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Coherence-Based Prediction of Multi-Temporal
InSAR Measurement Availability for

Infrastructure Monitoring
Dominika Malinowska , Pietro Milillo , Senior Member, IEEE, Kevin Briggs , Cormac Reale ,

and Giorgia Giardina

Abstract—Predicting the availability of measurement points
provided by Multi-Temporal Interferometric Synthetic Aperture
Radar (MT-InSAR) poses a challenge due to a nonuniform dis-
tribution of Persistent Scatterers (PSs). This article introduces a
novel method to estimate the availability of MT-InSAR results on
buildings and infrastructure networks, eliminating the need for
labor-intensive and time-consuming analyses of the entire SAR data
stack. The method is based on an analysis of the interferometric
coherence decay characteristics and data regarding buildings and
transport infrastructure location as inputs to a convolutional neural
network. Specifically, a U-Net architecture model was implemented
and trained to predict the PS density of Sentinel-1 data. The
methodology was applied to a regional-scale analysis of the Dutch
infrastructure, resulting in a low 1.06±0.10 mean absolute error
in the pixel-based PS count estimation on the test data split, with
over 80% of predictions within ±1 from the actual value. The
model achieved high accuracy when applied to a previously unseen
dataset, demonstrating strong generalization performance. The
proposed workflow, with its notable ability to accurately predict
areas lacking measurement points, offers stakeholders a tool to
assess the feasibility of applying MT-InSAR for specific struc-
tures. Thereby, it enhances infrastructure reliability by addressing
a critical need in decision-making processes and improving the
applicability of MT-InSAR for structural health monitoring of
infrastructure assets.
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I. INTRODUCTION

TRANSPORT infrastructure plays a crucial role in global
socioeconomic development [1]. Regular inspections of

roads and railways are an essential part of asset manage-
ment and are imperative to ensure reliable transportation net-
works [2]. Stakeholders are actively exploring new monitoring
tools that can aid and inform decision-making processes, en-
hancing infrastructure asset management strategies [3]. Infras-
tructure monitoring typically relies on in-situ visual inspection, a
labor-intensive process that provides subjective reports of vary-
ing quality, e.g., differences in assigned condition scores [4], [5].
Wired and wireless sensors can be installed on some structures
to mitigate the subjectivity of surveys and increase measurement
frequency. However, operating and installing these sensors can
be expensive [6]. Moreover, inspecting the condition of trans-
portation infrastructure remains challenging even when using a
network of wireless sensors, due to the geographical extent and
linear nature of transport networks [7].

Remote sensing techniques have emerged as a promising
solution to address the economic and practical challenges as-
sociated with conventional inspections and sensor installations.
These techniques encompass a range of technologies, including
cameras, mobile devices, drones, robots, and satellites [8], [9].
Satellite-based methods can cover extensive areas and monitor
multiple structures simultaneously, which is particularly advan-
tageous when monitoring linear infrastructure [10].

A widely employed satellite-based technology for infrastruc-
ture monitoring is Synthetic Aperture Radar (SAR), an active
sensor emitting electromagnetic waves and recording backscat-
tered signals [11]. SAR imagery contains data on amplitude and
phase, where amplitude represents signal strength and phase
enables distance measurements. Interferometric SAR (InSAR)
techniques leverage phase differences between two SAR acqui-
sitions to generate interferograms, enabling the detection of tem-
poral changes and quantification of target movements [12], [13].
An interferogram is created by pixelwise cross-multiplication
of one SAR image with a complex conjugate of a second one
to reveal phase differences between the images. Since its first
application to earthquake mapping [14], InSAR has become
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a standard approach for Earth’s surface deformation monitor-
ing [15]. However, InSAR faces challenges related to variations
in terrain reflective properties [16] and radar signal delays due
to water vapor in the atmosphere [17], negatively impacting its
accuracy and applicability. Multi-temporal InSAR (MT-InSAR)
analysis, which processes a stack of radar images, overcomes the
limitations of traditional InSAR techniques by processing only
selected pixels. MT-InSAR exploits phase information from
multiple interferograms to measure the temporal displacement
of point-like targets called Persistent Scatterers (PSs) defined by
specific backscatter characteristics [18], [19].

MT-InSAR has gathered increased attention as a prospective
solution for infrastructure monitoring, offering a wide-scale
and cost-effective approach to Structural Health Monitoring
(SHM) [20], [21], [22]. However, one of the key challenges
impeding the widespread adoption of MT-InSAR as a com-
plementary method to other SHM techniques relates to the
predictability of its outcomes. Although MT-InSAR can achieve
millimeter-level accuracy in monitoring certain structures [23],
[24], it may not be applicable to all components of a trans-
portation network, as this technique provides observations for
specific pixels, potentially leaving some structures without any
measurement points [25].

This article presents a new method for the rapid assessment
of the applicability of remote sensing techniques for monitoring
of buildings and transport infrastructure. This addresses the
need for a preliminary evaluation of the availability of remote
sensing results, eliminating the requirement of time-consuming
data analysis of the entire data stack. To achieve this aim, we
first analyzed attributes of MT-InSAR, particularly focusing
on interferometric coherence, and identified parameters that
showed a good correlation with PS availability. We then gen-
erated an infrastructure map with values showing the likeli-
hood of PS detection depending on the structure type. Next,
through the utilization of machine learning (ML) techniques,
we developed a model of the correlation between coherence
decay parameters, data about infrastructure presence, and PS
availability. The methodology was applied to structures in urban
environments and transportation networks that will be referred
to as infrastructure in the remainder of the article. The article’s
key contributions are summarized as follows.

1) A workflow was proposed for predicting the availability of
MT-InSAR outcomes, providing stakeholders with valu-
able insights for informed decision-making regarding the
feasibility of a structure for spaceborne monitoring.

2) The developed methodology demonstrated good capa-
bilities in predicting PS availability from the Sentinel-1
dataset and proved its generalization ability by performing
well on unseen data.

The rest of this article is organized as follows. Section II
provides an overview of the reasons behind the nonuniform PS
availability and a literature summary of previous approaches
proposed for PS density estimation. Section III describes the
specific case study, the data sources utilized in the analysis, and
the methodology employed. Section IV presents the results of
the proposed model. In Section V, these results are critically
discussed. Finally, Section VI concludes this article.

II. BACKGROUND

Several factors affect the ability to detect PSs on specific
structures through MT-InSAR. First, the characteristics of a
SAR sensor have a prominent impact. Longer radar wave-
lengths yield coarser resolution and, consequently, sparser PS
detection [26], [27]. Furthermore, SAR satellites typically fol-
low sun-synchronous near-polar orbits. PSs on transportation
networks are usually generated by reflections from elements
along the structure length, such as road edges, bridge sides, or
traffic barriers, while road surface tends to reflect most of the
energy away from the satellite. Therefore, structures aligned in
North–South directions can potentially provide fewer PSs [20].
Geometrical distortions inherent to SAR data due to its side-
looking nature further complicate the issue [17], [28]. These
are the most pronounced in mountainous or densely built-up
regions with tall structures, rendering some pixels unsuitable
for PS detection [20]. Attempts have been made to model these
distortions using topography maps and radar geometry to assess
PS detectability [29], [30], [31], [32], [33], [34], [35], [36].
However, these models have primarily focused on landslide
applications and are less applicable to urban areas, which are
of greater significance in infrastructure monitoring. While a
SAR simulator has been proposed for creating 3-D models of
structures to predict shadow zones and geometric effects [37], it
remains a labor-intensive process, necessitating in-depth knowl-
edge of the target geometry.

Second, the properties of the target structure play a pivotal
role in determining whether a pixel can function as a PS. Ef-
fective PS detection relies on radar waves being reflected back
to the satellite with sufficient strength and in the appropriate
direction, and target backscatter characteristics depend on its
size, shape, roughness, and dielectric constant [38], [39]. Urban
areas typically exhibit favorable properties for strong backscatter
and PS generation [40], [41]. Thus, assuming that any pixel
intersecting with a man-made object can be a potential PS
target, a building database and topographic map can be used
for a preliminary assessment of PS detection probability [26].
In this approach, measuring the distance between potential PS
points and assessing PS distribution is also crucial, as points
forming clusters are deemed to be more suitable for PS analysis.
However, this method tends to overestimate the PS density
when compared to actual results, illustrating the challenge of
determining suitable radar targets among all man-made objects.
Nevertheless, correlations between land cover type and PS den-
sity can provide rough estimates of PS distribution for specific
regions. Authors of such methods typically derive empirical PS
density values for various land cover types and sensors, propos-
ing their independent use [26] or in combination with geometric
distortion modeling [29], [30], [31], [32], [33], [34], [35], [36].
As these techniques were initially designed for landslide obser-
vation, they present challenges when applied to infrastructure
monitoring. While those correlations can be extrapolated to new
study areas, PS density is typically assumed to be uniform within
a land cover class, reducing accuracy. As land cover maps often
possess coarse resolution, they might not adequately account
for infrastructure elements in rural areas that could be otherwise
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classified as urban regions, further reducing the accuracy of
prediction.

Third, PSs are only identified in pixels with stable reflective
properties over time. Changes such as alterations in vegeta-
tion, temporary snow cover, structural maintenance, damage,
or heavy traffic can disrupt signal backscattering and render a
pixel unsuitable as a measurement point [25]. Empirical correla-
tions between PS density and Normalized Difference Vegetation
Index (NDVI) have been proposed [30]. However, their effec-
tiveness in highly vegetated areas is limited by the availability
of high-resolution NDVI data, making them most suitable for
sparsely vegetated regions. Another approach involves the use
of an amplitude dispersion index to exclude pixels significantly
affected by changes in reflective properties over time [29]. While
this method effectively filters out pixels of the lowest quality, it
does not account for situations where amplitude remains stable,
but other factors render a pixel unusable.

Given the multitude of factors affecting the visibility of
structures in MT-InSAR results, assessing the suitability of
infrastructure assets for spaceborne monitoring remains a com-
plex task, even for experienced individuals. Although several
techniques have been proposed for predicting PS density prior
to MT-InSAR processing, they are predominantly designed for
landslide monitoring and may yield inaccurate results in the
context of infrastructure, particularly for structures such as
bridges [42]. Methods for estimating if a deformation of a linear
infrastructure is measurable when applying MT-InSAR to data
from a particular set of satellites exist, but they operate under
the assumption that PSs are available [43].

Attempts have been made to train ML models to predict not
only PS density but also precise displacement measurements
for road infrastructure [44], [45]. However, obtaining compre-
hensive datasets comprising hydrological, geomorphometric,
geomorphological, and social attributes of a terrain, alongside
existing PS results required as input to such a model, can be
challenging for many transportation networks. Consequently,
effective methods are still needed to assess the suitability of
MT-InSAR for infrastructure monitoring that does not necessi-
tate extensive data analysis across an entire data stack.

Previous approaches to predicting PS density, as described
above, primarily involved directly modeling factors influencing
PS availability. However, a relationship has been observed be-
tween PS density and certain attributes of MT-InSAR, namely,
the coherence values within a differential interferogram [19].
Interferometric coherence quantifies the change between the
two images in an interferogram by measuring the correlation be-
tween phase values [12]. This correlation indicates the reliability
and readability of the phase, and it is used to assess the quality of
the interferogram. The coherence is spatially averaged over a few
pixels, which minimizes biases inherent to interferometry, but
in turn, makes it impossible to easily employ this parameter for
the identification of PSs as these are smaller than one resolution
cell [18], [46]. Nonetheless, permanent scatters, by definition,
maintain high coherence over time [18]. Therefore, regions with
high interferometric coherence should be relatively densely pop-
ulated with PSs. Still, a PS can be formed in an area characterized

by a low interferometric coherence if the coherence is stable over
the study period.

A long-term coherence parameter that measures the
temporal decorrelation over the spatially averaged SAR reso-
lution cells has been proposed to quantify interferometric co-
herence changes over time [47], [48], and a global seasonal
long-term coherence dataset has been previously published [49].
The long-term coherence accounts for the lack of complete
decorrelation of some pixels and is significantly higher for
artificial scatterers when compared to vegetated areas, owing
to the former’s ability to offer more stable reflections [47].
The fact that artificial scatterers remain coherent over time
is what makes them better PS candidates, so a higher PS
density should be expected for pixels with high long-term
coherence.

The correlation between long-term coherence and PS density
is not trivial, primarily because of the spatial averaging involved
in coherence calculation and its association with the physical
properties of a target. As far as the authors are aware, this corre-
lation has not been investigated to date. While linear regression
could potentially model such a correlation, the spatial complexi-
ties render it an unsuitable choice for this case. However, various
ML techniques have been developed to model similarly complex
relationships, including cases where the correlation entails a
spatial component. Specifically, Fully Convolutional Neural
Networks (FCNNs) were introduced to address pixel-dense
problems in computer vision [50], [51]. The U-Net architec-
ture [52], an extension to FCNNs, has been adapted for semantic
segmentation of remote sensing data, including land cover clas-
sification [53], sea-land segmentation [54], cloud detection [55],
road extraction [56], [57], building extraction [58], and building
damage classification [59]. However, U-Net can also be applied
to pixelwise regression tasks where the ML model is trained to
predict continuous variables. In the field of remote sensing, this
method has been used for pansharpening [60], estimation of sea
ice concentration [61], or bathymetry derivation [62], to name a
few.

III. MATERIALS AND METHODS

A methodology was developed in this study to estimate the
availability of MT-InSAR measurements on buildings and trans-
portation networks. The method takes information on coherence
decay characteristics and data regarding infrastructure location
as inputs to a convolutional neural network designed and trained
to predict PS density. The coherence decay was investigated
through the seasonal long-term coherence dataset [49]. This
dataset provides information globally on how interferometric
coherence changes in a given season with the increased time
between image acquisitions. Long-term seasonal coherence
variations were examined in combination with NDVI. Seasonal
NDVI statistics, specifically mean and standard deviation, were
analyzed to explain the changes in the long-term coherence.
Those observations were used to select the season best suited
as input for the proposed technique. A geospatial dataset of
buildings and linear infrastructure was processed to generate
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Fig. 1. Flowchart illustrating the step-by-step methodology.

pixel-level information on infrastructure presence. Existing MT-
InSAR findings were examined to gather information on the
PSs densities. By integrating information about infrastructure
location and PS density, an infrastructure map was generated
where values corresponded to the likelihood of PS detection
for selected infrastructure typologies. A U-Net model designed
for a pixelwise regression task was implemented. This model
used the seasonal long-term coherence and the infrastructure
map as inputs and the density map generated from existing MT-
InSAR results as ground truth to assess the model’s performance
through a comparison with the pixel-based PS count predictions.
Fig. 1 outlines the steps followed to model the correlation be-
tween long-term coherence, infrastructure presence, and density
of PSs.

A. Case Study

Data for the ML model’s training, validation, and testing
were acquired over the Netherlands. The Area of Interest (AoI)
spanned between 3◦ and 8◦ East and 50◦ and 54◦ North to ensure
comprehensive coverage (see Fig. 2), taking into consideration
that some of the input data were in tiled format.

B. Data Sources

1) Interferometric Coherence: A global seasonal interfer-
ometric coherence and backscatter dataset by Kellndorfer
et al. [49] was used as one of the model inputs. This dataset re-
sults from the analysis of a stack of Sentinel-1 images. Covering
most of the world, the dataset is subdivided seasonally (winter:

Fig. 2. Regional-scale dataset over the Netherlands, incorporating coherence
decay, infrastructure location, and MT-InSAR outcomes. The coherence dataset
comprises 20 tiles (black outlined squares), while other data sources are rep-
resented by a single tile covering the entire AoI. Each tile underwent random
division into training (blue), validation (red), and test (green) datasets.

December–February 2019/20, spring: March–May 2020, sum-
mer: June–August 2020, and fall: September–November 2020).
Acquisitions from the descending flight direction of Sentinel-1
are used for most of the world, including the AoI considered in
this article. The interferometric coherence is calculated for each
seasonal substack with various repeat times, i.e., the number of
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days between acquisitions. Moreover, coherence decay model
parameters are provided. The data are published with three
arcsec pixel spacing resolution (≈90 m at the equator). The
dataset is provided in VV and HH polarization. We chose to
use the former as this is the polarization commonly used for
MT-InSAR applications.

A few models of temporal decorrelation have been proposed
in the literature [47], [48]. The data provided in [49] utilize the
following model adopted from [47]:

ρtemp(t) = (1− ρLT)e
− t

τ + ρLT (1)

where the temporal decorrelation ρtemp(t) is considered to be
related to the time between acquisitions t, the target decorre-
lation factor τ indicates the rate of the exponential decrease in
days, and the long-term coherence ρLT is accounting for the fact
that some pixels never completely decorrelate. In [49], multiple
seasonal stacks of SAR images were created with variable repeat
intervals, and the pixel-level coherence was calculated for each
of them. Then, given the known coherence and time interval, an
exponential curve was fitted to estimate the parameters τ and ρLT

for each pixel. In this study, the seasonal long-term coherence
was analyzed and used as input to the ML model due to its
correlation with the PS presence, as explained in Section II.

2) NDVI: The NDVI, a metric derived from optical remote
sensing data and used for vegetation quantity estimation [63],
[64], [65], was generated using Sentinel-2 images through
Google Earth Engine (GEE). The NDVI is calculated by normal-
izing the difference between near-infrared and red wavelengths,
both having a 10 m resolution. All Sentinel-2 images with
less than 50% cloud coverage from the seasonal time frames
matching the global coherence study were considered in the
processing. A mask was used to remove the remaining clouds
and shadows. Then, the mean across all available images for each
season was calculated. The four seasonal NDVI rasters were
resampled to match the resolution of other rasters used in the
study. It should be noted that for some pixels, all images within
the seasonal time frame were covered by a cloud or shadow, so
obtaining the NDVI value for that season was impossible.

3) Infrastructure Networks: Open Street Map (OSM) was
employed to identify pixels that cover infrastructure. While
the quality of the OSM database relies on a community of
volunteers, it exhibits a high level of accuracy [66]. As of January
2016, the road network was estimated to be over 80% com-
plete [67]. However, there is significant global variation, with
over 40% of countries having more than 95% completion, while
others, such as China, Egypt, and Pakistan, have less than 30% of
streets reported. Some other large countries, such as Russia and
India also have less than half of their road networks mapped. A
more recent analysis indicates that building completeness is high
in Europe, Central Asia, and North America but remains low in
regions such as South Asia and parts of Africa [68]. Neverthe-
less, the database is rapidly expanding, especially in developing
countries, with completeness increasing annually [67], [68]. As
an example, the covered length of the Iranian road network
increased 110 times from 2008 to 2016 [69]. In addition, a study
on Chinese roads found that while overall completeness is low,

over 80% of roads with high traffic conditions are reported in
the OSM [70]. This suggests that important major roads are
likely mapped and is confirmed by the observation that missing
roads are often private residential roads or single-line roads
and, thus, less significant for this study. Therefore, the OSM
database remains the best available source of infrastructure data
for studies on the national or even global level.

We extracted entries within the AoI for buildings, railways,
and road networks (motorways, trunks, primary and secondary
highways, specifically). The railways and road networks in the
OSM are provided as linear features on a vector layer repre-
senting the middle line of a road, while buildings are shown
as polygons. Each of those datasets was rasterized, ensuring
resolution consistent with other inputs so that all pixels touched
by either a line or a polygon were assigned a value of 1 while
the rest had a value of 0. The AoI encompassed 32 338 km of
railways, 13 762 km of motorways, 4782 km of trunk, 18 494 km
of primary roads, and 32 712 km of secondary roads. Buildings
covering a planar area of 3535 km2 were also considered.

4) PSs Location: For information about PSs location, data
from the European Ground Motion Service (EGMS) derived
from Sentinel-1 images acquired between 2018 and 2022 were
used [42], [71]. EGMS is an initiative providing European-
wide Advanced Differential InSAR (A-DInSAR) results.1 The
EGMS deformation maps are generated separately for ascending
and descending orbits. For this article, we employed data from
the descending flight direction. All frames covering the AoI
were downloaded and processed to obtain pixel-level PS den-
sity. If frames overlapped, the higher values were retained. To
focus on PSs, distributed scatterers (DS) that were introduced
to the EGMS data as a complementary source of information
where data coverage was not up to the project requirements
were removed [72]. This was achieved by setting a filter on
the “effective area” parameter that is zero for PSs and using the
resulting PS map for pixel-level PS density calculation.

C. Methodology

1) Preprocessing of Input Data: As the first step in the
workflow, we preprocessed the data to ensure its suitability as
one of the two input channels for the ML model. The seasonal
long-term coherence datasets were compared through a visual
and statistical analysis to identify the season yielding optimal
results. The objective was to determine the season that allowed
the model to distinguish infrastructure from other elements most
effectively.

Information about PSs location from EGMS data was pro-
cessed to generate pixel-based PS density maps. First, a grid with
three arcsec (≈90 m at the equator) resolutions was generated,
and the number of PSs in each square was counted. Then, the
grid was rasterized so that the value of each pixel represented the
PS density. The generated PS density map served as the ground
truth for model training.

1In this context, A-DInSAR is used as a collective word referring to all
InSAR techniques analyzing big stacks of data covering spatially wide areas.
It encompasses methods that provide PS, DS, and hybrid methodologies that
provide both PS and DS.
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Fig. 3. (a) Distribution of pixels containing a PS over the Netherlands. (b) Snippet of the infrastructure map generated by rasterization of infrastructure location
from OSM. The data from subfigure (a) were used in this raster to assign values for specific infrastructure types.

Fig. 4. Distribution of PS density calculated as the number of PSs in a 3-arcsec pixel. (a) PS density distribution in the AoI over the Netherlands. The red rectangle
shows a closer look at the plot when the share of pixels is below 2.5%. (b) Map snippet showing an example of the spatial PS distribution in the AoI.

PS density is commonly expressed in PS/km 2 units and is
used to gauge overall density in a study area or specific land
type. This calculation averages over all pixels in the region,
each potentially containing a variable number of PS points. A
density of 500 PS/km2, which would translate to just 4 PSs in
a pixel given the three arcsec (≈90 m at the equator) resolution
of the input raster, is typically considered high coverage [27],
particularly in urban studies, where results from Sentinel-1 often
exceed this threshold [73], [74]. However, it is crucial to empha-
size that not all pixels within a certain area meet this threshold;
some may have a higher density, while others might have no PS
points at all. To enhance the clarity of the results and because the
proposed methodology focused on individual structures rather
than comprehensive area monitoring, PS density is reported in
this article as the count of PS points within a single pixel. This
approach allows users to determine the desired PS point count
for successful monitoring of their specific structure of interest.
Nevertheless, for readers who might be used to seeing the density
of PS expressed in PS/km2, we added the converted values where
appropriate. The size of the pixel changes with latitude, and
while three arcsec pixels have a size of roughly 90×90 m2 at the
equator, at 52◦ N, which is the latitude of Amsterdam, it would
be around 57×90 m2. We assume the latter size of the pixel

when converting the pixel-based count of PSs into the density
per km2.

A second input channel was required to ensure a compre-
hensive representation of roads beyond urban areas. An in-
frastructure map was generated to guide the model in recog-
nizing spatial patterns between pixels with and without PSs,
directing the model’s attention to both clustered pixels within
cities and those aligned along the linear infrastructure. This
involved overlaying PS densities, derived from the EGMS data,
onto infrastructure maps based on OSM data that corresponded
to selected infrastructure typologies. The process enabled an
evaluation of the pixel percentage comprising at least one PS for
each infrastructure type considered. These percentages served
as values in a combined raster representing all infrastructure
types [depicted in Fig. 3(b)]. The highest assigned value was
retained when a pixel encompassed multiple OSM elements
(e.g., a building and a primary road).

2) Implementation and Training of the ML Model: To
achieve the primary objective of this study, the correlation
between long-term coherence, infrastructure location data, and
the presence of PSs was modeled. The PS density followed
a zero-inflated reverse J-shaped distribution, with most pixels
lacking PSs, as depicted in Fig. 4(a). Spatial inconsistency
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further complicated the dataset with no clear clusters of pixels
with a similar PS count visible [see Fig. 4(b)]. Due to the
characteristics of data continuity and pixel-to-pixel variations,
we adopted a pixelwise regression approach. In this way, we ex-
ploited the data variations to facilitate a more precise pixel-level
image classification rather than focusing on distinct categories
for semantic segmentation labels. A decoder-encoder architec-
ture, namely, the U-Net architecture, was adopted to preserve
image resolution.

The U-Net model was implemented with five layers. We
employed the ResNet [75] as an encoder to exploit short skip
connections between consecutive ResNet modules and long skip
connections between respective modules in the U-Net model’s
encoder and decoder path. This approach yields improved out-
comes compared to the VGG16 proposed in the original U-Net
approach [76].

Integrating the two input channels and ground truth rasters
was crucial to ensure an appropriate dataset for training. First,
all inputs were processed to have identical resolutions and be
spatially aligned. As long-term coherence data were provided in
a tiled format, the dataset was divided into training, validation,
and test sets, allocating 70%, 15%, and 15% of each tile to their
respective splits (see Fig. 2).

Different strategies were employed for generating data
batches during training versus validation and testing. The train-
ing dataset split was sampled randomly, facilitating the ex-
traction of patches from spatially diverse regions within one
batch. Sampling parameters were configured to ensure coverage
across the entire training area with minimal overlap. Random
augmentation was applied to increase batch variability and
enhance prediction accuracy [77]. This involved horizontal and
vertical flips, along with 90◦ rotations for each input channel and
corresponding mask, each implemented with a 50% probability
of occurrence.

The corresponding data splits were sampled using a regular
grid for validation and testing, guaranteeing comprehensive
coverage without overlap. Fig. 2 provides an example of patch
locations in one random batch from each split. For the geospatial
manipulations of the dataset and the model implementation, the
TorchGeo library was used, which is specifically designed for
deep learning applications on geospatial data [78].

ML models are characterized by hyperparameters that regu-
late the models’ performance. For some of them, decisions were
made based on informed choices, while others were determined
through a random grid search from predefined options. Ran-
dom initial weights were used, as commonly applied pretrained
weights, such as ImageNet [79], are trained on entirely different
types of input data. We prevented overfitting with an early
stopping function that was implemented instead of a search for
the best number of epochs. Thus, the training was stopped if
the change in validation loss was smaller than 0.01 for more
than 15 epochs. A learning rate scheduler was also utilized
to decrease the learning rate if validation loss plateaued for at
least ten epochs. The identity function served as the activation
function, as it is best suited for pixelwise regression tasks [60].
Given the data distribution and that the method aimed to predict
both common low and sparse high values of the mask, Mean

TABLE I
LIST OF MODEL PARAMETERS TUNED WITH RANDOM GRID SEARCH

Absolute Error (MAE) loss was chosen due to its suitability
for handling such an imbalanced input. Finally, to determine
patch size, batch size, backbone (encoder), learning rate, and
parameters of AdamW optimizer, a grid search was conducted
considering the options detailed in Table I.

Once the optimal parameters were selected, the model training
was run. Each batch was normalized after each encoder and
decoder block when passing through the U-Net architecture,
enhancing training speed and performance [80].

IV. RESULTS

A. Seasonal Long-Term Coherence

Histograms in Fig. 5(a), (c), and (e) present the distribution of
pixels covering infrastructure in predefined long-term coherence
bins for each season. A clear seasonal trend is observed, with
similar values for spring, summer, and fall, and a noticeably
higher share of pixels in the highest coherence bins in winter.
This trend is evident for all infrastructure types considered, with
the most pronounced difference observed for roads. Fig. 5(b),
(d), and (f) show changes in the NDVI between summer and
winter. The NDVI can range from -1 to 1, where values close
to 1 indicate dense vegetation, e.g., a rainforest, low values,
usually around 0, indicate that there is no vegetation in a pixel,
and negative values can be attributed to water. Given the rela-
tionship between interferometric coherence and NDVI [81], the
seasonal variation can be attributed to lower NDVI in winter (see
Fig. 5), indicating smaller vegetation that covers transportation
networks and buildings to a lesser extent, allowing for more
stable radar reflection with higher long-term coherence.

However, for the ML model training, it was not important
to identify the seasonal long-term coherence raster with the
highest values but rather the one best suited for infrastructure
recognition. Visual comparisons between the two extreme sea-
sons, summer and winter, revealed that despite overall higher
coherence in winter, as indicated by the histograms, roads are
more observable on the summer long-term coherence map (see
in Fig. 10(a) and (b) in the Appendix). To understand the
phenomenon, the comparison considered the mean and standard
deviation of NDVI for each season. In the region marked as A
in Fig. 10(a), an evident seasonal variation in the mean NDVI is
observed [see Fig. 10(c) and (d)]. The overall lower winter NDVI
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Fig. 5. Seasonal fluctuations in long-term coherence (a), (c), and (e) and NDVI (b), (d), and (f) over the Netherlands. (a) and (b) show data for buildings, (c) and
(d) for railways, and (e) and (f) for motorways, trunk, primary, and secondary roads that are collectively treated as road pixels. The size of the pixel is three arcsec.

caused by smaller vegetation and, thus, higher coherence, blends
fields with roads, making the latter difficult to distinguish. For
the region labeled B in Fig. 10(b), the mean NDVI is comparable
and relatively high, possibly due to dense vegetation. However,
Fig. 10(e) and (f) show that the standard deviation of NDVI
for this region is far greater in summer. The lower variability
of NDVI in winter is probably caused by smaller changes in
vegetation in this season. This makes obtaining relatively stable
radar reflection easier despite the significant vegetation covering
those pixels but also makes infrastructure harder to differentiate
from fields.

Therefore, despite the potential advantages of employing
winter radar data for infrastructure monitoring due to its higher
overall long-term coherence, the decision to use summer coher-
ence for model training was made. This choice was deemed more
suitable as the features are visually more apparent, particularly in
rural regions, thereby potentially enhancing the model’s ability
to recognize spatial patterns.

B. Infrastructure Map With Values Representing
the Likelihood of PS Detection

The model’s second input channel consisted of an infrastruc-
ture map, where values represented the probability of detecting

PSs. This map was created by evaluating the proportion of
pixels containing at least one PS for each OSM data category, as
detailed in Fig. 3(a). The analysis revealed that 88% of building
pixels, 86% of railway pixels, 73% of motorway pixels, and
55% of trunk pixels contained some PSs. Notably, both primary
and secondary roads exhibited an equal share of pixels with at
least one PS, amounting to 59%. These statistical outcomes were
subsequently employed as values within the infrastructure map
raster, as shown in Fig. 3(b).

C. Results of the Model Training

The ML model was iteratively trained 20 times, employing the
optimal hyperparameter configuration while varying the seed.
The seed is a number used for the initialization of a pseudoran-
dom number generator. Modifying the seed for the model used
in this study changes the initial state of model parameters and
defines how the AoI is divided into test, validation, and training
sets. Change of seed can have an effect on the results similar
to using a different ML model architecture or different model
hyperparameters [82]. Therefore, seed variation was required
to quantify the model variance. The mean MAE of pixel-level
PS count prediction for the test set was 1.06 (≈207 PS/km2),
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Fig. 6. Example of results on the test split of the AoI covering the Netherlands with columns showing optical satellite imagery from Google, long-term coherence,
infrastructure map, PS densities obtained from EGMS, and predicted number of points per pixel. (a) Shows an example of results over an urbanized area, (b) and
(c) show predictions for regions with transportation networks, and (d) presents the outcome over rural area with sparsely distributed buildings.

with a standard deviation of 0.10 (≈19 PS/km2). Discrepan-
cies in results across different seed settings were attributed to
variations in the splitting of AoI into training, validation, and
test sets and the randomness in sampling into specific batches.
In certain instances, the test split encompassed more regions
characterized by an overall low density of PSs, such as rural areas
or water bodies, resulting in a correspondingly lower overall
MAE.

For subsequent result analysis, we specifically selected the
test outcomes derived from a seed set to 54 321, which yielded
an MAE of 1.19 (≈232 PS/km2). This selection was motivated
by the inclusion of numerous patches containing infrastructure
elements in this test split. Given the characteristics of pixelwise

regression, the predictions were initially expressed as real num-
bers. However, considering the pixel-level PSs densities were
natural numbers, the model’s outcomes were rounded to the
nearest integer value.

For visual assessment of model performance, plots were
generated comparing 1) inputs, i.e., long-term coherence in
summer and OSM-based pixel classification based on road,
railway, or building presence, 2) ground-truth mask with a count
of PSs in a pixel generated from EGMS data, and 3) predictions
from the model. Fig. 6 shows four examples of the results
from the test split, demonstrating high accuracy when using
the proposed model to predict PS presence on infrastructure
assets.
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Fig. 7. (a) Histogram and (b) box plot showing the error distribution in the model’s test split of the AoI over the Netherlands, considering all pixels. The errors
plotted by specific infrastructure type can be found in Appendix A. The prediction error is defined as the difference between the pixel-level PS density generated
from EGMS data and the model’s prediction. Pixel resolution was three arcsec, which converts to ≈57 × 90 m2.

The differences between PS densities obtained from EGMS
data (i.e., the ground truth) and model predictions for the test
split were analyzed to further evaluate the model’s performance.
When all pixels from the test split are analyzed, see Fig. 7(a),
promising results are achieved, with over 80% of all of the
pixels having a predicted value within ±1 (≈195 PS/km2) from
the actual value. This is because the data are zero-inflated, and
the model is remarkably accurate for pixels with less than 5
points (≈975 PS/km2), as shown on the box plot in Fig. 7(b).
Outliers for this bin of PS density suggest that, for low-density
pixels, the model sometimes wrongly overestimates. However,
the model’s accuracy decreases with the increase of PS density.
Still, considering the error relative to the actual number of PSs in
a pixel, it is acceptable, given that the methodology is intended
to be used as a tool for preliminary availability assessment of
MT-InSAR results.

The general trend of an increase in the mean value of error
with the increase of PS density holds when only pixels belonging
to a specific infrastructure category are considered, as shown in
the Appendix [see Fig. 11(b), (d), (f), (h), (j), and (l)]. The error
for buildings and railways follows a Gaussian distribution [see
Fig. 11(a) and (c)], with a similar share of pixels being over- and
underestimated. However, for all four types of roads analyzed
[see Fig. 11(e), (g), (i), and (k)], the model tends to underestimate
the specific PS density. This is especially true for motorways.
Still, for over 40% of motorway pixels and over half of the pixels
covering the trunk, primary, and secondary roads, the PS density
is estimated within 1 PS from the actual value.

D. Assessment of the Model’s Generalization

To assess the model’s generalization, we applied it to pre-
viously unseen data covering a region around Rome, Italy.
As shown in Fig. 8, the selected location encompassed mul-
tiple transportation networks and a highly urbanized region of
Rome, thus making it a suitable test area to prove the model’s

Fig. 8. AoI considered for the assessment generalization, including the city
of Rome, Italy.

accuracy over the infrastructure types selected for this study. The
model exhibited strong generalization performance, achieving
the MAE of 3.61±0.06 (≈704±12 PS/km2). The error is higher
than the one obtained from the test split, but this is an expected
behavior of the model. The AoI selected for this generalization
trial is more urbanized than the AoI over the Netherlands used
for model training, validation, and testing shown in Fig. 2.
Therefore, as Fig. 9 shows, pixels are more populated with
PSs, and thus, the error is higher. However, the error relative
to the actual values is acceptable, as confirmed by the visual
comparison between input and prediction for this dataset in
Fig. 12 in the Appendix. Although some underestimation is
noticeable, the model accurately predicted PS density for pixels
covering a linear infrastructure and demonstrated high accuracy
in predicting pixels without measurement points.

V. DISCUSSION

The results show that the method successfully models the
correlation between long-term coherence and PS density. The
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Fig. 9. Comparison of EGMS-based pixel-level PS density distribution be-
tween the test split of the AoI over the Netherlands and the generalization trial
AoI over Rome, Italy.

proposed workflow provides accurate estimates of the availabil-
ity of PSs over infrastructure and proves good generalization
performance, filling the existing gap in the rapid availability
assessment of MT-InSAR outcomes.

The method’s ability to predict PS density on a pixel-based
level provides an enhancement to previously known methodolo-
gies, predominantly reliant on land cover maps characterized by
coarser resolution. The increased resolution improves the accu-
racy of predictions over urban areas and transportation networks,
and this advantage is particularly evident in nonurban regions,
where the utilization of the infrastructure map as a second input
to the model allows for the prediction of PS availability over
linear infrastructure. The model was trained with the same set-
tings, but only the coherence as input and outcomes demonstrate
notable improvements when the infrastructure map is included,
as illustrated in Fig. 13 in the Appendix. In scenarios such as
the one depicted, employing a land classification methodology
would lead to an underestimation of PS availability on roads, as
the area might be misclassified as rural. Moreover, the approach
to infrastructure map generation introduces a degree of flexibility
to the workflow, enabling users to select and adjust the set of
infrastructure typologies according to their specific needs.

The script for generating predictions requires coordinates
describing the region of interest and a locally downloaded OSM
file covering the AoI. The process involves downloading the
appropriate long-term coherence raster, processing the OSM
file to create the infrastructure map, reading the trained model,
and generating a prediction raster. The execution time varies
based on the extent of the AOI, the size of the OSM file, and
the hardware used. For example, a test conducted on a laptop
(Intel Core i7-6820HK CPU, 32GB RAM, NVIDIA GeForce
GTX 1070 GPU with 8GB dedicated vRAM) downloaded the
OSM file for the Silesia region in Poland within a minute and
generated a prediction for an area of approximately 1320 km2

in about 5 min. Specifically, the steps were: 1) processing the
OSM file to generate the infrastructure map, which took over
4.5 min, 2) downloading the coherence raster, which took 15 s,
and 3) generating the prediction raster, which took about 2 s.
It is evident that the primary bottleneck is the infrastructure
map generation. However, the proposed approach remains faster
than downloading and coregistering SAR scenes, especially for
regional, national, or global studies. Furthermore, the code is
easily scalable, and when run on a high-performance computing
system, it can process multiple regions in parallel and generate
global-scale predictions within a few days.

Applying the model effectively across different regions re-
quires some additional consideration. The model was trained and
tested on European data, with the summer long-term coherence
raster selected as the most appropriate for training. There might
be pixel-level seasonal changes in coherence due to significant
vegetation coverage changing across seasons or snow cover in
winter. However, such situations are not expected to occur for
the major roads, railways, and buildings examined in this study.
Therefore, the coherence of infrastructure is expected to remain
consistent between seasons. The selection of specific seasonal
coherence was motivated by identifying the season exhibiting
the most distinct differences between infrastructure and sur-
rounding pixels, aiding the model in learning. Tests with other
seasonal coherence maps and different combinations of them
confirmed that they did not enhance the model’s predictions.
However, if the method is applied to other regions, especially in
the southern hemisphere, reconsidering this choice and opting
for the winter long-term coherence might be necessary. Further
testing is recommended for Northern America, where long-term
coherence rasters in [49] are prepared using ascending, not
descending, geometry acquisitions.

The accuracy of the model prediction depends on the accuracy
of the inputs. While the OSM database used to generate the
infrastructure map is frequently updated, the coherence map was
created from data acquired in 2019–2020. New constructions in
previously rural, low-coherence areas could alter the pixel-level
coherence significantly in such a case. Thus, an updated coher-
ence map should be considered as input to the model. However,
if new infrastructure has been constructed in an urbanized area,
the model is expected to accurately predict the PS availability,
provided it is supplied with an infrastructure map generated from
updated OSM data.

As illustrated in Fig. 14(a) in the Appendix, the model oc-
casionally produced blurred predictions, especially in urban
regions where pixels with very high densities (depicted in red
on the plot) were often underestimated. Addressing this could
involve: 1) enlarging the input dataset to provide more exam-
ples of pixels with high densities during training, 2) handling
data imbalance through resampling or synthetic data creation,
3) using the long-term coherence raster with a higher resolution
to reduce spatial averaging, or 4) fine-tuning hyperparameters
to find combination enhancing predictions in regions densely
populated with PSs.

While OSM is a valuable data source, its completeness and
quality vary spatially, and inaccuracies within it may lead the
model to mistakenly assume the absence of infrastructure in a
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pixel. Moreover, the model was fed only with information about
buildings, railways, and some types of roads, as those were the
infrastructure types of interest for this study. In Fig. 14(b) in the
Appendix, an example shows how PSs were not predicted over
an airport because those pixels were set to zero on the infrastruc-
ture map used as the second input to the model. Therefore, to im-
prove predictions, it might be beneficial to include information
about additional infrastructure types, such as airports or indus-
trial buildings, in the second input channel raster. Alternatively,
exploring other data sources, such as optical data, could help the
model learn PS locations independently of assumptions made
during OSM-based infrastructure map generation. However, as
shown in the Appendix in Fig. 14(c), when the coherence is
relatively high, the model provides accurate predictions even
when the infrastructure map does not identify any assets due to
the OSM incompleteness. These correct predictions are possible
thanks to the U-Net’s ability to identify spatial patterns.

Instances of overestimation occurred when pixels with rel-
atively high coherence were predicted to contain PSs, even
though the ground truth mask showed otherwise. As seen in the
Appendix in Fig. 15(a), this behavior might be explained by the
displacement affecting this particular part of the road as shown in
the Appendix in Fig. 15(c). The long-term coherence remained
high due to the spatial averaging included in the calculation of
the interferometric coherence, even when no PSs were present in
that pixel. In addition, the linear deformation assumption in the
EGMS data may cause discrepancies when pixels are affected
by nonlinear deformations, such as seasonal displacement [42].

Finally, model discrepancies could also stem from an under-
estimation of PS density, where low long-term coherence leads
to no PS prediction, but a few measurement points are present in
the ground truth mask, as shown in the Appendix in Fig. 15(b).
This model behavior may also occur when movement affects the
considered area (see Fig. 15(d) in the Appendix), resulting in a
loss of spatially averaged interferometric coherence. However,
some pixels might still serve as effective radar targets and qualify
as PS, even though they are surrounded by poor-quality pixels,
emphasizing the advantage of using MT-InSAR over a standard
InSAR.

It should also be highlighted that while the model estimated
the number of PSs in a pixel that included infrastructure, it could
not accurately predict the exact location of measurement points.
Thus, even in a densely populated pixel, there is no guarantee of
a PS being located on the structure in question. Nevertheless, a
higher PS density in a particular pixel increases the likelihood of
some PSs covering the structure. Although having information
about the movement of a specific point on a structure is valuable
for evaluating its structural condition, a higher density of PS
points allows for a more accurate estimation of the deformation
pattern. This, in turn, enhances the understanding of poten-
tial failure mechanisms affecting structural health. Hence, a
structure with a higher density of PS can be monitored better.
Performing a statistical analysis of the relationship between PS
density per pixel and the actual number of measurement points
on structures could help set thresholds, guiding stakeholders in
understanding the applicability of MT-InSAR for monitoring
specific structures. Moreover, the exact number of PSs found
on the investigated structure will depend on the data and the

specific algorithm used for the analysis. Nevertheless, it should
be acknowledged that the model exhibited exceptional perfor-
mance in accurately predicting pixels without PSs, providing a
way to easily identify assets that are unsuitable for MT-InSAR
monitoring and require an alternative way of monitoring.

VI. CONCLUSION

This article introduces an innovative approach for an initial
assessment of the suitability of MT-InSAR for the monitoring
of buildings and transportation networks. The objective was
achieved by developing a ML model able to capture the cor-
relation between long-term coherence and PS density. Using
the U-Net neural network architecture for pixelwise regression,
we established a robust relationship between the long-term
coherence parameter of the coherence decay model, pixel-level
infrastructure presence data, and information about PS avail-
ability. The proposed workflow provides a way for predicting PS
density, addressing the current lack of an early predictor for MT-
InSAR outcome availability without the need for time-intensive
data analysis.

We chose to employ summer long-term coherence as model
input. The analysis revealed that the infrastructure is easier to
differentiate from other pixels on plots in the summer, facilitating
enhanced visual recognition despite the overall higher long-term
coherence in winter. We showed the impact of the mean and
standard deviation of NDVI in summer and winter on the long-
term coherence. To guide the model in accurately identifying
spatial patterns, we generated an infrastructure map including
buildings, railways, and roads (motorway, trunk, primary, and
secondary, specifically), assigning values corresponding to the
likelihood of PS detection to each of the selected infrastruc-
ture types. The proposed methodology exhibits adaptability,
permitting customization of the infrastructure map to suit the
specific requirements of users who may seek emphasis on
particular infrastructure typologies. The model achieved the
MAE of 1.06±0.10 (≈ 207±19 PS/km2) in pixel-based PS
count on the test split, and the visual assessment of model
predictions confirmed its high accuracy. Notably, the technique
demonstrated remarkable reliability in predicting pixels without
PS, a consequence of the zero-inflated nature of the input data.
While occasional underestimations occurred in high-density
pixels, the error relative to the actual count of PSs was deemed
acceptable. The robust generalization performance proved the
model’s applicability across diverse spatial regions.

MT-InSAR does not guarantee uniform measurement points
coverage, and the challenge of forecasting outcomes’ avail-
ability remains a bottleneck in applying this technique as a
complementary SHM technique. The proposed approach fills the
gap and surpasses previous methodologies reliant on land cover
classifications, offering more precise results with an increased
spatial resolution, thereby assisting radar data experts and in-
frastructure assets stakeholders in determining the feasibility of
monitoring a specific asset with Sentinel-1 data. Consequently,
this capability enhances the usability of spaceborne remote sens-
ing in SHM, informing stakeholders’ decision-making process
and contributing to advancements in developing sustainable and
resilient infrastructure.
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Fig. 10. Long-term coherence and NDVI parameters for summer and winter in the Amsterdam area. A comparison between (a) summer and (b) winter long-term
coherence highlights the seasonal differences in the coherence. The seasonal mean of NDVI is shown in (c) for summer and (d) for winter, followed by the variation
in the seasonal standard deviation of NDVI as presented in (e) for summer and (f) for winter. Some pixels on subplots (c)–(f) appear white, indicating a lack of
NDVI data due to the area being consistently covered by clouds throughout the entire period under consideration.

APPENDIX

ADDITIONAL FIGURES

The appendix contains additional figures that support the
results. Fig. 10 presents visual differences between summer and
winter long-term coherence and NDVI characteristics. Fig. 11

extends Fig. 7 by showing the prediction errors for specific
infrastructure types. The following figures illustrate model per-
formance on previously unseen data (see Fig. 12), with and
without infrastructure map used as input (see Fig. 13), and
on some specific examples of under- and overestimation (see
Figs. 14 and 15).



MALINOWSKA et al.: COHERENCE-BASED PREDICTION OF MT-INSAR MEASUREMENT AVAILABILITY FOR INFRASTRUCTURE MONITORING 16405

Fig. 11. Histograms and box plots depicting the error distribution in the model’s test split of the AoI over the Netherlands, considering specific infrastructure
types separately, i.e., (a) and (b) buildings, (c) and (d) railways, (e) and (f) motorways, (g) and (h) trunk roads, (i) and (j) primary roads, and (k) and (l) secondary
roads. The prediction error is defined as the difference between the pixel-level PS density generated from EGMS data and the model’s prediction. Pixel resolution
was three arcsec, which converts to ≈ 57×90m2.

Fig. 12. Visualization of model inputs and prediction performance on data previously unseen by the model in the vicinity of Rome, Italy. Examples show the
model’s performance over: (a) a region with multiple roads and a railway, and (b) a highly urbanized area.
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Fig. 13. Visualization of model input and prediction performance employing one (sixth column) and two (fifth column) input channels. The two examples show
how the addition of the infrastructure map to the model improved the PS density predictions over an infrastructure asset in (a) rural area and (b) relatively close to
the urban environment.

Fig. 14. Visualization of model performance specifically highlighting: (a) underestimations in urban regions, (b) underestimation attributed to the method employed
for infrastructure map generation, and (c) accurate predictions of PS density even though the infrastructure map is not correctly identifying the infrastructure.
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Fig. 15. Visualization of model performance specifically highlighting (a) overestimation in the prediction and (b) underestimation in the prediction. Both
overestimation and underestimation stem from deformation patterns evident in PS maps generated from EGMS results, as shown in (c) covering the area outlined
by the red box in (a), and (d) the region from the red box in (b).
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