N2

xs,M
1
xs = M2

xs
(16) 

This study exploits two types of boundary conditions: clamped (C) 
and simply supported (S). The constraints used for each type of 
boundary condition on the edges of the conical sandwich shell are as 
follows: 

C : u0 = v0 = w0 = φx = φs = 0
S : u0 = v0 = w0 = Mx = φs = 0 (17)  
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2.5. Solution using the GDQE method 

Various techniques are introduced in the open literature to solve 
numerous differential equations in Mechanical Engineering. Some ap-
proaches use approximation techniques by discretizing domain and 
boundary conditions to solve the problem [52,65-69], while more 
recently, due to the rapid development in neural network (NN) and 
machine learning, some methods such as deep neural network (DNN) 
[70–73], and Physics-Informed Neural Network (PINN), a DNN method 
integrated with the physical information of the problem, [74] have been 
presented for solving partial differential equations. A robust numerical 
procedure for solving differential equations, which is popular due to its 
fast convergence behavior and its precision, is the general differential 
quadrature (GDQ) method [75,76]. Having said that, it has its limita-
tions in solving problems that include material and geometrical dis-
continuities in the computational domain, which can lead to 
singularities in eigenvalue problems. Therefore, GDQEM was introduced 
to have more flexibility in selecting the grid points and different 
boundary conditions [77,78]. If f is the solution to the differential 
equation, and Ck

ij are the weighting coefficients, the derivative of f(x) can 
be written as: 

f (k)i =
∑N

j=1
C(k)

ij fj (18)  

where fj stands for the value of f at discrete point xj, k represents the 
order of derivative, andN represents the number of grid points. There-
fore, the weighing coefficients can be obtained as 

C(1)
ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∏N

k=1,k∕=i,j

(xi − xk)

/
∏N

k=1,k∕=j

(
xj − xk

)
(i ∕= j)

∑N

k=1,k∕=i

1/(xi − xk) (i = j)
(19) 

Equation (19) shows the weight coefficient matrix of the first de-
rivatives. Weight coefficients for higher derivatives can be derived as: 

C(p)
ij =

∑N

k=1
C(p− 1)

ik C(1)
kj p = 2, 3, 4, ... (20) 

Numerous techniques exist for the generation of grid distribution. In 
this study, Gauss–Chebyshev–Lobatto is chosen due to its high precision 
[79,80]. Using the GDQE technique, the problem domain in the axial 
direction is discretized into N nodal points. All differential equations, 
including the governing equations, the boundary conditions, and con-
tinuity constraints, are transformed into algebraic expressions using 
GDQEM coefficient matrices and can be written in matrix form. 

Regarding the discontinuity of shell geometry induced by constraints 
due to the presence of a stiffened ring, stiffness and mass matrices for a 
one-dimensional problem with two elements can be written in a diag-
onal form as follows: 

[K] =

[ [
K(1)] [0]
[0]

[
K(2)]

]

{q} =

[{
q(1)}

{
q(2)}

]

[T] =
[
[TB]

[TC]

]

[M] =

[ [
M(1)] [0]
[0]

[
M(2)]

]
{

q(i)} =
{

Ui Vi Wi Φi
X Φi

S

}
(21)  

where stiffness [K] and mass [M] matrices are diagonal, and the 
displacement vector {q} contains the displacement components of all 
boundary and interface points. The matrix [T], contains the equations 
derived for boundary and continuity conditions. Subscripts "B" and "C" in 
the above equations represent the boundary and continuity terms. At the 
cone top and bottom levels and interface nodes where the boundary and 
continuity equations are satisfied, the governing equations are ignored. 
This can be done by removing the associated rows in stiffness and mass 
matrices, and the equation can be obtained as follows: 

[K]{q} = ω2[M]{q} (22) 

By separating the displacement components of internal nodes from 
those of boundary and interface nodes, the matrices K, M, and T can be 
modified and used in the governing equation as follows: 

[KB]{qB} + [KD]{qD} = ω2([MB]{qB} + [MD]{qD}),

[TB]{qB} + [TD]{qD} = {0} (23) 

Consequently, the algebraic system of equations in the form of an 
eigenvalue problem can be written as: 

[K∗]{qD} = ω2[M∗]{qD} (24)  

where the matrices [K*] and [M*] are defined as: 

[K∗] = [KD] + [KB]
(
− [TB]

− 1
[TD]

)
,

[M∗] = [MD] + [MB]
(
− [TB]

− 1
[TD]

) (25) 

Ultimately, by solving the eigenvalue problem presented in Eq. (24), 
the natural frequencies of the system can be found. 

3. Results 

3.1. Validation 

The first frequency responses of the conical shells obtained from the 
proposed analytical method are compared with those available in the 
literature to evaluate the accuracy of the model. The 

Table 1 

Comparison of dimensionless frequency Ω = ωR1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρh/A11

√
for the cross-ply conical shell 

(
L= 2 m, h= 0.01 m, R = 1 m,

E1

E2
= 15, E2 = 10 GPa, G12 = G13 = 0.6E2, G23 

= 0.5E2, ν12 = 0.25, ρ= 1500
kg
m3, n= 1

)
.   

α [0/30/0] [0/60/0] [0/90/0]   
Present Xiang et al. [59] Guo et al. [81] Present Xiang et al. [59] Guo et al. [81] Present Xiang et al. [59] Guo et al. [81] 

C – C 90̊ 0.1474 0.1474 0.1556 0.1611 0.1611 0.1701 0.1633 0.1633 0.1723 
60̊ 0.1698 0.1698 0.1722 0.2128 0.2128 0.2126 0.2080 0.2081 0.2130 
30̊ 0.2264 0.2264 0.2186 0.3121 0.3121 0.3030 0.2682 0.2682 0.2706 
0̊ 0.2980 0.2980 0.2989 0.3837 0.3837 0.3850 0.2894 0.2894 0.2906   

α [0/30/0] [0/60/0] [0/90/0]   
Present Xiang et al. [59] Guo et al. [81] Present Xiang et al. [59] Guo et al. [81] Present Xiang et al. [59] Guo et al. [81] 

S – S 90̊ 0.0738 0.0738 0.0781 0.0808 0.0808 0.0856 0.0819 0.0819 0.0868 
60̊ 0.1110 0.1110 0.1048 0.1594 0.1594 0.1475 0.1550 0.1550 0.1500 
30̊ 0.1853 0.1853 0.1677 0.2785 0.2785 0.2579 0.2367 0.2367 0.2317 
0̊ 0.2707 0.2707 0.2712 0.3621 0.3621 0.3632 0.2650 0.2650 0.2661  
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nondimensionalized linear frequencies of composite conical shells ach-
ieved from the mentioned method are compared to the results provided 
by Xiang et al. [59] and Guo et al. [81] in Table 1. The comparison in 
Table 1 demonstrates that the values obtained from the analytical so-
lution in this study are in excellent agreement with those reported in the 
cited references. 

In order to ensure the accuracy of the presented methodology and 
solution procedure, Table 2 is also provided for isotropic cylindrical 
shell, which compares the obtained dimensionless frequency with those 
available in the literature. As can be observed, the maximum difference 
between our results and the works of [82–84] is less than 2.4%. The 
minor discrepancy is related to different theories that have been used in 
references. 

3.2. Convergence study 

To determine the accuracy and stability of the GDQE method for our 
problem, the number of grid points (N) are varied until a converged 

response is obtained (Fig. 2). The convergence study of grid points is 
carried out for a cylindrical shell with an auxetic core and without ring 
support for clamped-clamped boundary conditions. It can be seen that 
for the first three modes (m = 1, m = 2, and m = 3), the results converge 
for grid points higher than 7. To increase the accuracy of the GDQE 
technique, the number of considered grid points is 15. 

3.3. Influence of different parameters 

This section embraces the results of the parametric study on the ef-
fect of different parameters involved in the conical shell problem. As 
mentioned earlier, the conical sandwich shell consists of three layers, 
with the middle layer being auxetic. The auxetic core, with 6mm 
thickness, is made of aluminum, with Young’s modulus of E = 69GPa, 
shear modulus of G = 26GPa, Poisson’s ratio of υ = 0.33, and density of 
ρ = 2700kg/m3. The top and bottom layers are also chosen to be made of 
aluminum with the same material properties. For the cases with ring 
support, the ring is located in the mid-point of the conical structure, i.e., 
a = L

2. The shell length is L = 2m, and shell radius is selected to be R = L
2. 

The total sandwich shell thickness is considered to be 8mm. As for the 
auxetic core, the parameters λ = 3 and κ = 0.1 are considered. 

3.3.1. The effect of ring support 
Fig. 3 shows the effect of variation of auxetic core interior angle θ as 

well as the semi-vertex angle α on the first natural frequency of the 
considered conical shell without ring support. This figure is illustrated 
for different boundary conditions. It can be observed that decreasing the 
auxecity of the core (i.e. decreasing θ) results in an increase in the 
natural frequency of the conical shell (see the right-hand side of the 

Table 2 

Comparison of the dimensionless frequency of isotropic S-S cylinder 
(

m = 1, E =

210 GPa,
R
L

= 2,
h
R

= 0.06,ν = 0.3,ρ = 7850
kg
m3,ω = Ω

( h
π

) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(1 + ν)ρ

E

√
)

n Lam and Loy [82] Bhimaraddi [83] Shen [84] Present 

1 0.0375 0.0369 0.0371 0.0378 
2 0.0367 0.0361 0.0365 0.0365 
3 0.0364 0.0357 0.0362 0.0358 
4 0.0372 0.0363 0.0370 0.0365  

Fig. 2. GDQEM convergence study of grid points for a cylindrical shell with auxetic core and without ring support for clamped-clamped boundary condition for mode 
numbers of (a) m = 1, (b) m = 2, and (c) m = 3. 
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diagrams in Fig. 3). A similar trend can also be observed for decreasing 
the absolute value of θ for a core with a non-auxetic core (see the left- 
hand side of the diagrams in Fig. 3). Furthermore, regardless of the 
boundary condition, increasing the cone angle always reduces the shell’s 
natural frequency. The cylindrical geometry, therefore, demonstrates 
the highest level of natural frequency among all cases. As expected, the 
fully clamped model (Fig. 3a), possesses the highest frequency because 
using the C – C boundary condition increases the structural stiffness. 

Similar natural frequency graphs are plotted for the cases when ring 
support is added to the system (Fig. 4). Comparing Figs. 3 and 4 shows 
that adding a ring to the middle of the structure improves the natural 
frequency, especially for the cylindrical shape. The trends described in 
Fig. 3 still hold true in Fig. 4. Fig. 5 plots the natural frequency curves for 
the cone with and without a ring support to better visualize the effect of 
adding a ring support. It is evident that adding a ring support enhances 
the stiffness of the structure. 

Tabulated data for all boundary conditions can be found in Table 3. 
The table is provided to be a comprehensive reference for authors who 
want to use the presented data for their analysis. It compares the natural 
frequency of the conical shell for C–C and S-S boundary conditions as 
well as with and without ring support. In each of the four main cases, the 
effect of increasing the semi-vertex angles on the longitudinal and 
circumferential natural frequency levels can be observed as well. 

3.3.2. The effect of ring positions 
Fig. 6 presents the effect of position of stiffened ring on the natural 

frequency of the conical shell with fully simply supported boundary 

conditions for different longitudinal mode shapes. From Fig. 6a, it can be 
realized that at x = 0.1L and x = 0.9L, the presence of the ring support 
has a negligible effect on the natural frequency. For the first mode, the 
highest natural frequency is reached at x = L/2. This is due to the fact 
that the ring support limits the motion of the middle part of the cylinder, 
which is supposed to have the highest amplitude of oscillation (see mode 
1 in Fig. 7 for the first mode shape of a cylinder without a ring). Due to 
the same reason, in the second mode, the highest frequency is obtained 
for X = L/4 and x = 3L/4. A similar interpretation can be given for 
higher mode numbers. 

In Fig. 6b, the natural frequencies of the conical shell with a 30◦cone 
angle for various positions of the ring support are presented. Similar 
trends are observed regarding the longitudinal mode shapes of the 
conical shell. Changing the shell geometry from cylinder to cone results 
in a shift in the curves’ peaks toward the right side (i.e. the side of the 
cone with higher radius) of the graphs (compare Fig. 6a and b). There-
fore, it may be concluded that placing the stiffened ring at positions with 
higher radii leads to improved natural frequencies. Unlike the cylin-
drical shell, the relative location of the peak in the case of the cone shell 
is influenced by some other geometrical/material parameters, such as 
the shell thickness, cone angle, auxetic interior angle, and material 
properties. 

In Fig. 8, the variation of the natural frequency of the conical shell 
with respect to the position of two rings supports (both being equally 
distanced from the two ends of the cone, i.e. at x1=(Λ)L and x2=(1-Λ)L, 
where 0.1 < Λ < 0.4) is demonstrated and compared to the case of the 
cone with one ring support. Fig. 8a presents the special case of the 

Fig. 3. Variation of the first natural frequency for the conical shell without ring support versus the auxetic cell interior angle for different cone angles (α) for four 
types of boundary condition: (a) clamped-clamped, (b) simply supported-simply supported, (c) simply supported-clamped, and (d) clamped-simply supported. 
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Fig. 4. Variation of the first natural frequency for the conical shell with a ring support versus the auxetic cell interior angle for different cone angles (α) for four types 
of boundary condition: (a) clamped-clamped, (b) simply supported-simply supported, (c) simply supported-clamped, and (d) clamped-simply supported. 

Fig. 5. Comparison of the first natural frequency of the conical shell with and without ring support for the clamped-clamped boundary condition.  
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Table 3 
Comparison of the natural frequency of conical shell for C–C and S-S boundary conditions and various semi-vertex angles, while the effect of supportive ring is 
considered: (a) C–C BC without ring support, (b) S-S BC without ring support, (c) C–C BC with ring support, (d) S-S BC with ring support. In all the cases, θ= − 55o.  

(a) C–C BC without ring support   
n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 

α¼0 m ¼ 1 423.96 275.12 192.63 146.33 125.49 126.62 145.47 176.79 216.89 263.83  
m ¼ 2 614.14 480.03 365.93 287.83 239.17 214.67 211.45 226.44 255.83 296.14  
m ¼ 3 664.13 587.68 498.95 420.63 361.26 322.52 303.96 304.32 321.38 352.33  
m ¼ 4 684.94 641.52 581.91 520.45 467.08 427.19 403.26 395.93 404.57 427.62  
m ¼ 5 707.58 679.82 640.32 596.47 555.27 522.05 500.26 491.73 497.00 515.58  
m ¼ 6 735.52 718.38 692.62 662.97 634.16 610.31 594.61 589.16 595.02 612.43  
m ¼ 7 777.37 765.77 748.93 729.71 711.23 696.46 687.92 687.47 696.26 714.84  
m ¼ 8 864.08 858.86 850.21 840.45 831.77 826.20 825.54 831.24 844.32 865.42  
m ¼ 9 956.43 952.11 945.48 938.58 933.25 931.23 934.00 942.71 958.16 980.85  
m ¼ 10 1134.52 1315.60 1586.83 1725.69 1730.92 1738.21 1748.14 1761.21 1777.91 1798.65 

α¼30◦ m ¼ 1 317.863 231.735 173.597 141.772 132.532 138.722 140.092 131.324 123.212 117.845  
m ¼ 2 352.027 325.336 283.050 239.271 204.094 180.933 176.153 178.514 175.935 172.425  
m ¼ 3 388.255 365.064 339.440 311.936 285.519 265.407 258.465 267.101 271.421 268.753  
m ¼ 4 426.617 406.569 385.281 364.312 344.048 325.604 310.892 304.605 313.972 324.338  
m ¼ 5 466.701 450.109 433.188 417.193 402.764 390.720 382.569 381.582 394.069 416.854  
m ¼ 6 511.150 499.265 486.903 475.470 465.404 457.041 450.806 447.382 448.524 460.443  
m ¼ 7 575.854 568.391 559.822 551.731 545.021 540.318 538.220 539.565 546.029 561.651  
m ¼ 8 669.711 668.433 666.736 665.230 664.375 664.503 665.879 668.720 673.219 679.617  
m ¼ 9 802.839 801.816 799.938 798.389 797.915 799.128 802.566 808.764 818.381 832.439  
m ¼ 10 857.329 1126.743 1290.171 1468.684 1641.958 1646.016 1650.812 1656.568 1663.317 1671.060 

α¼60◦ m ¼ 1 155.80 127.93 101.91 87.46 84.76 87.75 87.74 85.39 83.53 82.85  
m ¼ 2 177.60 164.87 151.08 135.99 123.65 118.04 119.84 122.49 123.95 125.39  
m ¼ 3 208.67 196.77 186.09 176.82 170.09 168.11 173.65 183.92 191.66 196.81  
m ¼ 4 243.17 235.16 227.22 220.53 215.64 213.12 214.31 221.78 234.86 247.34  
m ¼ 5 286.77 282.04 277.67 274.44 272.91 273.68 277.76 287.08 303.73 324.96  
m ¼ 6 344.77 343.29 341.90 341.24 341.72 343.63 347.29 353.25 362.77 378.32  
m ¼ 7 422.58 422.43 422.81 424.11 426.67 430.77 436.79 445.27 457.26 474.75  
m ¼ 8 567.01 567.89 569.44 571.80 575.13 579.54 585.08 591.78 599.69 608.91  
m ¼ 9 693.20 694.52 696.83 700.31 705.17 711.65 720.00 730.57 743.79 760.33  
m ¼ 10 783.07 977.67 1159.90 1304.06 1457.99 1604.04 1609.79 1616.39 1623.84 1632.06  

(b) S-S BC without ring support   
n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 

α¼0 m ¼ 1 423.15 273.23 190.05 143.52 122.90 124.56 143.95 175.64 215.95 263.02  
m ¼ 2 612.34 477.48 361.91 282.49 233.04 208.44 205.69 221.45 251.57 292.46  
m ¼ 3 661.78 583.82 493.33 413.17 352.19 312.38 293.49 294.20 312.04 343.91  
m ¼ 4 679.62 635.43 574.22 510.77 455.38 413.79 388.73 381.03 389.98 413.80  
m ¼ 5 699.40 670.71 629.60 583.77 540.47 505.28 481.93 472.48 477.52 496.46  
m ¼ 6 721.29 703.66 676.80 645.44 614.63 588.79 571.37 564.70 569.98 587.42  
m ¼ 7 755.54 743.80 726.27 705.81 685.72 669.23 659.10 657.42 665.50 683.93  
m ¼ 8 820.89 815.58 806.94 796.84 787.49 781.08 779.61 784.73 797.60 818.90  
m ¼ 9 900.28 896.47 890.95 885.19 880.88 879.74 883.29 892.77 909.08 932.77  
m ¼ 10 1134.38 1243.12 1249.79 1256.91 1266.59 1279.51 1296.27 1317.42 1343.47 1374.86 

α¼30◦ m ¼ 1 315.74 230.16 171.52 139.82 131.43 137.07 134.38 124.04 115.49 109.95  
m ¼ 2 340.87 318.22 278.44 234.46 198.75 176.19 172.35 171.09 165.93 161.20  
m ¼ 3 378.60 354.14 328.86 302.58 276.72 257.51 253.09 259.34 256.93 252.01  
m ¼ 4 416.32 395.53 373.13 351.28 330.48 311.63 297.25 294.78 303.79 308.59  
m ¼ 5 456.00 437.65 418.93 401.29 385.53 372.65 364.65 366.42 382.88 397.83  
m ¼ 6 499.14 484.49 469.36 455.49 443.40 433.45 426.16 422.74 427.45 447.73  
m ¼ 7 550.30 541.58 531.66 522.26 514.33 508.56 505.73 507.09 515.68 538.91  
m ¼ 8 617.21 615.35 612.98 610.80 609.34 608.99 610.05 612.84 617.71 625.48  
m ¼ 9 737.56 736.67 735.47 734.60 734.72 736.46 740.41 747.22 757.74 773.53  
m ¼ 10 856.82 1114.31 1120.85 1124.94 1130.01 1136.18 1143.49 1151.93 1161.45 1172.00 

α¼60◦ m ¼ 1 150.20 125.53 99.62 85.42 82.98 83.97 81.21 77.59 75.15 74.15  
m ¼ 2 169.95 156.27 143.96 129.66 117.75 113.12 113.67 113.62 113.30 113.74  
m ¼ 3 200.36 187.52 175.71 165.79 159.21 158.54 164.87 171.51 175.47 178.85  
m ¼ 4 233.06 223.50 214.03 206.00 200.28 197.95 201.39 211.56 222.37 230.87  
m ¼ 5 270.79 264.32 258.29 253.73 251.33 251.97 257.43 270.40 289.25 305.72  
m ¼ 6 317.07 314.87 312.72 311.42 311.47 313.31 317.59 325.72 340.55 362.39  
m ¼ 7 382.75 382.69 383.09 384.38 386.96 391.25 397.80 407.64 422.93 447.40  
m ¼ 8 498.28 499.41 501.36 504.22 508.12 513.19 519.53 527.28 536.68 548.32  
m ¼ 9 150.20 125.53 99.62 85.42 82.98 83.97 81.21 77.59 75.15 74.15  
m ¼ 10 169.95 156.27 143.96 129.66 117.75 113.12 113.67 113.62 113.30 113.74  

(c) C–C BC with ring support   
n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 

α¼0 m ¼ 1 469.51 363.16 307.56 271.10 239.12 214.63 211.41 226.42 255.82 296.14  
m ¼ 2 614.13 480.03 365.92 287.80 245.54 231.26 230.32 243.53 269.82 307.17  
m ¼ 3 684.72 624.93 555.58 495.86 451.80 423.17 403.26 395.91 404.53 427.56  
m ¼ 4 684.95 641.53 581.94 520.49 467.11 427.22 408.82 408.09 420.37 444.79  
m ¼ 5 735.66 718.48 692.70 663.03 634.18 610.31 594.60 589.14 595.03 612.47  
m ¼ 6 745.20 724.84 696.41 665.97 638.74 618.40 607.06 605.84 615.11 634.83 

(continued on next page) 
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cylindrical shell (α = 0). According to this figure, it is apparent that the 
presence of the second ring can enhance the natural frequency of the 
system as a result of increase in the stiffness of the entire structure. 

Fig. 8b provides the results of the case of the conical shell with α =
30◦. While for the case of one ring, similar trends can be observed for 
both the cylindrical and cone shells, as for the case of two rings, some 
obvious differences (in the shape of the curves as well as the location of 
the peaks) in the results of the cylindrical and cone shells can be 
observed. The noted differences can be attributed to the effects of the 
cone angle and non-identical radius of the position where the two rings 
are placed making the mode shapes asymmetrical. 

3.3.3. The effect of auxetic cell parameters 
The impact of auxetic cell geometrical parameters is investigated in 

Figs. 9 and 10. The effect of variation of the ratio of horizontal wall 
length to inclined wall length in the auxetic core, i.e. λ = e/l, on the 
structure’s natural frequency, is demonstrated in Fig. 9. The comparison 
has been performed for two semi-vertex angles of α = 30◦ and α = 60◦ It 
can be seen that the λ ratio does not affect the frequency level signifi-
cantly. Nonetheless, it can be stated that higher values of λ are associ-
ated with higher natural frequencies. It can also be observed that for 
positively inclined angles (i.e. for auxetic cores), the effect of λ becomes 
more distinct. 

The effect of cell wall thickness to inclined wall length, κ, on the 

Table 3 (continued ) 

(c) C–C BC with ring support   
n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10  

m ¼ 7 831.30 825.43 815.84 804.89 794.92 788.13 786.44 791.38 804.05 825.06  
m ¼ 8 859.34 849.72 837.80 826.06 816.53 811.12 811.41 818.53 833.21 855.83  
m ¼ 9 1058.83 1061.12 1062.19 1064.10 1068.12 1075.24 1086.37 1102.32 1123.73 1151.13  
m ¼ 10 1101.86 1236.36 1239.10 1239.52 1241.34 1245.84 1253.93 1266.30 1283.52 1306.05             

α¼30◦ m ¼ 1 326.48 272.28 234.08 210.87 196.56 185.96 182.23 187.68 201.47 221.42  
m ¼ 2 368.72 342.11 290.59 246.13 219.18 216.15 232.51 259.27 275.28 271.79  
m ¼ 3 405.43 365.51 350.82 336.59 322.14 308.53 296.42 286.38 284.60 289.74  
m ¼ 4 450.07 445.71 431.29 400.62 371.23 346.80 328.97 320.01 328.15 355.69  
m ¼ 5 493.38 468.80 447.82 442.25 438.52 435.55 433.69 433.50 435.72 441.15  
m ¼ 6 560.67 551.17 539.18 526.22 514.05 504.51 499.45 500.97 512.10 536.95  
m ¼ 7 605.06 603.70 602.56 601.95 602.12 603.19 605.25 608.39 612.75 618.58  
m ¼ 8 698.70 695.24 690.74 686.44 683.15 681.44 681.75 684.41 689.71 698.03  
m ¼ 9 850.75 905.98 908.17 911.12 915.16 920.50 927.33 935.81 946.12 958.47  
m ¼ 10 905.69 1099.19 1125.94 1128.98 1131.92 1135.79 1141.01 1147.90 1156.74 1167.90             

α¼60◦ m ¼ 1 158.40 144.86 132.04 123.05 117.05 113.74 114.35 119.36 128.59 141.42  
m ¼ 2 207.45 188.39 164.91 148.12 142.54 149.95 167.07 186.54 196.44 200.34  
m ¼ 3 218.47 208.69 206.79 204.96 203.22 201.87 201.49 203.81 213.10 223.17  
m ¼ 4 280.75 272.56 262.47 252.77 245.16 240.81 240.80 247.26 263.64 288.01  
m ¼ 5 330.90 330.01 329.61 330.07 331.49 333.95 337.56 342.43 348.70 356.48  
m ¼ 6 388.76 386.68 385.28 384.91 386.16 389.70 396.39 407.41 424.51 449.77  
m ¼ 7 507.15 508.01 509.55 511.80 514.84 518.71 523.44 529.02 535.50 543.02  
m ¼ 8 567.71 568.43 569.98 572.63 576.59 582.04 589.13 598.02 608.93 622.23  
m ¼ 9 782.15 831.33 833.93 837.57 842.31 848.22 855.35 863.74 873.46 884.58  
m ¼ 10 829.83 974.64 1069.49 1073.44 1077.36 1082.18 1088.10 1095.28 1103.85 1113.99  

(d) S-S BC with ring support 
α=0  n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10  

m ¼ 1 468.43 360.86 304.25 266.77 233.06 208.47 205.73 221.48 251.60 292.49  
m ¼ 2 612.34 477.48 361.91 282.50 240.22 225.27 224.18 237.72 264.59 302.56  
m ¼ 3 679.02 618.75 547.90 486.31 440.34 409.97 388.73 381.03 389.98 413.79  
m ¼ 4 679.62 635.43 574.21 510.77 455.38 413.78 394.31 392.84 405.02 429.86  
m ¼ 5 721.81 704.22 677.39 646.08 615.31 589.52 572.15 565.52 570.83 588.28  
m ¼ 6 729.28 707.61 678.02 646.13 617.32 595.45 582.85 580.76 589.65 609.48  
m ¼ 7 803.58 797.41 787.56 775.99 765.11 757.27 754.58 758.72 770.91 791.81  
m ¼ 8 826.30 817.06 805.11 792.92 782.72 776.56 776.16 782.77 797.21 819.89  
m ¼ 9 985.67 986.32 987.05 988.76 992.47 999.25 1010.11 1025.98 1047.60 1075.55  
m ¼ 10 1042.55 1054.45 1054.94 1056.65 1060.76 1068.19 1079.82 1096.40 1118.53 1146.67 

α¼30◦ m ¼ 1 321.886 269.447 230.714 206.900 191.841 180.649 177.107 183.175 197.671 217.589  
m ¼ 2 353.326 333.859 286.905 242.150 215.739 214.540 232.491 256.824 258.365 253.703  
m ¼ 3 404.814 355.057 335.185 320.695 306.003 291.912 279.163 268.715 271.311 273.085  
m ¼ 4 425.508 421.464 416.582 393.828 362.407 336.317 317.913 311.898 328.142 355.138  
m ¼ 5 489.330 463.135 430.055 413.670 409.233 405.751 403.476 402.993 405.122 410.873  
m ¼ 6 543.896 534.987 522.877 508.973 495.454 484.645 478.935 481.260 495.935 527.478  
m ¼ 7 568.676 565.006 562.193 560.671 560.369 561.165 563.040 566.074 570.460 576.853  
m ¼ 8 662.272 659.376 655.381 651.243 647.800 645.748 645.661 648.015 653.257 662.069  
m ¼ 9 808.500 811.196 813.172 815.956 819.752 824.699 830.916 838.511 847.589 858.269  
m ¼ 10 852.158 923.562 926.124 929.294 933.751 939.873 948.016 958.558 971.940 988.740 

α¼60◦ m ¼ 1 150.776 138.036 125.281 115.895 109.408 105.821 106.411 111.648 121.184 134.076  
m ¼ 2 190.179 187.159 162.396 145.138 140.344 149.285 166.018 175.337 177.380 180.058  
m ¼ 3 215.497 187.841 185.590 183.503 181.614 180.198 180.391 188.618 199.112 207.014  
m ¼ 4 270.778 262.288 251.477 240.592 231.908 227.277 229.016 240.904 262.682 286.017  
m ¼ 5 298.766 296.620 295.336 295.340 296.503 298.783 302.275 307.176 313.804 322.595  
m ¼ 6 360.710 358.782 357.215 356.609 357.785 361.722 369.688 383.541 405.809 438.046  
m ¼ 7 459.752 460.632 462.236 464.588 467.735 471.717 476.572 482.357 489.237 497.844  
m ¼ 8 519.826 520.823 522.904 526.179 530.826 537.028 544.977 554.908 567.179 582.491  
m ¼ 9 734.048 735.712 738.403 742.137 746.905 752.692 759.468 767.200 775.858 785.430  
m ¼ 10 781.736 840.464 844.229 849.295 855.937 864.297 874.521 886.774 901.256 918.226  
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Fig. 6. The natural frequency of the conical shell with auxetic core versus the ring positions comparing without ring and utilization of one ring support. (a) α =
0◦ and (b) α = 30◦

Fig. 7. Schematic representation of vibrational mode shapes of a cylinder without ring.  
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natural frequency of the conical shell is illustrated in Fig. 10. It can be 
seen that by decreasing the relative thickness κ of the auxetic core, the 
natural frequency of the system increases. It is known that by increasing 
either the relative cell wall thickness κ or the value of the cell interior 
angle θ, the density of the core layer increases, while its stiffness in-
creases in one direction and decreases in the other direction (See Fig. A1 
in the Appendix). Therefore, it may be concluded that mass change 
dominates the natural frequency of the structure. This is why increasing 
κ and/or value of θ reduces the natural frequency of the structure 
(Fig. 10). This is similar to what has been previously reported in 

previous work on doubly-curved stiffened sandwich panels with auxetic 
core [85]. It must be noted that in this work, the auxetic core thickness is 
considered to be constant. Moreover, in lower cone angles, the effect of 
changing both the λ and κ ratios become more intense (Fig. 9). As ex-
pected, conical shells’ frequencies are the highest in fully clamped 
boundary conditions, as seen in Figs. 9 and 10. 

The variation of natural frequency with respect to both the cone 
angle and the auxetic interior angle is demonstrated in Fig. 11. The goal 
was to study the effects of the presence of the ring support and boundary 
condition type on the frequency variations. Comparing the graphs 

Fig. 8. The effect of adding a second ring to (a) cylindrical shell and (b) conical shell (with α = 30◦) on the natural frequency.  
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demonstrates that adding ring support increases the natural frequency 
regardless of the boundary condition type. This can be attributed to the 
increase in the overall stiffness of the structure. Moreover, it is evident 
that increasing both cone and auxetic interior angles decreases the 
natural frequency, most probably due to a decrease in the stiffness of the 
shell. 

4. Concluding remarks 

The main emphasis of this paper was to study the influence of the 
auxetic core parameters on the vibrational behavior of conical shells. 
Due to the lack of an analytical study on the impact of negative Poisson’s 
ratio and auxetic parameters on the vibration characteristics of conical 
shells with/without ring support, this study was performed to investi-
gate impact of these parameters. The influence of the semi-vertex angle, 

Fig. 9. Variation of the first natural frequency of the conical shell with ring support with respect to the auxetic interior angle for four differentλratios and for (a) 
clamped-clamped and (b) simply supported-simply supported boundary conditions. 
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Fig. 10. Variation of the first natural frequency for the conical shell with ring support with respect to the auxetic interior angle for four different dimensionless ratios 
of κ. (a) clamped-clamped, (b) simply supported-simply supported. 
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Fig. 11. Frequency variation of the conical sandwich shell with and without the ring support in terms of auxetic and cone angles for various boundary conditions. (a) 
C – C without ring support, (b) C – C with ring support, (c) S – S without ring support, (d) S – S with ring support, (e) S – C without ring support, (f) S – C with ring 
support, (g) C – S without ring support, (h) C – S with ring support. 
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the auxetic core interior angle, and various boundary conditions was 
studied as well. The mechanical properties of the auxetic core were 
extracted from a micromechanical approach and then implemented in 
the calculations. Afterwards, the FSDT method for shells was utilized, 
and the governing equations were obtained. Finally, the GDQEM was 
used to solve the governing equations. The results show that  

• introducing an intermediate ring support has a significant impact on 
natural frequencies of the system. The importance of ring position is 
found to be highly dependent on longitudinal mode shapes of 
vibration.  

• the impact of ring position on natural frequencies is affected by the 
semi-vertex angle of the cone, and a shift in frequency peaks can be 
seen by changing the geometry from cylinder to cone.  

• increasing the semi-vertex angle of the cone leads to lower natural 
frequencies. Consequently, the higher frequencies in all cases belong 
to the cylinder (i.e. when the semi-vertex angle is zero).  

• variation of the auxetic interior angle affects the natural frequencies 
significantly. By increasing the auxetic interior angle, the natural 
frequencies decrease.  

• other geometrical parameters related to the auxetic core pattern (for 
instance, the thickness-to-cell wall length ratio) also affect the nat-
ural frequencies of the conical sandwich shells. This influence is 
more distinguishable in lower cone angles. 

• the trend of influence of different parameters on the natural fre-
quency of the cones is similar for all boundary conditions. Moreover, 
stiffer boundary conditions (for instance, clamped-clamped bound-
ary conditions) lead to higher natural frequency values. 
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Appendix 

This section presents the effect of auxetic parameters on the me-
chanical properties of the auxetic core. Fig. A.1 shows that auxetic 
interior angle significantly affects the mechanical characteristics of the 
structure. 

References 

[1] Wang Z, Zulifqar A, Hu H. Auxetic composites in aerospace engineering. In: Rana S, 
Fangueiro R, editors. Advanced composite materials for aerospace engineering. 
Woodhead Publishing; 2016. p. 213–40. 

[2] Baughman RH. Auxetic materials: avoiding the shrink. Nature 2003;425(6959): 
667. 

[3] Dirrenberger J, Forest S, Jeulin D. Effective elastic properties of auxetic 
microstructures: anisotropy and structural applications. Int J Mech Mater Des 
2013;9(1):21–33. 

[4] Ghavidelnia N, Bodaghi M, Hedayati R. Idealized 3D auxetic mechanical 
metamaterial: an analytical, numerical, and experimental study. Mater (Basel) 
2021;14(4):993. 

[5] Kolken HMA, et al. Mechanical performance of auxetic meta-biomaterials. J Mech 
Behav Biomed Mater 2020;104:103658. 

[6] Kolken HMA, et al. Mechanisms of fatigue crack initiation and propagation in 
auxetic meta-biomaterials. Acta Biomater 2022;138:398–409. 

[7] Kolken HMA, et al. Fatigue performance of auxetic meta-biomaterials. Acta 
Biomater 2021;126:511–23. 

[8] Ghavidelnia N, Bodaghi M, Hedayati R. Femur auxetic meta-implants with tuned 
micromotion distribution. Materials (Basel) 2021;14(1):114. 

Fig. A.1. Variation of the mechanical properties of the auxetic structure with respect to the auxetic interior angle for various rib length ratios: (a) density, (b) 
Young’s modulus E1, (c) Young’s modulus E2, and (d) Poisson ratio of the auxetic core layer. 

M. Alinia et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0955-7997(23)00168-6/sbref0001
http://refhub.elsevier.com/S0955-7997(23)00168-6/sbref0001
http://refhub.elsevier.com/S0955-7997(23)00168-6/sbref0001
http://refhub.elsevier.com/S0955-7997(23)00168-6/sbref0002
http://refhub.elsevier.com/S0955-7997(23)00168-6/sbref0002
http://refhub.elsevier.com/S0955-7997(23)00168-6/sbref0003
http://refhub.elsevier.com/S0955-7997(23)00168-6/sbref0003
http://refhub.elsevier.com/S0955-7997(23)00168-6/sbref0003
http://refhub.elsevier.com/S0955-7997(23)00168-6/sbref0004
http://refhub.elsevier.com/S0955-7997(23)00168-6/sbref0004
http://refhub.elsevier.com/S0955-7997(23)00168-6/sbref0004
http://refhub.elsevier.com/S0955-7997(23)00168-6/sbref0005
http://refhub.elsevier.com/S0955-7997(23)00168-6/sbref0005
http://refhub.elsevier.com/S0955-7997(23)00168-6/sbref0006
http://refhub.elsevier.com/S0955-7997(23)00168-6/sbref0006
http://refhub.elsevier.com/S0955-7997(23)00168-6/sbref0007
http://refhub.elsevier.com/S0955-7997(23)00168-6/sbref0007
http://refhub.elsevier.com/S0955-7997(23)00168-6/sbref0008
http://refhub.elsevier.com/S0955-7997(23)00168-6/sbref0008


Engineering Analysis with Boundary Elements 152 (2023) 130–147

146
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