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Abstract

With the increasing amount of container freight transport and the increasing size of container vessels, for the
Port of Antwerp, the second largest container port in Europe, a critical task is port planning. A simulation
model provides the means to gain proper insight in the effect of future expansions. Macomi, a company
specialized in simulation and optimisation, has been working on a simulation model to aid the Port of Antwerp
in their port planning. One important issue in this simulation model is how the berth allocation of vessels
is handled. Berth allocation is the problem of assigning vessels a time and location at the quay wall where
the vessel can be loaded and unloaded. In this thesis, the aim is to develop decision models for both the
preliminary berth planning and the real-time recovery of this plan during simulation. For the first part, a cyclic
baseline berth allocation plan is created which takes into account the tidal dependencies vessels have when
entering the port of Antwerp. This preliminary berth plan is used as a basis for the simulation model as the
arrival times are based on this plan. However, during the simulation disruptions might occur; vessels can
arrive earlier or later or take longer to load and unload. To deal with these disruptions a real-time disruption
management decision model is proposed which aims to solve all disruptions while staying as close to the
theoretical berth plan as possible. Using the proposed models, several experiments have been conducted
regarding the influence of uncertainty, occupation and robustness on the quality of the solutions that the
decision models found. Regarding occupancy rates, results show that a tipping point exists where the recovery
model has more difficulty to find a good solution. Results also show that when the expected occupation
of a terminal is higher, adding robustness has more effect and is therefore more important. The decision
models presented in this thesis have been implemented in the Macomi port simulation model and have been
demonstrated to the Port of Antwerp. Both parties have expressed their satisfaction with the models.
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1
Introduction

The Port of Antwerp is the second largest container port in Europe handling 11.1 million TEU (Twenty-foot
Equivalent Unit) in 2019 alone [30]. With the increasing amount of container freight transport and the
increasing size of container vessels, port planning is crucial. To get a feeling of how busy the port will be in
ten years for instance, the port can use historical data to forecast how many vessels can be expected in 2030.
However, to really grasp how busy the port will be in the future, simulation models are applied. Simulation
models provide a means to gain insights into operational plans and future port expansions [4, 8].

Simulation models for port planning can be as detailed as a user wishes. An important issue within these
models is the berth allocation for vessels that need to be loaded/unloaded. A berth is a location at the quay
wall where the vessel can be moored and loaded/unloaded. The problem of berth allocation in short is the
process of assigning each vessel a certain time slot and part of the quay wall such that each vessel will be
able to load and unload their containers without interrupting other vessels. Usually, some kind of objective
function is used to optimize these berth plans; for instance to minimize the amount of waiting time vessels
that enter the port have before they can berth.

However, such a planning can be heavily influenced by all kinds of disruptions. These disruptions can
be due to vessels arriving earlier or later than planned or when the loading and unloading time of a vessel
takes longer than expected. In this case, the berth planning as it was created can be rendered infeasible. If
this happens, the planning needs to be altered such that each vessel still can find a berthing spot. This thesis
focuses both on the creation of a berth planning within a simulation model but also on the real-time recovery
of these berth plans when disruptions happen.

1.1. Problem background
One important design choice that impacts the simulation process is the generation of vessel arrivals. This
is an important design decision because it influences everything from the busyness in the port’s entrance
waters to the allocation of berths and other terminal-related planning. In many works the generation of vessel
arrivals is modelled as a random arrival process [e.g., 42] or is based on historical data [e.g., 19]. In practice,
when historical data is not provided, using a random arrival process is usually a decent assumption given
that different terminals might schedule vessels differently. Further, external factors, like vessel delays and
bad weather might influence these schedules. However, there are drawbacks to modelling vessel arrivals as a
random process.

First, the random approach is hindered when simulating a port that has tide restricted entrance and exit
windows. As the Port of Antwerp is a sea port that is located 80 kilometers inland, all the vessels that come from
sea and wish to enter the port sail through the River Scheldt. The water height of the River Scheldt can differ
almost 5 meters depending on the tides. For the port this means that depending on the draught of the vessel
and the tide at that moment, a certain vessel may or may not be able to enter or exit the port. In a simulation
model this means that if a few deep vessels try to enter the port during a certain low water period they will all
need to wait for this low water window to end. As soon as the water raises again all of these vessels that were
waiting will want to enter the port at the same time. The result is congestion and vessel waiting time [9].

The second drawback to using a random arrival process is that it disregards how many container shipping
companies and terminals work: with cyclically calling vessels from ‘loops’ [17]. A loop can be seen as a series
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2 1. Introduction

of ports that are visited in order. Because of the size of these loops, container shipping companies usually have
multiple vessels sailing in the same loop. In reality, a terminal plans the arrivals of these loops using a cyclic
baseline berth planning: a schedule for a week, in which every loop gets a certain time and location where it
is expected to arrive each week. This baseline plan is modified during the week’s execution because, due to
external factors and uncertainties, vessels often encounter deviation from the baseline plan.

These drawbacks can be overcome by creating a berth planning for the simulation period. However, as
stated before, such a berth planning cannot be a deterministic decision of when a vessel will arrive. In practice
one can also note that the planned time according to this theoretical planning is rarely the exact time that a
vessel can be berthed. Many different factors play a role in this but from a berth planning perspective three
major types of disruptions can be expected. First of all a vessel can be arriving earlier or later than planned.
This type of disruption is usually due to earlier disruptions in the travels of a vessel. It might have encountered
delays in ports it visited before and therefore be later. Secondly, the handling time of the vessel might be
different from the expected handling time. This can be due to a variety of factors including how many quay
cranes are available and the call size of the vessel. The call size of a vessel is the amount of containers a vessel
needs to load/unload during its stay at the port. The last type of disruption is one that is crucial for the Port of
Antwerp, namely the travel time to enter the port. In creating the baseline planning one can only account for a
certain expected travel time, but in reality this can be influenced by many factors which mainly have to do
with traveling through the River Scheldt. As mentioned before, tidal windows might make that even though
the vessel arrived on time it might arrive later at the berth. Also, the river makes for the necessary sailing rules
which means that if it is busy, a vessel can take longer to sail through the river and enter the port. All of the
disruptions mentioned make that the berth planning in practice needs resolving.

1.2. Problem statement
The problem that this thesis addresses is two-fold: firstly the creation of a preliminary baseline berth planning
that serves as the input or basis of the simulation model. Secondly, the real-time recovery of this berth planning
in case disruptions happen during simulation.

To be more exact, the first problem this thesis addresses is that of the creation of a cyclic baseline berth
allocation of vessel arrivals in a simulation model. The allocation must respect physical and operational
constraints. This baseline berth planning serves as a basis on which the vessel arrival times in the simulation
will be based. In addition, this berth planning can be used as the theoretical berth plan during simulation. In
practice this means that based on provided data about the total number of expected vessel arrivals in the port,
vessels will be generated for the simulation model. Each of these vessels will be allocated a berth at a certain
time during the simulation. Thus each vessel will be assigned the combination of a certain time, and a certain
position at the quay wall, where the vessel can be loaded and unloaded without interfering with other vessels.
Based on the time of this allocation, the actual time the vessel will arrive in the simulation can be decided.
Further, in real-life scenarios, if a container shipping company knows that the planned arrival of a vessel is
during low water time, they will attempt to load the vessel so that it has a draught as small as possible. This
aspect of realistic decision making can also be accommodated by the planning approach presented in this
paper.

The second problem addressed in this thesis is that of recovering from disruptions during execution
of the simulation. This means that as soon as a vessel arrives at sea it calls the port and provides it with
information regarding its arrival and travel time. Based on this information and the theoretical berth planning,
a resolution will need to be found such that the vessel can berth without interfering with other vessels. It is
of key importance here that the deviation from the theoretical planning is minimized. This is because the
re-allocation of resources in the port is very expensive and should therefore avoided as much as possible.
Further, it is important that a disruption is solved as locally as possible within the theoretical plan. This means
that if a certain disruption happens, we don’t want vessels that are expected to arrive in a week still be disrupted
and replaced in the planning.

In this work the optimisation technique of constraint programming is used to automatically derive and to
dynamically update the berth allocation plans.

1.3. Contribution
This thesis contributes a novel approach as the basis for the vessel arrival generation and the berth allocation
in a simulated environment. This approach focuses on the generation of a cyclic baseline planning on which
the vessel arrival times and the actual berth allocation are based. By creating this baseline planning one can
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Figure 1.1: Map of the Port of Antwerp

incorporate both the tidal windows of vessels and the cyclic nature of realistic container vessel arrivals.

Further, contributions will be made in the form of a disruption recovery approach for the berth planning
that works in real-time and can make decisions on the spot and for every vessel. Moreover, this approach will
work in large-scale settings of simulation models with a time horizon of at least one month.

This thesis also contributes with a case study investigating the influence of factors like occupation, chance
of disruption and robustness in the theoretical planning on the ability of the disruption recovery approach to
find good recovery plans.

1.4. Introduction to Port of Antwerp and Macomi
This thesis was made possible through a position as intern with Macomi. Macomi is a company which has
developed its own advanced analysis platform [2]. Using this platform they can help companies get insight
in complex issues. They are specialized in artificial intelligence, simulation and algorithms for optimization
which form the basis for this platform. Macomi is working together with the Port of Antwerp [1] to provide the
port with a simulation platform which can help to get insight into port planning issues like the addition of a
new terminal or the extension of an existing quay wall. As stated earlier, the Port of Antwerp is a very large
port (see Figure 1.1) which handles millions of containers each year, which makes port planning all the more
important. This thesis was done following from an intern position at Macomi and in cooperation with the Port
of Antwerp. Macomi now uses the models presented in this thesis as a part of their port simulation model.

1.5. Objectives

1.5.1. Main objective
The first main objective of this thesis is to provide a model for the creation of a berth planning for the entire
simulation period of multiple terminals at the Port of Antwerp. On top of that, the second main objective is to
provide a model for the real-time disruption recovery of the berth planning during simulation time.
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1.5.2. Secondary objectives
From a research perspective there are some interesting topics that can be investigated through the models for
the theoretical berth planning and the real-time disruption recovery.

1. The affect of the probability that disruptions happen on how well the disruptions can be resolved by the
disruption recovery model. Expected is that the larger the uncertainty of the data available when making
the initial planning, the more deviation from the planning will happen. An interesting topic of research
would be to see how this deviation increases with increasing uncertainty.

2. How well disruptions can be resolved under the influence of different occupations of the terminal. When
the occupation of a terminal is higher, or, in other words, when the terminal is busier, it is expected that
disruptions can be solved less efficiently and with that a larger deviation from the theoretical plan. From
an expert in the field I received the information that from a certain level of occupancy it will become
much harder to find good allocations. Consequently, a certain tipping point in occupation should exist
where the recovery suddenly becomes much worse. An additional objective of this work is to investigate
if this tipping point indeed exists and if so, at which occupancy percentage this is.

3. Another interesting topic is to see how much influence the addition of making the initial planning more
robust helps the recovery of the the berth planning in real-time. Robustness can be added in the form of
time slacks after each vessel in which no other vessel will be planned. Expected is the more robust the
initial planning is the better the recovery will be but with a higher robustness the baseline planning can
be harder to create. Using this model this effect can be quantified.

1.5.3. Research questions
The main research question for this thesis will be:

How can preliminary planning and real-time disruption recovery improve the berth planning for the Port
of Antwerp simulation model?

To be able to answer this question a series of sub-questions can be formulated.

1. What is the current state of the research with regard to the subject of berth planning and recovery as
provided by literature?

2. How can the specifications and requirements of a preliminary berth planning be combined into one
berth schedule model?

3. How can a model be formulated that deals with large-scale and real-time disruption recovery in a berth
planning?

With the secondary objectives in mind the following sub-questions are also formulated.

4. How does the probability that disruptions happen affect the ability to find good recovery solutions?

5. How does the average occupancy of a terminal relate to the ability to find good recoveries?

6. How does robustness (‘time slacks’) in the theoretical plan affect the ability to find good recovery
solutions?

1.5.4. Scope
Even though the developed models will be tested in the Macomi simulation platform, they should be generally
applicable and the general solution approach should easily be transformed to the needs of a user. Regarding the
creation of both the initial berth planning and the real-time recovery the focus is put on the berth allocations.
In literature sometimes the berth allocation problem is combined with optimization on land like quay cranes.
While this is an interesting research direction the land infrastructure lays beyond the scope of this thesis.
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Figure 1.2: Graph showing the berth occupancy over time. This graph is the results of a simulation run before the start of this graduation
project. The two lines represent two terminals. The simulation has been run for 1 month in 2030.

1.6. Current situation
The main goal of this thesis is to improve on the port simulation model. To be able to place the improvements
presented in this thesis, one needs a bit of background on the status of the berth planning and vessel generation
before the start of this project.

When a simulation was done with the former simulation model, before the start of this graduation project,
vessels were generated according to a stratified random arrival process. It is stratified because the total arrivals
of different classes were counted and matched with the forecast about the number of arrivals that was given to
the simulation model. The total arrivals should be representative for the yearly numbers with regard to the
division. It should be noted that when sampling the arrival time, no other factors are taken into account like
the tidal dependencies of the vessel.

When the vessel arrives at sea calling to be berthed at a terminal, a berth allocation controller looks at the
current state of the vessels berthed at the terminal and decides the earliest location at the quay wall that will
be free. The vessel is assigned that berthing location and the fastest way to this berthing location is calculated.

There are a few major problems with the way vessel arrival generation and berth allocation was done in
the old simulation model. The first problem is that no physical restrictions are placed on the vessels when
they have berthed. This means that even though the vessel is berthed at the location that will be free first, it
can be that it is berthed at the same location as another vessel. This leads to berth occupancy rates of above
100%. Given that double berthing is not being considered, this is physically impossible and therefore needs
adaptation. An early screenshot of the berth occupancy rates can be seen in Figure 1.2. This graph represents a
simulation time of one month in 2030 on the horizontal axis and the occupancy in percentages on the vertical
axis. Each line represents a terminal. One can immediately notice the peaks over time where the occupancy
goes above 100%.

Another major problem is that tidal dependencies of vessels are not taken into account, this leads to vessels
having to wait before they can start sailing and consequently all entering at the same time. The consequence
hereof can be seen at the big peaks in the graph.

1.7. Anonymity
Real data provided by the Port of Antwerp has been used in this thesis. Because of confidentiality reasons
the data and actual results cannot be made public. Details about the datasets used in the experiments are
therefore not provided in this thesis. The results presented in this thesis are all representational for the real
situation, and should be considered as such.
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1.8. Document structure
The structure of the remainder of this document will be laid out in this section. First, Chapter 2 surveys related
literature. Chapter 3 will describe the optimisation approach developed for the creation of the initial berthing
plan. Subsequently, Chapter 4 will go into the methodology for the real-time disruption recovery. The following
Chapter 5 will provide experiments and results that have been done for a case study for the Port of Antwerp.
First the influence of hardness, or difficulty, of the problem to be solved on the execution time of the initial
berthing time will be investigated and results presented. Next, the experiment regarding uncertainty and its
influence on the quality of the found recovery is presented. The experiment and results of the experiments
regarding occupation and robustness go hand in hand and are presented last in Chapter 5. The final Chapter 6
draws conclusions, answers the research questions and discusses future research directions.



2
Literature

Now that the problem is introduced and defined, existing approaches to this problem and problems closely
related can be considered. First we will take a closer look at other simulation environments in literature and
how they consider the vessel arrival generation. Subsequently, the berth allocation problem as researched
in literature will be investigated. After that, an overview of disruption recovery and rescheduling of berth
schedules will be given. Lastly, a quick view of using a CP approach to solve the berth allocation problem
will be given. For all of the subjects in this chapter we will investigate how the problem presented earlier is
different from the problems in literature and why different approaches are required.

2.1. Vessel arrival generation
For vessel arrival generation, simulation models either follow a random arrival process or base arrivals on
historical data. In the first case, Pachakis and Kiremidjian [31] developed a procedure for modelling ship traffic.
The authors propose the use of exponentially distributed inter-arrival times if data is not available. Thiers and
Janssens [34], Yeo et al. [42] model the arrival generation with a Poisson process. This allows for varying arrival
rates over the course of the simulation.

In the second case, when historical data is available and is relevant, simulation models can use it as a
basis for vessel arrival generation [15]. Huang et al. [19], for instance, use the actual arrival historical times
in the simulation. This is valid if the historical arrival times are representative of the simulation period; in
particular, this assumption can be false when simulating future design options for the port. Cimpeanu et al. [7]
assume that a yearly schedule for vessel arrivals are known beforehand. These are based on distributions of
inter-arrival times derived from historical data provided by a port terminal company.

van Asperen et al. [36] examine arrival generation for jetty facilities. The data provided in their case was
yearly arrival numbers for the vessels, and not information about any kind of specific distributions.

Tidal patterns have been included in some simulation models. The early work of Groenveld [14] presents a
port simulation model where tides are included. Here, the tidal conditions are included post hoc as a check
whether a vessel is allowed to sail or not; a vessel that is not allowed to sail due to tidal restrictions needs
to wait in the anchorage. Similarly, both Hassan [15] and Cimpeanu et al. [7] keep vessels restricted by tidal
conditions waiting in a queue. Wadhwa [37] also takes tidal patterns into account when entering and exiting
the port. Here, the notion of loading a vessel according to a certain allowable draught is introduced. Thiers and
Janssens [34] divide vessels into tide-dependent and not tide-dependent. For vessels that are tide-dependent
there are certain threshold locations which the vessel can only pass during a certain time-frame. These tidal
windows are defined as the time frame in which the vessel can depart from a certain location and pass all the
thresholds without issues.

From these works we can see that, with the exception of Huang et al. [19], all works generate vessels
according to inter-arrival times. In cases where historical data is provided these are often based on data. On
the other hand, if no data is available, different random arrival processes are incorporated. None of the models
have included the cyclic nature of arrivals and only some of them included tidal patterns. The latter, however,
are modelled as a check whether or not a vessel is allowed to enter the port or not, rather being taken into
account in the arrival generation. By contrast, in reality shipping companies do attempt to take tides into
account to reduce waiting time. As van Asperen et al. [36] have shown, random arrival processes not based on
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any environmental information leads to the highest vessel delays.

2.2. Berth allocation problem
While berth allocation problems have received extensive attention in literature, to the best of my knowledge,
no work uses a baseline berth allocation as a base for a simulation model. In this section the main research
directions and development will be investigated. However, for a thorough and complete overview I refer the
reader to Bierwirth and Meisel [5], where a thorough survey into the creation of a baseline berth planning is
done.

2.2.1. Berth allocation with certainty
The early works on this problem all consider a certain environment. Nishimura et al. [29] for instance consider
the berthing spaces to be discrete and propose a model that minimizes the total service time that vessels have.
Here the authors assume that the service time depends on the berth that is chosen for a certain vessel. All the
arrival times and the handling times at different berths in the model are assumed to be known and certain.
A genetic algorithm is proposed as a heuristic to obtain a good solution to the model. Imai et al. [20] also
minimizes for the service time but include a minimization of the waiting time as well. A special feature here is
that the priority of different vessels is taken into account. Again, a certain environment is expected where all
the information is assumed to be known and certain beforehand. Kim and Moon [24] propose a simulated
annealing approach to find a good solution to their MIP formulation that minimizes the delay in departure
time of the vessel and the cost for not berthing the vessel at its preferred location. Again, this work approaches
the BAP from a discrete berth point of view and the information is assumed to be known beforehand. A final
example of a BAP in a certain environment is the work of Wang and Lim [39]. Here a stochastic beam search
algorithm is developed that aims at minimizing the cost of not berthing a vessel at its preferred location and
the cost for delays. Literature has also focussed its attention on the fact that there is a relationship between
scheduling berths and scheduling quay cranes. One example can be found in the work by Meisel and Bierwirth
[28] where different heuristics are presented that deal with the integration of quay crane scheduling in the
berth scheduling problem. Here the possible assignment of quay cranes to vessels depend on their berthing
location and the amount of assigned quay cranes influence the handling time required to load and unload the
vessel.

2.2.2. Berth allocation with uncertainty
The certainty as assumed in the works in the previous subsection can in practice turn out to be very influenced
by all kinds of external factors. Researchers started to include uncertainty of these unknown factors into their
approaches. One way to include uncertainty is presented by Zhen et al. [47]. Here uncertainty is modeled
as a finite set of discrete scenarios. Each scenario presents the actual arrival time and service time of each
vessel and the probability of that scenario happening. The authors model this problem as a MIP minimizing
the cost with respect to berthing time and location but also including the cost of each scenario happening. A
similar approach is used by Xiang et al. [40]. Here scenarios are prepared based on historical data and again
the chance of each of these scenarios happening is included. The prepared baseline schedule should deviate
as little as possible under each of these scenarios happening. The proposed model is bi-objective searching for
a solution with both a good economic performance and high customer satisfaction.

Another approach for taking uncertainty into account is through making the baseline planning as robust as
possible. Zhen and Chang [45] for instance add robustness to their baseline planning by adding time buffers in
between vessels. A bi-objective optimization approach is presented that both maximizes the bufferspace while
minimizing a cost function regarding vessel berthing time and location. A different approach is presented
by [13]. The arrival times of vessels in this approach are given as a time window. Through this, robustness
is defined as the variability in the total service time of all vessels together. The proposed model minimizes
this variability by minimizing the average service time and the range of the service time that is expected by
berthing the vessel at a certain time and location.

Du et al. [11] combines the use of robustness and scenarios through a feedback procedure that creates a
robust baseline berth planning. Through a set of delay scenarios the planning is resolved multiple times where
the time buffers for different vessels are adjusted each loop. The idea behind these adjustments is that a good
buffer for each vessel lowers the possible delay propagation in case of delays.
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2.2.3. Inclusion of tides
Most studies do not consider the fact of tidal dependencies when entering and leaving the port. However, this
is very relevant for the case of the port of Antwerp. Some works however do include a notion of tides in their
model. Qin et al. [33] consider a river port where water depths at the berths themselves are deciding factors on
whether vessels can berth. Both integer programming and constraint programming approaches are proposed
to minimize the total weighted service time for all vessels. Du et al. [12] assume tidal levels to restrict the
entrance and exit possibilities of vessels. In this formulation the expected arrival time of the vessel is known
and with this the first possible arrival in the port is calculated by taking the tidal levels into account. Only after
this moment of entering the port the vessel is allowed to be berthed. A few important assumptions are made
here. Until the moment it is berthed it is assumed the vessel can wait in an anchorage which is infinitely large.
The tidal windows are assumed to be static 12-hour windows. Also incoming and outgoing drafts of vessels are
assumed to be identical. Both Ding et al. [10] and Zhen et al. [48] address the problem of daily berth planning
and quay crane allocation. When considering the daily planning it is assumed that the information about
the arrival and departure times are known. Based on this the berth and berthing times are provided to the
shipping lines. Because this is the case of daily planning a lot of information is available and relatively certain.
When considering tidal windows the decision is made on how many tide cycles vessel will stay in the port. If
the vessel stays for one cycle it needs a lot of quay cranes, and with multiple cycles the assigned quay cranes
can be lower and more vessels can be served simultaneously.

2.2.4. Cyclic nature of arrivals
In the most generic case of berth allocation, as explored in the previous subsections, one tries to find an
allocation that plans vessels as close to their expected arrival time as possible. Often also some preferred
berthing location of a vessel is taken into account. One of the main directions indicated by Bierwirth and
Meisel [5]’s survey is the incorporation of the cyclic nature of a berth schedule. Hendriks et al. [17] are one of
the few authors who incorporated the cyclic nature of a berth planning into a model. Here a cyclic period is
divided into discrete time periods and it is assumed that vessels that berth simultaneously are known. Based
on this a combined berth allocation and yard planning model is presented. Similarly, Zhen et al. [46] also
present an integrated berth allocation and yard template model. In this work the planning horizon is divided
into discrete time periods. The planning horizon can be repeated without issues which is why the resulting
berth plan can also be considered cyclic.

These works all follow the assumption outlined by Hendriks et al. [16]: namely that strategic-level decisions
have been made about the time of arrival and departure which are used to create the cyclic berth allocations. As
these times are not known in a simulated environment and need to be generated from yearly arrival numbers
these models cannot be used as such. However, the same mindset of rectangle packing on a cylinder instead of
a plane, as well explained by Zhen et al. [46], is adopted in this work.

2.2.5. Strategic berth template problem
Relevant to this last made point there is a different problem in the literature that is also closely related to
the problem tackled in this thesis, namely the strategic berth template problem. Recent works by e.g. Imai
et al. [21], Huang et al. [18] and Iris et al. [23] consider this problem. The berth template problem focusses
on the creation of a repeating schedule for a longer period of time in which different vessel lines have the
same arrival time each cyclic period. While the end goal of creating a cyclic plan for a longer period of time
is very relevant to this study, some major differences are detected in how this end goal can be reached. The
goal in these papers can also be defined as, given a set of vessels with corresponding arrival and handling
times, how can these be planned in a given time horizon such that the deviation from their arrival times is
minimized. Additionally, constraints are added that ensure that if the resulting berth planning is repeated,
no overlap will arise. This redefinition shows why the berth template problem as addressed in literature is
not applicable in this thesis. This is because when working in a simulated environment, a yearly number of
arrivals is provided and consequently the arrival times are not known. Also, one particular requirement of
importance in the current situation is that tidal influences are not considered. However, the idea behind the
strategic berth template problem comes closest to the first part of what is attempted in this thesis, namely the
creation of a cyclic berth planning for a longer period of time.

2.2.6. Conclusions
From this overview on works that tackle berth allocation problems a few important conclusions can be drawn.
First of all, to the best of my knowledge, no work has used the baseline planning as a basis or input for a
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simulation model. Secondly, there is a crucial difference between the berth allocation papers in the literature
and actually using the allocation as a base for a simulation: in the former the expected arrival time is usually
assumed to be known. Even papers that incorporate uncertainty into the creation of a schedule always
assume some information is given about the expected arrival time of a vessel. Thirdly, only a few works have
investigated the inclusion of tides into their modeling which is a very relevant topic for the case of the Port of
Antwerp. Lastly, as also indicated by Bierwirth and Meisel [5]’s survey, the incorporation of the cyclic nature of
a berth schedule is something that has not been done often and is something that will be considered in this
thesis.

2.3. Disruption recovery
The last important point regarding berth allocation is how to do it in real time. A good and robust berth
schedule might be very useful, but in reality there is a lot of deviation and uncertainty about the arrivals and
handling times of vessels. If a vessel arrives later than planned, the berth schedule will change and often even
become infeasible. When disruptions happen there are two main ways to solve these problems. First there
is rescheduling. Rescheduling is the act of creating a completely new schedule while optimizing the original
performance measure. Carette [6] solves the berth allocation problem from a rescheduling approach. Here, the
optimal plan is recalculated at given time intervals. At each interval, new information is collected and based
on this information an optimization method is used to create entirely new schedule. However, in practice,
and also in this thesis, a different way of solving disruptions is preferred. This approach is called disruption
management and it is the act of adjusting the original berthing plan to fit potential disruptions while keeping
as close as possible to the original berthing plan. This is preferred over rescheduling since this minimizes
actual relocation of equipment and resources which is prepared according to the original plan. Furthermore,
in cases where there are many incoming vessels an updated plan can usually be achieved faster.

Zhang et al. [44] use a disruption management strategy to reschedule in case of disruptions. A lexicographic
optimization approach is used to add a hierarchical structure to different types of vessels. Meaning that the
updated berthing plan is first optimized for key line vessels, then for trunk line vessels and lastly for feeder
line vessels. The authors assume that the baseline planning is known and propose a model that aims to stay
close to the original plan given new expected arrival times for each vessel. Yang et al. [41] propose a disruption
management approach which makes use of simulation to simulate disruptions and based on this extract
stable states for vessels. Multiple simulation runs are done which result in these stable states. Based on these
stable states a rescheduling is done where these vessels are influenced as little as possible. Similarly, Zeng et al.
[43] disruption management is done with a simulation optimization approach. This means that an optimal
berth allocation is found through repeated simulation runs and solving disruptions that arise. In this paper
both berth allocation and quay crane scheduling is done simultaneously. The performance measure in this
case is two-fold: one one hand the original optimization function is optimized and on the other hand the
deviation from the original problem is minimized. The authors propose the idea of local rescheduling which
only considers a limited time and space window to solve the disruption. The authors show that the local
rescheduling approach can improve the computation efficiency over a full rescheduling approach. Iris and
Lam [22] propose to do the berth and quay crane planning in a recoverable robust way. The authors assume a
finite set of scenarios that give the value of different uncertain variables. For the baseline planning a vessel
specific buffer is added which acts as robustness. The authors also generate recovery plans for each scenario.
For each scenario a plan is created which subsequently are used to create the baseline plan.

The approaches mentioned above are all not real-time recovery approaches. They aim at optimizing the
schedule given a series of simulation runs and corresponding disruptions. Umang et al. [35] do present a
real-time approach for disruption recovery in a bulk port. The authors assume a baseline schedule and aim to
stay as close to that as possible when disruption happen. During a run, the model expects vessels to update
their arrival time and handling time. Each hour, a check is done and with all of the updated values a recovery
is done. The authors do rescheduling through both an greedy algorithm and an optimization algorithm
which are later compared. The greedy algorithm places vessels at berthing locations where the total cost of
reassignment is minimal. The optimization algorithm minimizes the objective function through reformulating
the optimization function as a set-partitioning problem where all the feasible assignments are investigated.
They find that the optimization algorithm outperforms the others based on objective value while the greedy
algorithm stays closer to the original baseline plan.

Concluding, very few works have focused on recovery of a berth schedule given disruptions that appear,
especially when looking at recovery in real-time. However, in this thesis, the real-time aspect is very important.
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When comparing with the work of Umang et al. [35] there are a few aspects that this thesis will improve on.
First of all, the simulation model for the port of Antwerp are very large scale. Simulation periods of at least
one month are typical time horizons for this application. Therefor, a model is needed that can deal with these
large scale settings. Umang et al. work only with test scenarios of 10-25 vessels and a time horizon of 5 days.
Also, they only update their planning each hour. Ideally we would want to respond as soon as new information
becomes available. Lastly, Umang et al. assume fixed (hybrid) berthing positions whereas in the container
terminal case of Antwerp, continuous quays are required, which means that vessels can be berthed anywhere
along the quay wall.

2.4. Constraint programming for the Berth Allocation Problem
Constraint Programming (CP) is a flexible Artificial Intelligence approach to modelling and solving combi-
natorial optimisation problems [38]. Kizilay et al. [25], for instance, use CP to address a decision problem
in integrated port container terminal operations. Li et al. [26] use CP to plan vessel rotations (loops) among
terminals within a port. In solving a berth allocation problem, Qin et al. [33] show that CP outperforms integer
programming in three instances, namely when using dynamic arrivals over static arrivals, when using fine
time granularity, and when the restriction of the objective towards the decision variables is not tight. Since
the optimisation problem we will formulate has no tight restriction towards the decision variables (only to be
close to a preferred location) and uses a very fine time granularity (that of 1 minute), CP is adopted for which a
compact and understandable optimisation model is formulated.





3
Methodology of theoretical berth plan

In this chapter the proposed methodology for the creation of the theoretical baseline berth planning is
presented in detail. The proposed approach centres around the generation of a projection plan. The simulation
model will be provided with yearly arrival numbers for different vessel classes based on which vessels will be
generated. These vessels will be divided over cyclic periods, and consequently, the arrivals of every period
are transformed into a projection plan. This is a berth allocation for one cyclic period. This projection plan
serves as an outline for each period’s arrivals, which will be ’projected’ on this plan. In this phase the vessels,
as generated at the start, will receive an arrival time according to the berth allocation in the projection plan.
Through this approach, vessels that are assumed to be from the same loop are planned at the same time each
cyclic period. In the remainder of this chapter, first the data that is used in this approach is explored. Next, a
step-wise explanation of the proposed approach is given.

3.1. Problem Data
In this thesis, a typical situation is considered in which historical data about vessel arrivals is either not
available or not applicable. There can be multiple reasons why data about past arrivals are not applicable for a
simulation model. First, inter-arrival times based on historical arrivals can be inaccurate when simulating
future scenarios. The further in the future one is interested to simulate, the more likely it is that changes arise
regarding amount of arrivals and arrivals from different vessel classes. Second, past arrivals are of limited value
when the simulation is used for analysing possible port expansions. An instance of a possible port expansion,
adding a new terminal, is taken up in the case study provided by the Port of Antwerp (see Chapter 5). Third,
aggregated inter-arrival time distributions from historical data do not take account particular tidal windows
nor the cyclic behaviour of arrivals. As discussed in Section 1.1, this omission leads to no cyclic behaviour and
increased waiting times because of the tidal pattern.

On top of this, from a more practical point of view, since terminals are usually independently operating
from the port, the port does not have detailed information about every vessel arrival at each terminal. They
have a good estimation of the total amount of arrivals, but exact information about arrival and handling times
are not available without receiving them from the terminals.

In order to develop a realistic data-based simulation, we take advantage of the following commonly-
available data.

1. First, a yearly forecast for the simulation period. That is, for each class of container vessels, the port
manager provides an expected yearly number of arrivals. To make these arrivals more realistic, the
division of these vessel classes over different approach routes to the port can be used. What vessels
belong to what vessel classes can be specific to the application. In the data provided by the Port of
Antwerp, vessel classes are defined by their size, amount of Twenty-foot Equivalent Unit (TEU) that can
be carried, and the handling time distributions. Hence each vessel from the same class has the same
size, TEU and handling time distribution.

2. For each class it is also important to know the division of draught. That is, how many vessels are expected
yearly with what draught. The draught of a vessel is essential knowledge since it determines whether or
not a vessel can sail given the tidal situation.

13
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3. Next, for each draught the tidal windows need to be known. These are required in a similar fashion as in
Thiers and Janssens [34]. The tidal window at a certain location represents the first and last moment a
vessel with a specific draught is allowed to pass that location, such that it will not encounter any tidal
issues over the course of the journey to or from the port. To make a good estimation about the berthing
times after a vessel can pass through the tidal window, data about travel times in and around the port
are used.

4. Lastly, for each vessel class there is additional information regarding, for instance, the length of the
vessel and the distribution of the handling time for that class.

For the subsequent parts of a port simulation, in which berth planning is incorporated, more data could
be necessary. For example, information about traffic rules, tug boat assistance and external conditions like
weather. Chapter 4 discusses the data required for the disruption recovery.

3.2. Proposed Methodology
The six steps are illustrated in Figure 3.1. Each of these are described in turn.

Step 1: Determine simulation period and cyclic period
Any simulation design requires some foundational decisions regarding the simulated period and the cyclic
loop period. The decision for the simulation period is important as the tidal windows depend on this. The
cyclic period determines how often the cyclical berth allocation pattern repeats itself. In practice this period is
usually 7, 10 or 14 days [17]. The combination of this simulation period and cyclic period determine how often
the cyclic pattern is repeated. The cycle period can be chosen to the user’s needs.

Step 2: Generate vessels for the simulation period
The second step concerns the generation of all the vessels that will arrive in the simulated period. This is done
through a repeated random selection with stratification. A list of vessel arrivals is generated that represents the
total amount of arrivals that is expected in the simulation period according to the provided number of yearly
arrivals for each class and draught within that class.

Step 3: Divide arrivals over cyclic periods
One important assumption that is made regarding the cyclic nature of the arrivals is that vessels from the same
vessel class can belong to the same loop. Consequently, for each instance where a vessel class has arrivals in
every cyclic period we may assume there is one loop for that vessel class. In this step the division of vessels

1.  Determine simulation time and cyclic period

2. Generate vessels for simulation period

3. Divide arrivals over cyclic periods

4. Deduction of arrivals in projection plan

5. Solving the projection plan

6. Plan each cyclic period

Figure 3.1: Six steps of the berth allocation approach.
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over the cyclic periods is being made. The goal is to divide the arrivals from each vessel class as evenly as
possible over the cyclic periods.

For example, suppose that the cyclic period is one week and the simulation period covers five weeks, then
the vessel arrivals are divided over five periods. Now, if from a certain class 13 arrivals are expected in the
simulation period we will assign two arrivals to each week and these will be considered cyclic arrivals. The
remaining three arrivals that cannot cover each cyclic period will be assigned to random periods where the
same period is not chosen twice. These remaining arrivals are considered non cyclic arrivals.

Step 4: Deduction of arrivals in projection plan
Now that the arrivals of each class per cyclic period is known, the next step is to deduce a projection plan. A
projection plan is a berth allocation for one period on which the arrivals for each cyclic period are projected.
The arrivals of the projection plan can be deduced as follows. First, for each cyclic loop that has an arrival each
period, one vessel from that class is added to the projection plan. These loops will be planned at the same time
and place each period. Secondly, since the projection plan is the berthing plan on which every period’s arrivals
will be projected, room for non cyclic arrivals needs to be incorporated as well. This is done by adding the
number of non cyclic vessels of the period that has the most non cyclic arrivals. This way, the projection plan
will have enough planned spaces such that each period can fit all their planned arrivals.

Step 5: Solve the projection plan
In this step the goal is to reserve a time slot and location for all the vessel class arrivals that are expected in
the projection period. As explained earlier, the arrivals in the projection period are not actual arrivals but
placeholders on which the actual arrivals for each period will be projected. This means that a decision needs
to be made on how much space and how much time needs to be reserved for each arrival. The cases of cyclic
and non-cyclic arrivals are treated separately.

For the cyclic arrivals this means that each arrival is from the same class which means that the vessel
length and estimated handling time are likely rather similar. In any case, for each of the cyclic arrivals the
longest vessel length and the longest estimated handling time for that vessel class needs to be reserved. In
our case study, vessels from the same class all have the same vessel length and handling time distribution,
which means that this length and expected handling time from this class can be used. This is to make sure that
when planning the actual arrivals and projecting it on this space that the arrival will stay within the reserved
boundaries.

The non-cyclic arrivals are more difficult, since each period different vessels from different classes might
use this spot. It is necessary to make sure that the spaces that are reserved are large enough such that every
cyclic period each non-cyclic vessel fits in a space that is large enough to prevent overlap. To do this, we check
the non-cyclic arrivals and find the arrival each period which takes the longest handling time and has the
largest vessel length. This is the time and space that is reserved for the longest non cyclic arrival each period
and by reserving this space we ensure that the largest non-cyclic arrival each period will have enough space.
Next we check each period for the second-to-longest handling time and vessel length and reserve that space
and so forth. This way it is guaranteed that all the spaces reserved in the projection plan are boundaries for the
actual arrivals and no vessel will be outside its planned spot.

To solve the berth allocation for the projection plan an optimisation approach is adopted. A compact
constraint programming model is formulated.

The parameters, decision variables, objective function and the constraints are:

Parameters
V = set of vessels to be served in time horizon

li = length of vessel i

ti = estimated handling time of vessel i

L = quay length

T = cyclic period planning time horizon

bi p = a score for vessel i to be placed at location p
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Decision variables

xi = start berthing time vessel i

yi = berthing position vessel i , where the front of the vessel is located

yOb ji = the objective score value for vessel i

xIntervali = an interval variable covering the interval {xi , xi + ti }

yIntervali = an interval variable covering the interval {yi , yi + li }

Objective and constraints

max
∑
i∈V

yOb ji (3.1)

NoOverlap2D(xInterval,yInterval) (3.2)

0 ≤ xi ≤ T − ti ∀i ∈V (3.3)

0 ≤ yi ≤ L− li ∀i ∈V (3.4)

Element(yi ,bi , yOb ji ) ∀i ∈V (3.5)

yOb ji ≥ 1 ∀i ∈V (3.6)

The objective function (3.1) is to maximise the score given to each vessel regarding a certain preferred
berthing location for that vessel. Constraint 3.2 is a CP-specific constraint which constrains each pair of
xIntervals and yIntervals, which form rectangles, to be non-overlapping rectangles (also known as the diffn
constraint [3]). Constraints 3.3 and 3.4 ensure that the values x and y can take on such that they remain within
the boundaries of the berthing plan. Constraint 3.5 ensures that the value taken up by yOb ji equals the score
for vessel i to be berthed at location yi .

The final constraint (3.6) constrains the minimum score that each vessel must have. This last constraint
is optional; the minimum score depends on the application. This can be used if certain vessels need to be
guaranteed at a certain location. In our case study a value of 1 was chosen to be able to deal with the situation
of discontinuous quays (see also Ma et al. [27]). Namely, in this situation the discontinuous quay can be treated
as a continuous quay but on the split a score of 0 is assigned. This way vessels can never be located over the
split. One should note that a value of 1 is considered small as the parameter bi p has scores scaled between
0-100.

The parameter bi p allows for a lot of flexibility regarding scoring vessels for their berthing position. In the
case study presented in Chapter 5 the scoring rule is based on the size of the vessel, namely that large vessels
should be located as much as possible in the center of the quay wall while smaller vessels should be located to
the sides of the quay wall. The parameter also provides options to exclude a certain part of the quay wall for a
certain loop, by just adding score 0 for that location, if these vessels are supposed to be berthed at a specific
section of the quay wall. If in practice this definition leads to problems and only a preferred berthing location
is known one can manipulate this parameter to show for each location a score based on how close this point is
to the preferred location. If, in practice, no location is preferred, one could just add maximal score for each
location.

Note that the constraints used in this model follow the naming as implemented in the OR-Tools CP solver
[32] used in the case study (Chapter 5).

It should also be noted that uncertainty can be managed through adding robustness to the berth plan. This
can be done in a proactive manner by increasing ti , that is the expected handling time, of each vessel. If the
expected handling time considered in this part is higher, a time slack will appear after the vessel. This leads to
the fact that when disruptions happen during the simulation, the vessel has some buffer space to move, giving
it space to either take longer handling or arrive later without disrupting other vessels. For a detailed study on
adding robustness to the preliminary berthing plan the reader is referred to Section 5.4.
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Figure 3.2: Example berth allocation: simulation period 2 weeks, cyclic period 1 week. The horizontal axis is the time factor of the berth
allocation and the vertical axis shows the quay wall. One can see by the split in the vertical axis that this terminal has a discontinuous quay
wall and consists of two sections of quay. The green boxes in this image all represent vessels planned in this time frame. Note that in the
length of the vessels as visualised (the vertical length of the boxes) also a necessary safety distance is incorporated. Thus, boxes that touch
do not touch in real life.

Step 6: Plan each cyclic period
The final step is to project each period’s arrivals on the projection berth allocation as created in the previous
step. In this procedure the tidal windows will have an important role in deciding which vessel from a loop will
arrive in which period. This can be optimised under the assumption that when planning arrivals a shipping
line will not plan a very deep vessel during a low water period but rather have the vessel arrive less heavily
laden. Hence for each cyclic loop for which a time and place is reserved in the projection plan, vessels will be
planned in such a way that, if the vessel arrives exactly at the time that is planned, the vessel will not have any
issues with entering the port due to tidal restrictions. Further, when the expected handling time is over, the
vessel should be able to leave as soon as possible.

In practice, this means that when planning the vessels from a loop, first the vessel with the largest draught
will be planned. For each period one can use the estimated travel time from the tidal window threshold point
to the berth to find the time the vessel would pass that point if it would arrive exactly on time at the planned
berth that period. With this time it is possible to check if the vessel would be able to enter the port at that time
according to the tidal patterns. Every period in which the vessel can enter immediately will be selected as a
potential period that the vessel will arrive. If the vessel can not enter immediately in any of the periods, the
period with the shortest time to high water will be selected. Now, for each of the selected periods the time after
handling is done until the time it can exit the port because of the tides is calculated using the exit draught for
each period. Since this is the preliminary planning phase, no information is known yet about the actual exit
draught. It can happen that the draught changes because of loading and unloading. Because this can only be
known a short time in advance, it is assumed here that the exit draught is the same as the draught with which
the vessel enters. The period in which this is shortest is selected as the period in which the vessel will arrive. If
multiple periods have the same time until exit, a random one is selected. The remainder of the vessels in the
loop are planned in similar fashion in descending order of draught. This process is repeated for each loop, or
spot in the projection plan.

An example output berth allocation from our approach can be seen in Figure 3.2. The figure shows a
simulation period of 2 weeks with a cyclic period of 1 week. Arrivals are randomly generated; the terminal has
discontinuous quay walls. One can note the cyclic behaviour of the planning for instance when looking at
vessel 207 and 208. An example of a space reserved for non cyclic arrivals can be seen with the vessels 100 and
182. These vessels are clearly different size and handling time, and thus from a different vessel class, but are
planned at the same location.





4
Methodology of disruption management

In the previous chapter an approach to create a preliminary berth planning was presented. This theoretical
berth planning can serve as input for the simulation model. However, during simulation, disruptions might
occur. This chapter gives a detailed explanation of the proposed disruption management approach. It first
explores the simulation model where it is implemented because this gives some insight in some of the design
decisions made. Then the disruption management approach itself is explained in detail, as the different
methods used are discussed and the decision making strategy is presented.

4.1. Simulation model
4.1.1. Simulation controller models
Within the simulation model there are two controller models that are of interest for the disruption recovery,
namely the vessel controller and the berth controller. The vessel controller controls the vessels: it calculates
the routes that the vessel will take, generates motion plans and makes sure that the vessel complies to all
sailing rules. The inner workings of how routes are chosen and how sailing rules and other traffic are included
into the sailing behaviour of the vessel is being handled by the vessel controller and beyond the scope of this
thesis. The berth controller controls the berths for the terminals: it has knowledge about the most recent berth
schedule and determines where and when a vessel can berth.

4.1.2. Communication between controllers
To be able to incorporate the disruption recovery the communications between the vessel controller and the
berth controller need to be modified. The new flow is visualised with a communication diagram in Figure 4.1.

When a vessel arrives at sea, the Vessel Controller (VC) will start handling the vessel. The first step that is
taken is asking the Berth Controller (BC) to provide the VC with the planned berthing location of the vessel in
question. After receiving this information the VC will calculate the vessel’s route and corresponding travel time
and respond with all the information the BC needs to properly plan the vessel. This information contains the
minimum arrival time at the berth, the actual handling time, the travel time to the berth and the change in
draught after handling. It is assumed that this information is accurate and correct at that point which is based
on the fact that in reality planners can give a good estimation of the handling time and change in draught
based on the call size of the vessel. Also, planners can make a good estimation of the travel time a vessel needs
to get to the berth given the current tidal situation and other traffic on the water.

As soon as the BC receives this information from the VC it is able to use this information to determine a
berth location and berthing time for the arriving vessel. Until this point, the BC only had information about
the estimated arrival time and estimated handling time of the vessel. Now that the vessel made a terminal call
the actual arrival time and handling time are known. The BC will use this to determine a berthing time and
location by manipulating the current berth schedule to make all the vessels fit into the schedule again. The
details of how this works will be provided in the next section of this chapter.

In response to receiving the berthing time and location of the vessel from the BC, the VC will calculate
the route to the berth and start the simulation of that specific vessel. It will also send one last message to
the BC with the actual arrival time at the berth. This is necessary because in the case where a vessel is not
berthed at exactly the location that it was originally planned to, the actual arrival time might differ with a few
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Vessel Controller Berth controller

Vessel arrives at sea

Ask for berth location

Check planning for location

Send berth location

Create motion plan to
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minimum arrival time and
handling time

Send vessel times

Find a berthing time and
location for vessel

Send arrival time and berth

Create actual motion plan
and simulate vessel

Send vessel locked

Use actual arrival time to
tweak the berth planning

Figure 4.1: Visualisation of the communication between the Vessel Controller and Berth Controller

minutes depending on how much it changed. The BC will use this to tweak the arrival time of the vessel in its
berthing plan and lock it in place. When a vessel is locked, it is not allowed to be moved in the berth schedule
anymore. This is a design decision made based on the fact that as soon as a vessel starts its simulation process,
its behaviour, route and travel time (the so-called motion plan) is decided until it leaves the port again. Only
when a vessel is done with its loading and unloading a new motion plan is calculated for leaving the port. This
means that when a vessel starts its travels, its route or speed cannot be changed and it is essentially locked.
This means that when a vessel starts simulating the BC will lock that specific vessel so that it knows that it
cannot change that vessel in the berth schedule.

4.2. Real-time disruption recovery
When the BC receives all the information necessary, the first step will be to check if the proposed berth is free
at the minimum arrival time of the vessel and if planning the vessel at that point will results in any collisions. If
this is not the case, the vessel can be planned at that location and at its minimum arrival time and the BC will
report this back to the VC.

If disruptions happen the BC needs to recover the berth schedule in such a way that every vessel fits in the
planning again. This has to happen in real-time and for every vessel so it needs to be relatively fast. If finding a
good recovered berth plan takes one hour per vessel, running the simulation would become infeasible for the
large-scale setting that the Port of Antwerp has provided. Also, as discussed in Section 2.3, the aim is to stay as
close to the original berth planning as possible. To do this, first a formula will be introduced that evaluates
the quality of the realised berth planning after the simulation is complete in comparison with the theoretical
baseline planning. Subsequently, three important approaches and methods are explained that will be used in
the disruption management method. The final part of this section will be on decision making. That is, how
these different approaches and methods are deployed, work together and how decisions are made based on
their output.

4.2.1. Quality measure
It is important to have a sense of when a recovery is good and when it is not. Therefore, a formula for the
quality of a realised berthing plan in comparison with the theoretical planning was formulated in consultation
with an expert with experience in berthing vessels in real life. There are two important factors when deciding
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on the quality of a recovery; namely the deviation in berthing time for a vessel, and the deviation in berthing
location for a vessel. The formula is formulated as a penalty for a single vessel:

p = c1 ∗ (x − t )+ c2 ∗ ((1−δ)∗|y −b|+δ∗L)) (4.1)

Here, p is the penalty for berthing a vessel at time x and location y . The lower p is, the better the recovery has
planned the vessel. One can note that the berthing time of a vessel x is compared with its theoretical berthing
time t , where the same berthing time would lead to no added penalty. Likewise is the berthing location of a
vessel y compared with b, the planned location of the vessel in the theoretical plan.

Because in the case study presented by the Port of Antwerp there are multiple terminals with two quay walls
instead of just one, this is something that has also been adopted in this thesis. Terminals can have more than
one quay wall. In the case of disruption recovery, it might be that a good solution in case of some disruption is
that a vessel needs to be berthed at a different quay wall than at its originally planned quay wall. This has been
incorporated in the quality formula with the variable δ, which is 1 if the vessel is moved to a different quay
wall, and 0 otherwise. If the vessel is moved to a different quay wall it is impossible to decide how large the
displacement is and therefore the decision has been made to add a large penalty L which is the length of all the
quay walls in the terminal combined. This large penalty also makes sense in real life because moving resources
to a different quay wall is a costely operation. Lastly, c1 and c2 are cost parameters, regarding the deviation in
time and space respectively. In consultation with the expert mentioned earlier, for c1 the value of 1 is chosen
and for c2 the value of 0.2 is chosen. With this penalty function in mind, the quality of a complete realised
berthing plan would be the average penalty over all the vessels:

P = 1

n

n∑
i

pi (4.2)

4.2.2. Distinct point method
The first method that will be used in the disruption management is a novel method called the distinct point
method. The distinct point method is a more efficient method (compared to brute-force checking each
(x, y)-pair) to determine the empty spaces in a berthing plan. These boxes are of interest because each of these
empty spaces represents a potential berthing place and time for the vessel to be planned. In the remainder of
this subsection the workings and details of this method are explained.

Before one can start determining the empty spaces in the berthing plan first the region of interest needs to
be determined. For each vessel to be planned, only a small portion of the berthing plan is of interest since this
gives the potential berthing locations after its arrival time and within its maximum allowable waiting time. The
region of interest therefore starts with the minimum arrival time of the vessel. The end time of the region of
interest is the minimum arrival time of the vessel with the addition of the minimum allowable waiting time
and the handling time of the vessel. The maximum allowable waiting time can be decided based on the user’s
requirements. In the case study in Chapter 5 this maximum allowable waiting time is 16 hours. For the region
of interest the complete quay length is considered.

To determine the empty boxes in a berth planning first the distinct points of interest will be determined for
both the x-axis and the y-axis. The distinct points of interest on the x-axis are the start and end times of all the
vessels within the region of interest in the planning, the start time of the region of interest, and the end time of
the region of interest. The distinct points of interest on the y-axis are the begin and end location of the vessels
on the quay within the region of interest, the first point at the quay (at 0 meter) and the last point at the quay
(the length of the quay). In the case that the terminal is split into multiple quays, the split is also added as a
point of interest. In Figure 4.2a the selection of distinct points of interest are shown for an example situation.

Now that the distinct points of interest are known, we can use each combination of two x points and two y
points to form boxes. These boxes are known as the potential empty boxes. The creation of empty boxes is
shown in an example situation in Figure 4.2b. To determine the actual empty boxes, each of these boxes are
checked for collisions with the vessels in the region of interest. After that, each of the boxes that do not collide
with vessels in the region of interest is checked with the other empty boxes. If a box has a 100% intersection
with another box it is completely surrounded by the other box. In this case, the bigger box is kept and the
smaller box is removed. After doing this, only the largest possible boxes which completely fill up the empty
space are kept. Lastly, only the boxes that start within the first 16 hours are kept, because these are the boxes
that can actually be used as potential berthing locations for the vessel to be planned when adhering the the
maximum allowable waiting time. How the final set of boxes are chosen in the example situation is depicted
in Figure 4.2c. It should be noted that in light of clarity and visibility some of the selected boxes are left out.
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(a) The way distinct points of interest are selected on the x-axis and y-axis in an example situation

(b) How empty boxes are created in an example situation

(c) How the largest empty boxes are selected that do not intersect with the vessels

Figure 4.2: Example situation of a berth planning and how empty boxes are selected. NOTE. In light of clarity and visibility 4 empty boxes
have been left out of figure c. These boxes are the narrow boxes that reach along the whole x-axis and on the y-axis are between ’End of
quay’ and ’End of 1’, between ’Front of 2’ and ’Split’, between ’Split’ and ’End of 3’ and between ’Front of 3’ and ’Start of Quay’.
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These boxes are the narrow boxes that reach along the whole x-axis and on the y-axis are between ’End of quay’
and ’End of 1’, between ’Front of 2’ and ’Split’, between ’Split’ and ’End of 3’ and between ’Front of 3’ and ’Start
of Quay’.

4.2.3. Chain recovery
The next method that is used in the disruption management approach is called chain recovery. The chain
recovery approach has gotten its name because of the ’chain’ in which the vessels are pushed back in time
to solve the disruptions. This chain starts with the vessel to be planned, or the vessel of interest. When a
berthing location is chosen for this vessel, the collisions it makes with other vessels in the berthing plan can
be calculated. The vessels that it collides with are pushed back until the two vessels do not collide anymore.
However, since these vessels have been pushed backwards, they might have caused new collisions. These
collisions are solved repeatedly, in which the time slacks that have been planned after each vessels act as
sponges to absorb the collisions. How and when this approach is applied will be further discussed in the
decision making part at the end of this chapter.

4.2.4. Local CP recovery
There might be situation in which heuristics to recover the berth planning do not give satisfactory results.
This might be in the situation of the Port of Antwerp when the recovery for a specific vessel is not allowed
to influence the planned berthing time and location of vessels that are expected to arrive in a set amount of
days. When this happens a backup recovery approach is proposed which makes use of a local CP model to
locally reschedule the berth planning. This is still considered disruption management and not rescheduling
because of the fact that the CP model aims to fit all the vessels in while staying as close to their original location
and time as possible. The CP model is called local because it aims to keep the region of interest that will be
replanned as local as possible and thereby influencing as little other vessels as possible. This region of interest
consists of the entire quay in the y direction, and an expanding time span in the x direction. Expanding means
that a increasing time span is used until the model is able to find a feasible solution.

The parameters, decision variables, objective function and the constraints for the local CP model are:

Parameters
V = set of vessels to be served in time horizon

xOriginali = original x position for vessel i

yOriginali = original y position for vessel i

li = length of vessel i

ti = handling time of vessel i

Lockedi = 1 if the vessel cannot be moved, 0 otherwise

L = Quay length

Split = split location of quay

T = Planning time horizon

Decision variables
xi = start berthing time vessel i

yi = berthing position vessel i

yObji = berthing position penalty for deviation from y

si = 1 if vessel i is located above the split, 0 otherwise

xIntervali = an interval variable covering the interval {xi , xi + ti }

yIntervali = an interval variable covering the interval {yi , yi + li }
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Objective and constraints
min

∑
i∈V

(xi +0.2∗ yOb ji ) (4.3)

NoOverlap2D(xInterval,yInterval) (4.4)

xOriginali ≤ xi ≤ T − ti ∀i ∈V (4.5)

0 ≤ yi ≤ L− li ∀i ∈V (4.6)

xi = xOriginali if Lockedi = 1 ∀i ∈V (4.7)

yi = yOriginali if Lockedi = 1 ∀i ∈V (4.8)

yi ≥ Split if si = 1 ∀i ∈V (4.9)

yi + li ≤ Split if si = 0 ∀i ∈V (4.10)

yObji ≥ yi −yOriginali ∀i ∈V (4.11)

yObji ≥ yOriginali − yi ∀i ∈V (4.12)

yObji = L if (si = 1∧yOriginali ≤ Split)∨ (si = 0∧yOriginali ≥ Split) ∀i ∈V (4.13)

The objective function (4.3) minimizes the difference with the vessels original berthing time and position by
minimizing their arrival time and penalty for deviation in berthing position. Constraint 4.4 is a CP-specific con-
straint which constrains each pair of xIntervals and yIntervals, which form rectangles, to be non-overlapping
rectangles (also known as the diffn constraint [3]). Constraints 4.5 and 4.6 ensure the boundaries of the
values that x and y can take on are being held. The main point of interest here is that x can only be put after
xOr i g i nal because vessels cannot be forced to come earlier. Constraints 4.7 and 4.8 ensure that if a vessel is
locked it cannot be moved. Constraints 4.9 and 4.10 ensure that a vessel cannot be positioned on a split. The
final three constraints (4.11), (4.12) and (4.13) are concerned with setting the right value for yOb j . The first
two ensure that the value taken up by yOb j is the absolute difference between the original location and the
actual location. The last constraint has a relatively difficult if clause which basically checks whether or not the
vessel is put at the other side of the split. If this is the case yOb j takes on the value for the total length. These
constraints will never lead to infeasible results because by definition we know that L is always larger than the
absolute difference between the original location and the actual location.

4.2.5. Decision making
Now that the different approaches and models have been introduced the decision making can be investigated.
That is, when are the different methods applied and why. A visualisation of this decision making process is
presented in Figure 4.3.

As stated before, the first check done by the BC is whether the vessel fits at its minimum arrival time at
its planned location. If this fits and no disruptions happen one can know for certain that this is the optimal
location and time for the vessel because it does not have to wait to be handled and it is positioned at its
planned location. However, if this is not the case the distinct point method will be applied to the region of
interest in the berth planning for this vessel. When the empty boxes of interest are determined for the vessel
to be planned they can be used to determine the most promising berthing location and time for the vessel.
Whether an empty box is considered promising is determined by checking the width of the box. If the vessel fits
with regards to the vessel length the box is wide enough for the vessel and is therefore considered promising.
How promising this box is is based on the the time span the box covers. The longer this time span the more
promising the box.

Now that all the promising boxes are known we will check the solutions corresponding to the empty boxes
and choose the best recovery regarding the quality measure as introduced in Section 4.2.1. The recovery that
has the lowest sum of penalties over all the vessels is chosen as the best recovery. The recovery corresponding
to an empty box is made through positioning the vessel in that box and applying the chain recovery method.
The vessel to be planned is positioned in the empty box with its berthing time equal to the start time of the
box and its berthing position as much as possible to the side of the box. This is to make sure that the empty
space is used as efficient as possible. There is one exception, if the original planned berthing position of
the vessel is contained in the empty box, this will be the berthing position of the vessel. When the vessel is
positioned correctly chain recovery is applied. If all the disruptions are recovered, the penalties for each vessel
is calculated and summed and compared with the recoveries corresponding to the other empty boxes. Finally,
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1. Does vessel fit at minimum arrival
time at planned location?

Vessel needs berth No Calculate empty spaces using
Distrinct Point Method
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Figure 4.3: Flow chart visualising the decision making process for the disruption recovery model.

the best recovery is also compared to the situation where the vessel is just put at its originally planned location
and chain recovery is applied from there. This last step is done because of the fact that even if there is no empty
box, not changing the location of the vessel might give good results. The best recovery from here is selected as
the recovery for the vessel and the BC will update the berth plan.

However, there is one important exception. It might be that the recovery found in the previous step conflicts
with other soft requirements. One soft requirement set in the case of the Port of Antwerp is that a recovery
at this moment is not allowed to change the berthing time and location of other vessels that are expected to
arrive in four days. In this case the local CP is applied with an expanding time window. First only one day is
tried and each time the CP model is not able to find a feasible solution, this time window is extended with
one day and the local CP model will try again. This is repeated until the time window also hits the four day
mark. In this situation, no good solution can be found within the required time and the best recovery from the
previous step is applied anyway.

The approaches as listed above show step wise how disruptions will be solved. However, there are certain
important considerations which need attention as well. One of these considerations is that although vessels
ideally are planned as short after each other as possible to keep the terminal as efficient as possible, it is
important to still keep some time, e.g. half an hour after each vessel, to deal with unforeseen trouble when
exiting the harbour and so that vessels have some space to pass each other.

Another consideration is that the draught of the vessel can change during handling. This change can result
in unforeseen extra time when a vessel needs to wait for its tidal window. When the vessel arrives on sea, a
good estimation of the exit draught can be made which can be used to calculate the extra time required before
the vessel can leave the port. This is added to the total duration that the vessel is at the berth.





5
Case Study and results

In light of the secondary objectives and testing the proposed methods for preliminary berth planning and
real-time berth plan recovery in this chapter a case study will be conducted. The Port of Antwerp has provided
Macomi with a detailed forecast and data regarding a future scenario in 2030. The interesting part for the Port
is that it also includes a new terminal that does not exist at the moment. The approaches presented in this
thesis are used in a simulation model that will give the port more insight into the effect of the addition of this
extra terminal under various uncertainty scenarios. With the provided data many experiments have been
conducted of which the results will be presented in the remainder of this chapter. First, the experimental setup
will be discussed. After that the susceptibility of the preliminary berth planning approach to the hardness of
the problem is investigated. Subsequently the effect of uncertainty on the recovery outcomes will be tested
and lastly the trade off between occupancy and robustness is investigated.

5.1. Experimental setup
All the experiments that will be presented in this chapter have been done within the simulation platform of
Macomi.

5.1.1. Data
The platform requires a lot of data about vessel arrivals, vessel types and specifications, location information,
tidal windows for different vessel draughts and sailing rules. These datasets have been provided by the Port of
Antwerp and are confidential; the exact numbers cannot be made public. The data required to generate the
vessels and make the preliminary berth plan is explained in detail in Section 3.1. The data required for the
disruption recovery is mainly the data generated by the preliminary berth planner, namely the berth schedules
for each terminal. Also, to be able to keep track of potential waiting time, the data on tidal windows is required.
Information about for instance travel times to and from the berths are generated by the simulation model’s
motion plan generator. This generator takes much of the data mentioned earlier to calculate a vessels move
path and travel time, all while taking other traffic and sailing rules into account.

5.1.2. Simulation environment
For each of the experiments, most the settings for the simulation environment are kept constant. Each run is
for the simulation period of one month, March, in 2030 with a cyclic period of one week. There is other traffic
present like RoRo-vessels (Roll-on-roll-off vessel), liquid bulk tankers and general cargo vessels which can lead
to busy periods while attempting to enter or leave the port. The main type of vessel of this thesis, the container
vessel, has one of three possible terminals as destination. The terminals in this case study have the following
specifications:

DP is relatively short with one quay wall of about 1700 metres.

MPET is a large terminal with two quay walls: one of about 2500 metres and a smaller one of about 600 metres.

Tweede getijdendok (2GTD) is a new terminal in design. In this case study the terminal consists of two quay
walls: one of about 1500 meters and one of about 600 metres.
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Since these terminals will be handled separately by the berth planning approaches as presented in this
thesis. In practice they only influence each other through traffic since all vessels that enter the port come
through the same water way. So, even though they are all present in a single simulation run, the results of these
runs can be seen as three separate readings. Therefore, each experiment will present the data of these three
terminals separately. This means that even though the simulation is tested for just the situation of the Port of
Antwerp, having multiple terminals with very different specifications speaks a bit to the generalisibility of this
case study.

Further information on the exact specifications of each experiment will be given with that experiment as
these differ for the different experiments. Experiments were run on a computer with 8GB RAM and an Intel i7
2.80GHz CPU (4 cores). For solving the CP models the state-of-the-art hybrid OR-Tools CP solver [32], version
7.5, is used running with 4 cores.

5.2. Problem hardness
The first experiment is conducted to test the performance of just the preliminary berth planning approach.
Especially interesting are the cases where the port is very busy and thus the performance of the algorithm
under a lot of stress.

5.2.1. Experiment specifications
Here we face a typical situation in which historical data about vessel arrivals is available but not applicable.
First, a new terminal will be simulated of which no historical data is available. Second, we are simulating
ten years in the future, and vessel arrivals (both the amount and the distribution over the classes) in the
forecast provided by the port management are very different from the historical arrivals. Third, the river port is
highly tide dependent, meaning that vessels with a large draught can have very long waiting times due to tidal
restrictions and sometimes even have a tidal window of mere minutes.

The main time consuming part in the creation of the initial berth planning, is the time that the CP model
needs to find a solution to a berth allocation for the projection week. It would be interesting to see how the
run time of the CP model increases with the difficulty of the problem. In this case difficulty is measured as
the expected occupancy of a terminal. Basically, if the terminal has more vessels to handle in the simulation
period, we want to measure how well the CP model can handle this stress.

In order to establish the feasibility and potential optimality of this approach to berth generation, the
problem hardness is investigated. The average occupancy of the terminals is investigated and the time it takes
for the CP model to obtain a solution is measured. The solution time of the CP model is of interest because it is
the most time consuming part of this approach described in Chapter 3. In this stress test, vessels will be added
or removed with regard to the forecast for 2030, while keeping the original ratios between classes similar, until
a certain expected occupancy is reached. Then, the approach for the creation of an initial berth plan is run. In
this run the time is measured that the CP model needs to find the optimal solution, or when the solution does
not improve for more than 2 hours. To really stress test the CP model, no additional buffer time was reserved
for the vessel, ensuring that an occupancy as high as physically possible can be reached.

The experimental setup consists of the three mentioned terminals in Section 5.1 and their respective yearly
forecast as provided by the port. Each run is for the simulation period of one month in 2030 with a cyclic period
of one week. The CP solver is stopped when it has found and proved the optimal solution, or when it has made
no solution improvement for two hours. The latter occurs when, for instance, the model has difficulty proving
(in)feasibility. For each occupation, starting from 5% up to 95% with 5% increments, the average runtimes
of five runs are reported. The differences between the five runs for each occupancy are found in the random
generation of vessel arrivals from the yearly forecast and the division over the cyclic periods.

5.2.2. Results
The results are presented in Figure 5.1 and its corresponding exact numerical values in Tables 5.1 and 5.2.
From these results one can note that, even though the speed with which the runtimes increase differs per
terminal, the general trend is the same. At first, until about 50% occupation, the CP solver is able to find a good
solution easily and is also able to prove its optimality. This changes in the region from 50% to 60%: here the
runtimes start increasing and the solver is not able to prove the optimality without timing out after two hours
of no improvement. From the 65% mark, none of the runs are able to prove optimality anymore within the set
timeout. As soon as we reach the extremely busy cases (above 80% and higher) we start seeing runtimes of
more than 90 minutes and occasional proven infeasible results. At 90% and higher most results are proven
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Figure 5.1: Bar graph representing the runtime of the CP model for different occupations

Table 5.1: Runtime in seconds of the CP model for three terminals. Occupancies up to 50%. For each terminal both the runtime and the
percentage of runs that yield infeasible results are provided.

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

DP Time (s) 5.21 5.99 5.68 6.39 7.38 25.54 89.49 45.78 109.87 200.33
Infeas. % 0 0 0 0 0 0 0 0 0 0

MPET Time (s) 7.92 10.31 11.49 13.03 15.58 13.78 17.86 70.84 251.49 252.04
Infeas. % 0 0 0 0 0 0 0 0 0 0

2GTD Time (s) 4.92 6.23 7.24 8.69 8.58 10.12 11.23 12.06 12.1 16.51
Infeas. % 0 0 0 0 0 0 0 0 0 0

infeasible within two hours. The consequence of these findings are that for normal occupancy of between
50–70% runtimes of above an hour are very unusual.

5.2.3. Discussion
For the cases where the set timeout is reached, optimality is not proven. However, multiple experiments have
been conducted investigating different solver timeouts and how the solution changes. From these experiments
it can be concluded that solutions that do not change in 2 hours, also do not change in 12 hours. In this
case study the goal was to place large vessels in the centre of the quay wall while smaller vessels should be
positioned as much to the sides of the quay as possible. This made it relatively easy to manually check, in a
qualitative way, the visual results whether solutions not proved optimal are good. We also have experimented
with a short 5 minute timeout. While the solver does not find feasible solutions in this time for cases above
75% occupation, 70% and below it usually does. Here, the solution quality between a run with a timeout of 5
minutes and a timeout of 12 hours are compared. These results can be compared because the experiments
have the same seed, guaranteeing the same optimisation setting. The results show that solutions found in 5
minutes are very close in quality to the ones that timeout after 12 hours.

An example of one of the test runs where a short timeout is compared with a long timeout can be found in
Figure 5.2. Here the objective value after the 5 minutes timeout was 1890 while the timeout after 12 hours has
an objective value of 1892. The visuals look identical to the naked eye and as one can notice, the large vessels
are all positioned in the center of the quay wall and the smaller vessels all to the sides. More tests like this have
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Table 5.2: Continuation of Table 5.1. Runtime in seconds of the CP model for three terminals, and percentage of infeasible runs.
Occupancies above 50%.

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

DP 924.52 1778.04 3461.22 4009.1 4158.97 5772.3 5487.1 8772.91 0
0 0 0 0 0 20 20 60 100

MPET 313.48 1699.62 2803.3 3378.02 3774.64 4822.1 5680.25 0 0
0 0 0 0 0 20 40 100 100

2GTD 136.17 612.28 1146.91 1534.25 2058.14 2659.1 3669.27 0 0
0 0 0 0 0 0 20 100 100

Figure 5.2: Example of the preliminary planning for 2GTD with 0.5 occupancy. This is an example where the plan looks the same when the
solver has a timeout of 5 minutes and 12 hours of no improvement. The visual results show us that even though optimality is not proven,
the result is very good. Note that since no robustness was added in this experiment, the actual berth plan is not at all realistic.

been done with different occupations and the same trend could be found. Based on this it can be concluded
that even though the solver was not able to prove optimality, we can be relatively certain that after 2 hours of
no improvement, the resulting solution is very good.

5.3. Uncertainty
Now that the performance of just the preliminary berth planner has been tested experiments have been
conducted where the two parts are working together. First a baseline berth planning is created for the entire
simulation period, then the simulation is run where the disruption management approach plays its role. In
this specific experiment the main goal is to investigate the affect of uncertainty surrounding vessel arrivals in
the simulation model on the quality of the recovered berth plan. However, also the run time and division over
the different solution steps are measured. The quality is tested against a baseline recovery approach and the
approach where no CP model is included.

5.3.1. Experiment specifications
In this experiment the effect of uncertainty on the ability of the disruption management model to find good
recovery berth schedules. This experiment is run for the same month in 2030 for the same three terminals with
the yearly forecasts for 2030 provided by the Port of Antwerp.

As introduced in the introduction of this thesis there are three main sources of disruptions. The first one,
regarding handling time, is based on a distribution which is based on data provided by the Port of Antwerp.
The second one, travelling time, is included in the simulation model and varies based on busyness on the
water with other traffic and corresponding sailing rules. The third source of disruptions can be seen in the
arrival times of vessels. The first two sources are already included in the simulation but the third, the arrival
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Table 5.3: The quality of the realised berth plan and the standard deviation over 10 runs for the different recovery methods for different
levels of uncertainty for the DP terminal. Lower scores are better.

0 6 12 18 24 30 36 42 48

DRCP avg 102.67 172.76 317.56 448.65 536.83 590.22 760.94 806.09 926.05
std 14.31 47.48 61.34 98 73.44 186.3 189.87 181.63 176.22

DRnCP avg 114.89 192.19 327.32 476.5 611.35 681.25 716.03 785.68 986.7
std 22.88 41.61 54.71 123.88 118.2 312.02 211.41 260.26 240.08

Baseline avg 382.3 373.25 815.82 1323.85 1590.65 1737.69 1875.11 1990.62 2247.75
std 229.03 40.73 295.65 707.39 468.23 317.91 341.06 529.03 765.36

Table 5.4: The quality of the realised berth plan and the standard deviation over 10 runs for the different recovery methods for different
levels of uncertainty for the MPET terminal. Lower scores are better.

0 6 12 18 24 30 36 42 48

DRCP avg 83.66 139.55 210.55 336.05 464.46 546.17 579.59 649.38 695.03
std 8.15 19.17 36.69 61 73.09 32.07 81.16 91.46 99.08

DRnCP avg 79.8 143.11 216.95 366.51 503.95 575.13 589.25 637.96 727.36
std 10.56 24.76 45.11 75.17 80.94 89.33 149.71 123.99 177.78

Baseline avg 135.04 342.53 719.98 1217.71 1794.16 1974.04 2044.14 2415.56 2502.77
std 30.99 81.86 157.61 229.3 509.89 635.82 719.54 574.72 627.16

time disruption, can be altered and serve as a measure of uncertainty. To formalize this, if we model the arrival
time as a normal distribution with the planned arrival time as mean, uncertainty is defined as the standard
deviation in hours in this normal distribution. As an example, say that the uncertainty is 6 hours, the actual
vessel arrival will be sampled from a normal distribution with its planned arrival time as mean and 6 hours as
standard deviation. In this example, following the standard rules of statistics, about 68% of the vessels in this
simulation run will arrive within one standard deviation, 6 hours before or after the planned arrival time, and
about 95% of the vessels will arrive within two standard deviations, 12 hours before or after the planned arrival
time.

With the increasing uncertainty it is interesting to see how many of the vessel arrivals are solved by which
recovery technique. As explained in Section 4.2.5 there are different steps towards deciding on a good recovery.
The first step is to check if the vessels fits directly at its arrival time at its planned location. The second step
is the application of the distinct point method and chain recovery to find the best recovery from there. The
third step concerns the application of the local CP model in case the recoveries from the previous steps are
unsatisfactory. With more uncertainty one would expect that step 1 would be applicable less and step 3 would
be necessary more, which is why, to test this, the deviation between recovery techniques are counted.

To be able to say something about the quality of the proposed method (Disruption Recovery with CP, DRCP)
it was compared with a baseline recovery approach and the same approach but where the local CP model as
backup is excluded (Disruption Recovery no CP, DRnCP). The baseline recovery approach always plans the
vessel at its planned location and if disruptions appear it just performs chain recovery to make sure that the
planning is physically possible again. This approach can serve as a baseline to see how well the proposed
methodology compares with it. It is also interesting to compare this with the same approach but where the soft
requirements are ignored and the output from the second step, the distinct point method and chain recovery,
is always used as recovery.

For be able to reliably compare these three methods well they have all been conducted with the same seed.
The average over 10 runs is taken as an indication for the quality of the resulting recovered berth plan under a
certain level of uncertainty. Also, the run time for each method has been measured. However, because of the
fact that each simulation run simulates three terminals at once, the presented run time is the average resulting
time over all three of the terminals.
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(a) The solution quality for different uncertainties for DP terminal (b) Division between solution steps for DP terminal

(c) The solution quality for different uncertainties for MPET terminal (d) Division between solution steps for MPET terminal

(e) The solution quality for different uncertainties for 2GTD terminal (f) Division between solution steps for 2GTD terminal

Figure 5.3: This figure shows for each of the three terminals, DP, MPET and 2GTD, the solution quality for the different recovery approaches
for different uncertainties and how the division between different solution steps is for different uncertainties.
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Figure 5.4: Run time in seconds for the different recovery approaches for the different uncertainties

Table 5.5: The quality of the realised berth plan and the standard deviation over 10 runs for the different recovery methods and different
levels of uncertainty for the 2GTD terminal. Lower scores are better.

0 6 12 18 24 30 36 42 48

DRCP avg 159.15 268.03 453.55 661.01 739.74 849.58 854.97 1028.13 1150.06
std 47.22 41.42 59.34 93.74 120.68 143.25 174.43 170.38 160.67

DRnCP avg 205.86 278.43 489.4 689.75 747.07 866.22 945.54 1064.8 1165.45
std 66.51 56.95 67.32 140.61 134.95 183.76 194.86 215.77 241.9

Baseline avg 511.68 571.22 1492.8 2227.56 2701.32 3020.28 3098.68 3170.95 3834.59
std 314.25 230.58 541.73 649.47 390.35 283.2 533.01 370.61 618.98

Table 5.6: The run time in seconds for the three terminals combined for the different recovery methods and different levels of uncertainty.

0 6 12 18 24 30 36 42 48 48

DRCP 313.24 570.97 1062.82 1300.54 1693.32 1925.96 1977.42 2558.88 2228.53 926.04
DRnCP 172.02 171.34 188.92 218.46 226.63 244.82 237.80 237.52 221.01 176.21
Baseline 165.16 174.83 187.71 200.46 199.70 202.78 209.52 199.62 201.02 986.70
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5.3.2. Results
The results of all the experiments regarding uncertainty have been presented in Figures 5.3 and 5.4. For more
details and the exact numbers the reader is referred to the presented Table 5.3, 5.4, 5.5 and 5.6.

5.3.3. Discussion
Figure 5.3 gives for each terminal the solution quality for the three different recovery algorithms, DRCP, DRnCP
and the baseline. One can immediately note that the presented approaches in this paper perform a lot better
than the baseline approach which shows the effectiveness of these approaches. Also, when combining the
graphs of the division of the steps with Figure 5.4, one can see how the run time scales directly with how
often step 3 (the local CP model) is necessary. From this we can conclude that the CP model is the most time
consuming part of the DRCP approach.

One can also note that the difference between the averages DRCP and DRnCP is often rather small. This
would mean that the addition of a local CP model does not necessarily improve the solution quality of the
recovered berth schedule. With this in mind, and looking at Figure 5.4, one could easily conclude that that
DRnCP much more efficient than DRCP, given that the solution quality looks similar while the run time of
DRnCP is a lot lower, especially for the higher uncertainties, and is also less affected by the uncertainty.

This raises the question why the local CP model is applied so often while it seems like using just the distinct
point method and chain recovery works fine. What happens in the process is that the CP model replans
everything, and likely more close together, in an attempt to solve the disruption within as little days as possible.
This means that locally the berth plan might be changed a bit more while the distinct point method with chain
recovery might be changing things further in the future. As a result, at the time the recovery decision is made
and the CP is applied, the solution found by the CP often has a much lower intermediate penalty than the
solution found by the distinct point method with chain recovery. This of course raises the question how the
final quality measure can still be similar.

I believe that the answer to that question lies in the fact that the planning is updated every time a new
vessel arrives. This means that even though the distinct point method with chain recovery can push back
the berthing time of a vessel in the berth plan, it still arrives following its planned arrival time in the baseline
berth plan. This means that as soon as the vessel actually arrives it might be planned at the berthing time and
location as indicated before, but it is also likely that the distinct point method with chain recovery might find a
new time and location for this vessel that is not as far in the future. To conclude, even though the intermediate
solutions are worse, there is a good chance that the problems are solved again when more vessels arrive and
more information is available.

However, it is important to note that this is not guaranteed and completely dependant on the current
situation in the port, the arrival times of other vessels and the handling time of other vessels. This is why
we can see in Tables 5.3a, 5.3c and 5.3e that often the standard deviation between the 10 runs are higher for
DRnCP than for DRCP. From this one can conclude that even though the averages seem similar, the DRnCP
approach is more susceptible to random initialisation and therefor less trustworthy. Also, DRCP is able to
guarantee that the soft requirements can be held, while for DRnCP this is left completely to chance.

5.4. Occupancy and Robustness
In this section the influence of the occupancy rate of berth occupation and the value of adding robustness in
the preliminary planning is explored. The goals of these final experiments are to investigate these influences
and also the trade off that exists between the occupancy rate and robustness. First a baseline berth planning
is created based on a certain expected occupation and while ensuring a certain robustness in the planning.
Subsequently, the simulation will be run and the quality of the realised berth schedule is measured.

5.4.1. Experiment specifications
The average occupation of the berths in a terminal is a very important measurement to grasp the busyness in
the terminal. An expert in the field of berth allocation expressed his interest in the affect of occupancy on how
well the disruption recovery would work. This is because in real life, from a certain occupancy rate, it becomes
very difficult to keep the terminal running. There should be a certain tipping point from where it becomes very
difficult to keep the waiting times low and stay close to the theoretical planning. One of the main goals in this
experiment is to investigate of indeed such a tipping point exists and if so, at what occupancy rate this is.

Adding robustness to the preliminary berth planning can be done in a proactive manner by adding a
time slack after each vessel. By guaranteeing this time slack after each vessel in the plan, the planning is less
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susceptible to disruptions because the smaller disruptions can be captured within this time buffer. However,
when more vessels are expected the potential length these time slacks can take on decreases. This is because
more vessels are required to be fit in the same space, which obviously results in less empty space in the
planning. This leads to two additional goals of these experiments. First of all to investigate how important the
addition of robustness is to the quality of the realised berth schedule. Secondly, to investigate how this trade
off between robustness and occupancy rate expresses itself in practice and whether this can lead to additional
findings.

For each vessel it is expected that some kind of distribution is known about the handling times of the
vessels. This is necessary in creating the preliminary berth planning because the expected value from this
distribution is used as handling time that is reserved in the berth planning. However, in the simulation the
actual handling time is sampled from this distribution and thus can easily differ a lot from this expected value.
This will not be a problem if the sampled time is shorter, but when its longer, it can lead to disruptions and
overlap in the planning. Therefore robustness is added to the planning. Robustness is added with regard to the
standard deviation of the handling time distribution. To be exact, in this experiment, robustness is defined as
a certain percentage of the standard deviation of the handling time of the vessel that is added as time buffer in
the preliminary berth planning. The longer this time slack is, the longer the vessel can stay handling, if needed,
before it results in disruptions.

This experimental environment is similar as the previous ones as it is run in the same month in 2030 for
the three terminals with the yearly forecasts for 2030 provided by the Port of Antwerp. Experiments are run for
increasing occupancy rates and for increasing robustness levels. For each combination of occupancy rate and
robustness level, 10 runs are done of which the average solution quality is reported. To stay true to the soft
requirements set by the Port of Antwerp the DRCP approach is used and a disruption standard deviation of 12
hours is assumed in every run. This means that following the rules of statistics, 95% of the vessels in these runs
will arrive in the time window of one day before and after their planned arrival time.

5.4.2. Results

Table 5.7: Numerical results for the quality of the realised berth plan given different occupancy rates and robustness levels for the DP
terminal. Lower score is better and an empty field represent the value where the initial baseline planning found no feasible plan.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 113,59 98,61 126,75 174,53 249,71 414,42 915,52 2578,49
0.25 95,66 97,2 117,76 148,02 268,57 374,73 906,84 1366,18
0.5 91,28 80,6 81,55 107,64 245,87 358,45 662,49
0.75 71,21 82,8 71,24 126,99 222 314,51 638,31
1.0 66,78 76,57 95,79 94,53 177,71 310,89
1.25 12,09 38,28 89,51 80,78 157,6 246,18
1.5 10,89 54,71 70,91 66,09 166,76 190,14

Table 5.8: Numerical results for the quality of the realised berth plan given different occupancy rates and robustness levels for the MPET
terminal. Lower score is better and an empty field represent the value where the initial baseline planning found no feasible plan.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 92,97 95,81 144,51 223,53 348,91 488,36 933,19 3206,22
0.25 84,25 75,53 109,83 139,81 320,08 479,39 915,31 2101,55
0.5 65,43 73,8 129,36 143,65 273,52 444,35 793,67
0.75 60,2 77,81 79,58 139,74 225,21 385,73 701,81
1.0 43,87 69,27 135,52 156,68 177,77 339,63
1.25 41,22 70,95 135,12 134,39 158,98 257,01
1.5 20,71 18,07 57,88 115,98 174,16 200,99

The results of the experiment regarding occupancy rates and robustness are presented in Figure 5.5. For
the exact numbers behind these graphs the reader is referred to Tables 5.7, 5.8 and 5.9. In the cases where there
are empty values in these tables, the preliminary planner was not able to find a feasible berth planning. In this
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(a) The solution quality for different robustness levels with increasing occu-
pancy rates for DP terminal

(b) The solution quality for different occupancy rates with increasing robust-
ness levels for DP terminal

(c) The solution quality for different robustness levels with increasing occu-
pancy rates for MPET terminal

(d) The solution quality for different occupancy rates with increasing robust-
ness levels for MPET terminal

(e) The solution quality for different robustness levels with increasing occu-
pancy rates for 2GTD terminal

(f) The solution quality for different occupancy rates with increasing robust-
ness levels for 2GTD terminal

Figure 5.5: This figure shows for each of the three terminals, DP, MPET and 2GTD, the solution quality for different occupancy rates and
different robustness levels. Every right graph is the same as the left graph but with occupancy rate and robustness inverted.



5.4. Occupancy and Robustness 37

Table 5.9: Numerical results for the quality of the realised berth plan given different occupancy rates and robustness levels for the 2GTD
terminal. Lower score is better and an empty field represent the value where the initial baseline planning found no feasible plan.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 86,6 108,84 114,67 322,18 362,81 489,49 1419,93 2708,56
0.25 82,64 104,22 148,93 249,67 374,47 448,13 945,01 1878,1
0.5 62,35 87,77 112,04 254,46 329,85 449,96 728,77
0.75 47,95 81,84 156,36 210,7 261,25 406,2 697,84
1.0 47,59 92,99 129,46 196,11 245,88 294,09
1.25 18,28 74,27 122,07 173,57 267,88 265,69
1.5 1,12 12,48 57,23 121,25 185,04 178,48

case the recovery algorithm would still work but since there is no initial plan, the returned quality values have
no meaning and have therefore been omitted.

5.4.3. Discussion
If one compares Subfigures 5.5a, 5.5c and 5.5e, which show the effect of occupancy on the solution quality for
the different terminals, it can be seen that, as expected, the quality becomes worse the higher the occupancy
rate. This is expected because the more vessels are expected in the same time frame, the more disruptions
will happen and therefore higher penalties will be made. What can also be noted is that the tipping point, as
discussed in Section 5.4.1 does indeed exist. For every terminal a sudden increase in penalty can be seen at 70%
occupation and this trend increases very fast when 80% occupation is reached. This confirms the prediction
that a tipping point exists from where the recovery approach has much more difficulty to find good solutions.

The right graphs, Subfigures 5.5b, 5.5d and 5.5f, show the same graph but with robustness and occupancy
inverted. From these graphs can be seen how the solution quality improves when the robustness increases. It
can also be seen that for higher occupancy rates, the addition of robustness has more effect. It should be noted
that the lines for the occupancy rates of 0.7 and 0.8 where omitted to better show the effect of robustness at
the lower levels. If however these would have been added, one would see that they show the same downward
trend, but with a lot steeper fall the higher the robustness becomes. From this the conclusion can be drawn
that the higher the expected occupation, the more important it is to include robustness in the preliminary
berth planner.

However, as noted before, it is not possible to add endless time slacks to a berth schedule. Depending on
the occupancy more or less robustness can be added before the plan becomes infeasible. The effect of this
can be seen best in the tables (5.7, 5.8 and 5.9) where the empty spaces represent problems that are infeasible.
In Figure 5.6 for each occupancy the points have been drawn where the first infeasible runs where detected.
Interestingly enough these points seem to form a linear trend. This information can be used in simulation
models to proactively and dynamically add robustness to a berth plan based on the estimated occupancy for
that simulation period.
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Figure 5.6: Trade off between occupancy rate and robustness
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Conclusion

In this thesis the problems of creating a preliminary berth plan and real-time recovery of the berth plan
within a simulated environment are tackled. These two problems required solving for a simulation model
which the Port of Antwerp will use for future port-planning. For the creation of the preliminary berth plan a
6-step decision model is proposed that ensures the cyclic behaviour of vessel arrivals and incorporates tidal
dependencies of vessels. The resulting berth plan is used as a theoretical berth plan on which the vessel arrivals
in the simulation model are based. Real-time recovery is necessary when disruptions in the berth plan occur
while simulating. To deal with these disruptions a second decision model is proposed in this thesis. The main
goal of this disruption management model is to give every vessel a berthing time and location without any of
them colliding while staying as close to the theoretical berthing plan as possible.

In the remainder of this chapter this thesis is concluded by first answering the sub research questions
posed in Section 1.5.3 and finally the main research question. After the research questions are answered,
some potential future research directions are proposed which could further validate and improve the models
presented in this thesis.

6.1. Research questions
In this section the research questions are answered. First the sub-questions:

1. What is the current state of the research with regard to the subject of berth planning and recovery as
provided by literature?

In Chapter 2 the main literature surrounding the topic of berth planning and recovery is set out. Regarding
the baseline berthing plan it was concluded that none of the approaches in literature consider the use of a
berth planning as a basis for a simulation model. It was found that within the creation of a berth schedule
the strategic berth template problem exists which attempts to create a cyclic planning regarding vessels that
call the port every period. The main deviation with the problem considered in this thesis and the problems
considered in literature is that in the basis for a simulation model only a yearly number of arrivals is known.
However, in literature it is always assumed that for each vessel some arrival time is known based on which a
minimisation can be done. Hence the gap in literature that this thesis addressed.

Regarding disruption recovery some approaches have been proposed many of which are not real-time and
require for instance multiple simulation runs to determine an optimal recovered berthing plan given that for
each vessel the actual arrival time is known. Of the discovered works that do (semi-) real-time recovery there
were three main points that this thesis attempted to improve on: namely to create a model that

• can deal with large scale settings

• can respond as soon as new information becomes available

• can deal with continuous quays

2. How can the specifications and requirements of an preliminary berth planning be combined into one
berth schedule model?

39
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Chapter 3 presents a model that incorporates the specifications and requirements to create a preliminary
berth schedule. The model revolves around the creation of a projection plan, which is a berth planning in
which spots have been reserved for each cyclically calling loop. When this projection plan has been created, all
the generated vessels are projected onto this plan taking into account their draught, and thereby their tidal
windows. The berthing time for each vessel that follows from this projection serves as the arrival time in the
actual simulation. The complete generated berthing plan, which contain the berthing time and location for
each vessel, is used as the theoretical berth schedule for the simulation period.

3. How can a model be formulated that deals with large-scale and real-time disruption recovery in a berth
planning?

When the simulation begins many types of disruption can occur which can lead to changes in the berth plan or
even turn the berth schedule infeasible. This is due to the fact that when creating a baseline schedule one can
only work with expected handling times and expected travel times. Chapter 4 proposes a real-time disruption
management approach that attempts to solve these problems as soon as they come up. Three methods are
given, the distinct point method, chain recovery and the local CP model, which are combined into a decision
model that helps recovering from disruptions. The main goal of this decision model is to stay as close to the
theoretical berth schedule as possible.

4. How does the probability that disruptions happen affect the ability to find good recovery solutions?

The level of uncertainty can make a lot of difference for the proposed models in this thesis. When there is a lot
of uncertainty the expected values that are worked with in the creation of the theoretical berth planning are
less certain. Therefore, when the simulation is running, disruptions will happen more frequent and might
be of larger impact when the uncertainty is higher. In Section 5.3 results are presented for the experiments
regarding uncertainty. The results of these experiments show how the model reacts to increasing levels of
uncertainty. It can be noted that the quality does worsen when the uncertainty increases, which is as expected,
but it is important to see that this increase is linear and no tipping point exists where the quality suddenly
becomes much worse.

5. How does the average occupancy of a terminal relate to the ability to find good recoveries?

As explained in Section 5.4 it is expected that at a certain occupation level of the terminal it becomes much
harder to find a good recovery since it is just too busy at the terminal. In the same section experiments are
set up and executed which determine the affect of occupation on the quality of the realised berthing plan. As
expected, if the terminal has to handle more vessels. and therefore has a larger occupation, the quality of the
realised plan goes down. However, this decrease in quality is relatively small and is therefore not a problem.
On the other hand, the predicted tipping point from which the solutions suddenly become much worse does
exist and is found around 70-80%.

6. How does robustness (‘time slacks’) in the theoretical plan affect the ability to find good recovery
solutions?

Regarding robustness the experiment in Section 5.4 has shown that more robustness leads to higher quality
recovered berthing plans. However, the same experiment has also shown a trade-off with occupation of
the terminal, where the addition of robustness becomes more important with higher occupations. When a
terminal is not as busy the influence of robustness is rather small, while with a higher occupancy the quality of
the realised berthing plan increases a lot with more robustness.

Lastly, the main research question can be answered:

How can preliminary planning and real-time disruption recovery improve the berth planning for the Port of
Antwerp simulation model?

This thesis presents a novel approach for preliminary planning and real-time disruption recovery in a
simulated environment. Where before the simulation model would just generate vessels according to a random
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Figure 6.1: Graph showing the berth occupancy over time. This graph is the results of a simulation run with the new models included. The
three lines represent the three terminals. The simulation has been run for 1 month in 2030. Note that over the course of this graduation
project the data has been updated, which is why there are more terminals in this graphs in comparison with Figure 1.2.

distribution and allow it to berth at the location that would be freed the first, this new approach creates a
preliminary baseline berthing schedule based on which the simulation is run. When comparing Figure 6.1
with Figure 1.2 at the start of this thesis, one can see a big difference in the graphs. The occupation at the port
no longer has peaks over 100%, hardly any over 90%, and the occupations seems to be more balanced over
time. During the simulation, in real-time decisions are being made regarding vessels and where and at what
time they have to berth. The experiments in Section 5.3 show that the quality of the realised berthing plan of
the approach methods outperforms the baseline recovery model. The models presented in this thesis have
been implemented in the Macomi port simulation model and has been demonstrated to the Port of Antwerp.
Both parties have expressed their satisfaction with the models.

6.2. Future work
In this section some potential future research directions are given.

• Decision framework for pro-actively and dynamically adding robustness to the preliminary berth planner.
Section 5.4.3 discusses the trade off between the expected occupation of the terminal and the possible
robustness that can be added to the baseline plan. With more focused experiments I believe the trend as
seen in Figure 5.6 can be made more detailed. This could be used in some kind of decision framework in
which the expected occupation can be calculated beforehand and based on this a certain amount of
robustness can be added proactively to the vessels in the preliminary berth planner.

• Performance of models under different uncertainty scenarios. The uncertainty experiment results
presented in Section 5.3 are run under the assumption that the uncertainty regarding arrival times can
be captured in a normal distribution. It would be an interesting future work direction to investigate
the effect of different uncertainty scenarios on the performance of the presented models. Different
distributions could be interesting, but even more interesting would be to base this on historical data
concerning deviation from planned arrival time.

• Further validation of results and additional testing. Due to pragmatic reasons mainly concerning time
limitations the experiments presented in Chapter 5 have only been replicated for a set number of time.
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Though I am confident that the presented results are a close representation of the actual values, more
replications of the same experiment should be run to further validate the results. This should especially
be done for the runs where the standard deviation between the runs are relatively high. Another test that
would be interesting for future research is to see the influence of early stopping the local CP model. In
most cases when the local CP model is called during a recovery run the solver is able to prove optimality
or infeasibility within mere seconds. However, in some cases the solver has difficulty proving optimality,
which is why a time limit was introduced. If the solver hit the time limit, the best found solution is
used and if no solution has been found yet, the time windows are increased. It would be interesting to
investigate how much effect this has on the quality of the realised berth schedule and how much the
quality would improve if no time limit was introduced and unlimited time was given to the simulation
run.
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Abstract. A crucial aspect of berth planning for container ports located
in tidal water is to take into account the vessel arrivals and tidal windows.
When historical data is not available or relevant for simulation, the typical
approach is to generate vessel arrivals randomly. By contrast, this paper
develops an optimisation-based approach that allows incorporation of
realistic aspects – cyclic vessel arrivals, tidal windows, and minimisation
of vessel draught during low water periods – in order to develop a cyclic
baseline berth allocation plan for simulation. We develop a mathematical
model from which, using an AI-based solver, we can obtain optimal or
satisficing solutions for a year’s operation of a large port. The baseline
plan can be incrementally modified to handle real-time uncertainties and
disruptions. The approach is implemented for a major European inland
tidal port, forming the basis of a simulation-based decision support tool
for operational planning and exploring port expansion options.

Keywords: berth allocation · simulation · arrival generation · tidal ports
· constraint programming

1 Introduction

With the increasing volume of container freight transport and the increasing size
of container vessels, port planning is crucial. Simulation models provide a means
to gain insights into operational plans and future port expansions [3, 6].

One important design choice that impacts the simulation process is the
generation of vessel arrivals. This is an important design decision because it
influences everything from the busyness in the port’s entrance waters to the
allocation of berths and other terminal-related planning. In many works the
generation of vessel arrivals is modelled as a random arrival process [e.g., 25]
or is based on historical data [e.g., 12]. In practice, when historical data is not
provided, using a random arrival process is usually a decent assumption given that
different terminals might schedule vessels differently. Further, external factors,
like vessel delays and bad weather might influence these schedules. However,
there are drawbacks to modelling vessel arrivals as a random process.
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First, the random approach is hindered when simulating a port that has tide
restricted entrance and exit windows. This means that depending on the draught
of the vessel and the tide at that moment, a certain vessel may or may not be
able to enter or exit the port. If a few deep vessels try to enter the port during
a certain low water period they will all need to wait for this low water window
to end. As soon as the water raises again all of these vessels that were waiting
will want to enter the port at the same time. The result is congestion and vessel
waiting time [7]. Our work is motivated by a major European inland tidal port
where these aspects are critical upon port utilisation and vessel throughput.

The second drawback to using a random arrival process is that it disregards
how many container shipping companies and terminals work: with cyclically
calling vessels from ‘loops’ [11]. A loop can be seen as a series of ports that are
visited in order. Because of the size of these loops, container shipping companies
usually have multiple vessels sailing in the same loop. In reality, a terminal plans
the arrivals of these loops using a cyclic baseline berth planning: a schedule
for a week, in which every loop gets a certain time when and location where
it is expected to arrive each week. This baseline plan is modified during the
week’s execution because, due to external factors and uncertainties, vessels often
encounter deviation from the baseline plan.

This paper contributes a novel approach as the basis for the vessel arrival
generation and the berth allocation in a simulated environment. Our approach
focuses on the generation of cyclic baseline planning on which the vessel arrival
times and the actual berth allocation are based. By creating this baseline planning
one can incorporate both the tidal windows of vessels and the cyclic nature of
realistic container vessel arrivals. Further, in real-life scenarios, if a container
shipping company knows that the planned arrival of a vessel is during low water
time, they will attempt to load the vessel so that it has a draught as small as
possible. This aspect of realistic decision making can also be accommodated by our
planning approach. We use the optimisation technique of constraint programming
to automatically derive, and in ongoing work, to dynamically update (compare
e.g., Nishi et al. [16]), the berth allocation plans. Our work is implemented as
part of a bespoke commercial simulation platform in use for decision support.

The next section surveys related literature. Section 3 describes the problem
addressed and the optimisation approach developed. Section 4 presents an analysis
on data from a major European tidal port. Section 5 draws our conclusions and
discusses future directions.

2 Background and Related Work

For vessel arrival generation, simulation models either follow a random arrival
process or base arrivals on historical data. In the first case, Pachakis and Kiremid-
jian [17] developed a procedure for modelling ship traffic. The authors propose the
use of exponentially distributed inter-arrival times if data is not available. Thiers
and Janssens [21], Yeo et al. [25] model the arrival generation with a Poisson
process. This allows for varying arrival rates over the course of the simulation.
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In the second case, when historical data is available and is relevant, simulation
models can use it as a basis for vessel arrival generation [9]. Huang et al. [12],
for instance, use the actual arrival historical times in the simulation. This is
valid if the historical arrival times are representative of the simulation period; in
particular, this assumption can be false when simulating future design options
for the port. Cimpeanu et al. [5] assume that a yearly schedule for vessel arrivals
are known beforehand. These are based on distributions of inter-arrival times
derived from historical data provided by a port terminal company. van Asperen
et al. [1] examine arrival generation for jetty facilities. The data provided in their
case was yearly arrival numbers for the vessels, and not information about any
kind of specific distributions.

Tidal patterns have been included in some simulation models. The early work
of Groenveld [8] presents a port simulation model where tides are included. Here,
the tidal conditions are included post hoc as a check whether a vessel is allowed
to sail or not; a vessel that is not allowed to sail due to tidal restrictions needs
to wait in the anchorage. Similarly, both Hassan [9] and Cimpeanu et al. [5] keep
vessels restricted by tidal conditions waiting in a queue. Wadhwa [22] also takes
tidal patterns into account when entering and exiting the port. Here, the notion
of loading a vessel according to a certain allowable draught is introduced. Thiers
and Janssens [21] divide vessels into tide-dependent and not tide-dependent. For
vessels that are tide-dependent there are certain threshold locations which the
vessel can only pass during a certain time-frame. These tidal windows are defined
as the time frame in which the vessel can depart from a certain location and pass
all the thresholds without issues.

From these works we can see that, with the exception of Huang et al. [12], all
works generate vessels according to inter-arrival times. In cases where historical
data is provided these are often based on data. On the other hand, if no data
is available, different random arrival processes are incorporated. None of the
models have included the cyclic nature of arrivals and only some of them included
tidal patterns. The latter, however, are modelled as a check whether or not a
vessel is allowed to enter the port or not, rather being taken into account in the
arrival generation. By contrast, in reality shipping companies do attempt to take
tides into account to reduce waiting time. As van Asperen et al. [1] have shown,
random arrival processes not based on any environmental information leads to
the highest vessel delays.

While berth allocation problems have received extensive attention in the
literature (Wawrzyniak et al. [24] being a recent example), to the best of our
knowledge, no work uses a baseline berth allocation as a base for a simulation
model. The creation of a baseline berth planning itself is found in the literature:
for a thorough overview we refer to Bierwirth and Meisel [4]. However, there
is a crucial difference between the berth allocation papers in the literature and
actually using the allocation as a base for a simulation: in the former the expected
arrival time is usually assumed to be known.

In the most generic case of berth allocation, one tries to find an allocation
that plans vessels as close to their expected arrival time as possible. Often also
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some preferred berthing location of a vessel is taken into account. One of the main
directions indicated by Bierwirth and Meisel [4]’s survey is the incorporation
of the cyclic nature of a berth schedule. Hendriks et al. [11] are one of the few
authors who incorporated the cyclic nature of a berth planning into a model.
Here a cyclic period is divided into discrete time periods and it is assumed that
vessels that berth simultaneously are known. Based on this a combined berth
allocation and yard planning model is presented. Similarly, Zhen et al. [26] also
present an integrated berth allocation and yard template model. In this work
the planning horizon is divided into discrete time periods. The planning horizon
can be repeated without issues which is why the resulting berth plan can also be
considered cyclic.

These works all follow the assumption outlined by Hendriks et al. [10]: namely
that strategic-level decisions have been made about the time of arrival and
departure which are used to create the cyclic berth allocations. As these times
are not known in a simulated environment and need to be generated from yearly
arrival numbers these models cannot be used as such. However, the same mindset
of rectangle packing on a cylinder instead of a plane, as well explained by Zhen
et al. [26], is adopted in our work.

Constraint programming (CP) is a flexible Artificial Intelligence approach to
modelling and solving combinatorial optimisation problems [23]. Kizilay et al. [13],
for instance, use CP to address a decision problem in integrated port container
terminal operations. Li et al. [14] use CP to plan vessel rotations (loops) among
terminals within a port. In solving a berth allocation problem, Qin et al. [19]
show that CP outperforms integer programming in three instances, namely when
using dynamic arrivals over static arrivals, when using fine time granularity, and
when the restriction of the objective towards the decision variables is not tight.
Since the optimisation problem we will formulate has no tight restriction towards
the decision variables (only to be close to a preferred location) and uses a very
fine time granularity (that of 1 minute), we adopt CP and formulate a compact
and understandable optimisation model.

3 Berth Planning Problem and Approach

3.1 Problem Summary

The problem this paper addresses is that of the creation of a cyclic baseline berth
allocation of vessel arrivals in a simulation model. The allocation must respect
physical and operational constraints. This baseline berth planning serves as a
basis on which the vessel arrival times in the simulation will be based. In addition,
this berth planning can be used as the theoretical berth plan during simulation.
In practice this means that based on provided data about expected vessel arrivals
in the port, vessels will be generated for the simulation model. Each of these
vessels will be allocated a berth at a certain time during the simulation. Thus
each vessel will be assigned the combination of a certain time, and a certain
position at the quay wall, where the vessel can be loaded and unloaded without
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interfering with other vessels. Based on the time of this allocation, the actual
time the vessel will arrive in the simulation can be decided.

Hence we treat uncertainty by means of the simulation paradigm rather than
through formulating, for instance, a stochastic programming model [20]. We also
note the ability of simulation to capture behavioural factors, although this is not
the focus of the current paper.

3.2 Problem Data

We consider a situation in which historical data about vessel arrivals is either
not available or not applicable. There can be multiple reasons why data about
past arrivals are not applicable for a simulation model. First, inter-arrival times
based on historical arrivals can be inaccurate when simulating future scenarios.
The further in the future one is interested to simulate the more likely it is that
changes arise regarding amount of arrivals and arrivals from different vessel
classes. Second, past arrivals are of limited value when the simulation is used for
analysing possible port expansions. An instance of this, adding a new terminal,
is taken up in the case study in Section 4. Third, aggregated inter-arrival time
distributions from historical data do not take account particular tidal windows
nor the cyclic behaviour of arrivals. As discussed in Section 1, this omission leads
to no cyclic behaviour and increased waiting times because of the tidal pattern.

In order to develop a realistic data-based simulation, we take advantage of
the following commonly-available data.

1. First, a yearly forecast for the simulation period. That is, for each class of
container vessels, the port manager provides an expected yearly number of
arrivals. To make these arrivals more realistic, the division of these vessel
classes over different approach routes to the port can be used. What vessels
belong to what vessel classes can be specific to the application. In the case
study that we conducted (see Section 4) vessel classes are defined by their
size, amount of Twenty-foot Equivalent Unit (TEU) that can be carried, and
the handling time distributions. Hence each vessel from the same class has
the same size, TEU and handling time distribution.

2. For each class it is also important to know the division of draught. That is,
how many vessels are expected yearly with what draught. The draught of a
vessel is essential knowledge since it determines whether or not a vessel can
sail given the tidal situation.

3. Next, for each draught the tidal windows need to be known. These are required
in a similar fashion as in Thiers and Janssens [21]. The tidal window at a
certain location represents the first and last moment a vessel with a specific
draught is allowed to pass that location, such that it will not encounter any
tidal issues over the course of the journey to or from the port. To make a
good estimation about the berthing times after a vessel can pass through the
tidal window, data about travel times in and around the port are used.

4. Lastly, for each vessel class there is additional information regarding, for
instance, the length of the vessel and the distribution of the handling time
for that class.
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For the subsequent parts of a port simulation, in which berth planning is
incorporated, more data could be necessary. For example, information about
traffic rules, tug boat assistance and external conditions like weather. We discuss
the subsequent use of our approach in Section 5.

3.3 Proposed Methodology

The six steps are illustrated in Figure 1. We describe each in turn.

Step 1: Determine simulation period and cyclic period

Any simulation design requires some foundational decisions regarding the simu-
lated period and the cyclic loop period. The decision for the simulation period
is important as the tidal windows depend on this. The cyclic period determines
how often the cyclical berth allocation pattern repeats itself. In practice this
period is usually 7, 10 or 14 days [11]. The combination of this simulation period
and cyclic period determine how often the cyclic pattern is repeated. The cycle
period can be chosen to the user’s needs.

Step 2: Generate vessels for the simulation period

The second step concerns the generation of all the vessels that will arrive in
the simulated period. This is done through a repeated random selection with
stratification. A list of vessel arrivals is generated that represents the total amount
of arrivals that is expected in the simulation period according to the provided
number of yearly arrivals for each class and draught within that class.

1.  Determine simulation time and cyclic period

2. Generate vessels for simulation period

3. Divide arrivals over cyclic periods

4. Deduction of arrivals in projection plan

5. Solving the projection plan

6. Plan each cyclic period

Fig. 1. Six steps of the berth allocation approach.
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Step 3: Divide arrivals over cyclic periods

One important assumption that is made regarding the cyclic nature of the
arrivals is that vessels from the same vessel class can belong to the same loop.
Consequently, for each instance where a vessel class has arrivals in every cyclic
period we may assume there is one loop for that vessel class. In this step the
division of vessels over the cyclic periods is being made. The goal is to divide the
arrivals from each vessel class as evenly as possible over the cyclic periods.

For example, suppose that the cyclic period is one week and the simulation
period covers five weeks, then the vessel arrivals are divided over five periods.
Now, if from a certain class 13 arrivals are expected in the simulation period we
will assign two arrivals to each week and these will be considered cyclic arrivals.
The remaining three arrivals that cannot cover each cyclic period will be assigned
to random periods where the same period is not chosen twice. These remaining
arrivals are considered non cyclic arrivals.

Step 4: Deduce of arrivals in projection plan

Now that the arrivals of each class per cyclic period is known, the next step is to
deduce a projection plan. A projection plan is a berth allocation for one period
on which the arrivals for each cyclic period are projected. The arrivals of the
projection plan can be deduced as follows. First, for each cyclic loop that has an
arrival each period, one vessel from that class is added to the projection plan.
These loops will be planned at the same time and place each period. Secondly,
since the projection plan is the berthing plan on which every period’s arrivals will
be projected, room for non cyclic arrivals needs to be incorporated as well. This
is done by adding the number of non cyclic vessels of the period that has the
most non cyclic arrivals. This way, the projection plan will have enough planned
spaces such that each period can fit all their planned arrivals.

Step 5: Solve the projection plan

In this step the goal is to reserve a time slot and location for all the vessel class
arrivals that are expected in the projection period. As explained earlier, the
arrivals in the projection period are not actual arrivals but placeholders on which
the actual arrivals for each period will be projected. This means that a decision
needs to be made on how much space and how much time needs to be reserved
for each arrival. We treat the cases of cyclic and non-cyclic arrivals separately.

For the cyclic arrivals this means that each arrival is from the same class
which means that the vessel length and estimated handling time are likely rather
similar. In any case, for each of the cyclic arrivals the longest vessel length and
the longest estimated handling time for that vessel class needs to be reserved. In
our case study, vessels from the same class all have the same vessel length and
handling time distribution, which means that this length and expected handling
time from this class can be used. This is to make sure that when planning the
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actual arrivals and projecting it on this space that the arrival will stay within
the reserved boundaries.

The non-cyclic arrivals are more difficult, since each period different vessels
from different classes might use this spot. It is necessary to make sure that the
spaces that are reserved are large enough such that every cyclic period each
non-cyclic vessel fits in a space that is large enough to prevent overlap. To do
this, we check the non-cyclic arrivals and find the arrival each period which takes
the longest handling time and has the largest vessel length. This is the time
and space that is reserved for the longest non cyclic arrival each period and by
reserving this space we ensure that the largest non-cyclic arrival each period
will have enough space. Next we check each period for the second-to-longest
handling time and vessel length and reserve that space and so forth. This way it
is guaranteed that all the spaces reserved in the projection plan are boundaries
for the actual arrivals and no vessel will be outside its planned spot.

To solve the berth allocation for the projection plan we adopt an optimisa-
tion approach. We formulate a compact constraint programming model. The
parameters, decision variables, objective function and the constraints are:

Parameters

V = set of vessels to be served in time horizon
li = length of vessel i
ti = estimated handling time of vessel i
L = quay length
T = cyclic period planning time horizon
bip = a score for vessel i to be placed at location p

Decision variables

xi = start berthing time vessel i
yi = berthing position vessel i
yObji = the objective score value for vessel i
xInterval i = an interval variable covering the interval {xi, xi + ti}
yInterval i = an interval variable covering the interval {yi, yi + li}

Objective and constraints

max
∑

i∈V
yObji (1)

NoOverlap2D(xInterval , yInterval) (2)

0 ≤ xi ≤ T − ti ∀i ∈ V (3)

0 ≤ yi ≤ L− li ∀i ∈ V (4)

Element(yi, bi, yObji) ∀i ∈ V (5)
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yObji ≥ 1 ∀i ∈ V (6)

The objective function (1) is to maximise the score given to each vessel
regarding a certain preferred berthing location for that vessel. Constraint 2 is a
CP-specific constraint which constrains each pair of xIntervals and yIntervals,
which form rectangles, to be non-overlapping rectangles (also known as the diffn
constraint [2]). Constraints 3 and 4 ensure that the values x and y can take on
such that they remain within the boundaries of the berthing plan. Constraint 5
ensures that the value taken up by yObji equals the score for vessel i to be
berthed at location yi.

The final constraint (6) constrains the minimum score that each vessel must
have. This last constraint is optional; the minimum score depends on the appli-
cation. This can be used if certain vessels need to be guaranteed at a certain
location. In our case study a value of 1 was chosen to be able to deal with the
situation of discontinuous quays (see also Ma et al. [15]). Namely, in this situation
the discontinuous quay can be treated as a continuous quay but on the split a
score of 0 is assigned. This way vessels can never be located over the split.

Note that the constraints used in this model follow the naming as implemented
in the OR-Tools CP solver [18] used in our empirical case study (Section 4).

Step 6: Plan each cyclic period

The final step is to project each period’s arrivals on the projection berth allocation
as created in the previous step. In this procedure the tidal windows will have
an important role in deciding which vessel from a loop will arrive in which
period. This can be optimised under the assumption that when planning arrivals
a shipping line will not plan a very deep vessel during a low water period but
rather have the vessel arrive less heavily laden. Hence for each cyclic loop for
which a time and place is reserved in the projection plan, vessels will be planned
in such a way that, if the vessel arrives exactly at the time that is planned, the
vessel will not have any issues with entering the port due to tidal restrictions.
Further, when the expected handling time is over, the vessel should be able to
leave as soon as possible.

In practice, this means that when planning the vessels from a loop, first the
vessel with the largest draught will be planned. For each period one can use the
estimated travel time from the tidal window threshold point to the berth to find
the time the vessel would pass that point if it would arrive exactly on time at the
planned berth that period. With this time we can check if the vessel would be
able to enter the port at that time according to the tidal patterns. Every period
in which the vessel can enter immediately will be selected as a potential period
that the vessel will arrive. If the vessel can not enter immediately in any of the
periods, the period with the shortest time to high water will be selected. Now,
for each of the selected periods the time after handling is done until the time it
can exit the port because of the tides is calculated for each period. The period in
which this is shortest is selected as the period in which the vessel will arrive. If
multiple periods have the same time until exit, a random one is selected.
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Fig. 2. Example berth allocation: simulation period 2 weeks, cyclic period 1 week. The
horizontal axis is the time factor of the berth allocation and the vertical axis shows
the quay wall. One can see by the split in the vertical axis that this terminal has a
discontinuous quay wall and consists of two sections of quay. The green boxes in this
image all represent vessels planned in this time frame. Note that in the length of the
vessels as visualised (the vertical length of the boxes) also a necessary safety distance is
incorporated. Thus, boxes that touch do not touch in real life.

An example output berth allocation from our approach can be seen in Figure 2.
The figure shows a simulation period of 2 weeks with a cyclic period of 1 week.
Arrivals are randomly generated; the terminal has discontinuous quay walls.

4 Case Study and Discussion

We examine a case study for a major tide-dependent inland river port in Europe.
The goal is to create the baseline berth allocations for three terminals in this
inland port; one terminal is in design and does not exist yet. These baseline berth
allocations are used in a simulation model that will give the port more insight
into the effect of the addition of this extra terminal under various uncertainty
scenarios. The port provided a yearly vessel arrival forecast for the year 2030.
Our work is implemented as part of a bespoke commercial simulation platform
in use at several ports, and in this case, being used to analyse and plan the port
expansion and future operations.

We face a typical situation in which historical data about vessel arrivals is
available but not applicable. First, a new terminal will be simulated of which
no historical data is available. Second, we are simulating ten years in the future,
and vessel arrivals (both the amount and the distribution over the classes) in the
forecast provided by the port management are very different from the historical
arrivals. Third, the river port is highly tide dependent, meaning that vessels with
a large draught can have very long waiting times due to tidal restrictions and
sometimes even have a tidal window of mere minutes.
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The terminals have the following specifications:

Terminal 1 is relatively short with one quay wall of about 1500 metres.
Terminal 2 is a large terminal with two quay walls: one of about 2500 metres

and a smaller one of about 800 metres.
Terminal 3 is a new terminal in design. In this case study the terminal consists

of two quay walls: one of about 1500 meters and one of about 600 metres.

In order to establish the feasibility and potential optimality of our approach
to berth generation, we investigate the problem hardness. We vary the average
occupancy of the terminals and measure the time it takes for the CP model to
obtain a (first) solution. The solution time of the CP model is of interest because
it is the most time consuming part of this approach described in Section 3.

The hardness of the problem in this study is defined by increasing the
occupancy through inflating or deflating the yearly forecasts, thus keeping the
ratios in terms of classes and terminals the same, while keeping all other variables
the same (e.g., the terminal specifications, the simulation period and the basis of
the yearly forecasts per terminal). The theory is that the higher the occupancy,
the more vessels will be arriving in the simulation, and the more difficult it will
be to allocate berths.

The experimental setup consists of the above three mentioned terminals and
their respective yearly forecast as provided by the port. Each run is for the
simulation period of one month in 2030 with a cyclic period of one week. We
stop the CP solver when it has found and proved the optimal solution, or when
it has made no solution improvement for two hours. The latter occurs when, for
instance, the projection week is too large and the model proves infeasibility. For
each occupation, starting from 5% up to 95% with 5% increments, we report
the average runtimes of five runs. The differences between the five runs for each
occupancy are found in the random generation of vessel arrivals from the yearly
forecast and the division over the cyclic periods. Experiments were run on a
computer with 8GB RAM and an Intel i7 2.80GHz CPU (4 cores). For solving
the model we used the state-of-the-art hybrid OR-Tools CP solver [18], version
7.5, running with 4 cores.

The results are presented in Tables 1 and 2. We see that, even though the
speed with which the runtimes increase differs per terminal, the general trend
is the same. At first, until about 50% occupation, the CP solver is able to find
a good solution easily and is also able to prove its optimality. This changes in
the region from 50% to 60%: here the runtimes start increasing and the solver
is not able to prove the optimality without timing out after two hours of no
improvement. From the 65% mark, none of the runs are able to prove optimality
anymore within the set timeout. As soon as we reach the extremely busy cases
(above 80% and higher) we start seeing runtimes of more than 90 minutes and
occasional proven infeasible results. At 90% and higher most results are proven
infeasible within two hours. The consequence of these findings are that for normal
occupancy of between 50–70% runtimes of above an hour are very unusual.

Although for the cases where we reach the set timeout, optimality is not
proven, we have conducted multiple experiments investigating different solver
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Fig. 3. Bar graph representing the runtime of the CP model for different occupations

Table 1. Runtime in seconds of the CP model for three terminals. Occupancies up
to 50%. For each terminal both the runtime and the percentage of runs that yield
infeasible results are provided.

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Terminal 1 Time (s) 5.21 5.99 5.68 6.39 7.38 25.54 89.49 45.78 109.87 200.33
Infeas. % 0 0 0 0 0 0 0 0 0 0

Terminal 2 Time (s) 7.92 10.31 11.49 13.03 15.58 13.78 17.86 70.84 251.49 252.04
Infeas. % 0 0 0 0 0 0 0 0 0 0

Terminal 3 Time (s) 4.92 6.23 7.24 8.69 8.58 10.12 11.23 12.06 12.1 16.51
Infeas. % 0 0 0 0 0 0 0 0 0 0

timeouts and how the solution changes. From these experiments we conclude
that solutions that do not change in 2 hours, also do not change in 12 hours. In
this case study the goal was to place large vessels in the centre of the quay wall
while smaller vessels should be positioned as much to the sides of the quay as
possible. This made it relatively easy to manually check, in a qualitative way,
the visual results whether solutions not proved optimal are good. We also have
experimented with a short 5 minute timeout. While the solver does not find
feasible solutions in this time for cases above 75% occupation, until 70% it usually
does. We compared here the solution quality between a run with a timeout of 5
minutes and a timeout of 12 hours. We can compare these results because the
experiments have the same seed guaranteeing us of the same optimisation setting.
These results show that solutions found in 5 minutes are very close in quality to
the ones that timeout after 12 hours.
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Table 2. Continuation of Table 1. Runtime in seconds of the CP model for three
terminals, and percentage of infeasible runs. Occupancies above 50%.

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Terminal 1 924.52 1778.04 3461.22 4009.1 4158.97 5772.3 5487.1 8772.91 0
0 0 0 0 0 20 20 60 100

Terminal 2 313.48 1699.62 2803.3 3378.02 3774.64 4822.1 5680.25 0 0
0 0 0 0 0 20 40 100 100

Terminal 3 136.17 612.28 1146.91 1534.25 2058.14 2659.1 3669.27 0 0
0 0 0 0 0 0 20 100 100

We have presented our results to the management team of the case study
port. The management is well satisfied with the speed of our approach and the
quality of the berth plans created.

5 Conclusion

In tidal ports, a crucial aspect of berth planning is to take into account the tidal
windows. In order to develop a simulation model, berth planning requires an
approach to generate vessel arrivals. This paper identifies that when historical
data is not available or relevant, the typical approach to arrival generation – that
of random generation from a distribution – disregards both tidal windows and
cyclic vessel loops.

Our approach focuses on the generation of a cyclic baseline planning on
which the vessel arrival times and the actual berth allocation are based. We
incorporate realistic aspects of the problem: 1) the tidal windows of vessels,
2) the cyclic nature of certain container vessel arrivals, and 3) the minimisation
of vessel draught during low water periods. We obtain the baseline plan using a
constraint programming model. By adopting CP, we can formulate a compact
and understandable declarative model, while decoupling the modelling from the
solving. We employ our approach for a case study of a large tide-dependent river
port in Europe. With increasing terminal occupancy we examine the effect of
busyness on the runtime of the CP model using a state-of-the-art solver, and
show that we can either obtain the optimal berth plan or a good approximation
of it, within one hour for a large port.

As noted in the paper, our approach serves as a basis for the vessel arrival
times and the actual berth allocation. When the simulation is run, most vessels
will not arrive exactly according to this plan; further, the departure time is an
expected time from which the simulation can deviate. Hence the times planned for
each vessel act as the theoretical planned arrival time of that vessel. The actual
arrival time in the simulation will be this theoretical time with a deviation that
is based on a distribution. This distribution can be learned from historical data
where one compares real arrivals with their theoretical planned counterparts.
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Further, the baseline plan is generated based on expected handling times
and expected travel times. In the actual simulation, it is also likely that there
will be deviation from these expected values. This, plus the deviation from the
planned arrival time, requires a disruption recovery module that manages the
berth planning in real time. Hence our current work addresses the next step in
the simulation: replanning the berth allocation when vessels arrive early or late,
or their (un)loading takes longer or shorter than expected. We accommodate this
uncertainty by formulating a modified CP model which repairs the plan while
minimising perturbation. Our ongoing work is part of a simulation-based decision
support tool for operational planning and for exploring port expansion options,
in use at several major container terminals.
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