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Model Predictive Control with Gaussian Processes for Flexible
Multi-Modal Physical Human Robot Interaction

Kevin Haninger, Christian Hegeler, and Luka Peternel

Abstract— Physical human-robot interaction can improve
human ergonomics, task efficiency, and the flexibility of automa-
tion, but often requires application-specific methods to detect
human state and determine robot response. At the same time,
many potential human-robot interaction tasks involve discrete
modes, such as phases of a task or multiple possible goals, where
each mode has a distinct objective and human behavior. In this
paper, we propose a novel method for multi-modal physical
human-robot interaction that builds a Gaussian process model
for human force in each mode of a collaborative task. These
models are then used for Bayesian inference of the mode, and
to determine robot reactions through model predictive control.
This approach enables optimization of robot trajectory based on
the belief of human intent, while considering robot impedance
and human joint configuration, according to ergonomic- and/or
task-related objectives. The proposed method reduces program-
ming time and complexity, requiring only a low number of
demonstrations (here, three per mode) and a mode-specific
objective function to commission a flexible online human-robot
collaboration task. We validate the method with experiments
on an admittance-controlled robot, performing a collaborative
assembly task with two modes where assistance is provided
in full six degrees of freedom. It is shown that the developed
algorithm robustly re-plans to changes in intent or robot initial
position, achieving online control at 15 Hz.

I. INTRODUCTION

Facilitated by new compliant manipulators, robots are
gradually moving from caged cells separated from humans
into production environments involving mixed human-robot
teams. One of the crucial elements to enable such collabora-
tion is the ability to control a safe and meaningful physical
human-robot interaction (HRI) in a dynamic working envi-
ronment. Such collaboration can improve ergonomics and
efficiency but, today, most industrial applications of physical
HRI are offline position teaching and workspace sharing with
parallel tasks. While safety challenges contribute to this gap,
the complexity of implementing flexible control of physical
HRI still remain one of the key issues.

Several recent works in physical HRI have made an
important step to account for this gap. For example, adaption
of a collaborative robot to the human state can significantly
improve task-related performance [1], ergonomics [2], and
user satisfaction [3]. To do so, the robot should be able
to perceive the human state, which presents challenges for
both design of sensing [4] and inference methods [5]. On
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Fig. 1: Experimental setup for human-robot collaborative assembly. The task
involved the plate to be mounted on one of two sets of pins on the base
frame. Pictures in left bottom corner show two possible modes represented
by two different assembly goal locations (i.e., Goal 1 and Goal 2). This
emulates tasks where the same part is mounted in different locations, such
as tires on a car.

the other hand, some human states or preferences can be
more generally modelled, such as the desired motion of
the robot/payload [6]–[9], physical fatigue [2], and preferred
interaction force range [10].

Nevertheless, a major part of prompt robot adaption to
the human is its ability to infer the human intent during the
collaborative task execution [2], [11]. While human intent
is often considered as a continuous variable [1], [9], it can
also reflect discrete changes in the task [12], for example
a collection of possible goals. Discrete human state has
been considered for virtual fixtures [13], Dynamic Movement
Primitives (DMPs) [12], and impedance control [14].

When the robot has the knowledge of human state and
intent, it must respond promptly with appropriate actions
to facilitate the collaborative task execution. This typi-
cally means generation of motion trajectories and often
simultaneous impedance adjustments in order to govern a
proper interaction behaviour. The trajectories can be chosen
to optimize task-related objectives: reducing trajectory jerk
[15], [16], minimize positioning error [17]–[19], or render
appropriate velocity response [20], [21]. In addition, human
operator-related objectives can optimised as well, such as
minimizing interaction forces [22], or metabolic cost [23].
A common rule is that the robot can take over aspects of of
the task that require precision, while the human can handle
adaption variations. The ‘minimum intervention principle’
[24] follows this rule, where uncertain degrees of freedom
(DOF) should have a lower stiffness [25], [26], which can
also be interpreted as a risk-sensitive control. Nevertheless,
such an approach is not reasonable for all interactive tasks
that involve physical constraints [27].
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The problem of designing robot response – including over
a belief of human state – can be simplified by using Model
Predictive Control (MPC). MPC can optimize a range of
variables, such as motion trajectory [28]–[30], impedance
parameters [31] and human joint pose, in order to improve
a range of objectives that consider ergonomics, task perfor-
mance, and uncertainty. Advances in optimization solvers,
processing power, and toolboxes has increased the use of
MPC in many control-engineering domains [32], including
robotic locomotion [33], manipulation [34] and rehabilitation
[35]. MPC can also accommodate constraints in state or
control, allowing some safety or acceptance characteristics to
be directly transcribed. However, MPC requires a model, and
human models are challenging; a priori human models are
limited and collecting human data is expensive. Furthermore,
MPC on nonlinear systems has no intrinsic timing or stability
guarantees [36, §7.3].

MPC has been applied in non-physical HRI for collision
avoidance, treating human motion as a disturbance [28],
or with a basic human model [37]. While MPC has also
been applied in physical HRI on robots with one or two
DOF [29], [30], these methods only planned a motion with
safety constraints according to robot dynamics and did not
model the human. MPC with human models in physical HRI
has been explored for one DOF tasks in [31]. There, the
impedance stiffness/damping were adapted with a neural-
network based human model and the sampling-based Cross-
Entropy Method optimization was employed for MPC.

In this work, we consider physical HRI tasks which
are a discrete collection of modes, each with a distinct
objective and human dynamics. We model the human force
as a function of mode and robot position using Gaussian
Processes (GP) regression and then employ them for:

1) a mode inference system, which uses the human mod-
els to estimate the current mode, possibly including
prior probabilities or transitions for the modes.

2) a Model Predictive Controller to determine robot tra-
jectory (and other control parameters) according to
task- and human-related objectives, evaluated over the
belief in mode.

This paper goes beyond the state of the art in physical HRI
by allowing a general objective function with a belief over
discrete modes, instead of weighting the action associated
with each mode by the belief that the mode is currently true,
as proposed in [12]–[14]. Compared to the state of the art
MPC-based methods for physical HRI [31], this approach
considers discrete modes, uses a deterministic optimization-
based (not a stochastic sampling-based) MPC, provides 6-
DOF assistance, and requires an order of magnitude fewer
demonstrations.

While the proposed approach is general and flexible,
a major challenge is computational efficiency. We devote
special attention to computational techniques and approx-
imations that improve the computational efficiency. The
paper is structured in a following manner: we first introduce
the models for the robot and human, the inference and
MPC problem formulation, then we describe the proposed

Cost function
c(f, ξ, n)

Robot 
admittance

Intention 
recognition

MPC
min E Σ c(fτ, ξτ, n)

Human

Human model
Gaussian processes

p(f | ξ, n)

mode: n

position 
+ velocity 

ΔK, ΔB

ΔM, f 
R

p(n|ξ1:t,f1:t)

force ft

n τ=t

t+H

Mx + Bx + Kx = fR-fH.. .

ξt

H

H

Fig. 2: Framework overview. The intention of the human and mode of
operation is inferred by using human model encoded by Guassian Processes
and real-time measurements. The appropriate collaborative behaviour of the
robot is optimised and governed by model predictive control based on the
identified modes and corresponding cost functions.

approach and implementation. Experimental validation is
done on a medium-payload industrial robot, performing a
collaborative assembly task with a human (see Fig. 1).

II. HUMAN AND ROBOT MODELS

This section introduces the robot control architecture,
robot dynamic model, and human modelling approach. The
robot and human dynamics, when coupled, form the stochas-
tic dynamics that is considered in the MPC problem.

A. Robot Admittance Control

As nonlinear MPC does not have intrinsic timing or
stability guarantees, the proposed control architecture moves
safety concerns, where possible, to a lower-level real-time
controller. An admittance controller is used to allow the
human or environmental forces to move the robot between
MPC updates, which reduces the risk of excessive contact
forces. The MPC controller then sets a virtual desired force,
and (optionally) changes in the admittance parameters, as
seen in Fig. 2.

A Cartesian admittance controller is realized in the robot’s
tool center point (TCP) frame to approximate the continuous-
time dynamics of

fR − fH = Mẍ+Dẋ+K(x− x0), (1)

with pose x ∈ R6, velocity ẋ ∈ R6, acceleration ẍ ∈
R6, human force fH ∈ R6 and virtual desired forces
fR. The impedance parameters are encoded by the inertia
M ∈ R6×6, damping D ∈ R6×6, and stiffness K ∈ R6×6

matrices, which are all diagonal. The rotational elements of
x and f are the angles and torques, respectively, about the
three axes of the TCP frame.

To formulate an MPC problem, the dynamics in (1) have
to be discretized. Denote sample time Ts and let subscript
t denote the value at time t0 + tTs, where t0 is the start
time at t = 0. Taking a first-order Euler discretization where
ξ = [xT , ẋT ]T , we derive

ξt+1 =

[
I TsI

−TsM−1K I − TsM−1D

]
ξt

+

[
0

TsM
−1

]
(fHt − fRt ),

(2)
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where I ∈ R6×6 and 0 ∈ R6×6 are the identity and zero
matrix, respectively.

Using an explicit Euler integrator defined in (2) results in
oscillation of the discrete state trajectory when 1−Ts Di,i

Mi,i
<

0, where ·i,j denotes the i, j-th element of a matrix. This
oscillation can be eliminated if TsDi,i < Mi,i, which can
only be achieved with a sufficiently small time step Ts for
typical Mi,i and Di,i. To allow larger Ts, we rewrite the
Euler damping term I − TsM−1D using the closed-form
integral as exp(−TsM−1D).

B. Human Modelling

1) Human Forces: The human is modelled stochastically
as an impedance, where applied force depends on the pose
and mode. For example, in an assembly task the modes
represent different assembly goal locations where the part
can be moved to (see Fig. 1). The models are independent
for each mode n and are defined as

fH ∼ p(fH |x∗, n). (3)

This relationship is realized with Gaussian processes (GP)
[38], where the human force is regressed over the posi-
tion/orientation of the robot, where each mode has its own
GP model. Each element of the human force is regressed in
parallel, where the force data is treated independently.

The pose x∗ reflects a change in orientation representation
from x. Rotation vectors are used to represent orientation for
regression, where for a rotation vector v ∈ R3, the direction
describes the axis of rotation, and the magnitude the angle
of rotation ‖v‖ = θ. This was found to have benefits over
Euler angles and quaternions, which had discontinuities and
were over-parameterized, respectively. The ∗ is dropped in
the sequel, but all regression is done over rotation vectors,
and admittance calculations over the TCP XYZ axis angles.

2) Human Kinematics: As some ergonomic costs are
more naturally expressed in terms of human joint torques, we
also consider a 4-DOF kinematic model of the human arm
with three rotational DOF at the shoulder and one rotational
joint for the elbow extension. This model has parameters of
l1 and l2, for the length of the upper and lower arm, and
xsh ∈ R3 for the human shoulder position. Using these
parameters and the human joint angles q ∈ R4, we can
calculate the human hand position xH ∈ R3 with forward
kinematics as

xH = FK(q,xsh), (4)

Forces measured at the end-effector can be be translated into
joint torques τ as

τ = JH(q)TfHl , (5)

where fHl are only the linear forces, and JH(q) ∈ R3×4 is
the standard Jacobian matrix.

C. Stochastic dynamics

As the human model is stochastic and affects the robot
trajectory, the future state trajectory will also be stochastic.
Each mode induces a distribution on the future state, and

x

x
ξt

ξt-1

η=1

η=2

μ1t+1

t+1Σ1.

μ2t+1

t+1Σ2

μ1t+2

t+2Σ1

c2(ξi)

c1(ξi)

Fig. 3: Multi-modal future trajectory, where each possible human mode
induces a different course of the trajectory, and each possible trajectory
also has uncertainty.

when the mode is uncertain, the future trajectory will be a
multi-modal distribution such as seen in Fig. 3.

Denoting the dynamics of (2) with state-space representa-
tion as ξt+1 = Atξt +Bt(f

H
t − fRt ), the future trajectory

in mode n is distributed as ξt ∼ N (µnt ,Σ
n
t ), and the mode

dynamics are defined by

µH,nt ,ΣH,n
t = GPn(µnt ,Σ

n
t ), (6)

µnt+1 = Atµ
n
t +Bt(µ

H,n
t − fRt ), (7)

Σn
t+1 = AtΣ

n
tA

T
t +BtΣ

H,n
t BT

t , (8)

where µH,n and ΣH,n are the mean and covariance of the
nth GP model.

When using (7) and (8) for prediction starting at time t,
they are initialized with Σn

t = 0, and µnt = ξt, as it is
assumed that the current state of the robot is measured.

III. INFERENCE AND MPC

The modelling method presented in Sec. II is then ap-
plied to the inference and planning problems. The proposed
solutions to these two problems are described in the two
subsections below.

A. Inference

Given a series of observations ξ1:t = [ξ1, . . . , ξt] and fH1:t,
the human mode can be estimated using the assumed human
dynamics from (3). We examine a case where the mode has
a fixed prior distribution, and a case where the distribution
of mode transitions are known.

1) Mode without transition: If the mode is fixed during
the task (e.g. one of several goals is active), but has an initial
distribution of p(n), the posterior is defined as

p(n|ξ1:t,f
H
1:t) =

p(n)
∏t
i=1 p(f

H
i |ξi, n)∑N

m=1 p(m)
∏t
i=1 p(f

H
i |ξi,m)

∝ p(fHt |ξt, n)p(n|ξ1:t−1,f
H
1:t−1),

(9)

which can be recursively calculated. We apply a floor
to the belief before normalization, i.e. p(n|ξ1:t, f

H
1:t) =

max
(
b, p(n|ξ1:t, f

H
1:t)
)
, with typical values of b = 1e− 6.

2) Mode with transitions: If the distribution of mode
transitions are known, p(nt+1|nt, ξt), the posterior can also
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be calculated as

p(nt+1|ξ1:t,f
H
1:t)

∝
∑
n1:t

p(n1)

t∏
i=1

p(fHi |ξi, nt)p(nt+1|nt, ξt)

∝
∑
nt

p(fHt |ξt, nt)p(nt+1|nt)p(nt|ξ1:t−1,f
H
1:t−1).

This also allows an efficient recursive calculation of belief
in a specific human mode.

3) Transforming force to direction: The GP model for
force independently models each element in f , p(fh|ξ, n) =∏6
i=1 p(f

h
i |ξ, n), where fhi is the ith element of the force

vector. The direct approach described in (9) can be noisy,
e.g., if one element has a very low probability this can render
the total likelihood low. To account for that, we developed
an ad-hoc similarity measure, where the pseudo-likelihood
is calculated as

s(fH ,µH ,ΣH) = β‖µH‖2 log(
1

2
(fH)TµH +

1

2
)

−
6∑
i=1

log(Σ[i, i]), (10)

where β weights the relative priority given to the direction
matching (typical value, 0.05). This ad-hoc rule updates more
strongly when forces are larger, and the value is higher when
the model and measured force point in a similar direction,
and smaller when the uncertainty in the GP model is larger.
The developed ad-hoc similarity measure was found to result
in a smoother mode inference for co-manipulation, when it
is used to replace p(fH |ξ, n) in the belief update (9).

B. MPC Problem

MPC iteratively solves an optimal control problem, choos-
ing decision variables that (locally) minimize a cost function,
while imposing consistency of the model dynamics (2).
The MPC implemented algorithm uses a multiple-shooting
transcription with a problem statement of

ut:t+H= arg minu J(bt, ξt)
s.t. ∀n ∈ [1, . . . , N ], τ ∈ [t, . . . , t+H − 1] :

µnt = ξt, Σn
t = 0

|µnτ+1 − f(µnτ ,uτ )| ≤ %
|Στ+1 − g(µnτ ,Σ

n
τ ,uτ )| ≤ %

u ∈ U

(11)

where H is the planning horizon, U is the range of allowed
inputs, % the slack for the continuity constraints (the inequal-
ity is applied element-wise), f(µt, ut) derives µt+1 following
(7), and g following (8).

The constraints in (11) are nonlinear, so an interior-point
nonlinear optimization solver is used (details in §IV). While
nonlinear, the GP models can be written to be automatically
differentiated, allowing calculation of the gradient and Hes-
sian of the objective and constraints, significantly improving
the speed and stability of the optimization.

The MPC framework here allows for different choices of
u and J . Recall xsh is the human shoulder position, q are

the human joint angles, τ are the human joint torques, fH

is the human force, n is the mode, ẋ is the robot velocity,
fR is the robot desired force.

1) Decision variables u: The decision variable u can
include any of the following:

fRt:t+H Robot trajectory

∆M
t ,∆

B
t Change in robot impedance

xsh, qt:t+H Human shoulder and joint traj.

If xsh and qt:t+H are included as decision variables, an
additional constraint of xH = T (µnt ) is added to the MPC
problem, where xH is from (4) and T represents the hand
grasp location relative to robot TCP.

2) Stage cost function cn: The general stage cost function
is defined as:
cn(µ,Σ,µH ,ΣH , τ ,u) =

µTQµµ+ tr(QΣΣ)+

µTHQHµH + tr(QΣ,HΣH)+

τTQJτ + uTQuu,
(12)

where µ and Σ are mean and covariance for the predicted
state ξ in mode n, µH and ΣH are the mean and covariance
of predicted human forces from (6), τ are the human joint
torques from (5), u are control inputs, and Q· are the related
weight-matrices for each cost factor.

In some applications, replacing µTHQHµH with (µH +
fRt )TQH(µH +fRt ) can be more robust – the mean human
force goes to zero outside the training data (in zero-mean
GPs, as used here), and a large penalty on only µH can lead
to trajectories which seek to leave the training data.

3) Total objective function J(b, ξ): The total objective
sums the stage costs and considers the current belief bt. Two
varieties were used: the simple expectation over belief JE ,
and risk-sensitive cost JR, which is adapted from [39], where
α adjusts the sensitivity to risk. The two cost functions are
defined as

JE =

t+H∑
t

N∑
n=1

bt[n]cn(ξnt ,f
R
t ,f

H,n
t ), (13)

JR = −2α−1 lnEn∼bte(
∑t+H

t − 1
2αcn(ξnt ,f

R
t ,f

H,n
t )). (14)

IV. IMPLEMENTATION

This section presents the overall integration and
details on the implementation of the proposed
method. The code, parameter settings, training
data, and experimental results are available at
https://gitlab.cc-asp.fraunhofer.de/
hanikevi/gp-mpc-impedance-control.

A. Data collection and commissioning

An overview of the commissioning and online execution
is shown in Algorithm 1. To initialize the GPs, data must be
collected for each mode. For co-manipulation tasks, this is
done here by having the robot in a passive admittance control
mode, where it acts as a mass-damper system. The default
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damping gains used are M = diag([12, 12, 12, 1, 1, 1])
where diag is the diagonalization operation, and D =
diag([1100, 1100, 1100, 200, 200, 200]). All units are in SI
standard units, and radians are used.

Initialize GPs
for n = 1 . . . N do

Collect data Dn ← {{ξ1, f1}, . . . } with
mass/damper admittance

(optional) φ = fit hyperparams(Dn, φ)
(optional) Dn = sparsify GP(Dn, φ)
GPn ← build GP(Dn, φ)

end
Online Execution

Belief Thread (50 Hz)
ξ, f ← read state()
b← belief update(b, ξ, f,GP) by (9)

Control Thread(∼5-20 Hz)
u← MPC solve(ξ, b,GP) by (11)

Algorithm 1: Data collection and execution, with GP
hyperparameters φ

B. Software Implementation

To enable stable and smooth performance of the designed
controller, an MPC loop speed > 5 Hz is targeted. The
MPC problem is solved using CasADi [40] to interface
with IPOPT [41] using the HSL MA57 linear solver [42].
Solver parameters used for IPOPT are detailed in the above-
referenced cloud, and warm start is used for all subsequent
solves. The horizon and shooting nodes where set to H = 6
with a sampling time Ts = 0.10 seconds. The continuity
constraint slack was set at % = 10−5 meter, which is still
within the limits of the robots precision. The maximum force
applied by the robot fR was constrained to be less than 20 N
and 6 Nm for linear and rotational force. The state space was
limited with regard to the maximum velocity, but the position
of the robot was unconstrained within the MPC calculations.

The GP regression we used builds on [36] and is imple-
mented in CasADi. This allows the automatic calculation
of the gradient and Hessian for the interior point solver.
A squared exponential GP kernel was used with 35-50
training samples, sub-sampled from three the demonstration
trajectories, which started at different positions, as seen in the
left of Fig. 4. An example of the forces fitted over position
for two modes can be seen in Fig. 4, right. Since GP model
evaluations come with a high computational cost, the number
of training samples necessary was reduced using Sparse GPs.

C. Sparse GPs

As every MPC loop involves at least HN GP evaluations
for each optimizer step and the asymptomatic complexity
of a GP evaluation is O(S3), where S is the number of
training samples, the calculation time is highly sensitive to
the number of training points. Since the collected data set
contains thousands of samples, a method of sub sampling is
needed. To address these two issues, sparse GPs are used,

Fig. 4: Linear force over Cartesian position: (Left) Training data and mean
of the GP model evaluated near the training data. The contact forces from
the pins can be seen as red arrows to the left/right, and are smoothed out by
the GP model. (Right) mean force of two GP models with blue and green
vectors.

Fig. 5: View of MPC planned trajectory for each mode (blue and green),
with human arm model in red and current TCP location/orientation as black
point. On the left, when the belief is bt = [0.5, 0.5] for the left and right
goal, and on the right is bt = [0.05, 0.95].

which can be calculated in O(RS2), where R is the number
of inducing variables that replace the original training data.
Within sparse GPs the inducing variables are generated by
minimizing the Kullback-Leibler divergence between a GP
trained on a larger subset of the original data and an GP
using artificial training data as described in [43]. In our
experiments this method effectively reduced the amount of
training samples – 35 samples had equivalent log likelihood
to 50 samples when subsampled by time.

V. EXPERIMENTAL VALIDATION

A. Hardware Validation

The approach is validated on a large industrial robot,
where a 16 Kg steel plate had to be manipulated and/or have
objects mounted to it, as seen in Fig. 1. This plate must be
mounted on a set of two pins (insets of Fig. 1) which have
a loose running clearance fit (hole is oversized by 0.5 mm),
and there are two possible mounting positions for the plate.
Here, we usedQµ = diag([0, . . . , 0, 0.1, . . . , 0.1) to penalize
only velocity, QΣ = 0.1I , QH = 0.1I , QΣ,H = 270I –
Qu = 0.25I , and QΣ,H was found to be the most critical.

Two MPC planned trajectories can be seen in Fig. 5, where
only the belief is changed. With an even belief bt = [0.5, 0.5]
(left), the planned forces fR are smaller, whereas when the
right belief is stronger (right), the MPC plans to move more
in this direction.

The attached video shows the performance on physical
hardware, and the resulting time plots can be seen in Fig. 6.
The system is able to robustly detect changes in goal online,
and provides appropriate active assistance. The system is also
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TABLE I: Comparison of MPC problem statements and computational cost

Full GP Cov. State Cov. # GP Points J Imp Params xsh,qt:t+H Cold (sec) Avg Warm Worst Warm

Yes Yes 50 Expected No No 11.524 0.157 1.185
No Yes 50 Expected No No 5.023 0.062 0.215
No No 50 Expected No No 4.571 0.053 0.176
No Yes 35 Expected No No 5.239 0.066 0.225
No Yes 50 Expected Yes No 17.910 0.342 2.354
No Yes 50 Expected No Yes 6.483 0.137 1.977
No Yes 50 Risk Sens No No 44.223 0.330 2.399

Fig. 6: Time traces of applied forces (top), belief (middle) and desired force
trajectory FR (bottom).

robust to a variety of starting positions, and can recover
when the human perturbs the robot away from the goal,
providing the flexibility of online motion planning. While
the final accuracy is limited (+/- 2 cm is typical), this fine
positioning can be taken over by the human. Note that the
goal position is not hard-coded, but is implicit from the
demonstrations (human forces are smaller near the goal and
model covariance is lower because more data is collected
there).

B. Computational Cost

To compare the relative computational cost of several
aspects of the approach, the MPC loop is solved over
recorded experiment data, allowing repeatable comparison
while covering the state space. A computer with Intel i3-
5010 @ 1.70 Ghz was used for all validation, with H = 5
and dt = 0.05. If the ‘Full GP Cov.’ option is false, the GP
covariance is simplified, replacing the Tr(QH,ΣΣH) term
in (12) with Tr(QH,Σ)ΣH,1,1, using just the first element
(as the covariance kernel is shared between linear directions,
and similar between linear and rotational). The ‘State Cov.’
option defines whether or not the state covariance in (8) is
calculated. The cold start time (the first MPC solve, which
includes building the MPC solver), average warm start time
and worst-case warm start are compared.

It can be seen in Tab. I that simplifying the full GP
covariance makes a large computational difference – this

simplification does not reduce performance when similar hy-
perparameters are used between the DOF, as the covariance
will be similar between DOF. Reducing the GP size and
not calculating state covariance make minor improvements
in average calculation time.

Adding impedance parameters to the problem signifi-
cantly increases both mean and worst-case calculation time.
Similarly, adding the human joints/shoulder to the problem
significantly increases the worst-case calculation. Using a
risk-sensitive objective results in severe computational costs.
These three problem statements are not currently feasible for
online control in the current approach.

C. Co-optimization of human joints and impedance trajec-
tory

The attached video shows the co-optimization of the
human joint trajectory, where the co-optimized trajectory for
human joints finds a solution that reduces the moment arm
between point of force application and shoulder, thereby re-
ducing the shoulder torques required. However, transcribing
all of the ergonomic constraints and costs remains a topic for
future work. Similar video results show the co-optimization
of impedance parameters, although the current cost functions
and test applications typically result in simply minimizing
the impedance parameters.

VI. CONCLUSION

The feasibility of MPC for direct physical HRI in 6 DOF
has been shown, with both realistic data-collection require-
ments (3 demonstrations) and online computation speed (15
Hz). We note that while the approach considers a stochastic
human model and dynamics, the largest functional advantage
of this approach is in the human model, in keeping the
robot near the training data. Considering uncertainty in the
trajectory has not yet been shown to offer new functionality,
although new use-cases and objectives may establish benefits.

The proposed approach also has known limitations, many
of which are shared with other approaches, but are listed for
completeness. The approach does not distinguish between
environmental forces and human forces, requiring care in
contact tasks. GP covariance does not capture heteroscedastic
properties (i.e. if there is larger variance in a region of the
state space) – modelling changes in underlying covariance
requires splitting the GP, which is then computationally
expensive. Fitting GP hyperparameters with log likelihood
on limited data can be problematic, to address this we limited
the range of hyperparameters or used fixed ones.
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