

Delft University of Technology

A Short Note on Solving Partial Differential Equations Using Convolutional Neural
Networks

Grimm, Viktor; Heinlein, Alexander; Klawonn, Axel

DOI
10.1007/978-3-031-50769-4_1
Publication date
2024
Document Version
Final published version
Published in
Domain Decomposition Methods in Science and Engineering XXVII

Citation (APA)
Grimm, V., Heinlein, A., & Klawonn, A. (2024). A Short Note on Solving Partial Differential Equations Using
Convolutional Neural Networks. In Z. Dostal, T. Kozubek, A. Klawonn, L. F. Pavarino, O. B. Widlund, U.
Langer, & J. Sístek (Eds.), Domain Decomposition Methods in Science and Engineering XXVII (pp. 3-14).
(Lecture Notes in Computational Science and Engineering; Vol. 149). Springer. https://doi.org/10.1007/978-
3-031-50769-4_1
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-50769-4_1
https://doi.org/10.1007/978-3-031-50769-4_1
https://doi.org/10.1007/978-3-031-50769-4_1

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

A Short Note on Solving Partial Differential
Equations Using Convolutional Neural Networks

Viktor Grimm, Alexander Heinlein, and Axel Klawonn

1 Introduction

Solving partial differential equations (PDEs) is a common task in numerical math-
ematics and scientific computing. Typical discretization schemes, for example, fi-
nite element (FE), finite volume (FV), or finite difference (FD) methods, have the
disadvantage that the computations have to be repeated once the boundary condi-
tions (BCs) or the geometry change slightly; typical examples requiring the solution
of many similar problems are time-dependent and inverse problems or uncertainty
quantification. Every single computation, however, can be very time consuming,
motivating the development of surrogate models that can be evaluated quickly.
There exist some possible surrogate models, including linear reduced order mod-
els [9, 21, 26, 29] and neural network-based models [6, 7, 8, 14, 19, 22, 24, 25].

In this work, we will discuss an approach for predicting the solution of bound-
ary value problems using convolutional neural networks (CNNs). This approach is
particularly interesting in the context of surrogate models which predict the solution
based on a parametrization of the model problem, for instance, with respect to vari-
ations in the geometry or BCs; cf. Fig. 1 for a sketch of the CNN-based surrogate
modeling approach. If the parametrization is high-dimensional, that is, if it consists
of a large number of parameters, neural network-based approaches are particularly
well-suited since they are know to be able to overcome the curse of dimensional-

Viktor Grimm
Department of Mathematics and Computer Science, University of Cologne, Weyertal 86-90,
50931 Köln, Germany, e-mail: viktor.grimm@uni-koeln.de

Alexander Heinlein
Delft University of Technology, Delft Institute of Applied Mathematics, Mekelweg 4,
2628 CD Delft, Netherlands e-mail: a.heinlein@tudelft.nl

Axel Klawonn
Department of Mathematics and Computer Science, University of Cologne, Weyertal 86-90,
50931 Köln, Germany e-mail: axel.klawonn@uni-koeln.de
Center for Data and Simulation Science, University of Cologne, Germany

3© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
Z. Dostál et al. (eds.), Domain Decomposition Methods in Science
and Engineering XXVII, Lecture Notes in Computational Science and Engineering 149,
https://doi.org/10.1007/978-3-031-50769-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-50769-4_1&domain=pdf

4 Viktor Grimm, Alexander Heinlein, Axel Klawonn

...
...

...

...

...

...
...

...

...

dense neural network

convolutional
neural network

Fig. 1 Exemplary CNN-based surrogate model. The first block transforms the problem parametriza-
tion into a low-dimensional representation (latent representation) of the solution, and the right part
of the model decodes the corresponding image of the solution field.

ity [4, 17]. In [5, 6, 15], a CNN model has been trained to predict stationary flow
inside a channel with an obstacle of varying geometry; the model is trained in a purely
data-based way using high-fidelity simulation data.

Here, we use a physics-based loss function in the CNN approach, that is, we
optimize the network with respect to the residual of the partial differential equation
(PDE) as well as the BCs of the BVP; this is also denoted as physics-informed or
physics-aware machine learning (ML). Therefore, our approach is related to physics-
informed neural networks (PINNs), which have been introduced in [28] and are
an extension of the pioneering work [20]. However, different from [20, 28], we
employ a finite difference-based discretization inside the loss function and predict
the coefficients using a CNN. In the classical PINN approach, however a dense neural
network (DNN) is employed as the discretization, and the derivatives are computed
exactly via the backpropagation algorithm.

Physics-informed CNN approaches have already been considered. In particular,
in [31], a model for predicting the solutions of the stationary diffusion equation for
a single fixed geometry but varying BCs, encoded as an input image, is proposed.
In [10], the authors employ a physics-based CNN model for predicting incompress-
ible Navier–Stokes flow in parameterized geometries that is, the exact placement of
the boundaries of the geometries depend on a parameter. More recently, the authors of
this work have extended the previous approaches to a physics-aware CNN for predict-
ing incompressible Navier–Stokes flow in more general geometries and also varying
boundary conditions; cf. [13]. For further works on CNN-based surrogate models
for the approximating the solutions of PDE, see, for instance, [7, 8, 11, 22, 25]. Fur-
thermore, for scientific machine learning (SciML) overview papers with a broader
scope and additional references on related approaches, we refer to [3, 35].

In this paper, we will compare the accuracy and convergence of a CNN model,
optimized using a (stochastic) gradient descent-type method using a physics-based
loss function, with a classical FD discretization, solving the resulting discrete linear

Solving Partial Differential Equations Using Convolutional Neural Networks 5

system of equations using an (unpreconditioned) conjugate gradient (CG) method,
for a simple stationary diffusion problem. In order to focus on these aspects and
remove any other complexities, we focus on a single problem configuration, that is,
we neglect the encoder part in Fig. 1 and focus on training the decoder path. The paper
is organized as follows: In Section 2, we introduce our stationary diffusion model
problem and the simple difference discretization employed. Then, in Section 3, we
briefly discuss how to solve the resulting discrete system of equations using the CG
method as well as how to optimize a CNN model for predicting the same solution.
Finally, we compare the performance of both solution frameworks with respect to
accuracy and convergence in Section 5.

2 Model problem and discretization

Finite difference discretization

Let us consider a simple stationary diffusion problem on computational domain
Ω := [0, 1]2: find a function 𝑢, such that

−Δ𝑢 = 𝑓 in Ω,

𝑢 = 0 on 𝜕Ω,
(1)

where 𝑓 is some right hand side function. We discretize (1) using FDs. In particular,
we consider a uniform grid Ωℎ =

{
(𝑥𝑖 , 𝑦 𝑗)𝑖, 𝑗

}
with 𝑥𝑖 := 𝑖ℎ and 𝑦 𝑗 := 𝑗 ℎ, the step

size ℎ = 1/𝑛, and 𝑢𝑖, 𝑗 := 𝑢(𝑥𝑖 , 𝑦 𝑗). Using a central difference scheme, we obtain the
following approximation of the Laplacian:

Δ𝑢(𝑥𝑖) ≈
𝑢𝑖+1, 𝑗 − 2𝑢𝑖, 𝑗 + 𝑢𝑖−1, 𝑗

ℎ2 +
𝑢𝑖, 𝑗+1 − 2𝑢𝑖, 𝑗 + 𝑢𝑖, 𝑗−1

ℎ2 . (2)

Hence, the discrete form of (1) corresponds to the sparse system of linear equations

𝐴𝑢 = 𝑓 . (3)

with a symmetric positive definite (SPD) matrix. Here, for simplicity, we use the
same symbol for the solution and right hand side as in (1).

Reformulation of the finite difference problem via the cross-correlation

Before we explain our physics-based network model, let us discuss how (3) can be
written equivalently using the cross-correlation operation

(𝐼 ∗ 𝐾)𝑖 𝑗 =
∑︁
𝑚

∑︁
𝑛

𝐼𝑖−𝑚, 𝑗−𝑛𝐾𝑚,𝑛,

6 Viktor Grimm, Alexander Heinlein, Axel Klawonn

where 𝐼 and 𝐾 are two matrices. For simplicity, we omit the the range of the sums,
and regard each matrix coefficient as zero which is outside the range of indices.
Note that the discrete convolution and cross-correlation operations are related in the
sense that one can be obtained from the other by transposition. Moreover, the cross
corelation is actually implemented as the operation of convolutional layers in NN
libraries; cf. [12, Section 9.1].

Now, let 𝑈 =
(
𝑢𝑖, 𝑗

)
𝑖, 𝑗

and 𝐹 =
(
𝑓 (𝑥𝑖 , 𝑦 𝑗)

)
𝑖, 𝑗

be 𝑛 × 𝑛 matrices resulting from
re-arranging the solution and right hand side vectors in (3). Then, we obtain

𝐴𝑢 = 𝑓 ⇔ 𝑈 ∗ 𝐾 = 𝐹, (4)

where ∗ is the cross-correlation operation and 𝐾 is given by

𝐾 =
1
ℎ2

©«
𝐾−1,−1 𝐾−1,0 𝐾−1,1
𝐾0,−1 𝐾0,0 𝐾0,1
𝐾1,−1 𝐾1,0 𝐾1,1

ª®¬ = 1
ℎ2

©«
0 1 0
1 −4 1
0 1 0

ª®¬ , (5)

which is also denoted as the kernel matrix or filter. This can be easily seen by
comparing the coefficients in (2), (5). Only for enforcing the boundary conditions
for certain coefficients or pixels, respectively, the kernel 𝐾 has to be modified,
as is standard in the implementation of boundary conditions in finite difference
discretizations.

3 Solving the finite difference problem using classical methods
versus using convolutional neural networks

Efficient classical numerical solvers

Since our model problem, that is, stationary diffusion on the unit square, is arguably
one of the most investigated problems for the development of solvers, there is a wide
range of efficient solvers for (3). Hence, we keep this discussion rather short. A stan-
dard solver for systems with an SPD matrix is the conjugate gradient (CG) method.
The convergence of the CG method is determined by the spectrum of the matrix,
and in particular, it can be bounded in terms of the condition number of the system
matrix 𝐴, which scales with 1

ℎ2 for our model problem. The ℎ dependence of the
convergence of the CG method can be fixed by acceleration using preconditioners,
such as domain decomposition [32] and multigrid [33] methods, to name just two
popular classes of efficient and scalable preconditioners for (3).

For the purpose of comparing numerical solvers against a closely related ML
approach for solving a stationary problem, we will use the CG method without
preconditioning as the prototypical solver. It would be interesting to include state-
of-the-art preconditioners in our study and discuss if and how preconditioning could
be applied in the optimization of the CNNs. However, this is out of the scope of this
short paper, and therefore, we will leave this to future research.

Solving Partial Differential Equations Using Convolutional Neural Networks 7

A finite difference solver based on convolutional neural networks

Solving (3) corresponds to finding the coefficients 𝑢𝑖, 𝑗 , which are structured based
on the uniform grid Ωℎ =

{
(𝑥𝑖 , 𝑦 𝑗)𝑖, 𝑗

}
. We can simply interpret the discrete solution

as a pixel image, with each pixel corresponding to one coefficient in the solution
vector 𝑢. Hence, in several works, CNNs, which are very effective in image process-
ing, have been trained to learn the discrete solution of a partial differential equation;
cf. Fig.1 for a sketch of this approach and the discussion below. In practice, as we
will also see in Section 5, this approach is not competitive for solving a single BVP.
However, when used as a reduced order model for a parametrized model problem
(e.g., with respect to the geometry), the higher computing costs for the training can
be justified if the solutions of multiple BVPs can be predicted using a single model.

Here, we focus on training a neural network using a physics-informed, sometimes
also referred to as physics-aware or physics-constraint, approach. Then, a neural
network NN is trained to minimize the norm of the residual of the differential
equation, i.e.,

‖ΔNN + 𝑓 ‖2
Ω + ‖NN‖2

𝜕Ω → min,

where ‖·‖Ω and ‖·‖𝜕Ω are some norms defined based on collocation points inside the
domain Ω and on the boundary 𝜕Ω; as mentioned in Section 1, this corresponds to
the classical PINN approach if a dense NN is used as the discretization. If the output
of the neural network corresponds to an image, that is, if the output data is a discrete
vector on the uniform grid Ωℎ =

{
(𝑥𝑖 , 𝑦 𝑗)𝑖, 𝑗

}
, we can employ an FD scheme to

formulate the residual of the PDE, resulting in

‖𝑏 − 𝐴 · NN‖2
2 → min, (6)

where the term corresponding to the boundary conditions vanishes since they are
hard-coded within the matrix 𝐴. Note that this can be efficiently implemented in
state-of-the-art ML libraries, such as Tensorflow: the matrix 𝐴 does not have to be
assembled, but it can be applied in a matrix-free fashion by using the FD stencil (2)
as a fixed kernel in a convolutional layer and applying it to the output of the network;
cf. the discussion in Section 2.

We note that solving (6) directly for 𝑢 is equivalent to solving the least-squares
problem corresponding to (3), which amounts to solving the normal equations

𝐴>𝐴𝑢 = 𝐴>𝑏. (7)

The system matrix 𝐴>𝐴 is still SPD, so (7) can also be solved using the CG method.
However, the convergence will be much slower, as the condition number

𝜅
(
𝐴>𝐴

)
= 𝜅 (𝐴)2 .

The situation is changed further once 𝑢 is replaced by a neural network NN .
Hence, minimizing the loss function with respect to the network parameters 𝜃 does
not correspond to solving a linear system anymore. Moreover, the loss function is, in

8 Viktor Grimm, Alexander Heinlein, Axel Klawonn

Fig. 2 Exemplary model
architecture with a depth of
four levels, resulting in 8 × 8
feature maps on the deepest
level. Each level is composed
of convolutions (orange),
strided convolution (red),
upsampling (blue) and/or
concatenation (grey) layers. In
total, this model has 834 627
parameters.

I

Input
32

I
64

I/
2
92

I/
4 128

I/
8

160 I/
16

128 256 128
I/
8

92 184 92

I/
4

64 128 64

I/
2

32 64 32

I I

Output

Skip Connections

general, not even a convex function with respect to the network parameters anymore.
Thus, in addition to solving a problem (6) that has a significantly worse conditioning
than the original problem (3), we cannot use the CG method let alone another Krylov
subspace method anymore.

Minimizing (6) with respect to the network parameters, which is also denoted as
training the neural network, is usually performed using either a variant of stochastic
gradient descent (SGD), such as the Adam (adaptive moments) optimizer [18], or
a second order quasi-Newton method, such as L-BFGS [23]. Those optimizers and
their parameters are typically chosen based on heuristics, which clearly shows that,
at this point, we have lost most of the properties of the original problem (3) beneficial
for a numerical solver.

Extension to more complex problems

Even though, in this paper, we focus on a linear problem on a simple square domain,
our approach can be extended to nonlinear problems on more general geometries
in a straight-forward way. In particular, the linear operator 𝐴 in (6) can be easily
replaced by a nonlinear operator 𝐹, which yields the minimization problem

‖𝑏 − 𝐹 (NN)‖2
2 → min . (8)

In particular, in the CNN approach for a nonlinear PDE, the operator 𝐹 corresponds
to the finite difference discretization of the nonlinear differential operator of the PDE;
cf. [13] for the application to the Navier–Stokes equations. Even though it cannot be
directly implemented using a simple cross-correlation anymore, it can typically be
written as a composition of cross-correlations and element-wise tensor-operations.
Hence, it can still be easily and efficiently implemented using optimized functions
from state-of-the-art deep learning libraries. To extend the approach to more complex
geometries, boundary conditions have to be implemented for the corresponding
output coefficients or pixels, respectively. A parametrization of the problem, for
instance, with the respect to the geometry, can be incorporated via the input of
the CNN; cf. Figs. 1 and 2. For more details, we refer to [13].

Solving Partial Differential Equations Using Convolutional Neural Networks 9

4 Network architecture and hyper parameters

As is usual in the context of NNs, the training performance and prediction accuracy
of model strongly depend on the choice of the hyperparameters, which include
the specific network architecture and parameters of the optimizer. In advance of our
numerical study, we have carried out a detailed hyperparameter optimization to obtain
a good performance of the CNN models. In particular, we used the optimized model
for more complex computational fluid dynamics problems with varying geometries;
cf. [13]. Similar to [5, 6, 15], in [13], the CNN model is employed as a reduced
order surrogate model for varying geometries. As a result of the hyper parameter
optimization, we ended up using an architecture which is inspired by the U-Net [30];
cf. Fig. 2. The model is composed of an encoder and a decoder part, each consisting
of several levels. The corresponding levels of the encoder and decoder are connected
with skip connections. Here, each level of the encoder part consists of a convolutional
layer with an increasing number of 3×3 filters and a downsizing convolutional layer
with 2 × 2 filters and stride of 2. In the decoder part, each level consists of a normal
3 × 3 convolutional layer, a concatenation layer for the skip connections and an
up-sampling through nearest-neighbor interpolation layer.

In the hyper parameter optimization, we varied the activation function, the number
of filters in the convolutional layers as well as the number of levels of the U-Net type
architecture. Moreover, we performed numerical experiments for different learning
rates, indicating the best performance for GD with a learning rate of 10−5 and for
Adam with a learning rate of 5.0 · 10−5. For more details on the hyper parameter
optimization, we refer to [13].

In this paper, we focus on the effect of different solvers rather than the effect of
different choices of the neural network architecture. In this sense, our major concern
was to obtain a model architecture which is sufficient for approximating the solu-
tion of our the considered model problem. As we can observe based on the results
in Section 5, this is the case for our model. In fact, the number of parameters and
the model capacity could probably be reduced significantly for this model problem,
at the cost of an additional hyper parameter optimization. Of course, a variation of
the hyperparameters could have some impact on the convergence results in Section 5
but it is not obvious how to take the hyperparameter optimization into account in
the comparison in a fair way. Moreover, we do not expect a major difference in the
performance of the different approaches when varying the hyper parameters.

5 Numerical results

In this section, we compare different solution methods for an FD discretization of (1).
In particular, we employ the gradient descent (GD) and conjugate gradient (CG)
methods for the original equations (3) as well as the normal equations (7) arising
from a least-squares formulation of the problem. We compare those results against
training a CNN to predict the coefficient vector using the GD and Adam [18] meth-

10 Viktor Grimm, Alexander Heinlein, Axel Klawonn

100 101 102 103 104 105
10−8

10−4

100

104

∥∥rk
∥∥2

100 101 102 103 104 105
10−13

10−9

10−5

10−1

iterations

‖rk‖2

‖r0‖2

GD-SE CG-SE GD-NE CG-NE ML-GD ML-Adam

100 101 102 103 104 105

10−4

10−3

10−2

10−1

100

‖uk−u∗‖
‖u∗‖

Fig. 3 Convergence of the GD, CG and Adam methods for the original linear equation system (3)
and the least-squares problem eq. (6) for the FD discretization 𝑢 and the CNN 𝑢𝑁𝑁 . Comparison
of the absolute and relative residuum ‖𝑟𝑘 ‖2 / ‖𝑟0 ‖2 where 𝑟𝑘 = 𝑏 − 𝐴𝑢𝑘 , and the relative error
‖𝑢𝑘 − 𝑢∗ ‖ / ‖𝑢∗ ‖.

ods for the physics-informed loss function, which corresponds to the least-squares
formulation (6). All CNN computations were performed on NVIDIA V100-GPUs
with CUDA 10.1 using python 3.6 and tensorflow-gpu 2.4 [1].

For our experiments, we choose 𝑓 = 2𝜋2 sin(𝜋𝑥) sin(𝜋𝑦) as the right hand side.
The resulting BVP has the analytical solution 𝑢∗ = sin(𝜋𝑥) sin(𝜋𝑦), which we use
as the reference. In this work, we exlusively consider an FD discrezation of the
computational domain Ω with 𝑁 = 128 grid nodes in each direction; this results in
a total problem size of 16 384 nodes or degrees of freedom, respectively. For the
classical methods, we use a fixed but random initial guess, the parameters of the
CNNs are randomly initialized using the He normal initialization [16]. We compare
the convergence of the methods via the squared relative residual ‖𝑟𝑘 ‖2/ ‖𝑟0‖2, which
corresponds to a relative mean squared error (MSE). For the classical numerical
methods, we stop the iteration once a tolerance of 10−12 for the relative residual or
an iteration count of 250 k iterations is reached. The CNNs are always trained for
250 k iterations or epochs.

We compare the relative residuals for the various methods applied to the standard
and normal equations in Fig. 3. As expected, the CG method applied to the standard
equation (CG-SE) converges the fastest after 221 iterations; note again that the con-
vergence could be significantly improved using preconditioning techniques. The CG
method applied to the normals equation (CG-NE) converges within 7 737 iterations,
the GD method on the original equation (GD-SE) in 15 811 iterations. The GD
method on the normal equations (GD-NE) does not converge within 250 k iterations
and reaches a relative residual of 5.2 · 10−7 at termination of the iteration.

As can be seen in Fig. 4d, the GD-NE solution, which has not converged within
250 k iterations, has a large relative 𝐿2-error of 34 % compared with the analytical
solution. For CG-SE, CG-NE, and GD-SE, we obtain errors of 0.008 %, 0.02 %,
and 0.15 %, respectively, at convergence. In terms of convergence with respect to the
relative squared residual norm, the ML approaches perform worse. Both ML-GD

Solving Partial Differential Equations Using Convolutional Neural Networks 11

(a) CG-SE (b) GD-SE (c) CG-NE (d) GD-NE (e) ML-GD (f) ML-Adam

Fig. 4 The solutions (top row) achieved with the various methods and the corresponding erorrs
(𝑢∗ − 𝑢) (bottom row) w.r.t the analytical solution at the grid nodes.

and ML-Adam do not achieve a relative tolerance of 10−12 and the training is stopped
after 250 k iterations/epochs with a final relative residual of 1.5 · 10−7 for ML-GD
and 3.1 ·10−8 for ML-Adam. Nonetheless, we achieve relative 𝐿2-errors of 0.7 % for
ML-GD and 0.02 % for ML-Adam. These are significantly lower than for GD-NE,
even though the methods terminate at a similar relative residual. In fact, the accuracy
is within one order of magnitude of the CG solutions and even better than the GD-SE
solution; cf. also Fig, 4.

Spectral bias in the CNN training

Let us discuss why, in comparison, the error may be much lower for the CNN
compared to the classical numerical solvers for a residual in the same order of
magnitude. In particular, for the error 𝑒 and the residual 𝑟 , we have

𝐴𝑒 = 𝐴(𝑢∗ − 𝑢) = 𝑏 − 𝐴𝑢 = 𝑟

Hence, of course, the relation of ‖𝑒‖ and ‖𝑟 ‖ depends on how the error decomposes
into eigenfunctions of high/low eigenvalues. Since the CNNs were able to achieve
comparatively low error while exhibiting higher absolute and relative residual, es-
pecially compared to the CG solutions, this suggests that the corresponding error is
mainly composed of eigenfunctions corresponding to high eigenvalues. In particular,
this implies that the CNNs exhibit some form of spectral bias, i.e., that they tend to
learn eigenfunctions corresponding to low eigenvalues. Note that the spectral bias
has been previously studied for DNNs [2, 27] and for PINNs [34]. However, to the
best of the authors’ knowledge, it has not been studied for the physics-informed CNN
approach considered here. A more detailed study is out of the scope of this paper
but will be discussed in future research.

12 Viktor Grimm, Alexander Heinlein, Axel Klawonn

6 Conclusion

In this work, we have compared physics-informed CNNs with classical methods for
solvinge PDEs on the example of the stationary diffusion problem. We have shown
that solution methods that take advantage of properties of the problem, such as the
CG method, outperform the ML approach both in the accuracy achieved and in
the speed of convergence. Yet, the ML solutions learned were within an order of
magnitude of the CG solutions, i.e., they were not infeasible. But the much slower
convergence coupled with the need for hyperparameter optimization as well as the
heuristic nature of the choice of method parameters argue for the use of classical
methods. Nonetheless, with an ML approach it is possible to include parameters,
such as boundary conditions, geometry, etc., as input. In such cases, ML approaches
are superior to classical methods and thus there is a sound reason again to use
them. The extension of this study to more complex problems, the incorporation of
preconditioning, as well as a more detailed discussed of the spectral bias will be the
subject of future research.

Acknowledgements This work was performed as part of the Helmholtz School for Data Science
in Life, Earth and Energy (HDS-LEE) and received funding from the Helmholtz Association of
German Research Centers. We gratefully acknowledge the use of the computational facilities of the
Center for Data and Simulation Science (CDS) at the University of Cologne.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S.,
Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker,
P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., and Zheng, X. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems (2016).

2. Cao, Y., Fang, Z., Wu, Y., Zhou, D.-X., and Gu, Q. Towards Understanding the Spectral Bias
of Deep Learning (2020).

3. Cuomo, S., di Cola, V. S., Giampaolo, F., Rozza, G., Raissi, M., and Piccialli, F. Scientific
machine learning through physics-informed neural networks: Where we are and what’s next.
arXiv (2022).

4. De Ryck, T. and Mishra, S. Error analysis for physics-informed neural networks (PINNs)
approximating Kolmogorov PDEs. Advances in Computational Mathematics 48(6), 79 (2022).

5. Eichinger, M., Heinlein, A., and Klawonn, A. Stationary flow predictions using convolutional
neural networks. In: Numerical Mathematics and Advanced Applications ENUMATH 2019,
541–549. Springer (2021).

6. Eichinger, M., Heinlein, A., and Klawonn, A. Surrogate convolutional neural network models
for steady computational fluid dynamics simulations. Electronic Transactions on Numerical
Analysis 56, 235–255 (2022).

7. Franco, N. R., Fresca, S., Manzoni, A., and Zunino, P. Approximation bounds for convolutional
neural networks in operator learning (2023). ArXiv:2207.01546 [cs, math].

8. Fresca, S., Dede’, L., and Manzoni, A. A Comprehensive Deep Learning-Based Approach
to Reduced Order Modeling of Nonlinear Time-Dependent Parametrized PDEs. Journal of
Scientific Computing 87(2), 61 (2021).

Solving Partial Differential Equations Using Convolutional Neural Networks 13

9. F.R.S, K. P. LIII. On lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2(11) (1901).
Publisher: Taylor & Francis pages = 559–572,.

10. Gao, H., Sun, L., and Wang, J. Phygeonet: Physics-informed geometry-adaptive convolutional
neural networks for solving parameterized steady-state pdes on irregular domain. Journal of
Computational Physics 428, 110079 (2021).

11. Gonzalez, F. J. and Balajewicz, M. Deep convolutional recurrent autoencoders for learning
low-dimensional feature dynamics of fluid systems (2018). ArXiv:1808.01346 [physics].

12. Goodfellow, I., Bengio, Y., and Courville, A. Deep learning. MIT press (2016).
13. Grimm, V., Heinlein, A., and Klawonn, A. Physics-aware convolutional neural networks for

two-dimensional flow predictions. In preparation.
14. Guo, X., Li, W., and Iorio, F. Convolutional Neural Networks for Steady Flow Approximation.

In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’16, 481–490. Association for Computing Machinery, New York, NY,
USA (2016).

15. Guo, X., Li, W., and Iorio, F. Convolutional neural networks for steady flow approximation.
In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’16, 481–490. Association for Computing Machinery, New York, NY,
USA (2016).

16. He, K., Zhang, X., Ren, S., and Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification (2015). ArXiv:1502.01852 [cs].

17. Jentzen, A., Salimova, D., and Welti, T. A proof that deep artificial neural networks overcome
the curse of dimensionality in the numerical approximation of Kolmogorov partial differen-
tial equations with constant diffusion and nonlinear drift coefficients. Communications in
Mathematical Sciences 19(5), 1167–1205 (2021). Publisher: International Press of Boston.

18. Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014).

19. Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., and Anandku-
mar, A. Neural Operator: Learning Maps Between Function Spaces (2022). ArXiv:2108.08481
[cs, math].

20. Lagaris, I., Likas, A., and Fotiadis, D. Artificial neural networks for solving ordinary and
partial differential equations. IEEE Transactions on Neural Networks 9(5), 987–1000 (1998).
Conference Name: IEEE Transactions on Neural Networks.

21. Lassila, T., Manzoni, A., Quarteroni, A., and Rozza, G. Model order reduction in fluid dynam-
ics: challenges and perspectives. Reduced Order Methods for modeling and computational
reduction 235–273 (2014).

22. Lee, K. and Carlberg, K. Model reduction of dynamical systems on nonlinear manifolds using
deep convolutional autoencoders (2019). ArXiv:1812.08373 [cs].

23. Liu, D. and Nocedal, J. On the limited memory bfgs method for large scale optimization.
Mathematical Programming 45, 503–528 (1989).

24. Lu, L., Jin, P., and Karniadakis, G. E. DeepONet: Learning nonlinear operators for identifying
differential equations based on the universal approximation theorem of operators. Nature
Machine Intelligence 3(3), 218–229 (2021). ArXiv:1910.03193 [cs, stat].

25. Maulik, R., Lusch, B., and Balaprakash, P. Reduced-order modeling of advection-dominated
systems with recurrent neural networks and convolutional autoencoders. Physics of Fluids
33(3), 037106 (2021). Publisher: American Institute of Physics.

26. Quarteroni, A., Manzoni, A., and Negri, F. Reduced basis methods for partial differential
equations, Unitext, vol. 92. Springer, Cham (2016).

27. Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M., Hamprecht, F. A., Bengio, Y., and
Courville, A. On the Spectral Bias of Neural Networks (2019). ArXiv:1806.08734 [cs, stat].

28. Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-informed neural networks: a deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics 378, 686–707 (2019).

29. Rathinam, M. and Petzold, L. R. A New Look at Proper Orthogonal Decomposition. SIAM
Journal on Numerical Analysis 41(5), 1893–1925 (2003).

14 Viktor Grimm, Alexander Heinlein, Axel Klawonn

30. Ronneberger, O., Fischer, P., and Brox, T. U-Net: Convolutional Networks for Biomedical
Image Segmentation. In: Navab, N., Hornegger, J., Wells, W. M., and Frangi, A. F. (eds.),
Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes
in Computer Science, 234–241. Springer International Publishing, Cham (2015).

31. Sharma, R., Farimani, A. B., Gomes, J., Eastman, P., and Pande, V. Weakly-supervised learning
of heat transport via physics informed loss. arXiv (2018). URL arXiv:1807.11374.

32. Toselli, A. and Widlund, O. Domain decomposition methods-algorithms and theory, vol. 34.
Springer Science & Business Media (2004).

33. Trottenberg, U., Oosterlee, C. W., and Schuller, A. Multigrid. Elsevier (2000).
34. Wang, S., Yu, X., and Perdikaris, P. When and why PINNs fail to train: A neural tangent kernel

perspective. Journal of Computational Physics 449, 110768 (2022).
35. Willard, J., Jia, X., Xu, S., Steinbach, M., and Kumar, V. Integrating scientific knowledge with

machine learning for engineering and environmental systems. arXiv (2021).

	A Short Note on Solving Partial Differential Equations Using Convolutional Neural Networks
	1 Introduction
	2 Model problem and discretization
	3 Solving the finite difference problem using classical methods versus using convolutional neural networks
	4 Network architecture and hyper parameters
	5 Numerical results
	6 Conclusion
	References

