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Nomenclature 
 
ACM  - Automatic Control Mode 
ACU  - Automatic Control Unit  
AR  - Augmented Reality 
CASAC - Context-Aware Semi-Autonomous Control 
DOF  - Degree-of-freedom  
(s)EMG - (surface)Electromyography 
HMI(s)  - Human-Machine Interface(s)  
IMU  - Inertial Measurement Unit 
LCCP   - Locally Convex Connected Patches 
LDA   - Linear Discriminant Analysis 
MCM  - Manual Control Mode  
MCU  - Manual Control Unit 
MVC  - Maximal Voluntary Contraction 
RGB-D - Colour and Depth  
RANSAC - Random Sample Consensus 
SLAM  - Simultaneous Localization and Mapping 
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Introduction 
 
Hands are a highly dexterous tool which plays an essential role in humans’ interaction with the world. 
Therefore, the sudden loss or congenital absence of hands can have a dramatic impact on a person’s 
ability to perform work-related, social and daily living activities. One study has estimated that more 
than 541,000 upper limb amputees live in the United States alone [1]. 
 
The adoption of morphological and functional substitutions for the missing limb can alleviate the 
profound negative impact that amputation has on a person’s life. Limb transplants are a way to achieve 
such substitution. However, between 1999 [2] and 2014 [3], only 70 successful cases of upper limb 
transplant have been reported due to the difficulties in finding the right donors and the necessary heavy 
immunosuppressive treatments. Prostheses adoption is a solution far more accepted in replacing the 
missing limb after an amputation. Prostheses have developed from simple cosmetic replacements into 
actuated systems: passive mechanic body-powered devices at first and mechatronic battery-powered 
active devices later on [4]. Battery-powered devices have been developed with the aim of reducing 
some drawbacks of the body-powered ones. The main drawbacks in body-powered prosthesis are the 
need for wearing a harness, the necessity for the user to generate high forces while operating the device, 
and their low morphological similarity to sound hands. Thus, a great variety of battery-powered 
devices is available nowadays. This include relatively simple single or multi degree-of-freedom (DOF) 
systems, like the Ottobock’s Sensor Hand Speed [5] and Michelangelo Hand [6], and more complex 
mechatronic systems offering individual finger control and grasping capabilities close to the human 
hands [7], [8], like the Touch Bionics’s i-Limb and the DARPA’s prosthetic arm [9], [10].  
 
Despite being the result of the long prostheses evolution and adopting cutting edge technological 
solutions, the battery-powered devices still have very high rejection ratios (23% of the amputees on 
average) or are used passively (27% of wearers) [11]. A closer look at the needs of upper limb 
prostheses users reveals possible reasons for such trends. Cordella et al. [12] reported two rudimentary 
categories of needs among upper limb prosthesis users: (1) those that are related to the morphological 
or physical properties of the prostheses (e.g., weight, comfort, durability) and (2) those that are related 
to the dexterity of the prostheses. In this study, I focus on dexterity, since this would address the 
majority of the suggestions for future prostheses developments listed by Cordella et al. [12], ultimately 
leading to increased myoelectric prostheses acceptance. Multiple factors can help improving the 
dexterity of the prostheses, such as providing sensory feedback, enabling precise and simultaneous 
control of several degrees of freedom, preventing object slippage, and precisely controlling applied 
forces on handled objects [12]. 
 
The aforementioned factors regarding prostheses’ dexterity can all be addressed by improving the 
design of Human-Machine Interfaces (HMIs), through which users communicate with their prostheses. 
Almost twenty years ago [13], it was already recognized that simple, intuitive, and reliable interfaces 
for prosthesis control and feedback had to be developed. Nevertheless, modern interfaces are still far 
from being simple, intuitive and reliable. Therefore, the issue is still highly relevant [14]. Improving 
the HMIs designs is vital to improving prosthesis dexterity, and thus the dexterity-related factors listed 
above. According to Jiang et al. [15], HMIs for prosthesis control developed far slower than the robotic 
technologies they are interfaced with, becoming therefore inadequate for such systems [13], [16]. A 
multiplicity of HMIs have been developed over the last decades for efferent [17]–[19] and afferent 
[20]–[22] pathways in order to be employed in prosthetic devices control scenarios. Efferent interfaces 
are designed to decode high-level information (e.g., eat an apple) from users’ neural activities (e.g., 
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using electroencephalography or electrocorticography) and transmit commands to the prosthetic 
device. However, they are highly impractical for prosthesis control applications due to their complex 
instrumentation and low data transfer rates [17]. Therefore, interfaces that decode low-level signals, 
like muscle activations (e.g., electromyography (EMG) and mechanomyography), are often preferred 
for prosthesis control. Specifically, the myoelectric control interface is the state-of-the-art 
implementation in commercially available prostheses [15]. This type of interface decodes activations 
of forearm muscles into control commands proportional to the contraction intensity (i.e., proportional 
control). The user often needs to generate all the necessary input signals to operate the device because 
no form of automation [23] is implemented in most of the myoelectric control schemes. Myoelectric 
prostheses often do not include afferent interfaces either [12], [24], which are at the base of automation. 
Afferent interfaces are responsible for gathering information through sensors and transmitting them to 
the user or the computing unit. Afferent interfaces disregard, together with poorly designed efferent 
interfaces, makes the control of modern myoelectric prostheses tedious, unintuitive, and unnatural 
[25].  
 
The importance of both efferent and afferent pathways can be seen in complex motor tasks. An ideal 
example is reaching and grasping. In this motor task, afferent pathways provide visual, tactile, and 
proprioceptive information to initially estimate, and later adjust, the motor commands sent through the 
efferent pathways for correctly shaping and orientating the hand [26]. Most importantly, for the 
majority of the time, the user is only actively concerned with the high-level control decisions (e.g., 
move a cup from a shelf to a table) while the low-level ones (e.g., hand aperture, grip force regulation) 
are handled subconsciously. During reaching and grasping, subconscious motor control requires 
multimodal afferent input to be processed by the human brain (vision, muscle spindles, Golgi tendon 
organs, joint receptors and skin receptors [27]). The state-of-the-art efferent interfaces in prosthetics, 
relying on myoelectric signals only, do not take advantage of multiple sensory inputs modalities, 
therefore making subconscious control impossible. As a result, the users have to consciously plan and 
directly perform all the necessary aspects of the task.  
 
The ability of the prosthesis to independently and automatically perform a restricted set of actions, 
while simultaneously providing the user with direct control, is possibly the closest artificial counterpart 
to the natural human control. This is called semi-autonomous control. Research on semi-autonomous 
control with the aim of enhancing user experience has been performed for decades. Initial research 
focused on automatically selecting grasp type based on hand-to-object contact point [28]–[30]. Later 
on, more advanced systems were developed and commercialized for automatic reduction of users’ 
compensatory movements during reaching [31] or object slippage avoidance [5], [32], [33]. In the last 
two decades, the increased interest in multimodal sensor-fusion approaches1, which gather multimodal 
sensory inputs and interpret them using ad-hoc algorithms [34], facilitated new developments in semi-
autonomous systems. New systems could automatically perform specific complex tasks after being 
triggered by the user [35], [36], or even by inferring users’ behaviours [27], [37]–[41]. In particular, 
Markovic et al. [27] developed and tested a semi-autonomous system for prosthesis preshape during 
grasp tasks. The system mimics human motor control by replacing the biological sensors involved in 
hand preshaping with mechatronic ones: human eyes, proprioceptors, and somatosensory receptors are 
replaced by cameras, gyroscopes, motor encoders, and force sensors. The system developed by 

                                                
1 I could retrieve approximately 100 papers regarding sensor-fusion systems to analyze this trend. The number of published 
papers increased steadily, between 125% and 200%, every five years since the first few papers found in 1989. Nevertheless, 
the calculated rate of growth does not consider the fact that historic documents might not be available in digital format and 
therefore I could have missed them by performing only an electronic search. Yet, being the trend strongly visible between 
the years 2002 and 2017, when most of the research has been presumably published online, I assume that these findings 
can be trusted. 
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Markovic et al. outperformed the state-of-the-art of commercially available myoelectric controllers 
[27]. 
 
In this study, the system developed by Markovic et al. [27] has been upgraded by adding retroreflective 
markers and a prosthetic wrist with both flexion/extension and pronation/supination active degrees of 
freedom. The retroreflective markers made the system aware of the position of the prosthesis in space, 
while the two degrees-of-freedom wrist allowed for precise preshaping during grasping tasks. The 
sensor-fusion algorithm at the core of the system has also been improved, permitting system’s usability 
in cluttered scenarios and accurate estimation of users’ grasp intentions.  
 
The aim of this study was to develop a system that complements the academic myoelectric state-of-
the-art prosthetic control methodologies during the interaction with objects (e.g., grasping, 
manipulation) with the goal of increasing the overall robustness and performances of the prosthetic 
device. The second aim was to define guidelines, based on the acquired experimental data, for a larger-
scale experiment to be performed in the immediate future. Two tests were designed to evaluate the 
performances, robustness and usability of the developed system in cluttered scenarios. These tests 
required the user to interact with multiple objects by reaching, grasping, reorienting, and repositioning 
them. The time to complete each trial and the number of drops have been recorded. These data have 
been used to evaluate system performance and robustness, respectively. The developed system has 
been compared with the myoelectric state-of-the-art control by performing the tests with both the 
control schemes. The novel system supplements the myoelectric control scheme by adding automation 
to it, therefore it is expected to perform better.  
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Paper 

Multimodal Sensor-Fusion for Context-Aware Semi-Autonomous 
Control of a Multi Degree-of-Freedom Upper Limb Prosthesis  
Stefano Carisi 

Abstract 
Objective. Dexterous control of myoelectric upper limb prosthesis is still limited by the capabilities of the 
modern human-machine interfaces. The first goal of the current work was to develop a system that 
supplements the academic myoelectric state-of-the-art interface during the interaction with objects (e.g., 
grasping, manipulation) with the goal of increasing the overall performances and robustness of the prosthetic 
device. Additionally, the current study aims to define guidelines for a larger-scale experiment to be performed 
in the immediate future. Approach. I developed algorithms, which provide context- and user-awareness to the 
system by fusing multimodal sensory input data, and a control scheme that employs such context-awareness 
to estimate the user’s grasp intentions to automatically preshape the prosthesis for grasping in real time. The 
control scheme was compared against the major academic state-of-the-art myoelectric control scheme (i.e., 
pattern recognition) in two able-bodied subjects. The experimental tests consisted of grasping, reorienting, 
and relocating sets of common objects using a multi-degree-of-freedom prosthesis with two grip types and 
two degrees-of-freedom actuated wrist. Main Results. The proposed semi-autonomous system was able to 
function in realistic and time-varying cluttered environments. The obtained results illustrate better and more 
consistent performances (i.e., lower task completion time and standard deviation) of the developed control 
scheme with respect to the state-of-the-art counterpart. Improvements in control robustness during object 
manipulation (i.e., lower number of object drops) have also been obtained. The current study helped in 
defining guidelines for the future larger-scale experiment: more than one experimental session, data logging 
and subjective measurements recording. Significance. The proposed system improves multiple aspects 
involved in the control of myoelectric multi-degree-of-freedom upper limb prostheses. The guidelines defined 
in this work, are essential for evaluating, during the future larger-scale study, the impact of the proposed 
system on users’ experience (e.g., workload and ease of use).  
 
 
1. Introduction  
 
Hands are a highly dexterous tool which plays an essential role 
in humans’ interaction with the world. Therefore, the sudden loss 
or congenital absence of hands can have a dramatic impact on a 
person’s ability to perform work-related, social and daily living 
activities. Myoelectric prostheses are the result of a long 
evolutionary process to provide morphological and functional 
replacement to missing limbs. They are mechanically very 
advanced and mimic closely sound hands’ degrees of freedom 
[7] allowing, among others, individual finger movements and up 
to 24 different grip patterns over the 33 that are possible with a 
sound hand [8]. Nevertheless, myoelectric prostheses have still 
very high rejection ratios (23% of the amputees, on average) or 
are passively used (27% of wearers) [11]. Cordella et al. [12] 
reported that one of the primary complaints of upper limb 
amputees was the low dexterity of their prostheses. Thus, 
dexterity is critical for improving the user acceptance of 
myoelectric prostheses. Multiple factors can help improve the 
dexterity of a prosthesis, such as providing sensory feedback, 
enabling precise and simultaneous control of several degrees of 

freedom, preventing object slippage, and precisely controlling 
applied forces on handled objects [12].  
        The aforementioned factors regarding prostheses’ dexterity 
can be addressed by improving the design of Human-Machine 
Interfaces (HMIs), through which the users communicate with 
their prostheses. According to Jiang et al. [15], HMIs for 
prosthesis control developed far slower than the robotic 
technologies they are interfaced with, becoming, therefore, 
inadequate [13], [16]. A multiplicity of HMIs have been 
developed over the last decades for efferent [17]–[19] and 
afferent [20]–[22] pathways in order to be employed in 
prosthetic control. Interfaces can decode high-level information 
(e.g., eat an apple) or low-level ones (e.g., muscle activation). 
Interfaces for high-level decoding have been tested several times 
in the attempt to provide valid substitutes for myoelectric 
interfaces. However, they are highly impractical for prosthesis 
control due to their complex instrumentation and low data 
transfer rates [17]. Therefore, low-level interfaces, like the 
myoelectric ones, are still the state-of-the-art implementation in 
commercially available prostheses [15]. Nevertheless, these 
interfaces include no form of automation and the users often 
need to generate all the necessary input signals in unintuitive, 
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and unnatural manners [25]. Newer approaches in myoelectric 
control have been developed to provide more natural and 
intuitive control. One of these is pattern recognition, often 
implemented using the Discriminant Analysis (LDA) method, 
which analyses the patterns generated by the contraction of 
multiple forearm muscles and associates independent prosthesis 
motions to each of them. This approach showed promising initial 
results and quickly became the state of the art in the academia, 
but found only recently a limited translation into commercial 
applications (COAPT [42]) mainly due to its lack of robustness 
[43]. Myoelectric interfaces based on pattern recognition, 
though, rely only on low-level information and didn’t address 
the limitations related to the absence of automation. Systems 
employing myoelectric control often underestimate afferent 
interfaces and feedback [12], [24], which are at the base of 
automation. Afferent interfaces are responsible for gathering 
information through sensors and transmitting them to the user or 
the computing unit. Afferent interfaces disregard, together with 
poorly designed efferent interfaces, makes the control of modern 
myoelectric prostheses tedious, unintuitive, and unnatural [25]. 
        The myoelectric HMIs in prosthetics have been 
significantly improved by a technique called multimodal sensor-
fusion. For this reason, multimodal sensor-fusion approaches are 
gaining popularity in research. They rely on afferent interfaces 
to gather multimodal input information, which is then fused (i.e., 
combined) together using ad-hoc algorithms that estimate high-
level user intent. Importantly, multimodal sensor-fusion 
techniques distinguish themselves from the conventional 
interfaces, which can combine data obtained from multiple 
sensors but all belonging to the same modality (unimodal sensor-
fusion). Relying on multiple sensor modalities, multimodal 
sensor-fusion systems can interpret user’s behaviour and 
surroundings so as to implement some degree of automation. 
This generally increases ease of use, robustness, or performance 
compared to what is achievable by each interface involved in the 
system when considered independently [44], [45]. Obtaining 
context-awareness is an approach widely spread in multimodal 
sensor-fusion for wheelchair drive ([46], [47], [48], [49]), but it 
is recently gaining popularity in upper limb prostheses control. 
The myoelectric interfaces have been supplemented by systems 
for automatic reduction of users’ compensatory movements 
during reaching using IMU data [50], object slippage avoidance 
by interpreting force sensor data [5], [32], [33], or automatic 
grasp estimation thanks to computer vision [27], [37]. In 
particular, Markovic et al. [27] developed and tested a semi-
autonomous system for prosthesis preshape during grasp tasks. 
The system mimics human motor control by replacing the 
biological sensors involved in hand preshaping with 
mechatronic ones: human eyes, proprioceptors, and 
somatosensory receptors are replaced by cameras, gyroscopes, 
motor encoders, and force sensors. The system developed by 
Markovic et al. outperformed the state-of-the-art of 
commercially available myoelectric controllers [27]. 
        In this study, the system developed by Markovic et al. [27] 
has been upgraded by adding retroreflective markers and a 
prosthetic wrist with both flexion/extension and 
pronation/supination active degrees of freedom. The 
retroreflective markers made the system aware of the position of 
the prosthesis in space, while the two degrees-of-freedom wrist 
allowed for precise preshaping during grasping tasks. The 
sensor-fusion algorithm at the core of the system has also been 
improved, permitting system’s usability in cluttered scenarios 
and accurate estimation of users’ grasp intentions. Overall, the 

system developed in this study exploits a multiplicity of 
proprioceptive and exteroceptive sensing units to closely mimic 
the natural human control techniques. It gathers information 
which is naturally used by humans performing grasping tasks: a 
depth camera is used for visual assessment of the workspace; a 
gyroscope, retroreflective markers, and motor encoders provide 
knowledge on prosthesis pose, position, and orientation in space; 
a force sensor is employed for object interactions estimation. 
Myoelectric signals are also recorded and used as direct user 
control inputs. All the collected inputs are processed by the ad-
hoc sensor-fusion algorithm, which is responsible for estimating 
high-level user intentions (e.g., targeted object, desired grasp 
type) and performing low-level tasks accordingly (e.g., hand 
aperture and wrist orientation adjustments). The control loop is 
closed by providing the user with Augmented Reality (AR) 
information about the state of the system and the decisions made 
by the algorithm. As a result, the system and user collaborate 
towards the common goal of object interaction: the algorithm 
supports the user in low-level controls while the user focuses on 
the high-level decisions (e.g., where to position the hand, what 
to do with the object) and just seldom fine-tunes the system’s 
decisions. 
        The aim of this study was to develop a Context-Aware 
Semi-Autonomous Control (CASAC) system that 
complemented the academic myoelectric state-of-the-art 
prosthetic control methodologies during the interaction with 
objects (e.g., grasping, manipulation) with the goal of increasing 
the overall robustness and performances of the prosthetic device. 
The second aim was to define guidelines, based on the acquired 
experimental data, for a larger-scale experiment to be performed 
in the immediate future. Two tests were designed to evaluate the 
performances, robustness and usability of CASAC in cluttered 
scenarios. These tests required the user to interact with multiple 
objects by reaching, grasping, reorienting, and repositioning 
them on a table. The time to complete each trial and the number 
of drops have been recorded. These data have been used to 
evaluate system performance and robustness, respectively. 
CASAC has been compared with LDA by performing the tests 
with both the control schemes. The developed system 
supplements LDA by adding automation to it, therefore it is 
expected to perform better than LDA alone. 
 
 2. Materials and methods  
 
2.1 Overall control system operation 
 
The conceptual scheme of the implemented semi-autonomous 
control system is depicted in Figure 1. The system can operate 
in two control modes: Automatic Control Mode (ACM) Figure 
1(A) selected by default, and Manual Control Mode (MCM) 
Figure 1(B). The ACM relies on the system’s context-awareness 
to infer user intentions and accordingly adjust the corresponding 
DOFs of the prosthesis. Specifically, the ACM performs two 
actions simultaneously: it gathers information on the 
environment and updates its model, and automatically preshapes 
the prosthesis. The MCM, instead, allows the user to manually 
control the prosthesis by generating appropriate myoelectric 
control signals that are decoded in corresponding myoelectric 
control commands for the prosthesis. The user can switch from 
ACM to MCM by generating any valid myoelectric control 
command (IF block (1) in Figure 1). All the ACM functions (i.e., 
Scene Model/Lock and Prosthesis Preshape/Freeze) are 
automatically paused when the user switches to the MCM. Once 
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in MCM, the system will automatically return to ACM if the user 
is neither sending myoelectric commands nor manipulating any 
object (IF block (2) in Figure 1). To recognize if the user is 
manipulating an object, the system relies on the force sensor 
integrated on the prosthesis thumb: detection of an interaction 
force after a manual myoelectric command to close the 
prosthesis implies that an object has been grasped and that the 
manipulation phase has begun. When the manipulation phase is 
over, the system switches back to the ACM, resuming its 
functions. The ACM can also be paused to prevent objects tilting 
or breaking. This is identified by the system when the prosthesis 
is automatically preshaping and a force is detected.  
        The overall system operates as a state machine, where two 
groups of states are simultaneously active: the first group 
concerns the prosthesis preshaping (includes Manual Prosthesis 
Control, Prosthesis Preshape, and Prosthesis Freeze states), 
whilst the second one refers to the scene surrounding the user 
(Scene Model and Scene Lock states). These states follow a 
hierarchical structure, where the Manual Prosthesis Control has 
the biggest influence, being responsible for pausing the 
Automatic Control Mode and therefore deactivating all the other 
states. Prosthesis Preshape and Prosthesis Freeze are second in 
order of importance since they have direct influence over the 
scene-related states (Scene Model and Scene Lock). 
The prosthesis preshaping states are regulated according to the 
following set of rules: 

1. In case myoelectric control commands are detected, the 
prosthesis is fully manually controlled (Manual Prosthesis 
Control) 

2. When the prosthesis is in the proximity of an object, this 

object is tagged as selected and the prosthesis is 
automatically preshaped for grabbing it optimally 
(Prosthesis Preshape). 

3. If an object is selected and the prosthesis is very close to it, 
the system assumes that the user will grasp the selected 
object. Therefore, in order to provide the user with a stable 
condition for grasping, the prosthesis’ DOFs are not 
adjusted. This also prevents involuntary contacts with the 
object due to unexpected automatic movements (Prosthesis 
Freeze). 

Importantly, in case the prosthesis would be too far from any 
object, and no myoelectric control command is sent, the 
prosthesis would receive no instructions from the system.  
The states regarding the scene surrounding the user function as 
follows: 

1. In Scene Model state, a new update of the scene is 
computed every frame. When the scene is updated, the 
objects’ models are recomputed, meaning that their shapes, 
positions, sizes, and orientations get updated.  

2. The Scene Lock state is triggered when any of these two 
criteria is verified: the user is selecting an object (prosthesis 
adjusting or frozen) or moving too fast in the scene. The 
first condition is necessary to avoid modelling incomplete 
objects when the prosthesis is in their proximity, partially 
occluding them from camera’s sight. The second condition 
has been included to cope with the delay intrinsically 
present in modelling the scene. Practically, if the user is 
moving fast, the camera is also moving fast and the new 
frame will be captured from a strongly different point of 
view compared to the previous one. This would make the 

 
Figure 1 | Conceptual Scheme of the Semi-Autonomous control system. The system operates either in Automatic Control 
Mode (ACM), the default one, or in Manual Control Mode (MCM). The user can take manual control over the prosthesis by 
generating valid myoelectric control commands, which will switch the control of the prosthesis to the MCM and simultaneously 
pause the ACM. When the system is in ACM (subfigure A), information is continuously captured from user’s surroundings 
and decisions are taken in real time regarding the preshaping of the prosthesis. The ACM performs two distinct functions 
simultaneously: updates the model of the environment (Scene Model/Scene Lock) and preshapes the prosthesis (Prosthesis 
Preshape/Prosthesis Freeze). 
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link between the two scenes very hard to be found. Not 
updating the scene when the user is moving fast does not 
interfere with the objective of this study. In the tests 
performed in this study the user is involved in grasping 
only stationary objects, an activity generally performed 
while moving at low speed and steadily observing the 
object. 

 
2.2 System Prototype  
 
The system prototype comprises the following components: (1) 
eight 13E200 dry EMG electrodes with integrated amplifiers 
(Otto Bock Healthcare GmbH, Vienna, AT), (2) Michelangelo 
left-hand prosthesis with active wrist rotator and flexor module 
(Otto Bock Healthcare GmbH, Vienna, AT) mounted on a 
custom-made support (i.e., socket), (3) an MTx Inertial 
Measurement Unit (IMU) (XSens Technologies B.V., Enschede, 
NL), (4) Meta Glasses Development Kit 1 (Meta Company, San 
Mateo, CA), (5) Creative SR300 camera (Creative Technology 
Ltd, SG), (6) three retroreflective markers (19-mm diameter), 
and (7) a processing unit (i.e., a standard desktop PC with 16GB 
RAM and 8-core i7@4.0 GHz CPU). Figure 2 illustrates the 
relevant components. 
The myoelectric interface comprises an array of eight dry active 
electrodes evenly distributed over subjects’ forearm muscles, on 
the ipsilateral side of the prosthesis. The electrodes with 
adjustable gains acquired the EMG data and directly provided 
the smoothed signals (linear envelopes) which did not require 
low-pass filtering. The linear envelopes were sampled at 100 Hz 
and transferred to the host PC via the Bluetooth connection. 
        The Michelangelo hand prosthesis provides simultaneous 
opening and closing of all fingers with two grip types (palmar2 
and lateral3), as well as actuated wrist pronation/supination and 

                                                
2 the tip of the thumb opposes against the tip of other digits 

flexion/extension [6]. The prosthesis is mounted on a custom-
made ergonomic socket which is connected to the left forearm 
of able-bodied subjects, positioning the prosthesis below the 
hand and in a more distal position. The four position encoders 
(thumb, fingers, wrist rotator and wrist flexor) measure fingers 
aperture and prosthesis orientation relative to the socket. A 
single force transducer positioned at the base of the thumb 
measures the grasping force. A bidirectional communication 
protocol, running over a Bluetooth interface at 100 Hz, allows 
the prosthesis for sensory data transmission and control 
commands reception.  
        The IMU is attached to the custom-made socket through a 
3D printed connector. The IMU measures the absolute 
orientation of the prosthetic hand with respect to the laboratory 
coordinate system (i.e., yaw, roll and pitch angles) and streams 
data to the host PC at a sampling rate of 30 Hz through a battery-
powered acquisition and wireless transmission unit (XBus, 
XSens Technologies B.V., Enschede, NL). 
        The AR Meta Glasses, connected to the computer through 
an HDMI wired connection, superimpose digital holographic 
images to the real world, allowing the user to receive visual 
feedback directly on the scene she/he is interacting with. The 
holographic images are generated by projecting, with a refresh 
rate of 30 Hz, 960×540 pixels screens on two semi-transparent 
glasses located in front of user’s eyes. The Meta Glasses also 
embed an inertial sensor and a 320×240 pixels depth camera, 
which, due to their low resolutions, have been replaced by the 
Creative SR300 camera sensors in the current system. 
        A Creative SR300 camera is mounted on the glasses worn 
by the subject by using a 3D printed support. This ensures that 
the camera is facing the same scene that the user is looking at. It 
simultaneously acquires and streams, at 30 Hz through a USB 
port, both colour and depth (RGB-D) images [45] at a resolution 
of 1920×1080 pixels and 640×480 pixels, respectively. The 
depth data are acquired using the embedded infrared camera, 
while the RGB-D data is used for ego-motion estimation. 
        The three retroreflective markers are placed on the custom-
made forearm splint in positions that prevent occlusion while 
performing the tasks. The relative position of the markers is 
captured at 30 Hz by the infrared sensor of the SR300. 
        The host PC (1) receives data from sensors of the 
prosthesis, the myoelectric interface, the inertial unit, and the 
camera; (2) processes them to obtain context-awareness and 
make decisions regarding the prosthesis control; (3) sends 
control commands to the prosthesis and (4) visualize feedback 
on the augmented reality glasses. Likewise, the host PC also 
provides a user interface for experimental protocol execution 
(e.g., starting, stopping), system setup and monitoring. The 
algorithms are implemented using C++ for scene generation, 
Unity 3D (Unity Technologies, San Francisco, US) for scene 
management, prosthesis preshaping and AR feedback, 
MATLAB 2017a and Simulink (MathWorks, Natick, US-MA) 
for myoelectric inputs decoding (CLS Toolbox [51]). 
 
2.3 Control flow and algorithm implementation 
 
The novel context-aware sensor-fusion control scheme 
integrates an Automatic and a Manual Control Unit (ACU and 
MCU), illustrated in Figure 3(A) and Figure 3(B) respectively. 
The outputs of these two units are mixed in the Decision Mixing 
Unit (Figure 3(C)), which is in charge of simultaneously and 

3 the pad of the thumb against the lateral side of the index 

 
 
Figure 2 | System components. The system comprises (1) 
eight dry surface EMG electrodes, (2) a prosthesis with two 
grip types, active wrist and flexor, (3) an inertial 
measurement unit, (4) augmented reality glasses, (5) a 
color and depth camera, (6) three retroreflective markers 
and a standard PC (not illustrated in the figure).  
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proportionally controlling the multiple degrees of freedom of the 
prosthesis. Lastly, the Augmented Reality Feedback Unit 
(Figure 3(D)) provides AR visual feedback to the user based on 
the information received from the ACU and the MCU.  
 
A. Automatic Control Unit 
The ACU (Figure 3(A)) comprises two sensory input modules 
(Artificial Proprioception Module and Artificial Exteroception 
Module), two data elaboration modules (Scene Generating 
Module and Preshape Control Module) and one output converter 
(Velocity Profile Generator). The aim of the ACU is to estimate 
user’s intentions based on the information acquired about the 
environment and the user itself, so as to automatically provide 

                                                
4 When reading about user’s position and orientation, the reader should be 
aware of the fact that these terms refers to the position and orientation of the 
camera that the user is wearing on his/her head. This choice on the wording has 

the Decision Mixing Unit with simultaneous and proportional 
control inputs for the prosthesis. 
        The Artificial Proprioception Module (Figure 3(A.1)) 
implements acquisition and pre-processing of the signals 
recorded from information sources about the user’s body parts 
position and orientation in space (i.e., hand tracking and ego-
motion), including prosthesis pose (i.e., DOFs configuration) 
and interaction force. The module provides two outputs: (1) pose 
of the prosthesis relative to the splint and interaction force; (2) 
position and orientation of the user4 and his/her left forearm in 
space. The module collects digital signals assessing the current 
state of the prosthesis and converts them into user-readable 
information based on the internal prosthesis model (i.e., wrist 

been made to simplify the explanation, since the camera is connected as a rigid 
body with user’s head and oriented along his/her vision direction.   

 

 
Figure 3 | Overview of the novel context-aware sensor-fusion system functioning. The system integrates (A) automatic 
control, (B) manual control, (C) AR feedback and (D) decision mixing units. (A) The automatic control unit is the core of the 
developed system and employs sensor-fusion algorithms to combine inputs obtained from a multimodal set of sensors. Based 
on the obtained context-awareness, the preshape control module generates multi-DOF proportional commands for the 
prosthetic hand. (B) The manual control unit interprets the myoelectric signals generated by the user and provides single-DOF 
proportional commands for the prosthesis. (C) The decision mixing unit acts as a switch between the manual and the automatic 
control, defining which signals will be responsible for the control of the prosthesis. (D) The augmented reality feedback unit 
provides the user with intuitive information regarding the state of the system and the environmental perception, allowing 
him/her to supervise its functioning with ease. The figure illustrates how all the units of the system are interfaced to each other. 
 



       

10 
 

flexion/extension, hand pronation/supination in degrees, hand 
aperture in centimetres, lateral/palmar grip type, and interaction 
force in Newtons). These data correspond to the first output of 
the module. The software implemented in the camera 
automatically sets an absolute reference frame on the first frame 
captured during initialization and provides then ego-motion 
information (i.e., camera orientation and position) based on it. 
The camera also captures the position of the threes 
retroreflective markers located on the prosthesis. A model is 
fitted on the markers and its orientation is used, during the 
calibration phase, to transform the IMU orientation (provided in 
the laboratory coordinate system) into the camera reference 
frame. Once calibrated, the IMU data will be used to determine 
the orientation of the prosthesis with respect to the user. 
Tracking the prosthesis position by integrating the IMU 
acceleration would result in high noise. Therefore, the 
retroreflective markers are used to track the prosthesis position 
in space. A Kalman filter is used to generate the best estimate for 
the real prosthesis position during the current frame, functioning 
even when up to two markers would temporally be out of sight. 
The errors for prosthesis positions and orientation in space are 
estimated to be <1 cm and <5º. The implemented algorithm is 
illustrated in detail in Appendix Figure 1. 
        The Artificial Exteroception Module (Figure 3(A.2)) 
acquires depth images of the environment through the RGB-D 
camera and uses computer-vision algorithms to model the 
objects present in the scene (i.e., it estimates their shape, size, 
position and orientation relative to the camera reference system). 
The Locally Convex Connected Patches (LCCP, [52]) and 
Random Sample Consensus (RANSAC, [53]) algorithms are 
used on a pre-processed point cloud (i.e., filtered) in order to 
cluster its points and model the objects, respectively. The objects 
are fitted as basic geometrical shapes (spheres, boxes) and 
require no a priori knowledge about their properties (e.g., colour 
features, size). The detailed steps of the algorithm, together with 
the used filtering parameters are described in (Appendix Figure 
2). 
        The Scene Generating Module handles the updates of the 
scene surrounding the user using Simultaneous Localization and 
Mapping (SLAM) [54] techniques. The inputs of this module 
contain all the proprio- and exteroceptive information collected 
by the system (except for prosthesis’ pose and interaction force), 
and an indication (i.e., flag) from the Preshape Control Module 
about selected or grasped objects. The output of the module is 
the model of the scene surrounding the user (in absolute 
coordinates) with the addition of prosthesis velocity. The module 
is subdivided into two sub-systems schematized in Appendix 
Figure 3. The first subsystem transforms the input coordinates, 
expressed in the camera-relative reference frame, into absolute 
coordinates. It also calculates the velocity of the user and of 
his/her prosthesis and averages it over the last five samples 
(approximately 0.15 s). The second subsystem is responsible for 
updating the scene, deciding whether to lock it or not. When the 
scene updating function is invoked, it collects all the new object 
models from Artificial Exteroception Module and tries to match 
them individually with the old ones, using the Hungarian 
algorithm [55]. If a new model is matched, it joins the set of 
latest elements for that specific object. Up to ten latest elements 
are stored for each object set. If an incoming model is not 
matched with any previous object model, a new set is generated 
for it. The best element of each set is then selected using the 
Mahalanobis distance criteria [56]. These elements represent the 
new update for the objects visible in the scene and will be shown 

to the user through the AR glasses. Additionally, the 
implemented SLAM algorithms retain out-of-sight objects in the 
scene even if no new models are available for them. For details 
about the algorithm implementation, the reader can refer to 
Appendix Figure 3. The scene updating function is invoked only 
when user’s velocity is below the predefined threshold and the 
prosthesis is neither selecting nor grasping an object, as 
previously explained in Section 2.1. Selection and grasping 
information is available to this module as feedbacks from the 
Preshape Control Module. As soon as an object is grasped, it is 
also removed from the scene, since the user is manipulating it. 
When the user releases the object, it will be remodelled in the 
new position.  
        The Preshape Control Module represents the core of the 
Automatic Control Unit, where an advanced sensor-fusion 
algorithm combines intelligently all the information available to 
the system (proprioception and exteroception) to obtain context-
awareness and make appropriate decisions on the prosthesis 
preshape. The output of this module is the set of DOF 
coordinates variations necessary for orienting the prosthesis 
toward the target object. The algorithm is composed by two sub-
systems: (1) the first one determines the object to select (i.e., 
target) and (2) the second one computes the optimal prosthesis 
orientation (rotation, flexion) and preshape (grasp type, 
aperture) for grasping it. 
        Subsystem 1 - Each object in the scene is assigned a semi-
circular selection area, which surrounds the object as illustrated 
in Figure 4 (light blue shapes). When the prosthesis enters the 
selection area of an object, a positive selection coefficient for 
that object is computed. This coefficient is inversely 
proportional to the distance of the prosthesis to that object. The 
object with the highest selection coefficient is marked as 
selected. Once an object is selected, its selection area expands 
(yellow shape in Figure 4) and helps to stabilize the selection 
decisions, especially in cluttered environments. Another 
important role in object selection is played by the non-circular 
shape of the selection area: it allows for quick deselections of an 
object when the prosthesis moves at its right side, avoiding 
unnatural pronation movements. Lastly, the system avoids 

 
 

Figure 4 | Object selection area representation. Each 
object is surrounded by a selection area (light blue shape). 
The distance (red arrow) between the prosthesis (P) and 
each object determines the corresponding selection 
coefficient (inversely proportional to the prosthesis-to-
object distance if the prosthesis is inside the selection area, 
null otherwise). The object with the highest coefficient is 
marked as selected and its selection area is extended 
(yellow shape). This stabilizes the selection. 
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selecting objects located along the path to the target object by 
enabling object selection only when the prosthesis velocity is 
below a predefined threshold. Appendix Figure 4(Subsystem 1) 
provides details on the selection algorithm.  
        Subsystem 2 - In order to preshape the hand, the system has 
to perform three decisions: grip type, wrist orientation and hand 
aperture. First of all, lateral grip type is selected if the prosthesis 
forward direction is oriented toward the small side of a flat 
object, or the object itself is small. In any other case, palmar grip 
type is selected. Then, the relative position between the 
prosthesis and the object is used to infer user’s intention of 
grasping the object from the top or from the side/front. Rotation 
and flexion of the wrist are regulated such that the fingers 
involved in the grasp (i.e., index, middle finger, and thumb) are 
directed toward the centre of the object. Depending on the 
condition (lateral grip, top or side/front palmar grip), small 
adjustments of the DOFs are performed to facilitate the grasp 
and prevent interference with the surface on which the objects 
are lying (i.e., the table). Lastly, the hand aperture has to be 
computed. As a first step, the plane which is both passing 
through the object centre and normal to the hand-to-object vector 
is used to generate a cross-section area. The size of the cross-
section along the closing direction of the fingers determines the 
required minimum aperture for grasp. Various tests have been 
performed to evaluate the error involved in computing the hand 
aperture. Uncertainties of the prosthesis and of the object 
orientation play a dominant role over the aperture size error. 
Errors up to 1.5 cm in aperture size estimations have been 
recorded. Therefore, the desired hand aperture is selected 2.5 cm 
bigger than the calculated minimum, allowing error 
compensation and facilitating object grasping. Appendix Figure 
4(Subsystem 2) provides details on the prosthesis preshape 
algorithm. 
        The Velocity Profile Generator implements the position 
control of the prosthesis by regulating its velocity in real-time. 
The output of this block is a set of velocities that can be directly 
processed by the multi-DOF hand prosthesis.  
 
B. Manual Control Unit 
The MCU (Figure 3(B)) acquires raw EMG signals from the 
array of eight EMG electrodes located on the ipsilateral side of 
the subject, extracts features and classifies them into 
proportional single-DOF velocity commands for the prosthesis. 
Root mean square features are extracted and Linear Discriminant 
Analysis (LDA) is used for their classification. Seven classes 
have been implemented to control the DOFs of the prosthesis: 
close lateral, close palmar, open, flex, extend, pronate and 
supinate. When the EMG signals are matched with the open 
class, the prosthesis opens maintaining the current grip type 
(palmar/lateral). Additionally, the threshold for activating this 
class is automatically raised when the user is manipulating an 
object and moving it in the workspace at high speed. This 
functionality has been implemented based on the assumption 
that the user intends to relocate objects safely in the workspace, 
without dropping or throwing them (i.e., releasing an object 
while moving at high speed). The system is expected to be more 
robust if the prosthetic hand does not open during object 
manipulation. The context-awareness of the system makes this 
functionality trivial to implement. 
 
C. Decision Mixing Unit 
The Decision Mixing Unit (Figure 3(C)) is ultimately 
responsible for deciding which of the two control inputs 

(autonomous, or manual) will be connected to the prosthesis. It 
operates as a switch reset by a timer. The default state of the 
switch lets the Automatic Control Unit handle the movements of 
the prosthesis. When myoelectric control commands are 
detected, or an object is grasped, the switch changes its state and 
the control commands generated by the Manual Control Unit are 
transmitted to the prosthesis. If no manual commands are 
supplied for longer than 1.5 seconds and no object is grasped, 
the timer included in the switch automatically gives the control 
back to the Automatic Control Unit. 
 
D. Augmented Reality Feedback Unit 
The Augmented Reality Feedback Unit (Figure 3(D)) is 
responsible for providing the user with visual feedback 
regarding the system states and scene perception through 
augmented reality glasses. The module gathers the scene details 
and the system state from the ACU, in addition to a flag 
indicating manual control commands from the MCU. The 
outputs of the module are displayed on the semi-transparent AR 
glasses. Icons are presented to the user on the top corners of the 
field of view. On the top-left, the state of the scene (updating the 
models or not) is displayed. On the top-right, the current state of 
preshaping control (automatic preshape, manual preshape, no 
preshape because of no object selected, no preshape because of 
prosthesis too close to the selected object) is displayed. The rest 
of the display is used to visualize the virtual objects present in 
the scene. All objects’ holograms are blue by default. When an 
object gets selected, its colour changes to yellow with a green 
stripe which intuitively indicates to the user the decision made 
by the system. A horizontal green stripe indicates front/side 
palmar grip, a vertical green stripe indicates lateral grip, the 
green top face of the object indicates top palmar grip. This colour 
pattern is presented in Figure 3(D). Getting too close to the 
object will freeze the prosthesis, which is indicated to the user 
by colouring the selected object in white. Lastly, when manual 
commands are sent, the object will turn green, indicating that the 
user acquired full control over the prosthesis.  
        The system workflow consists of multiple steps. The 
camera models the environment to obtain context-awareness 
(Scene Modelling state). The modelling state icon is shown to 
the user on the upper left corner of the AR glasses. Once the 
scene is modelled, blue 3D models representing the real objects 
are superimposed and rendered on the AR glasses, Figure 5. 
 

 

 
 

Figure 5 | Workflow Step 1. The objects in the scene are 
modeled and blue holograms are presented to the user. The 
top-left icon indicates the system is in Scene Modeling 
state. 
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        The scene continues to get updated until the user, 
approaching an object for grasp, places the prosthesis inside the 
selection area of an object. When this happens, the scene is 
locked (Scene Locked state, icon visualized on the glasses) and 
the object is selected. The selection icon is visualized on the right 
side of the glasses, indicating the Prosthesis Preshape state. The 
projection of the selected object in the glasses assumes a yellow-
green texture. The texture with a green horizontal stripe indicates 
that the system inferred user’s intention to grasp the object from 
the front/side in palmar mode. This estimate was made based on 
the relative position of prosthesis and object. The prosthesis is 
automatically preshaped for grasping the object, Figure 6.  
 

 
 
        The user changes his mind and decides to grasp another 
object in the scene. When two objects are next to each other and 
their selection areas overlap, whichever object with a higher 
selection-coefficient is selected by the system. The colours of 
object C and A in Figure 7 get updated. The hand preshape is 
adapted for the new grasp (palmar grip, approaching the object 
from above).  
 

 
 

        The user decides to grasp the newly selected object from 
the left side. While he/she is moving the prosthesis to the side of 
the object, its preshape gets continuously adjusted based on the 
relative prosthesis-to-object position. When the intention of a 
side-grasp is detected, major adjustments to the DOF are 
performed so as to orient the prosthesis for this type of grasp, 
Figure 8. 
 

 
 
        While the user gets closer to the object, the prosthesis 
preshape speed is proportionally decreased based on the distance 
from the object, mimicking human natural approach [57]. When 
the prosthesis is almost touching the object, this is recognized by 
the system and the prosthesis gets frozen to prevent unintentional 
interactions with the object. The object is shown in white colour 
to indicate the new state of the system (Prosthesis Freeze) and 
the freeze icon is shown on the glasses instead of the selection 
icon, Figure 9.  
 

 
 
        The user decides to grasp from a slightly different angle and 
therefore contracts is left forearm muscles to generate the 
myoelectric pattern for prosthetic wrist flexion (i.e., flexing 
his/her hand). The object becomes green while the DOFs of the 
prosthesis are manually adjusted and the Manual Prosthesis 

 
 

Figure 6 | Workflow Step 2. The system infers user 
intention to grasp object C from the front/side. The object 
assumes a yellow-green texture, the prosthesis is 
preshaped, and the Scene Locked state and Prosthesis 
Preshape state icons are displayed. 
 

 
 

Figure 7 | Workflow Step 3. Object C gets deselected and 
object A assumes the yellow-green texture indicating 
palmar grip for grasping the object from above. 
 

 
 

Figure 8 | Workflow Step 4. The user moves the prosthesis 
and side grasp intention is detected. The object texture is 
updated and the prosthesis reshaped accordingly. 
 

 
 

Figure 9 | Workflow Step 5. The user is almost touching 
the object. The prosthesis is frozen. The Prosthesis Frozen 
state icon is visualized and the object turns white. 
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Control icon is visualized on the top-right corner of the glasses, 
Figure 10.  
 

        Within 1.5 seconds from the wrist angle adjustment, the 
user triggers the LDA class for hand closing. The hand closes 
and the object is grasped. The hologram of the object is 
destroyed and the manipulation in manual control mode begins, 
Figure 11. 
 

 
 
        Once the object is released, the system returns in Step 1 and 
resumes the modelling the objects, including the one that has just 
been released, Figure 12.  
        It should be noted that it is not necessary to complete all the 
steps to fulfil the task. Depending on the user, or on the task to 
be performed, this sequence might vary (e.g., Step 5 will be 
skipped if the user issues manual commands before the 
prosthesis is frozen).  
 
2.4 Experimental protocol  
 
        Subjects. Two male right-handed healthy subjects, aged 24 
and 29, volunteered for this study. All subjects gave written 
consent to participate in the experiment and had previous 
experience in LDA myoelectric control. 

 
        Setup. The subjects wore the system and stood in front of a 
table (L 200 × W 105 × H 70 cm). Several objects were placed 
on the table and labelled with letters. The participants were 
required to move each object to its destination position. The 
destination positions were indicated with labels matching the 
objects’ ones, and printed shapes, indicating the required final 
orientations. The destination positions were located both on the 
table and on slots in the wall facing the user. The initial positions 
of the objects, the participant, and the prosthesis were the same 
within testing scenarios. The subjects were allowed to move 
along the table while performing the experiments as much as 
they pleased. The subjects were instructed not to perform visibly 
exaggerated compensatory movements to complete the tasks. 
Being allowed to move along the table, they were able to 
compensate for the missing adduction/abduction DOF in the 
prosthetic wrist. The left hand was fitted in a custom-made 
ergonomic socket which was strapped firmly using Velcro straps 
to the subjects’ forearm. The prosthesis was located below the 
subjects’ hand and in a more distal position. The splint 
immobilized the hand, resulting in isometric muscle contractions 
during EMG signals generation. The more distal position of the 
prosthesis with respect to the real fit in amputees resulted in 
higher torques applied on users’ arm joints (i.e., elbow, shoulder) 
during usage, increasing fatigue. To compensate for this effect, 
and creating a testing scenario closer to amputees’ conditions, 
the prosthesis has been connected to an elastic element located 
above the table which generated a lifting force able to partially 
diminish the experienced weight. The array of eight dry EMG 
electrodes was placed on the ipsilateral side of the prosthesis, 
approximately five centimetres below the elbow joint, 
resembling the inside-socket mounting location for amputees. 
The subjects wore the AR glasses with the attached RGB-D 
camera and the IMU master acquisition unit was strapped around 
the waist and placed on the back. The setup is illustrated in 
Figure 13. 
        System Initialization and Calibration. The system is 
initialized as soon as the camera is turned on and the first frame 
is acquired. This frame is used by the system for ego-motion 
estimation and for reference during IMU calibration. Ego-
motion estimation works best when the captured images present 
a high contrast. For this reason, the table presented a high 
contrast pattern (visible in Figure 13). Three components 
required calibration before the system could adequately be used: 

 
 

Figure 11 | Workflow Step 7. The user grasps an object. 
The corresponding hologram is destroyed. 
 

 
 

Figure 10 | Workflow Step 6. The user takes full control 
of the system by generating muscle activity. The hologram 
of the target object becomes green and the Manual 
Prosthesis Control icon is visualized. 
 

 
 

Figure 12 | Workflow Step 8. The system resumes from 
Step 1 and the newly repositioned object is modeled in the 
new position. 
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the AR glasses, the IMU and the myoelectric interface. The 
holographic projection in the glasses had to be calibrated once 
per subject to cope with both the biological diversities between 
users and the way they wore the glasses. Specifically, eyes 
position, position of (middle of) image plane, orientation of 
image plane, and (horizontal) field of view had to be calibrated. 
A calibration setup has been developed and used for this 
purpose, making sure that the generated holographic objects 
would ultimately superimpose precisely with the real objects. 
The AR glasses calibration setup, together with an example of 
both uncalibrated and calibrated holograms projection, is shown 
in Appendix Figure 5. The IMU orientation had to be calibrated 
before every trial: the user wore the splint with the prosthesis on 
his left arm and held it motionless on the table, looking at it. The 
orientation offset between the model of the three retroreflective 
markers located on the splint and the IMU was computed. This 
offset was used to set the relative orientation of the IMU with 
respect to the user. The myoelectric interface was calibrated 
before each test session in three different arm positions (shoulder 
75º extended and 30º horizontally abducted, shoulder 75º 
extended and 30º horizontally adducted, shoulder 60º extended). 
To achieve adequate calibration, the subjects were first 
instructed on how to generate consistent and distinguishable 
muscle patterns. The myoelectric control was then calibrated in 
three steps: the isometric maximal voluntary contractions 

(MVC) for each LDA class were measured; the classes at three 
levels of contraction (35%, 50%, 70% of the MVC) were trained; 
the classes’ gains and thresholds to adjust the reactivity of the 
prosthesis were fine-tuned. The prosthesis was driven at the 
maximum velocity allowed for each DOF when the muscle 
activity reached approximately 70% of the MVC.  
        Procedure. The performances of the developed context-
aware semi-autonomous control (CASAC) scheme were 
evaluated by comparison with the myoelectric state-of-the-art 
LDA control. Each control scheme has been assessed by 
performing two different tests with it. For each test, two different 
scenarios have been developed by rearranging the objects on the 
table while maintaining their orientations. The usage of two 
different scenarios reduced the risk of obtaining results strongly 
correlated to the specific configuration used and allowed to 
estimate the capability of the CASAC system in modelling the 
different scenes. Figure 14 illustrates the two tests, the four 
scenarios and the objects in their destination positions. 
        During the experiment, the subjects had to interact (i.e., 
grasp, lift, reorient, transport and release) with a set of objects 
using once the CASAC and once the LDA control for each of 
the two tests: 
Test 1: five objects (boxes of different sizes and a cylinder) were 
placed on the table far apart from each other and not overlapping, 
as illustrated in Figure 14 (1,2). In this test, the subjects 
interacted with each object only once. This test aimed at showing 
the performances of the CASAC system in situations where it 
was fundamental to constantly update the scene (i.e., remove the 
grasped objects) for the correct system functioning.  
Test 2: five objects (boxes of different sizes and a sphere) were 
placed on the table close to and stack on each other, creating a 
cluttered scene. In this test, the subjects interacted with objects 
located both at the base of the stack and at the top of it. 
Additionally, the subjects had to interact with some objects more 
than once, bringing these objects to a temporary destination, 
perform other interactions, and later interact with them again. 
This test allowed made me estimate if the semi-autonomous 
system could cope with cluttered scenarios, where continuous 
real-time understanding of a quickly varying scene is necessary, 
in addition to the system’s ability to correctly estimate subjects’ 
desired selections in complex situations.  
        A training phase (approximately 30 minutes) preceded the 
experiment. During the training phase, the participants tried both 
the CASAS and the LDA control, in every scenario.  The training 
phase allowed the subjects to understand the behaviours of the 
semi-autonomous system, as well as practising in selecting and 
proportionally controlling the prosthesis’ DOF by generating 
appropriate muscle activations. While practising, the subjects 
also received explanations about the movements generated by 
each of the control schemes (CASAC, LDA). To ensure that the 
subjects understood the AR feedback, they received an 
explanation on what each feedback element meant. Furthermore, 
the subjects practised in using the manual control for overruling 
the CASAC decisions. After the training phase, the subjects felt 
confident in their ability of skilfully interacting with the systems 
during the testing session. 
        The participants rested for approximately 10 minutes after 
the training phase to reduce the effects of muscle fatigue before 
starting the experiment. In this experiment, the specific 
combination of a control scheme (i.e., CASAS and LDA) and a 
test type (i.e., Test 1, Test 2) will be addressed as “test 
condition”. Therefore, a total of eight test conditions has been 
completed in a pseudo-randomized order. For each test 

 
 

Figure 13 | Experimental setup overview. The figure 
illustrates the visible system components and setup 
elements. The initial positions for the user and the 
prosthesis at the beginning of a trial are as shown in the 
figure. 
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condition, seven trials have been performed. Within each trial, 
two minutes of rest were given to the participants. For each test 
condition, the first two trials have not been recorded and had the 
only purpose of getting the subject familiar, once more, with the 
scene and the system. Among the recorded five trials per test 
condition, only the last three were used for data analysis, in an 
attempt to mitigate the influence of learning. There was no time 
limit for performing the trial, but the subjects were instructed to 
perform it as fast as possible while at the same time avoiding 
excessive compensatory movements. No instructions were given 
regarding how to grasp or manipulate the objects. Only the 
specific order of interaction with the objects was defined. When 
using the CASAC, the prosthesis was preshaped in real-time 
depending on its relative position to the objects and the subjects 
could take direct control of the preshape at any moment by 
generating appropriate muscle patterns. The state of manual 
commands was kept active for 1.5 seconds after a contraction 
had been detected, therefore giving enough time to the subjects 
to generate another command if needed (e.g., adjust the wrist 
rotation and then close the hand). The experimenter observed the 
task execution and the trial was repeated in the following cases: 
(1) while using CASAC, the subject uninterruptedly provided 
manual commands, preventing the automatic unit from 
preshaping the prosthesis; (2) the user performed strong 
compensatory movements; (3) the subject dropped any of the 
objects while performing the trial; (4) any main 
hardware/software component stopped functioning, therefore 
compromising system operation. The trial was not considered 
over until all the objects had been relocated to the destination 
positions and oriented correctly. At the end of every trial, the 
user moved back to the starting position, placed the prosthesis 
on the predefined initial position on the table and looked at it for 

IMU calibration. The scene was reorganized by the 
experimenter, the virtual scene of the CASAC was destroyed (no 
previous knowledge about the scene configuration is passed to 
the next trial), and the prosthesis was reset to its neutral position.  
 
2.5 Data Analysis 
 
The primary outcome measure was the trial time (TT) in each 
test condition, assessing the efficacy in operating the prosthesis 
based on the particular control used. The TT was measured, from 
the start of the trial until its completion, using the timer 
implemented in the GUI developed to allow the experimenter to 
supervise the system functioning. 
        The secondary outcome measure was the number of times 
the subject had to repeat the trial because of object drops (OD). 
This measure assesses the robustness of the control system 
during preshaping and manipulation.  
        Due to the limited number of participants involved in this 
pilot study, no statistical trend could be inferred. Therefore, the 
author limited the data analysis to the calculation of means and 
standard deviations for the primary outcome measure for each 
participant. The number of retrials due to object drops is also 
analysed independently for each subject.  
 
3. Results 
 
In total, 112 trials (2 subjects × 1 session × 8 test conditions × 7 
trials) have been performed and 48 of those have been analysed 
(2 subjects × 1 session × 8 test conditions × 3 trials).  
        Figure 15 shows the trial time (mean ± standard deviation 
measured in seconds) and the number of object drops for each 
subject and test condition during the experiment. Compared to 

 
 
Figure 14 | Tests, scenarios, and objects in their destination positions. This figure illustrates the initial positions for the 
objects in the different test scenarios (1,2,4,5). In subfigure 3 and 6 are shown the positions of the objects at trial completion 
(i.e., their destination positions). The point of view of the images has been chosen to match closely the one of subjects standing 
in front of the table on the indicated starting position.  
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the LDA control scheme, both trial time means and standard 
deviations decreased for all the subjects when performing the 
tests using the novel CASAP control. In Test 1, the average TT 
of Subject1 were 53.2 ± 6.7 s and 51.9 ± 3.0 s for LDA and 
CASAS, respectively. Subject2, instead, completed Task 1 with 
an average TT of 84.9 ± 19.1 s and 74.2 ± 8.0 s for LDA and 
CASAS, respectively. In Test 2, the average TT decreased from 
40.5 ± 9.6 s and 54.4 ± 5.8 s to 32,6 ± 2.8 s and 46.6 ± 4.4 s 
between LDA and CASAS control schemes, respectively. 
Therefore, the mean TT is on average 12.2% smaller in CASAS 
with respect to LDA, with lower improvements in Test 1 (2.3% 
and 12.5%) with respect to Test 2 (19.6% and 14.3%). The 
standard deviation of the trial times was higher in LDA (52.7% 
on average) with respect to CASAP. The total number of object 
drops varied widely among subjects. In test 1, Subject 1 had the 
same number of drops with both the control schemes. Subject 2 
obtained, instead, a 50% reduction in object drops (from 6 to 3) 
when using the CASAC. In test two, both the subjects had no 
drops while using CASAC, while they had 1 and 2 with the LDA 
control scheme. 
 
4. Discussion 
 
Test 1 was designed to evaluate if the system is able to keep track 
of a quickly changing scene, constantly updating it and making 
decisions accordingly. Test 2 was designed to examine the 

system’s ability to cope with cluttered scenarios and correctly 
estimate subjects’ intentions. The findings of this study show a 
general improvement in subjects’ performances when the 
context-aware semi-autonomous control (CASAC) scheme is 
supplementing the academic state-of-the-art myoelectric LDA 
control scheme. Even if no significant difference could be found 
among the results, the findings indicate a favourable trend for 
the system’s ability to function in cluttered scenarios, keeping 
track of time-changing environments and of understanding 
subjects’ grasping intentions in such situations. A future larger-
scale study will allow evaluating any statistically significant 
difference exists between the two control schemes.  
        The standard deviations in the mean time to complete the 
trials, when supplemented by the CASAC scheme, decreased by 
approximately 50%, compared to the LDA myoelectric control. 
This suggests that CASAC had consistent behaviours or/and that 
it was more intuitive to use. These favourable trends should be 
confirmed by increasing the sample size in future studies. To 
evaluate the consistency of the CASAC, data logs should be 
collected and analysed to determine if the system took coherent 
decisions when similar conditions occurred (e.g., consistently 
orient the DOFs of the prosthesis when proximal to objects with 
same sizes and orientation). The intuitiveness of the CASAC 
could instead be investigated in future studies by combining the 
outcomes of questionnaires with the learning trends obtained by 
performing multiple experimental sessions (two or three).  

 
 
Figure 15 | Summary results for the two control schemes in each test type. The results ((mean ± standard deviation) for 
average time to grasp (TT) and total number of object drops) are presented for each subject, test and control scheme. Notations: 
CASAC — Context-Aware Semi-Autonomous Control; LDA — Linear Discriminant Analysis myoelectric control.  
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        The reduced number of object drops while using the 
CASAC scheme is a potential indicator of system robustness. I 
believe that the implemented functionalities to limit unwanted 
prosthesis behaviours could have reduced object drops. One of 
these functionalities is stopping the automatic prosthesis 
preshape when it inadvertently hits an object or gets very 
proximal to it. Another functionality is the automatic threshold 
increase for the LDA opening class while the prosthesis is 
moving fast in space. In future tests, analysis of the data log files 
could be a good approach to examine the system behaviours. For 
instance, finding opening class activations within the standard 
threshold and the raised one during objects relocation would 
indicate that the developed functionality avoided object drops. 
        The functionalities implemented in this system can be 
considered a good starting point for demonstrating the potential 
of sensor-fusion approaches applied to prosthetic control. The 
proposed system can quite easily be extended with the ability to 
cover experimental setups as wide as a room, or with the 
possibility to support the pattern recognition algorithms in 
various aspects (e.g., reduce arm position influence over 
classification accuracy [58], vary classes activation levels 
depending on probabilistic factors). Another interesting 
functionality to implement would be the automatic preshape of 
the prosthesis based on the sound hand movements, allowing for 
bimanual interactions with objects or to easily pass them from 
one hand to the other. To achieve such functionality, it would 
only be necessary to add an inertial sensor to the sound hand 
(e.g., smartwatch, bracelet with integrated IMU) and account for 
this component in the sensor-fusion algorithm. Another option 
is to act on the intelligence of the Decision Mixing Unit of the 
CASAC, therefore varying the shared-control paradigm and 
leading to new forms of human-machine interactions in 
prosthesis control. At the moment, the Decision Mixing Unit 
operates as a switch connected to a timer. A more sophisticated 
algorithm might, for instance, join and weight the contributions 
of the automatic and manual control inputs to the output 
depending on the context. Lastly, the presented sensor-fusion 
approach could be extended to similar fields of application, like 
rehabilitation robotics, by controlling exoskeletons instead of 
prostheses.  
        This study was limited by (1) the small number of 
participants, which did not allow to recognize possible 
statistically significant differences; (2) the presence of only one 
experimental session, which did not allow the author to draw 
conclusion regarding the learning curve of the subjects with the 
two control schemes; (3) the absence of data logging, which 
could play a relevant role in tracking the decisions of the system 
at every instant in time, gaining an understanding of how these 
decisions affected the overall performance of the system; (4) the 
absence of subjective measures, like an extended version of the 
NASA-TLX questionnaire [59] that includes questions 
regarding the general acceptance of the novel concept, which 
would give insights into the overall user experience. 
 
5. Conclusion 
 
The prototype described in the present study represents a 
substantial step ahead with respect to the earlier works of 
Markovic et al. [27], [40], [60]. It integrates many new 
functionalities which have previously been recommended for 
future developments [27]. Specifically, the system adopts 
sophisticated SLAM-based approaches and advanced tools for 
depth-image analysis to cope with cluttered and complex scenes, 

allowing for a continuous and reactive understanding of the user 
surroundings. Furthermore, the developed system almost 
entirely removed the experimental constraints present in the last 
study of Markovic et al. [27]. The only constraint left is due to 
the length of the camera cable, which limits the user distance 
from the host PC. This factor aside, the users can move as 
pleased in an unconstrained experimental environment and their 
interactions with the objects present in the setup are far more 
intuitive (object selection and automatic preshape triggering). 
These results were achieved by adding software and hardware 
components to the system to increase its user- and context-
awareness. Specifically, the implemented ego-motion 
algorithms allowed to estimate user position in space, while the 
included retroreflective markers allowed for precise prosthesis 
tracking. The additional prosthetic wrist flexion/extension active 
degree-of-freedom might have also contributed to the overall 
capability of the subjects to interact with the multiplicity of 
grasping situations encountered in the proposed experimental 
setups. The semi-autonomous context-aware system developed 
in this study is able to simultaneously and proportionally control 
multiple degrees of freedom, a notable result that brings 
myoelectric control closer to mimicking human biological 
motions [57]. 
        My findings indicate that the semi-autonomous context-
aware system developed in this study is feasible for prosthesis 
control and is able to increase performances and robustness of 
the state of the art academic myoelectric control scheme (i.e., 
pattern recognition). It also lays the basis for the development of 
more complete studies to address unanswered questions. 
Specifically, future studies should include (1) more subjects to 
evaluate statistical differences between the proposed control 
scheme and the state of the art one; (2) data logging to 
objectively evaluate system’s decision, and (3) subjective 
measures (e.g., NASA-TLX questionnaire [59]) to evaluate 
workload. Two or three experimental sessions are suggested for 
future studies, so as to gain data about the learning curve of the 
CASAC system with respect to the pattern recognition control. I 
also recommend to include amputees in the subjects’ pool, as 
they are the intended users of this technology.  
        As a final remark on the performed study, I would like to 
underline that the employed ad-hoc tests have been specifically 
designed to evaluate the overall applicability of the novel system 
prototype in prosthesis control. While designing the tests, the 
focus has been put on performing a relevant set of tasks requiring 
multi-DOF adjustments. The usage of ad-hoc tests is not unusual 
in the scientific literature when evaluating ready-to-use systems 
[36], [61]. I am conscious of the efforts put by the scientific 
community into establishing standardized evaluation 
benchmarks [62]–[64] and believes that, when the system 
approaches clinical applicability (which includes components 
integration and miniaturization for usage in practical scenarios), 
standardized tests will have to be performed. 
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Appendix 

 
Appendix Figure 1 | Artificial Proprioception Module algorithm. The algorithm consists of 
two subsystems: the first one analyzes and converts the prosthesis sensor data; the second one 
estimates position and orientation of both user (i.e., camera located on his/her head) and 
prosthesis. The camera is automatically initialized when the system is started (camera 
initialization red block); the IMU calibration is instead performed before each trial (IMU 
Calibration red blocks). 
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Appendix Figure 2 | Artificial Exteroception Module algorithm. The algorithm for artificial 
exteroception models the objects present on a flat surface (e.g., table). It is composed of six 
steps illustrated in the figure. 
 

 
Appendix Figure 3 | Scene Generating Module algorithm. The algorithm for generating the 
scene consists of two subsystems. The first one transforms the coordinates of the objects and 
of the prosthesis to the absolute reference frame. It also computes the velocity of the camera 
and of the prosthesis. The velocity of the camera is used, together with the information received 
from the Preshape Control Module about grasped or selected objects, to decide whether to 
update the models of the objects in the scene. If the object models have to be updated, the newly 
modelled objects are matched with the ones in the scene based on their absolute position, 
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orientation, size and shape. Each object in the scene is member of a set containing the latest ten 
models matched with that object. The best member of each set is selected based on the 
Mahalanobis distance criteria, which accounts for the size, position, shape, and quality of the 
model. If an object is grasped, it is removed from the scene and the corresponding set of models 
is cleared. Lastly, it is possible that models are added to the scene but no real counterpart exists. 
These models are due to noise in the elaboration of the of the depth image or incorrect matching 
with the existing objects. This type of noise on the models is consistent over time. By removing 
objects that did not get any update for four consecutive frames, it is possible to obtain a scene 
which includes only models matching the real ones. 
 
 
 

 
Appendix Figure 4 | Preshape Control Module algorithm. The preshape control module 
algorithm is responsible for selecting the object targeted by the user and preshaping the hand 
accordingly. Subsystem 1 handles the selection of the object. An object can be selected only if 
the prosthesis is moving slower than 0.3 m/s. This avoids selecting objects located in between 
the real target object and the prosthesis when the user is reaching them. Once an object is 
selected, its selection area is increased by 10%. This creates a buffer for keeping the current 
object selected even if the user moves slightly further away. This stabilizes the selection, 
especially in cluttered environments.  Subsystem 2 handles the orientation of the prosthesis for 
the optimal grasp of the object. First of all, if an object is flat (e.g., a book, a CD-ROM) and the 
prosthesis is oriented toward its thin side, the lateral grip is selected to facilitate prehension. In 
all the other cases, palmar grip is selected. The DOFs of the wrist are adjusted so as to orient 
the grasping fingers (i.e., index, middle, thumb) toward the centre of the object. Small 
adjustments in wrist rotation and flexion are performed. Hand aperture is set 2.5 cm bigger than 
the width of the cross-section of the object along the direction in which the fingers close. 
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Appendix Figure 5 | Glasses calibration setups, with calibrated and uncalibrated AR 
feedback displayed. When the AR glasses are calibrated, the subject is presented with the 
glasses calibration setup (left figure). The retroreflective marker located at the base of the 
checkerboard allows for localization of the calibration setup with respect to the user. A virtual 
model of the setup is shown in the AR glasses (middle figure).  The user is asked a series of 
questions regarding the projection he/she sees and the experimenter adjusts the glasses 
parameters (i.e., eyes position, position of (middle of) image plane, orientation of image plane, 
and (horizontal) field of view) accordingly. The questions refer to the size, perspective, 
position, and orientation of the objects and of the checkerboard. The procedure takes 
approximately 3 minutes. Once the glasses are calibrated, the user sees the virtual images 
superimposed with the real objects. 
 
 

  



       

22 
 

Bibliography 
 
[1] K. Ziegler-Graham, E. J. MacKenzie, P. L. Ephraim, T. G. Travison, and R. Brookmeyer, 

“Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050,” Arch. Phys. Med. 
Rehabil., vol. 89, no. 3, pp. 422–429, 2008. 

[2] J. W. Jones, S. A. Gruber, J. H. Barker, and W. C. Breidenbach, “Successful Hand 
Transplantation — One-Year Follow-up,” N. Engl. J. Med., vol. 343, no. 7, pp. 468–473, 2000. 

[3] R. M. Elliott, S. M. Tintle, and L. S. Levin, “Upper extremity transplantation: Current concepts 
and challenges in an emerging field,” Curr. Rev. Musculoskelet. Med., vol. 7, no. 1, pp. 83–88, 
2014. 

[4] A. Fougner, O. Stavdahl, P. J. Kyberd, Y. G. Losier, and P. A. Parker, “Control of upper limb 
prostheses: Terminology and proportional myoelectric control: a review,” IEEE Trans. Neural 
Syst. Rehabil. Eng., vol. 20, no. 5, pp. 663–677, 2012. 

[5] “Sensor Hand Speed, Otto Bock GmbH.” [Online]. Available: https://media.ottobock.com/_web-
site/prosthetics/upper-
limb/myoelectric_devices/files/prosthesis_systems_information_for_practitioners.pdf. 
[Accessed: 27-Jan-2018]. 

[6] “Michelangelo Hand, Otto Bock GmbH.” [Online]. Available: 
https://www.ottobockus.com/media/local-media/prosthetics/upper-
limb/michelangelo/files/michelangelo-brochure.pdf. [Accessed: 15-Jan-2018]. 

[7] M. Atzori and H. Muller, “Control Capabilities of Myoelectric Robotic Prostheses by Hand 
Amputees: A Scientific Research and Market Overview,” Front Syst Neurosci, vol. 9, no. 
November, p. 162, 2015. 

[8] T. Feix, J. Romero, H. B. Schmiedmayer, A. M. Dollar, and D. Kragic, “The GRASP Taxonomy 
of Human Grasp Types,” IEEE Trans. Human-Machine Syst., vol. 46, no. 1, 2016. 

[9] “i-Limb Ultra, Touch Bionics Inc.” [Online]. Available: http://touchbionics.com/products/active-
prostheses/i-limb-ultra. [Accessed: 15-Jan-2018]. 

[10] “DARPA.” [Online]. Available: https://www.darpa.mil/program/revolutionizing-prosthetics. 
[Accessed: 15-Jan-2018]. 

[11] E. A. Biddiss and T. T. Chau, “Upper limb prosthesis use and abandonment: a survey of the 
last 25 years.,” Prosthet. Orthot. Int., vol. 31, no. 3, pp. 236–257, 2007. 

[12] F. Cordella et al., “Literature review on needs of upper limb prosthesis users,” Front. Neurosci., 
vol. 10, no. MAY, pp. 1–14, 2016. 

[13] T. R. D. Scott and M. Haugland, “Command and control interfaces for advanced 
neuroprosthetic applications,” in Neuromodulation, 2001, vol. 4, no. 4, pp. 165–174. 

[14] D. Farina and S. Amsüss, “Reflections On The Present And Future Of Upper Limb 
Prostheses,” Expert Rev. Med. Devices, vol. 4440, no. May, p. 17434440.2016.1159511, Apr. 
2016. 

[15] N. Jiang, S. Dosen, K. R. Muller, and D. Farina, “Myoelectric Control of Artificial Limbs: Is 
There a Need to Change Focus? [In the Spotlight],” IEEE Signal Process. Mag., vol. 29, no. 5, 
pp. 150–152, 2012. 

[16] J. Gonzalez-Vargas, S. Dosen, S. Amsuess, W. Yu, and D. Farina, “Human-machine interface 
for the control of multi-function systems based on electrocutaneous menu: Application to multi-
grasp prosthetic hands,” PLoS One, vol. 10, no. 6, pp. 1–26, 2015. 

[17] A. E. Schultz and T. A. Kuiken, “Neural Interfaces for Control of Upper Limb Prostheses: The 
State of the Art and Future Possibilities,” PM R, vol. 3, no. 1, pp. 55–67, Jan. 2011. 

[18] A. D. Roche, H. Rehbaum, D. Farina, and O. C. Aszmann, “Prosthetic Myoelectric Control 
Strategies: A Clinical Perspective,” Curr. Surg. Reports, vol. 2, no. 3, pp. 1–11, 2014. 

[19] G. Schalk and E. C. Leuthardt, “Brain-computer interfaces using electrocorticographic signals,” 
IEEE Rev. Biomed. Eng., vol. 4, pp. 140–154, 2011. 

[20] J. S. Schofield, K. R. Evans, J. P. Carey, and J. S. Hebert, “Applications of sensory feedback in 
motorized upper extremity prosthesis: a review.,” Expert Rev. Med. Devices, vol. 13, no. May 
2016, pp. 1–13, 2014. 

[21] P. Svensson, U. Wijk, A. Björkman, and C. Antfolk, “A review of invasive and non-invasive 
sensory feedback in upper limb prostheses,” Expert Rev. Med. Devices, vol. 14, no. 6, pp. 
439–447, Jun. 2017. 

[22] B. T. Nghiem et al., “Providing a Sense of Touch to Prosthetic Hands,” Plast. Reconstr. Surg., 
vol. 135, no. 6, pp. 1652–1663, 2015. 

[23] S. Micera, J. Carpaneto, and S. Raspopovic, “Control of hand prostheses using peripheral 



       

23 
 

information,” IEEE Rev. Biomed. Eng., vol. 3, no. January, pp. 48–68, 2010. 
[24] B. Peerdeman et al., “Myoelectric forearm prostheses: State of the art from a user-centered 

perspective,” J. Rehabil. Res. Dev., vol. 48, no. 6, p. 719, 2011. 
[25] S. Amsuess, P. Goebel, B. Graimann, and D. Farina, “Extending mode switching to multiple 

degrees of freedom in hand prosthesis control is not efficient,” Conf. Proc.  ... Annu. Int. Conf. 
IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf., vol. 2014, pp. 658–661, 
2014. 

[26] R. J. Bootsma and P. C. W. van Wieringen, “Spatio-temporal organisation of natural 
prehension,” Hum. Mov. Sci., vol. 11, no. 1–2, pp. 205–215, 1992. 

[27] M. Markovic, S. Dosen, D. Popovic, B. Graimann, and D. Farina, “Sensor fusion and computer 
vision for context-aware control of a multi degree-of-freedom prosthesis.,” J. Neural Eng., vol. 
12, no. 6, p. 66022, 2015. 

[28] R. Tomović and G. Boni, “An Adaptive Artificial Hand,” IRE Trans. Autom. Control, vol. AC-7, 
no. 3, pp. 3–10, 1962. 

[29] R. Tomovic, G. Bekey, W. K.-R. and Automation, and U. 1987, “A strategy for grasp synthesis 
with multifingered robot hands,” Proc. IEEE Int. Conf. Robot. Autom., vol. 4, pp. 83–89, 1987. 

[30] P. Chappell, J. Nightingale, … P. K.-J. of biomedical, and U. 1987, “Control of a single degree 
of freedom artificial hand,” J. Biomed. Eng., vol. 9, pp. 273–7, 1987. 

[31] E. Banziger, “Wrist rotation activation in myoelectric prosthetics—an innovative approach: a 
case study,” ACPOC News, 1996. [Online]. Available: 
http://www.acpoc.org/index.php/membership/newsletters-journals/acpoc-news-volumes-1995-
2008/volume-2/number-4/wrist-rotation-activation-in-myoelectric-prosthetics----an-innovative-
approach-a-case-study. [Accessed: 15-Jan-2018]. 

[32] E. D. Engeberg and S. G. Meek, “Adaptive sliding mode control for prosthetic hands to 
simultaneously prevent slip and minimize deformation of grasped objects,” IEEE/ASME Trans. 
Mechatronics, vol. 18, no. 1, pp. 376–385, 2013. 

[33] N. Wettels et al., “Grip Control Using Biomimetic Tactile Sensing Systems,” IEEE/ASME Trans. 
Mechatronics, vol. 14, pp. 718–23, 2009. 

[34] D. Novak and R. Riener, “A survey of sensor fusion methods in wearable robotics,” Rob. 
Auton. Syst., vol. 73, pp. 155–170, 2014. 

[35] C. M. Light, P. H. Chappell, B. Hudgins, and K. Engelhart, “Intelligent multifunction myoelectric 
control of hand prosthesis,” J. Med. Eng. Technol., vol. 26, no. 4, pp. 139–146, 2002. 

[36] C. Cipriani, F. Zaccone, S. Micera, and M. C. Carrozza, “On the shared control of an EMG-
controlled prosthetic hand: Analysis of user-prosthesis interaction,” IEEE Trans. Robot., vol. 
24, no. 1, pp. 170–184, 2008. 

[37] G. Ghazaei, A. Alameer, P. Degenaar, G. Morgan, and K. Nazarpour, “Deep learning-based 
artificial vision for grasp classification in myoelectric hands,” J. Neural Eng., vol. 14, no. 3, 
2017. 

[38] J. Degol, A. Akhtar, B. Manja, and T. Bretl, “Automatic grasp selection using a camera in a 
hand prosthesis,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2016–Octob, 
pp. 431–434, 2016. 

[39] D. P. McMullen et al., “Demonstration of a semi-autonomous hybrid brain-machine interface 
using human intracranial EEG, eye tracking, and computer vision to control a robotic upper 
limb prosthetic,” vol. 22, no. 4, pp. 784–796, 2014. 

[40] M. Markovic, S. Dosen, C. Cipriani, D. Popovic, and D. Farina, “Stereovision and augmented 
reality for closed-loop control of grasping in hand prostheses.,” J. Neural Eng., vol. 11, no. 4, p. 
46001, 2014. 

[41] D. Novak and R. Riener, “Enhancing patient freedom in rehabilitation robotics using gaze-
based intention detection,” IEEE Int. Conf. Rehabil. Robot., 2013. 

[42] “COAPT.” [Online]. Available: http://coaptengineering.com/. [Accessed: 27-Jan-2018]. 
[43] E. Scheme and K. Englehart, “Electromyogram pattern recognition for control of powered 

upper-limb prostheses: State of the art and challenges for clinical use,” J. Rehabil. Res. Dev., 
vol. 48, no. 6, pp. 643–660, 2011. 

[44] R. Liu, Y. X. Wang, and L. Zhang, “An FDES-Based shared control method for asynchronous 
brain-actuated robot,” IEEE Trans. Cybern., vol. 46, no. 6, pp. 1452–1462, 2016. 

[45] L. Tonin, R. Leeb, M. Tavella, S. Perdikis, J. R. Del Millán, and J. del R. Millan, “The role of 
shared-control in BCI-based telepresence,” Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern., 
pp. 1462–1466, 2010. 

[46] J. Philips et al., “Adaptive shared control of a brain-actuated simulated wheelchair,” 2007 IEEE 
10th Int. Conf. Rehabil. Robot. ICORR’07, vol. 0, no. c, pp. 408–414, 2007. 

[47] F. Galán et al., “A brain-actuated wheelchair: Asynchronous and non-invasive Brain-computer 
interfaces for continuous control of robots,” Clin. Neurophysiol., vol. 119, no. 9, pp. 2159–2169, 



       

24 
 

2008. 
[48] A. R. Satti, D. Coyle, and G. Prasad, “Self-paced brain-controlled wheelchair methodology with 

shared and automated assistive control,” IEEE SSCI 2011 - Symp. Ser. Comput. Intell. - CCMB 
2011 2011 IEEE Symp. Comput. Intell. Cogn. Algorithms, Mind, Brain, pp. 120–127, 2011. 

[49] T. Carlson and Y. Demiris, “Collaborative control for a robotic wheelchair: Evaluation of 
performance, attention, and workload,” IEEE Trans. Syst. Man, Cybern. Part B Cybern., vol. 
42, no. 3, pp. 876–888, 2012. 

[50] D. A. Bennett and M. Goldfarb, “IMU-Based Wrist Rotation Control of a Transradial Myoelectric 
Prosthesis,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 4320, no. c, pp. 1–1, 2017. 

[51] S. Dosen, M. Markovic, C. Hartmann, and S. Member, “Sensory Feedback in Prosthetics : A 
Standardized Test Bench for Closed-Loop Control,” vol. 23, no. 2, pp. 267–276, 2015. 

[52] S. C. Stein, F. Wörgötter, M. Schoeler, J. Papon, and T. Kulvicius, “Convexity based object 
partitioning for robot applications,” Proc. - IEEE Int. Conf. Robot. Autom., pp. 3213–3220, 
2014. 

[53] M. a Fischler and R. C. Bolles, “Random Sample Consensus: A Paradigm for Model Fitting 
with Applications to Image Analysis and Automated Cartography,” Commun. ACM, vol. 24, no. 
6, pp. 381–395, 1981. 

[54] J. Aulinas, Y. Petillot, J. Salvi, and X. Lladó, “The SLAM problem: A survey,” Front. Artif. Intell. 
Appl., vol. 184, no. 1, pp. 363–371, 2008. 

[55] D. Bruff, “The Assignment Problem and the Hungarian Method.” 2005. 
[56] R. De Maesschalck, D. Jouan-Rimbaud, and D. L. L. Massart, “The Mahalanobis distance,” 

Chemom. Intell. Lab. Syst., vol. 50, no. 1, pp. 1–18, 2000. 
[57] J. Fan, J. He, and S. I. H. Tillery, “Control of hand orientation and arm movement during reach 

and grasp,” Exp. Brain Res., vol. 171, no. 3, pp. 283–296, 2006. 
[58] A. Fougner, E. Scheme, A. D. C. Chan, K. Englehart, and Ø. Stavdahl, “Resolving the limb 

position effect in myoelectric pattern recognition,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 
19, no. 6, pp. 644–651, 2011. 

[59] NASA, “Nasa Task Load Index (TLX),” vol. v 1.0 Manu, 1986. 
[60] M. Štrbac, S. Kočović, M. Marković, and D. B. Popović, “Microsoft Kinect based artificial 

perception system for control of functional electrical stimulation assisted grasping,” vol. 2014, 
pp. 1–13, 2014. 

[61] S. Amsuess, P. Goebel, B. Graimann, and D. Farina, “A multi-class proportional myocontrol 
algorithm for upper limb prosthesis control: Validation in real-life scenarios on amputees,” IEEE 
Trans. Neural Syst. Rehabil. Eng., vol. 23, no. 5, 2015. 

[62] W. Hill, Ø. Stavdahl, L. N. Hermansson, P. Kyberd, S. Swanson, and S. Hubbard, “Functional 
Outcomes in the WHO-ICF Model: Establishment of the Upper Limb Prosthetic Outcome 
Measures Group,” JPO J. Prosthetics Orthot., vol. 21, no. 2, pp. 115–119, Apr. 2009. 

[63] W. Hill et al., “Upper Limb Prosthetic Outcome Measures (ULPOM): A Working Group and 
Their Findings,” J. Prosthetics Orthot., no. 21, pp. P69-82, 2009. 

[64] H. Y. N. Lindner, B. S. Nätterlund, and L. M. N. Hermansson, “Upper limb prosthetic outcome 
measures: review and content comparison based on International Classification of Functioning, 
Disability and Health.,” Prosthet. Orthot. Int., vol. 34, no. 2, pp. 109–28, 2010. 

 

 


