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A B S T R A C T

Despite the increasing use of non-hydrostatic models in the study of wave processes in coastal regions, there is
still limited understanding of the non-linear properties of the governing equations and how they improve with
increased vertical resolution. In this study, the governing equations of the non-hydrostatic wave model SWASH
are analysed and the linear and non-linear solutions up to third-order of all dependent variables are derived,
considering one to four vertical layers. The analysis concludes that the model can achieve excellent non-linear
properties with respect to the Stokes theory over a large range of water depths using only a few vertical
layers. Furthermore, deriving solutions for all variables enables the formulation of improved wave generation
and absorption boundary conditions for non-hydrostatic models. A well-known issue of non-linear wave models
is related to the generation and propagation of spurious free waves, resulting to non-homogeneous wave fields.
In this study, it is proven that by imposing the derived exact mathematical solutions of the governing equations
at the model’s boundaries, the target first- and second-order wave profiles can be generated with high accuracy,
while the spurious waves can be entirely eliminated.
1. Introduction

Phase-resolving numerical models have been already utilised for
more than three decades to predict the wave transformation in coastal
environments. Nowadays that the vulnerability of these environments
is increased due to climate change and the resulting intensity of storms,
the importance of the accuracy of the models’ predictions is significant.
Research efforts are focused on extending the capabilities of the nu-
merical models by limiting the assumptions in the derivation of the
governing equations but maintaining the computational cost as low as
possible.

Some of the earliest phase-resolving models were based on the non-
linear shallow water equations (NLSWE). These models assume that the
non-linear effects dominate over the dispersive effects and their appli-
cability is focused on the inner region of the surf zone and particularly
on wave run-up (Hibberd and Peregrine, 1979; Kobayashi et al., 1987;
Kobayashi and Wurjanto, 1992; Brocchini and Peregrine, 1996; Hu
et al., 2000). However, outside the surf zone in the pre-breaking region
NLSWE models are not valid since a hydrostatic pressure distribution
is assumed (Svendsen, 2005). The front face of propagating waves,
even over a flat bottom, is continuously steepening until a vertical
front shape is reached (Peregrine, 1972). To stabilise the continuous
steepening of the free surface, a non-hydrostatic pressure component
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needs to be included in the governing equations (Svendsen and Madsen,
1984).

In Boussinesq equations (BE) models, the effect of the
non-hydrostatic component is incorporated by adding higher-order
derivative terms in the NLSWE. The classical form of Boussinesq equa-
tions was derived by Peregrine (1967), who assumed that dispersive
and non-linear effects are of equal importance, and was able to describe
long waves with small amplitude propagating over uneven bottoms.
Thus, these equations were characterised as weakly non-linear and
weakly dispersive and were applicable up to dimensionless depths,
𝑘𝑑, of 0.75, where 𝑘 and 𝑑 are the wave number and still water
depth, respectively. Since their inception, research efforts have been
dedicated to deriving and extending Boussinesq-type equations with
enhanced linear and non-linear properties. Madsen et al. (1991) and
Madsen and Sørensen (1992) extended the applicability of the Pere-
grine (1967) equations to deeper water by using a Padé approximation
and introducing additional third-order terms in the governing equa-
tions. Following a different approach, Nwogu (1993) achieved similar
dispersive properties by defining the horizontal velocity component at
an arbitrary level with respect to the vertical axis. Later, Wei et al.
(1995) derived a fully non-linear Boussinesq-type wave model based
on the Nwogu (1993) formulation. Since then, high-order Boussinesq-
type models have been developed to further improve the linear and
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non-linear effects (Klonaris et al., 2016), either through the use of
higher-order polynomial approximations for the vertical distribution
of the flow field (Gobbi et al., 2000; Castro-Orgaz et al., 2022b) or in
terms of a multi-layer concept (Lynett and Liu, 2004a; Liu et al., 2018).
However, the use of high-order cross derivatives in time and space adds
to the mathematical complexity of Boussinesq-type models and leads to
an increased computational cost and potential numerical instabilities.

In order to overcome these demanding numerical treatments, sev-
eral alternatives for the solution of the equivalent non-hydrostatic
pressure system have been proposed. Many of them rely on the mathe-
matical background of the Serre-Green–Naghdi (SGN) equations (Green
and Naghdi, 1976), which typically employ expansions of the velocity
vector in terms of some basis functions. Since the 3D flow equations
cannot satisfy these expansions, integral expressions are adopted, re-
sulting in variational methods. This approach is equivalent to the
method of weighted residuals, which, in combination with high-level
versions of SGN theory, results in increased accuracy (Zhao et al.,
2014; Yang and Liu, 2020). Castro-Orgaz et al. (2022a) presented a
method to derive higher-order non-hydrostatic equations combining
the usual dispersive corrections of SGN equations with higher-order ve-
locity profile corrections. The solution of the proposed set of equations
was accomplished through a numerical scheme of increased stability,
resulting to a model of pronounced efficiency for wave propagation
over abrupt obstacles.

Over the past two decades, a different route has been taken with
the development of the non-hydrostatic wave models. This approach
has been pursued with the purpose of preventing the introduction of
unwanted high-order derivative terms. It constitutes a numerical imple-
mentation of the Navier–Stokes equations for an incompressible fluid
with a free surface and a constant density. Casulli and Stelling (1998)
proposed a time-splitting integration method to solve the 3D Reynolds-
Averaged Navier–Stokes (RANS) equations, according to which the
velocity field is at first predicted assuming the hydrostatic problem,
and subsequently the wave field is corrected in response to the non-
hydrostatic pressure correction obtained by solving a Poisson-type
equation. Although the first non-hydrostatic models required a similar
to BE models horizontal grid resolution, a very fine resolution over the
vertical direction (typically ranging from 10 to 20 layers) was needed
to achieve a satisfactory level of accuracy in resolving frequency dis-
persion. As a result, the computational cost of non-hydrostatic models
was much higher compared to BE models. Stelling and Zijlema (2003)
and Zijlema and Stelling (2005) introduced a Keller Box scheme for the
discretisation of the pressure over the vertical direction, while Zijlema
and Stelling (2008) proved that this Keller Box scheme leads to better
dispersive properties than the central differences scheme when a coarse
vertical resolution is applied. More precisely, by utilising a layout of
two layers the model was able to resolve linear dispersive waves up
to 𝑘𝑑 values of 7.7 with a maximum relative error of only 1%. After
these recent developments, several non-hydrostatic wave models have
been developed (Zijlema et al., 2011; Yamazaki et al., 2011; Ai et al.,
2011; Ma et al., 2012). By retaining the 3D momentum equations non-
hydrostatic models can directly compute the vertical and horizontal
flow structure, while the computational effort is similar to the BE
models. Additionally, they are prone to less numerical instabilities
compared to the BE models due to the absence of higher-order cross
derivatives of the dependent variables in the governing equations.

The multi-layer non-hydrostatic model SWASH has undoubtedly
attained an advanced stage in the field of wave transformation in
coastal environments. This is due to its ability to incorporate vari-
ous non-linear shallow-water effects, including bound sub-harmonics,
super-harmonics, and near-resonant triad interactions (Rijnsdorp et al.,
2014, 2015; Smit et al., 2014). The model has been recently employed
in various applications, such as the study of wave overtopping (Suzuki
et al., 2017), wave penetration (Dobrochinski et al., 2023), wave-
induced currents (Rijnsdorp et al., 2017), and the examination of
2

wave interactions with vegetation (Suzuki et al., 2019) and floating
bodies (Rijnsdorp et al., 2018, 2022). However, despite the existence
of numerous applications for non-hydrostatic wave models, there is still
limited insight into the nonlinear solutions of the governing equations
and how these solutions can be utilised to improve and extend the wave
generation capabilities of these models.

A well-known issue in non-linear wave models is related to the
generation and propagation of spurious free waves, resulting in non-
homogeneous wave fields. The main objective of the present study
focuses on improving the wave generation boundary conditions of non-
hydrostatic wave models, aiming to enhance the capabilities of these
models and, consequently, improve the accuracy of the aforementioned
applications. To achieve this objective, the governing equations of the
non-hydrostatic wave model SWASH are analysed, both for examining
their linear and non-linear properties and for defining improved wave
generation boundary conditions. A Stokes-type Fourier analysis is per-
formed over a flat bottom to derive higher-order solutions based on the
model equations. This kind of analysis has served as a standard tool for
defining and comparing the linear and non-linear properties of different
Boussinesq and non-hydrostatic wave models (Madsen and Sørensen,
1993; Madsen and Schäffer, 1998; Memos et al., 2016; Lynett and Liu,
2004b; Gobbi et al., 2000; Bai and Cheung, 2013; Wang et al., 2018,
2019; Escalante et al., 2023; Castro-Orgaz et al., 2023). In the present
study, this analysis is performed for all the dependent variables up to
third-order. The layer-integrated version of the governing equations is
applied, considering one to four vertical layers, while the dimensionless
water depth range over which the model achieves the target accuracy
for each variable is defined. Deriving solutions for all variables enables
the formulation of improved wave generation and absorption boundary
conditions for non-hydrostatic models. It is demonstrated in this study
that by imposing the derived exact mathematical solutions of the
governing equations at the model’s boundaries, the target wave profiles
can be generated with high accuracy, while the spurious waves can be
entirely eliminated. To the best of the authors’ knowledge, the proposed
approach has not been employed in the past for non-hydrostatic models
and, therefore, highlights the novelty of the present work.

The paper is structured as follows. Section 2 provides a description
of the layer-integrated governing equations of the multi-layer non-
hydrostatic model SWASH. In Section 3.1, the linearised equations and
first-order solutions are derived. Subsequent sections focus on provid-
ing a detailed presentation of the non-linear properties of the SWASH
model. More precisely, the second- and third-order equations are de-
fined and the corresponding solutions are derived in Sections 3.2 and
3.3, respectively. Additionally, Section 3.4 presents the derivation of
second-order transfer functions for sub-harmonic and super-harmonic
interactions. In Section 4, the derived expressions are used to formulate
improved wave generation boundary conditions, and the results are
compared with analytical solutions. Finally, the conclusions of this
study are included in the last section.

2. Theory

2.1. Governing equations

The SWASH (https://swash.sourceforge.io/) model (Zijlema et al.,
2011) is an open-source multi-layer non-hydrostatic model based on the
Euler equations describing an incompressible fluid with a free surface 𝜂
and a constant density 𝜌0. The Euler equations for a 2D-vertical domain
where the water column is defined from the free-surface, 𝑧 = 𝜂, to the
ottom, 𝑧 = −𝑑, are given by:
𝜕𝑢
𝜕𝑥

+ 𝜕𝑤
𝜕𝑧

= 0 (1)

𝜕𝑢
𝜕𝑡

+ 𝜕𝑢𝑢
𝜕𝑥

+ 𝜕𝑢𝑤
𝜕𝑧

+ 𝜕𝑃
𝜕𝑥

= 0 (2)

𝜕𝑤 + 𝜕𝑢𝑤 + 𝜕𝑤𝑤 + 𝜕𝑃 = −𝑔 (3)

𝜕𝑡 𝜕𝑥 𝜕𝑧 𝜕𝑧

https://swash.sourceforge.io/
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where 𝑢 and 𝑤 are, respectively, the horizontal and vertical velocities, 𝑔
is the gravitational acceleration and 𝑃 is the total pressure normalised

ith the reference density 𝜌0. The total pressure is defined as:

= 𝑝 − 𝑔𝑧 = 𝑞 + 𝑔(𝜂 − 𝑧) (4)

here 𝑝 and 𝑞 are the dynamic and non-hydrostatic pressures, respec-
ively. The two kinematic boundary conditions, one at the free surface
nd one at the impermeable bottom, are expressed as:

𝑠 =
𝜕𝜂
𝜕𝑡

+ 𝑢
𝜕𝜂
𝜕𝑥

𝑧 = 𝜂 (5)

𝑤𝑏 = −𝑢 𝜕𝑑
𝜕𝑥

𝑧 = −𝑑 (6)

Integrating the continuity equation (Eq. (1)) over the entire water
column, ℎ = 𝑑 + 𝜂, and applying the kinematic boundary conditions,
the free surface equation can be obtained:

𝜕𝜂
𝜕𝑡

+ 𝜕
𝜕𝑥 ∫

𝜂

−𝑑
𝑢𝑑𝑧 = 0 (7)

In SWASH, a structured (rectilinear or orthogonal curvilinear) or
n unstructured (Zijlema, 2020) grid can be applied in the horizontal
irection, while in the vertical direction the water column is split into
fixed number of layers. The unknowns are arranged in a staggered

rid, where the horizontal 𝑢 and the vertical 𝑤 velocity components are
defined at the vertical and horizontal cell faces, respectively. Regarding
the non-hydrostatic pressure two arrangements are possible: (a) the
Keller Box scheme, where the pressure is defined at the cell face (same
location as 𝑤) or (b) the central difference scheme, where the pressure
is defined at the centre of the cell. As demonstrated by Zijlema and
Stelling (2008), the Keller Box scheme leads to better linear dispersive
properties than the central difference scheme when coarse vertical
resolution is applied. Note that for a sufficiently fine vertical resolution,
both the Keller Box scheme and the central difference scheme have
similar dispersion properties, while the latter is more robust and, thus,
preferable to apply (for details, see, e.g. Zijlema and Stelling, 2008;
Smit et al., 2014). Since the objective of this paper is to study the
transformation of dispersive waves, we therefore restrict our proposed
analysis up to four layers with the use of the Keller Box scheme.
However, we emphasise that SWASH can be employed for an arbitrary
number of layers (see, e.g. Rijnsdorp et al., 2017) when the central
difference scheme is applied.

In order to derive the governing equations for a system of any
number of vertical layers, the layer-integrated Euler equations should
be defined. By depth-integrating over each layer the governing non-
hydrostatic Euler equations and applying the Leibniz integral rule,
the layer-integrated continuity equation and momentum equations for
layer 𝑘 (𝑧𝑘− ≤ 𝑧 ≤ 𝑧𝑘+ ) can be obtained:
𝜕ℎ𝑘𝑢𝑘
𝜕𝑥

− 𝑢𝑘(+)
𝜕𝑧𝑘(+)
𝜕𝑥

+ 𝑢𝑘(−)
𝜕𝑧𝑘(−)
𝜕𝑥

+𝑤𝑘(+) −𝑤𝑘(−) = 0 (8)

𝜕ℎ𝑘𝑢𝑘
𝜕𝑡

+
𝜕ℎ𝑘𝑢𝑘𝑢𝑘

𝜕𝑥
+ 𝑢𝑘(+)𝑤𝑟,𝑘(+) − 𝑢𝑘(−)𝑤𝑟,𝑘(−) + ℎ𝑘𝑔

𝜕𝜂
𝜕𝑥

+
𝜕ℎ𝑘𝑞𝑘
𝜕𝑥

− 𝑞𝑘(+)
𝜕𝑧𝑘(+)
𝜕𝑥

+ 𝑞𝑘(−)
𝜕𝑧𝑘(−)
𝜕𝑥

= 0 (9)

𝜕ℎ𝑘𝑤𝑘
𝜕𝑡

+
𝜕ℎ𝑘𝑢𝑘𝑤𝑘

𝜕𝑥
+𝑤𝑘(+)𝑤𝑟,𝑘(+) −𝑤𝑘(−)𝑤𝑟,𝑘(−) + 𝑞𝑘(+) − 𝑞𝑘(−) = 0 (10)

where 𝑤𝑟 is the relative vertical velocity at the layer interface, defined
as the difference between the vertical velocity along the streamline and
the vertical velocity along the interface:

𝑤𝑟,𝑘(+) = 𝑤𝑘(+) −
𝜕𝑧𝑘(+)
𝜕𝑡

− 𝑢𝑘(+)
𝜕𝑧𝑘(+)
𝜕𝑥

(11)

A detailed step-by-step derivation of Eqs. (8)–(10) is given in Zi-
jlema and Stelling (2005) and, thus, it is not included here.
3

2.2. System of equations for two vertical layers

The governing equations, the derivation procedure and the resulting
expressions will be presented in detail for the case of two equidistant
layers, while the extension to more layers is straightforward.

In Fig. 1, the definition sketch for the case of two equidistant
vertical layers (ℎ1 = ℎ2 = ℎ∕2) and the location of the flow parameters
with respect to 𝑧-axis are presented. As observed, a Keller Box scheme is
considered for the pressures which are defined at the upper and lower
boundaries of each layer (surface, interface and bottom). Additionally,
the non-hydrostatic pressure at the free surface is 𝑞𝑠 = 0 since the
surface tension is neglected and the vertical velocity at the bottom is
𝑤𝑏 = 0 since a flat bottom is considered (𝜕𝑑∕𝜕𝑥 = 0).

It has to be mentioned that another layer arrangement apart from
the equidistant can be utilised to optimise the linear or non-linear
properties of the model. However, optimising the layer arrangement to
achieve a better representation of the linear wave dispersion will not
necessarily result to a better representation of the non-linear properties
as well and vice versa. Thus, the solutions for equidistant vertical layers
are only presented here, since this is the most frequently used option
in SWASH model applications.

Applying the layer-integrated equations (Eqs. (8)–(10)) for this
two-layer system yields the following governing equations:

𝜕𝜂
𝜕𝑡

+ 1
2
𝜕ℎ(𝑢𝑘1 + 𝑢𝑘2)

𝜕𝑥
= 0 (12)

1
2
𝜕ℎ𝑢𝑘2
𝜕𝑥

− 𝑢𝑘2
𝜕𝜂
𝜕𝑥

+ 1
4
(𝑢𝑘1 + 𝑢𝑘2)

𝜕(ℎ − 2𝑑)
𝜕𝑥

+𝑤𝑠 −𝑤12 = 0 (13)

1
2
𝜕ℎ𝑢𝑘1
𝜕𝑥

− 1
4
(𝑢𝑘1 + 𝑢𝑘2)

𝜕(ℎ − 2𝑑)
𝜕𝑥

+𝑤12 = 0 (14)

1
2
𝜕ℎ𝑢𝑘2
𝜕𝑡

+ 1
2
𝜕ℎ𝑢𝑘2𝑢𝑘2

𝜕𝑥
− 1

2
(𝑢𝑘1 + 𝑢𝑘2)𝑤𝑟,12 +

1
2
ℎ𝑔

𝜕𝜂
𝜕𝑥

+ 1
4
𝜕ℎ𝑞12
𝜕𝑥

+ 1
2
𝑞12

𝜕(ℎ − 2𝑑)
𝜕𝑥

= 0 (15)

1
2
𝜕ℎ𝑢𝑘1
𝜕𝑡

+ 1
2
𝜕ℎ𝑢𝑘1𝑢𝑘1

𝜕𝑥
+ 1

2
(𝑢𝑘1 + 𝑢𝑘2)𝑤𝑟,12 +

1
2
ℎ𝑔

𝜕𝜂
𝜕𝑥

+ 1
4
𝜕ℎ(𝑞12 + 𝑞𝑏)

𝜕𝑥

− 1
2
𝑞12

𝜕(ℎ − 2𝑑)
𝜕𝑥

− 𝑞𝑏
𝜕𝑑
𝜕𝑥

= 0 (16)

1
4
𝜕ℎ(𝑤𝑠 +𝑤12)

𝜕𝑡
+ 1

4
𝜕ℎ𝑢𝑘2(𝑤𝑠 +𝑤12)

𝜕𝑥
−𝑤𝑟,12𝑤12 − 𝑞12 = 0 (17)

1
4
𝜕ℎ𝑤12
𝜕𝑡

+ 1
4
𝜕ℎ𝑢𝑘1𝑤12

𝜕𝑥
+𝑤𝑟,12𝑤12 + 𝑞12 − 𝑞𝑏 = 0 (18)

here 𝑢𝑘2 and 𝑢𝑘1 are the horizontal velocities of the top and the bottom
ayer, 𝑞12 and 𝑞𝑏 are the non-hydrostatic pressures at the two layers’
nterface and the bottom, 𝑤𝑠 and 𝑤12 are the vertical velocities at
he free surface and the two layers’ interface, and 𝑤𝑟,12 is the relative

vertical velocity defined as:

𝑤𝑟,12 = 𝑤12 −
1
2
𝜕(ℎ − 2𝑑)

𝜕𝑡
− 1

4
(𝑢𝑘1 + 𝑢𝑘2)

𝜕(ℎ − 2𝑑)
𝜕𝑥

(19)

For a system of two vertical layers (𝐾 = 2), there are seven
equations (3𝐾 + 1) with seven unknowns: one free surface equation
(Eq. (12)), two continuity equations (Eqs. (13) and (14)), two hor-
izontal (Eqs. (15) and (16)) and two vertical (Eqs. (17) and (18))
momentum equations.

3. Linear and non-linear properties

In order to determine the linear and non-linear properties of the

SWASH model, the first-, second- and third-order equations are derived
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Fig. 1. Definition sketch for the case of two vertical layers and positioning of flow parameters with respect to z-axis.
through perturbation expansions, which in the case of two layers are
given by:

𝑢𝑘1 = 𝜖𝑢(1)𝑘1 + 𝜖2𝑢(2)𝑘1 + 𝜖3𝑢(3)𝑘1 , 𝑢𝑘2 = 𝜖𝑢(1)𝑘2 + 𝜖2𝑢(2)𝑘2 + 𝜖3𝑢(3)𝑘2 ,

𝑤𝑠 = 𝜖𝑤(1)
𝑠 + 𝜖2𝑤(2)

𝑠 + 𝜖3𝑤(3)
𝑠 , 𝑤12 = 𝜖𝑤(1)

12 + 𝜖2𝑤(2)
12 + 𝜖3𝑤(3)

12 ,

𝑞12 = 𝜖𝑞(1)12 + 𝜖2𝑞(2)12 + 𝜖3𝑞(3)12 , 𝑞𝑏 = 𝜖𝑞(1)𝑏 + 𝜖2𝑞(2)𝑏 + 𝜖3𝑞(3)𝑏 ,

𝜂 = 𝜖𝜂(1) + 𝜖2𝜂(2) + 𝜖3𝜂(3)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(20)

where 𝜖 is an ordering parameter and the superscripts (1), (2) and (3)
stand for the first-, second- and third-order solutions respectively.

In the following sections, a Stokes-type Fourier analysis is executed
for the case of a flat bottom, where by substituting the above perturba-
tion expansions into Eqs. (12)–(18) the first-, second- and third-order
equations and the corresponding solutions are derived. The derived
solutions are compared with the corresponding ones from Stokes wave
theory in order to evaluate the model’s linear and non-linear properties.

It should be mentioned that in SWASH model the application of
a coarse vertical resolution combined with the Keller Box scheme for
the discretisation of the pressure results to a poorer description of the
vertical flow structure compared to the horizontal one. Consequently,
the rather inaccurate vertical advective term of the vertical momentum
equation, namely, the third term in Eqs. (17) and (18), is removed
since this term can lead to instabilities or unrealistic results in some
cases. Therefore, in the following derivations, the term 𝑤𝑟,12𝑤12 will be
neglected.

3.1. First-order equations and solutions

After substituting the perturbation expansions into the governing
equations of the two layer system (Eqs. (12)–(18)) and retaining only
the of 𝑂(𝜖) terms, the first-order or linear equations are determined:

2
𝜕𝜂(1)

𝜕𝑡
+ 𝑑

𝜕𝑢(1)𝑘1
𝜕𝑥

+ 𝑑
𝜕𝑢(1)𝑘2
𝜕𝑥

= 0 (21)

𝑑
𝜕𝑢(1)𝑘2
𝜕𝑥

+ 2𝑤(1)
𝑠 − 2𝑤(1)

12 = 0 (22)

𝑑
𝜕𝑢(1)𝑘1
𝜕𝑥

+ 2𝑤(1)
12 = 0 (23)

2
𝜕𝑢(1)𝑘2
𝜕𝑡

+ 2𝑔
𝜕𝜂(1)

𝜕𝑥
+

𝜕𝑞(1)12
𝜕𝑥

= 0 (24)

2
𝜕𝑢(1)𝑘1 + 2𝑔

𝜕𝜂(1)
+

𝜕𝑞(1)12 +
𝜕𝑞(1)𝑏 = 0 (25)
4

𝜕𝑡 𝜕𝑥 𝜕𝑥 𝜕𝑥
𝑑
𝜕𝑤(1)

𝑠
𝜕𝑡

+ 𝑑
𝜕𝑤(1)

12
𝜕𝑡

− 4𝑞(1)12 = 0 (26)

𝑑
𝜕𝑤(1)

12
𝜕𝑡

+ 4𝑞(1)12 − 4𝑞(1)𝑏 = 0 (27)

An important feature related to the applicability of phase-resolving
wave models in deeper water conditions is whether they are efficient in
accurately reproducing the linear (or frequency) dispersion. To derive
the first-order solutions of the SWASH model, we consider a wave trav-
elling along the 𝑥-direction with angular frequency 𝜔 and wave number
𝑘. The first-order solutions have the following form (Dingemans, 1997):

𝑢(1)𝑘1 = 𝑢𝑘1,01 cos(𝑘𝑥 − 𝜔𝑡), 𝑢(1)𝑘2 = 𝑢𝑘2,01 cos(𝑘𝑥 − 𝜔𝑡),

𝑤(1)
𝑠 = 𝑤𝑠,01 sin(𝑘𝑥 − 𝜔𝑡), 𝑤(1)

12 = 𝑤12,01 sin(𝑘𝑥 − 𝜔𝑡),

𝑞(1)12 = 𝑞12,01 cos(𝑘𝑥 − 𝜔𝑡), 𝑞(1)𝑏 = 𝑞𝑏,01 cos(𝑘𝑥 − 𝜔𝑡),

𝜂(1) = 𝜂01 cos(𝑘𝑥 − 𝜔𝑡)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(28)

Substituting the above solutions into Eqs. (21)–(27), the first-order
solutions are obtained by solving the system of seven equations with
seven unknowns. Here, the linear dispersion relation and the horizontal
velocity components of the model in the case of two equidistant layers
(𝐾 = 2) are presented:

𝜔 =
4
√

𝑔𝑘2𝑑
(

16 + 𝑘2𝑑2
)

√

256 + 96𝑘2𝑑2 + 𝑘4𝑑4
(29)

𝑢𝑘1,01 =
4𝜂01𝑔

(

16 − 𝑘2𝑑2
)

√

𝑔𝑑
(

4096 + 1792𝑘2𝑑2 + 112𝑘4𝑑4 + 𝑘6𝑑6
)

(30)

𝑢𝑘2,01 =
4𝜂01𝑔

(

16 + 3𝑘2𝑑2
)

√

𝑔𝑑
(

4096 + 1792𝑘2𝑑2 + 112𝑘4𝑑4 + 𝑘6𝑑6
)

(31)

The derived solutions of layer-integrated horizontal velocity 𝑈 (𝑈 =
∫ 𝑧𝑘+
𝑧𝑘−

𝑢d𝑧), vertical velocity 𝑤 and dynamic pressure 𝑝 (𝑝 = 𝑞 + 𝑔𝜂)
are normalised with respect to the theoretical solutions resulting from
first-order Stokes wave theory (Dingemans, 1997) to determine the
linear properties of the model. The ratios of 𝑈𝑆𝑊 ∕𝑈𝑆𝑡, 𝑤𝑆𝑊 ∕𝑤𝑆𝑡 and
𝑝𝑆𝑊 ∕𝑝𝑆𝑡 are presented in Fig. 2, where the subscripts 𝑆𝑊 and 𝑆𝑡 stand
for SWASH and Stokes solutions, respectively. It is observed that the
accuracy of the derived solutions for each layer, when compared to the
theoretical solutions, increases with the number of layers. Additionally,
in all cases the deviation between SWASH solutions and Stokes theory
increases with the distance from the water surface.
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Fig. 2. Layer-dependent normalised first-order model solutions as a function of the number of vertical layers and dimensionless depth 𝑘𝑑.
In Fig. 3, the normalised dispersion 𝜔𝑆𝑊 ∕𝜔𝑆𝑡 and the dynamic pres-
sure at the bottom 𝑝𝑏,01𝑆𝑊 ∕𝑝𝑏,01𝑆𝑡 are shown for a different number of
layers. The normalised solutions of depth-integrated horizontal velocity
𝑈𝑡,01𝑆𝑊 ∕𝑈𝑡,01𝑆𝑡 (𝑈𝑡 = ∫ 0

−𝑑 𝑢d𝑧) and the vertical velocity at the surface
𝑤𝑠,01𝑆𝑊 ∕𝑤𝑠,01𝑆𝑡 could also be compared for the different layer layouts.
However, for a first-order analysis these solutions would coincide with
the corresponding one for the normalised dispersion due to the linear
free surface and continuity equations (Eqs. (21)–(23)). Fig. 3 shows that
the accuracy of the model with respect to both linear dispersion and
dynamic pressure significantly improves with an increasing number of
layers over an extended range of 𝑘𝑑 values and, thus, up to very deep
water. Increasing the number of layers corresponds to higher-order
Padé approximants of the solutions in Eqs. (29)–(31) and, therefore,
to an increased accuracy with respect to theoretical solutions. This
procedure is equivalent to the inclusion of higher-order dispersive
terms in Bossiness-type equations, also resulting to improved linear
properties (Madsen and Schäffer, 1998).

Table 1 provides a summary of the ranges of dimensionless depth 𝑘𝑑
over which the error of the first-order wave parameters 𝜔, 𝑈 , 𝑤 and 𝑝
stays below 1% and 3%, respectively. For each parameter, the layer
dependent solution with the highest deviation from the theoretical
value has been used to define the 𝑘𝑑 range. It is observed that the use
of a few vertical layers significantly improves the description of wave
linear dispersion, even for deep water waves (𝑘𝑑 > 𝜋). More precisely,
the relative error for two layers is lower than 1% for 𝑘𝑑 values up to
7.71, while the corresponding threshold value for four layers increases
to 28.59. On the other hand, the range of 𝑘𝑑 values over which the
velocities and the dynamic pressure are accurately described by the
model is much more limited.

3.2. Second-order equations and solutions

In addition to the correct representation of the linear dispersion
relation, the non-linear properties of a wave model are also important.
As the waves propagate to water of decreasing depth, their profile
deviates from the sinusoidal solution of linear theory and becomes
5

Table 1
Range of dimensionless depth 𝑘𝑑 as a function of the number of vertical layers and
the corresponding relative error in the first-order wave parameters 𝜔, 𝑈 , 𝑤 and 𝑝.

Number of Range of dimensionless depth [–] Error

layers 𝜔 𝑈01 𝑤01 𝑝01 [%]

1 𝑘𝑑 ≤ 0.53 𝑘𝑑 ≤ 0.53 𝑘𝑑 ≤ 0.53 𝑘𝑑 ≤ 0.60 ≤1%
1 𝑘𝑑 ≤ 1.33 𝑘𝑑 ≤ 1.33 𝑘𝑑 ≤ 1.33 𝑘𝑑 ≤ 0.79 ≤3%
2 𝑘𝑑 ≤ 7.71 𝑘𝑑 ≤ 1.01 𝑘𝑑 ≤ 1.36 𝑘𝑑 ≤ 0.87 ≤1%
2 𝑘𝑑 ≤ 9.74 𝑘𝑑 ≤ 1.66 𝑘𝑑 ≤ 1.66 𝑘𝑑 ≤ 1.18 ≤3%
3 𝑘𝑑 ≤ 16.41 𝑘𝑑 ≤ 1.36 𝑘𝑑 ≤ 1.52 𝑘𝑑 ≤ 1.10 ≤1%
3 𝑘𝑑 ≤ 21.20 𝑘𝑑 ≤ 1.94 𝑘𝑑 ≤ 1.94 𝑘𝑑 ≤ 1.51 ≤3%
4 𝑘𝑑 ≤ 28.59 𝑘𝑑 ≤ 1.69 𝑘𝑑 ≤ 1.70 𝑘𝑑 ≤ 1.30 ≤1%
4 𝑘𝑑 ≤ 37.24 𝑘𝑑 ≤ 2.22 𝑘𝑑 ≤ 2.22 𝑘𝑑 ≤ 1.81 ≤3%

asymmetrical, with steeper crests and flatter troughs. The capability of
the model to accurately describe this behaviour is directly related to its
non-linear properties.

Substituting the perturbation expansions (Eq. (20)) into the govern-
ing equations (Eqs. (12)–(18)) and retaining only the 𝑂(𝜖2) terms, one
gets the second-order equations:

2
𝜕𝜂(2)

𝜕𝑡
+ 𝑑

𝜕𝑢(2)𝑘1
𝜕𝑥

+ 𝑑
𝜕𝑢(2)𝑘2
𝜕𝑥

= −𝜂(1)
(

𝜕𝑢(1)𝑘1
𝜕𝑥

+
𝜕𝑢(1)𝑘2
𝜕𝑥

)

− (𝑢(1)𝑘1 + 𝑢(1)𝑘2 )
𝜕𝜂(1)

𝜕𝑥
(32)

2𝑑
𝜕𝑢(2)𝑘2
𝜕𝑥

+ 4𝑤(2)
𝑠 − 4𝑤(2)

12 = −2𝜂(1)
𝜕𝑢(1)𝑘2
𝜕𝑥

+ (𝑢(1)𝑘2 − 𝑢(1)𝑘1 )
𝜕𝜂(1)

𝜕𝑥
(33)

2𝑑
𝜕𝑢(2)𝑘1
𝜕𝑥

+ 4𝑤(2)
12 = −2𝜂(1)

𝜕𝑢(1)𝑘1
𝜕𝑥

+ (𝑢(1)𝑘2 − 𝑢(1)𝑘1 )
𝜕𝜂(1)

𝜕𝑥
(34)

2𝑑
𝜕𝑢(2)𝑘2
𝜕𝑡

+ 2𝑑𝑔
𝜕𝜂(2)

𝜕𝑥
+ 𝑑

𝜕𝑞(2)12
𝜕𝑥

= −𝜂(1)
(

2𝑔
𝜕𝜂(1)

𝜕𝑥
+

𝜕𝑞(1)12
𝜕𝑥

+ 2
𝜕𝑢(1)𝑘2
𝜕𝑡

)

− 3𝑞(1)12
𝜕𝜂(1)

𝜕𝑥
− 𝑢(1)𝑘1

(

𝜕𝜂(1)

𝜕𝑡
− 2𝑤(1)

12

)

− 𝑢(1)𝑘2

(

3
𝜕𝜂(1)

+ 4𝑑
𝜕𝑢(1)𝑘2 − 2𝑤(1)

12

)

(35)
𝜕𝑡 𝜕𝑥
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Fig. 3. Ratios and relative errors of first-order (a,c) dispersion 𝜔𝑆𝑊 ∕𝜔𝑆𝑡 and (b,d) dynamic pressure at the bottom 𝑝𝑏,01𝑆𝑊 ∕𝑝𝑏,01𝑆𝑡 for one, two, three and four vertical layers as a
function of the dimensionless depth 𝑘𝑑.
2𝑑
𝜕𝑢(2)𝑘1
𝜕𝑡

+ 2𝑑𝑔
𝜕𝜂(2)

𝜕𝑥
+ 𝑑

𝜕𝑞(2)12
𝜕𝑥

+ 𝑑
𝜕𝑞(2)𝑏
𝜕𝑥

= −𝜂(1)
(

2𝑔
𝜕𝜂(1)

𝜕𝑥
+

𝜕𝑞(1)12
𝜕𝑥

+
𝜕𝑞(1)𝑏
𝜕𝑥

+ 2
𝜕𝑢(1)𝑘1
𝜕𝑡

)

− (𝑞(1)𝑏 − 𝑞(1)12 )
𝜕𝜂(1)

𝜕𝑥
+ 𝑢(1)𝑘2

(

𝜕𝜂(1)

𝜕𝑡
− 2𝑤(1)

12

)

− 𝑢(1)𝑘1

(

𝜕𝜂(1)

𝜕𝑡
+ 4𝑑

𝜕𝑢(1)𝑘1
𝜕𝑥

+ 2𝑤(1)
12

)

(36)

𝑑
𝜕𝑤(2)

𝑠
𝜕𝑡

+ 𝑑
𝜕𝑤(2)

12
𝜕𝑡

− 4𝑞(2)12 = −𝑑𝑢(1)𝑘2

(

𝜕𝑤(1)
12

𝜕𝑥
+

𝜕𝑤(1)
𝑠

𝜕𝑥

)

− 𝜂(1)
(

𝜕𝑤(1)
12

𝜕𝑡
+

𝜕𝑤(1)
𝑠

𝜕𝑡

)

−𝑤(1)
12

(

𝑑
𝜕𝑢(1)𝑘2
𝜕𝑥

+
𝜕𝜂(1)

𝜕𝑡

)

−𝑤(1)
𝑠

(

𝑑
𝜕𝑢(1)𝑘2
𝜕𝑥

+
𝜕𝜂(1)

𝜕𝑡

)

(37)

𝑑
𝜕𝑤(2)

12
𝜕𝑡

+ 4𝑞(2)12 − 4𝑞(2)𝑏 = −𝑑𝑢(1)𝑘1

𝜕𝑤(1)
12

𝜕𝑥
− 𝜂(1)

𝜕𝑤(1)
12

𝜕𝑡
−𝑤(1)

12

(

𝑑
𝜕𝑢(1)𝑘1
𝜕𝑥

+
𝜕𝜂(1)

𝜕𝑡

)

(38)

As it is observed, the linear solutions provide forcing to the second-
order solutions on the left hand side of Eqs. (32)–(38). More pre-
cisely, the linear solutions create self-interacting second-order harmon-
ics which have the following form:

𝑢(2)𝑘1 = 𝑢𝑘1,02 cos(2𝑘𝑥 − 2𝜔𝑡), 𝑢(2)𝑘2 = 𝑢𝑘2,02 cos(2𝑘𝑥 − 2𝜔𝑡),

𝑤(2)
𝑠 = 𝑤𝑠,02 sin(2𝑘𝑥 − 2𝜔𝑡), 𝑤(2)

12 = 𝑤12,02 sin(2𝑘𝑥 − 2𝜔𝑡),

𝑞(2)12 = 𝑞12,02 cos(2𝑘𝑥 − 2𝜔𝑡), 𝑞(2)𝑏 = 𝑞𝑏,02 cos(2𝑘𝑥 − 2𝜔𝑡),

𝜂(2) = 𝜂02 cos(2𝑘𝑥 − 2𝜔𝑡)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(39)

Substituting the first (Eq. (28)) and second (Eq. (39)) order har-
monics into the second-order equations and using the linear equations
6

of Section 3.1, a system of fourteen equations (2[3𝐾 + 1]) is obtained,
from which the amplitudes of the second-order harmonics are derived
in terms of 𝑘𝑑 and 𝜂01. Here, the second-order amplitudes of the surface
elevation, 𝜂02, and of the horizontal velocities, 𝑢𝑘1,02 and 𝑢𝑘2,02, are
presented for the case of two layers:

𝜂02 =
𝜂201

(

49152 + 33792𝑘2𝑑2 + 9792𝑘4𝑑4 + 892𝑘6𝑑6 + 7𝑘8𝑑8)

12𝑘2𝑑3
(

5120 + 640𝑘2𝑑2 + 36𝑘4𝑑4 + 𝑘6𝑑6
) (40)

𝑢𝑘1,02 =
𝜂201𝑔

(

98304 − 43008𝑘2𝑑2 + 5760𝑘4𝑑4 − 904𝑘6𝑑6 + 37𝑘8𝑑8)

6𝑘2𝑑3
(

320 + 20𝑘2𝑑2 + 𝑘4𝑑4
)

√

𝑔𝑑
(

4096 + 1792𝑘2𝑑2 + 112𝑘4𝑑4 + 𝑘6𝑑6
)

(41)

𝑢𝑘2,02 =
𝜂201𝑔

(

98304 + 55296𝑘2𝑑2 + 18048𝑘4𝑑4 + 3608𝑘6𝑑6 − 33𝑘8𝑑8)

6𝑘2𝑑3
(

320 + 20𝑘2𝑑2 + 𝑘4𝑑4
)

√

𝑔𝑑
(

4096 + 1792𝑘2𝑑2 + 112𝑘4𝑑4 + 𝑘6𝑑6
)

(42)

The approximate expressions of surface elevation amplitude form
[6(𝐾 − 1) + 2, 6(𝐾 − 1)] rational polynomials in terms of 𝑘𝑑, which
means that in the case of two layers we have an eighth-order and a
sixth-order polynomial in the numerator and denominator respectively.
The derived second-order amplitude expressions are compared with the
theoretical solutions given by second-order Stokes wave theory (Dinge-
mans, 1997) in order to study the second-order non-linear properties
of the SWASH model as a function of the number of layers used.

It has to be mentioned that Taylor expansion has been applied
in order to define the theoretical solutions at the same locations as
in SWASH model. The ratios of 𝑈𝑆𝑊 ∕𝑈𝑆𝑡, 𝑤𝑆𝑊 ∕𝑤𝑆𝑡 and 𝑝𝑆𝑊 ∕𝑝𝑆𝑡
are presented in Fig. 4. It is observed that when one vertical layer
is employed then the model has poor representation of the second-
order velocities and pressure both in shallow and deep water. However,
as the number of layers increases the layer dependent second-order
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Fig. 4. Layer-dependent normalised second-order model solutions as a function of the number of vertical layers and dimensionless depth 𝑘𝑑.
derived solutions agree with the theoretical ones over a larger range
of dimensionless water depths.

In Fig. 5, the normalised second-order amplitudes of the surface ele-
vation, 𝜂02𝑆𝑊 ∕𝜂02𝑆𝑡, the depth-integrated horizontal velocity,
𝑈𝑡,02𝑆𝑊 ∕𝑈𝑡,02𝑆𝑡, the vertical velocity at the surface 𝑤𝑠,02𝑆𝑊 ∕𝑤𝑠,02𝑆𝑡 and
the dynamic pressure at the bottom 𝑝𝑏,02𝑆𝑊 ∕𝑝𝑏,02𝑆𝑡 for one, two, three
and four vertical layers are presented as a function of the dimensionless
depth 𝑘𝑑. At the limit 𝑘𝑑 → 0, the relative error of all non-linear
parameters reduces from 33% to only 3% when shifting from one to
three vertical layers, respectively.

Similar to what was witnessed in Section 3.1 regarding the linear
properties, it can be verified here for the non-linear properties as
well. The governing equations of the model, even when coarse vertical
resolution is applied, can accurately reproduce the surface of a second-
order wave over a large range of dimensionless depths in contrast
with the velocities and dynamic pressure. More precisely, in case of
four vertical layers the relative error in the second-order amplitude
of the surface elevation stays below 10% up to a 𝑘𝑑 value of 4.36
while the corresponding value for the second-order amplitude of the
horizontal velocities is only 0.69 (Table 2). Additionally, while the
accuracy of the model improves as the number of layers increases for
surface amplitude, vertical velocity, and dynamic pressure for all 𝑘𝑑
values, a divergence from the target solution is observed for large 𝑘𝑑
values in the second-order depth-integrated horizontal velocity with a
finer vertical grid resolution.

3.3. Third-order solutions

Extending the Stokes-type Fourier analysis to the third-order, we
seek for third-order harmonics of the form:

𝑢(3)𝑘1 = 𝑢𝑘1,03 cos(3𝑘𝑥 − 3𝜔𝑡), 𝑢(3)𝑘2 = 𝑢𝑘2,03 cos(3𝑘𝑥 − 3𝜔𝑡),

𝑤(3)
𝑠 = 𝑤𝑠,03 sin(3𝑘𝑥 − 3𝜔𝑡), 𝑤(3)

12 = 𝑤12,03 sin(3𝑘𝑥 − 3𝜔𝑡),

𝑞(3)12 = 𝑞12,03 cos(3𝑘𝑥 − 3𝜔𝑡), 𝑞(3)𝑏 = 𝑞𝑏,03 cos(3𝑘𝑥 − 3𝜔𝑡),
(3)

⎫

⎪

⎪

⎬

⎪

⎪

(43)
7

𝜂 = 𝜂03 cos(3𝑘𝑥 − 3𝜔𝑡) ⎭
However, at this order of analysis secular terms arise, introducing
a non-uniformity in the expansion and resulting to unbounded in time
solutions (Whitham, 1999). This issue can be addressed by expanding
the first-order dispersion equation and harmonics in order to include
third-order corrections in the first-order solutions (Madsen et al., 2003):

𝑢(1)𝑘1 = 𝑢𝑘1,01(1 + 𝜖2𝑢𝑘1,13) cos(𝑘𝑥 − 𝜔𝑡), 𝑢(1)𝑘2 = 𝑢𝑘2,01(1 + 𝜖2𝑢𝑘2,13) cos(𝑘𝑥 − 𝜔𝑡),

𝑤(1)
𝑠 = 𝑤𝑠,01(1 + 𝜖2𝑤𝑠,13) sin(𝑘𝑥 − 𝜔𝑡), 𝑤(1)

12 = 𝑤12,01(1 + 𝜖2𝑤12,13) sin(𝑘𝑥 − 𝜔𝑡),

𝑞(1)12 = 𝑞12,01(1 + 𝜖2𝑞12,13) cos(𝑘𝑥 − 𝜔𝑡), 𝑞(1)𝑏 = 𝑞𝑏,01(1 + 𝜖2𝑞𝑏,13) cos(𝑘𝑥 − 𝜔𝑡),

𝜔 = 𝜔1(1 + 𝜖2𝜔13)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(44)

where 𝜔13 corresponds to the amplitude dispersion and terms with
subscript ‘‘13’’ (𝑥13) represent the third-order correction to the first-
order amplitudes. Substituting the perturbation expansions (Eq. (20))
into the governing equations (Eqs. (12)–(18)) and replacing the first
(Eq. (44)), second (Eq. (39)) and third (Eq. (43)) order harmonics, the
third-order solutions of the SWASH governing equations are derived by
retaining only the 𝑂(𝜖3) terms.

Here, we focus on the amplitude dispersion, 𝜔13, and the third-order
component of the surface elevation, 𝜂03, which using the Stokes wave
theory are given by (Skjelbreia, 1959):

𝜔13𝑆𝑡 =
1
16

𝜂201𝑘
2 9 tanh

4(𝑘𝑑) − 10 tanh2(𝑘𝑑) + 9
tanh4(𝑘𝑑)

(45)

𝜂03𝑆𝑡 =
3
64

𝜂301𝑘
2 1 + 8 cosh6(𝑘𝑑)

sinh6(𝑘𝑑)
(46)

The amplitude dispersion and subsequently, the third-order com-
ponent of the surface elevation are derived by eliminating the terms
proportional to sin(𝑘𝑥 − 𝜔𝑡) and cos(𝑘𝑥 − 𝜔𝑡) from the third-order
equations in order to remove secular unbounded solutions. In the case
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Fig. 5. Ratios of second-order (a) surface elevation 𝜂02𝑆𝑊 ∕𝜂02𝑆𝑡, (b) depth-integrated horizontal velocity 𝑈𝑡,02𝑆𝑊 ∕𝑈𝑡,02𝑆𝑡, (c) vertical velocity at the surface 𝑤𝑠,02𝑆𝑊 ∕𝑤𝑠,02𝑆𝑡 and (d)
dynamic pressure at the bottom 𝑝𝑏,02𝑆𝑊 ∕𝑝𝑏,02𝑆𝑡 for one, two, three and four vertical layers as a function of the dimensionless depth 𝑘𝑑.
Table 2
Range of dimensionless depth 𝑘𝑑 as a function of the number of vertical layers and the corresponding relative error in the
second-order wave parameters 𝜂, 𝑈 , 𝑤 and 𝑝.

Number of Range of dimensionless depth [–] Error

layers 𝜂02 𝑈02 𝑤02 𝑝02 [%]

1 0.78 ≤ 𝑘𝑑 ≤ 0.94 1.05 ≤ 𝑘𝑑 ≤ 1.22 0.63 ≤ 𝑘𝑑 ≤ 0.75 0.54 ≤ 𝑘𝑑 ≤ 0.59 ≤5%
1 0.69 ≤ 𝑘𝑑 ≤ 1.02 0.96 ≤ 𝑘𝑑 ≤ 1.30 0.56 ≤ 𝑘𝑑 ≤ 0.81 0.51 ≤ 𝑘𝑑 ≤ 0.62 ≤10%
2 0.40 ≤ 𝑘𝑑 ≤ 1.26 – 0.20 ≤ 𝑘𝑑 ≤ 0.52 0.35 ≤ 𝑘𝑑 ≤ 0.66 ≤5%
2 𝑘𝑑 ≤ 1.68 𝑘𝑑 ≤ 0.62 𝑘𝑑 ≤ 0.62 𝑘𝑑 ≤ 0.74 ≤10%
3 𝑘𝑑 ≤ 2.09 𝑘𝑑 ≤ 0.50 𝑘𝑑 ≤ 0.46 𝑘𝑑 ≤ 0.72 ≤5%
3 𝑘𝑑 ≤ 3.03 𝑘𝑑 ≤ 0.68 𝑘𝑑 ≤ 0.60 𝑘𝑑 ≤ 0.82 ≤10%
4 𝑘𝑑 ≤ 3.41 𝑘𝑑 ≤ 0.54 𝑘𝑑 ≤ 0.44 𝑘𝑑 ≤ 0.79 ≤5%
4 𝑘𝑑 ≤ 4.36 𝑘𝑑 ≤ 0.69 𝑘𝑑 ≤ 0.59 𝑘𝑑 ≤ 0.90 ≤10%
of two layers the derived expressions are given by:

𝜔13 =𝜂201(1207959552 + 855638016𝑘2𝑑2 + 687341568𝑘4𝑑4

+ 147062784𝑘6𝑑6 + 17270784𝑘8𝑑8 + 1173504𝑘10𝑑10

+ 16568𝑘12𝑑12 + 89𝑘14𝑑14)∕(96𝑘2𝑑4(16 + 𝑘2𝑑2)2

(81920 + 35840𝑘2𝑑2 + 2496𝑘4𝑑4 + 116𝑘6𝑑6 + 𝑘8𝑑8))

(47)

𝜂03 =𝜂301(1207959552 + 1962934272𝑘2𝑑2 + 1738014720𝑘4𝑑4

+ 682622976𝑘6𝑑6 + 145885184𝑘8𝑑8 + 14327296𝑘10𝑑10

+ 267928𝑘12𝑑12 + 2853𝑘14𝑑14)∕(384𝑘4𝑑6(16 + 𝑘2𝑑2)

(320 + 20𝑘2𝑑2 + 𝑘4𝑑4)(1280 + 160𝑘2𝑑2 + 9𝑘4𝑑4))

(48)

In Fig. 6, the normalised amplitude dispersion (𝜔13𝑆𝑊 ∕𝜔13𝑆𝑡) and
the third-order amplitude of the surface elevation (𝜂03𝑆𝑊 ∕𝜂03𝑆𝑡) for one,
two, three and four vertical layers are presented as a function of the
dimensionless depth 𝑘𝑑.

As observed from the figure, the model underestimates significantly
the amplitude dispersion for 𝑘𝑑 values larger than 1, while increasing
the number of layers improves the accuracy only in shallow water. On
the other hand, the capability of the model to represent the third-order
8

Table 3
Range of dimensionless depth 𝑘𝑑 as a function of the number of vertical layers and
the corresponding relative error in the amplitude dispersion 𝜔13 and the third-order
amplitude of the surface elevation 𝜂03.

Number of Range of dimensionless depth [–] Error

layers 𝜔13 𝜂03 [%]

1 0.66 ≤ 𝑘𝑑 ≤ 0.76 0.68 ≤ 𝑘𝑑 ≤ 0.74 ≤5%
1 0.61 ≤ 𝑘𝑑 ≤ 0.80 0.65 ≤ 𝑘𝑑 ≤ 0.78 ≤10%
2 0.35 ≤ 𝑘𝑑 ≤ 0.68 0.55 ≤ 𝑘𝑑 ≤ 0.90 ≤5%
2 𝑘𝑑 ≤ 0.77 0.34 ≤ 𝑘𝑑 ≤ 1.07 ≤10%
3 𝑘𝑑 ≤ 0.66 0.24 ≤ 𝑘𝑑 ≤ 1.33 ≤5%
3 𝑘𝑑 ≤ 0.77 𝑘𝑑 ≤ 1.85 ≤10%
4 𝑘𝑑 ≤ 0.65 𝑘𝑑 ≤ 2.51 ≤5%
4 𝑘𝑑 ≤ 0.77 𝑘𝑑 ≤ 3.04 ≤10%

amplitude of the surface elevation increases considerably when more
than two layers are applied, resulting to relative errors lower than 10%
for 𝑘𝑑 values up to 1.85 and 3.04 for three and four layers, respectively.
The results are summarised in Table 3.
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Fig. 6. Ratios and relative errors of (a,c) amplitude dispersion 𝜔13𝑆𝑊 ∕𝜔13𝑆𝑡 and (b,d) third-order amplitude of the surface elevation 𝜂03𝑆𝑊 ∕𝜂03𝑆𝑡 for one, two, three and four vertical
layers as a function of the dimensionless depth 𝑘𝑑.
3.4. Transfer functions for second-order sub-harmonics and
super-harmonics

In coastal regions, the principal non-linear processes are related
to the near-resonant interactions among triads of waves. Waves with
different frequencies interact with each other, leading to the generation
of bound sub-harmonics and super-harmonics at the difference and sum
of the frequencies of the primary waves. During this process substantial
spectral energy is being transferred from the peak- to the low- and
high-frequency part of the spectrum.

An important property of non-linear wave models refers to their
efficiency to accurately describe the above-mentioned wave-wave inter-
actions. Hence, an investigation of the efficiency of the SWASH model
in reproducing second-order interactions is presented in the following.
A first-order wave group composed of two harmonics with frequencies
𝜔𝑚 and 𝜔𝑛 and wave numbers 𝑘𝑚 and 𝑘𝑛, respectively, is described as
follows in the case of two layers:

𝑢(1)𝑘1 = 𝑢𝑘1,01𝑚 cos 𝜗𝑚 + 𝑢𝑘1,01𝑛 cos 𝜗𝑛, 𝑢(1)𝑘2 = 𝑢𝑘2,01𝑚 cos 𝜗𝑚 + 𝑢𝑘2,01𝑛 cos 𝜗𝑛,

𝑤(1)
𝑠 = 𝑤𝑠,01𝑚 sin 𝜗𝑚 +𝑤𝑠,01𝑛 sin 𝜗𝑛, 𝑤(1)

12 = 𝑤12,01𝑚 sin 𝜗𝑚 +𝑤12,01𝑛 sin 𝜗𝑛,

𝑞(1)12 = 𝑞12,01𝑚 cos 𝜗𝑚 + 𝑞12,01𝑛 cos 𝜗𝑛, 𝑞(1)𝑏 = 𝑞𝑏,01𝑚 cos 𝜗𝑚 + 𝑞𝑏,01𝑛 cos 𝜗𝑛,

𝜂(1) = 𝜂01𝑚 cos 𝜗𝑚 + 𝜂01𝑛 cos 𝜗𝑛

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(49)

where 𝜗𝑚 = 𝑘𝑚𝑥 − 𝜔𝑚𝑡 and 𝜗𝑛 = 𝑘𝑛𝑥 − 𝜔𝑛𝑡.
In the above first-order wave group, both harmonics are considered

solutions of the linearised governing equations (Eqs. (21)–(27)) and
subsequently frequencies 𝜔𝑚 and 𝜔𝑛 satisfy the linear dispersion rela-
tion derived in Section 3.1 (Eq. (29)). Through the non-linear terms
a first-order bichromatic wave group will force a second-order wave
group composed of four components, one sub-harmonic, 𝜔𝑚 − 𝜔𝑛, and
three super-harmonics, 2𝜔𝑚, 2𝜔𝑛 and 𝜔𝑚 + 𝜔𝑛. These components are
bound (phase locked) to the first-order wave group, while frequencies
𝜔𝑚 − 𝜔𝑛, 2𝜔𝑚, 2𝜔𝑛 and 𝜔𝑚 + 𝜔𝑛 do not satisfy the linear dispersion
relation. The second-order wave group is described as follows in the
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case of two layers:

𝑢(2)𝑘1 = 𝐺𝑚−𝑛
𝑢𝑘1

cos(𝜗𝑚 − 𝜗𝑛) + 𝐺2𝑚
𝑢𝑘1

cos(2𝜗𝑚) + 𝐺𝑚+𝑛
𝑢𝑘1

cos(𝜗𝑚 + 𝜗𝑛) + 𝐺2𝑛
𝑢𝑘1

cos(2𝜗𝑛)

𝑢(2)𝑘2 = 𝐺𝑚−𝑛
𝑢𝑘2

cos(𝜗𝑚 − 𝜗𝑛) + 𝐺2𝑚
𝑢𝑘2

cos(2𝜗𝑚) + 𝐺𝑚+𝑛
𝑢𝑘2

cos(𝜗𝑚 + 𝜗𝑛) + 𝐺2𝑛
𝑢𝑘2

cos(2𝜗𝑛)

𝑤(2)
𝑠 = 𝐺𝑚−𝑛

𝑤𝑠
sin(𝜗𝑚 − 𝜗𝑛) + 𝐺2𝑚

𝑤𝑠
sin(2𝜗𝑚) + 𝐺𝑚+𝑛

𝑤𝑠
sin(𝜗𝑚 + 𝜗𝑛) + 𝐺2𝑛

𝑤𝑠
sin(2𝜗𝑛)

𝑤(2)
12 = 𝐺𝑚−𝑛

𝑤12
sin(𝜗𝑚 − 𝜗𝑛) + 𝐺2𝑚

𝑤12
sin(2𝜗𝑚) + 𝐺𝑚+𝑛

𝑤12
sin(𝜗𝑚 + 𝜗𝑛) + 𝐺2𝑛

𝑤12
sin(2𝜗𝑛)

𝑞(2)12 = 𝐺𝑚−𝑛
𝑞12

cos(𝜗𝑚 − 𝜗𝑛) + 𝐺2𝑚
𝑞12

cos(2𝜗𝑚) + 𝐺𝑚+𝑛
𝑞12

cos(𝜗𝑚 + 𝜗𝑛) + 𝐺2𝑛
𝑞12

cos(2𝜗𝑛)

𝑞(2)𝑏 𝑏 = 𝐺𝑚−𝑛
𝑞𝑏

cos(𝜗𝑚 − 𝜗𝑛) + 𝐺2𝑚
𝑞𝑏

cos(2𝜗𝑚) + 𝐺𝑚+𝑛
𝑞𝑏

cos(𝜗𝑚 + 𝜗𝑛) + 𝐺2𝑛
𝑞𝑏
cos(2𝜗𝑛)

𝜂(2) = 𝐺𝑚−𝑛
𝜂 cos(𝜗𝑚 − 𝜗𝑛) + 𝐺2𝑚

𝜂 cos(2𝜗𝑚) + 𝐺𝑚+𝑛
𝜂 cos(𝜗𝑚 + 𝜗𝑛) + 𝐺2𝑛

𝜂 cos(2𝜗𝑛)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(50)

where 𝐺𝑚−𝑛 is the sub-harmonic transfer function, 𝐺2𝑚, 𝐺2𝑛 and 𝐺𝑚+𝑛

are the super-harmonic transfer functions.
Substituting the first (Eq. (49)) and second (Eq. (50)) order wave

groups into the second-order equations (Eqs. (32)–(38)), the second-
order transfer functions are derived in terms of 𝑘𝑚𝑑, 𝑘𝑛𝑑, 𝜔𝑚, 𝜔𝑛,
𝜂01𝑚 and 𝜂01𝑛. Here, the second-order transfer functions of the surface
elevation, 𝐺𝑚−𝑛

𝜂 and 𝐺𝑚+𝑛
𝜂 in the case of two layers are presented:

𝐺𝑚−𝑛
𝜂 =𝜂01𝑚𝜂01𝑛(𝑘𝑚 − 𝑘𝑛)2(65536𝜔𝑚𝜔𝑛(𝑘2𝑛𝜔

2
𝑚 + 4𝑘𝑚𝑘𝑛𝜔𝑚𝜔𝑛 + 𝑘2𝑚𝜔

2
𝑛)

− 65536𝑔𝑘𝑚𝑘𝑛𝑑(2𝑘2𝑛𝜔
2
𝑚 + 𝑘𝑚𝑘𝑛𝜔𝑚𝜔𝑛 + 2𝑘2𝑚𝜔

2
𝑛) + 𝑘3𝑚(𝑘𝑚 − 𝑘𝑛)

2

𝑘3𝑛𝑑
8𝜔𝑚𝜔𝑛(−𝑘𝑛(𝑘𝑚 + 4𝑘𝑛)𝜔2

𝑚 + 2(𝑘2𝑚 + 3𝑘𝑚𝑘𝑛 + 𝑘2𝑛)𝜔𝑚𝜔𝑛

− 𝑘𝑚(4𝑘𝑚 + 𝑘𝑛)𝜔2
𝑛) + 4096𝑔𝑘𝑚𝑘𝑛𝑑3(−𝑘2𝑛(−4𝑘

2
𝑚 + 8𝑘𝑚𝑘𝑛 + 𝑘2𝑛)𝜔

2
𝑚

+ 6𝑘𝑚(𝑘𝑚 − 𝑘𝑛)2𝑘𝑛𝜔𝑚𝜔𝑛 − 𝑘2𝑚(𝑘
2
𝑚 + 8𝑘𝑚𝑘𝑛 − 4𝑘2𝑛)𝜔

2
𝑛)

+ 256𝑔𝑘𝑚𝑘𝑛𝑑5(𝑘2𝑛(−10𝑘
4
𝑚 + 4𝑘3𝑚𝑘𝑛 + 10𝑘2𝑚𝑘

2
𝑛 − 6𝑘𝑚𝑘3𝑛 + 𝑘4𝑛)𝜔

2
𝑚

− 𝑘𝑚𝑘𝑛(𝑘4𝑚 + 𝑘3𝑚𝑘𝑛 − 5𝑘2𝑚𝑘
2
𝑛 + 𝑘𝑚𝑘

3
𝑛 + 𝑘4𝑛)𝜔𝑚𝜔𝑛 + 𝑘2𝑚(𝑘

4
𝑚 − 6𝑘3𝑚𝑘𝑛

+ 10𝑘2𝑚𝑘
2
𝑛 + 4𝑘𝑚𝑘3𝑛 − 10𝑘4𝑛)𝜔

2
𝑛) + 16𝑔𝑘3𝑚(𝑘𝑚 − 𝑘𝑛)2𝑘3𝑛𝑑

7

(𝑘2𝑛𝜔𝑚(3𝜔𝑚 + 𝜔𝑛) + 𝑘2𝑚𝜔𝑛(𝜔𝑚 + 3𝜔𝑛) − 𝑘𝑚𝑘𝑛(4𝜔2
𝑚 + 5𝜔𝑚𝜔𝑛 + 4𝜔2

𝑛))

+ 4096𝑑2(32𝑔2𝑘3𝑚𝑘
3
𝑛 + 𝜔𝑚𝜔𝑛(−2𝑘4𝑛𝜔

2
𝑚 + 6𝑘3𝑚𝑘𝑛𝜔𝑚𝜔𝑛 − 2𝑘4𝑚𝜔

2
𝑛

3 2 2 2 2 6
+ 6𝑘𝑚𝑘𝑛𝜔𝑚𝜔𝑛 + 𝑘𝑚𝑘𝑛(−9𝜔𝑚 + 14𝜔𝑚𝜔𝑛 − 9𝜔𝑛))) + 16𝑘𝑚𝑘𝑛𝑑
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w
c
i
T
o
f
f

4

n
t
c
b
t

(−16𝑔2𝑘2𝑚(𝑘𝑚 − 𝑘𝑛)4𝑘2𝑛 + 𝜔𝑚𝜔𝑛(−2𝑘6𝑚𝜔𝑚𝜔𝑛 − 2𝑘6𝑛𝜔𝑚𝜔𝑛 + 𝑘𝑚𝑘
5
𝑛

(2𝜔𝑚 + 𝜔𝑛)(12𝜔𝑚 + 𝜔𝑛) + 𝑘5𝑚𝑘𝑛(𝜔𝑚 + 2𝜔𝑛)(𝜔𝑚 + 12𝜔𝑛) + 2𝑘4𝑚𝑘
2
𝑛

(𝜔2
𝑚 + 2𝜔𝑚𝜔𝑛 − 21𝜔2

𝑛) + 2𝑘3𝑚𝑘
3
𝑛(𝜔

2
𝑚 − 3𝜔𝑚𝜔𝑛 + 𝜔2

𝑛) + 2𝑘2𝑚𝑘
4
𝑛

(−21𝜔2
𝑚 + 2𝜔𝑚𝜔𝑛 + 𝜔2

𝑛))) + 256𝑑4(16𝑔2𝑘3𝑚(𝑘𝑚 − 𝑘𝑛)2𝑘3𝑛
+ 𝜔𝑚𝜔𝑛(𝑘6𝑛𝜔

2
𝑚 + 𝑘6𝑚𝜔

2
𝑛 + 𝑘4𝑚𝑘

2
𝑛(−9𝜔

2
𝑚 + 28𝜔𝑚𝜔𝑛 − 15𝜔2

𝑛)

+ 𝑘2𝑚𝑘
4
𝑛(−15𝜔

2
𝑚 + 28𝜔𝑚𝜔𝑛 − 9𝜔2

𝑛) + 2𝑘3𝑚𝑘
3
𝑛(23𝜔

2
𝑚 − 40𝜔𝑚𝜔𝑛

+ 23𝜔2
𝑛))))∕(2𝑘

2
𝑚𝑘

2
𝑛𝑑(−16 + 𝑘2𝑚𝑑
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Similar expressions can be derived for the transfer functions of
velocity and non-hydrostatic pressure components but they are not
shown here. The self interacting super-harmonic transfer functions,
𝐺2𝑚
𝜂 and 𝐺2𝑛

𝜂 , are the same as the second-order solution derived and
analysed in Section 3.2. By substituting the linear dispersion relation
(Eq. (29)) for 𝜔𝑚 and 𝜔𝑛 in the above expressions, the derived transfer
functions can be compared with the reference solutions for the sub-
and super-harmonics given by Schäffer (1996) and Sand and Mansard
(1986), respectively. Their second-order solutions are derived from the
non-linear boundary value problem for the Laplace equation using a
perturbation method.

In Fig. 7 the normalised sub-harmonic and super-harmonic transfer
functions 𝐺𝑚±𝑛

𝜂,𝑆𝑊 ∕𝐺𝑚±𝑛
𝜂,𝑡ℎ for one, two, three and four vertical layers are

presented as a function of the dimensionless depths 𝑘𝑚𝑑 and 𝑘𝑛𝑑. The
normalised sub-harmonic and super-harmonic are located below and
above diagonal respectively, while the green colour represents the area
where the relative error is less than 10%.

Regarding the sub-harmonic transfer function, the model’s agree-
ment with the theoretical solution improves significantly when two
layers are used instead of one. Further increasing the number of layers
enhances the model’s properties in the low 𝑘𝑑 range, where the error
reduces below 5%. In general, for a multi-layer layout the governing
equations are capable of accounting for second-order interactions be-
tween shallow water waves (e.g. 𝑘𝑚𝑑 ≤ 0.7) and intermediate-deep
water waves (e.g. 𝑘𝑛𝑑 ≥ 1.0). However, for second-order interactions
between intermediate and deep water waves (𝑘𝑛𝑑, 𝑘𝑚𝑑 ≥ 1.8) the error
10

is larger than 10%. Fortunately, the energy transfer to sub-harmonics g
Table 4
Index of agreement of the second-order sub-harmonic and super-harmonic transfer
functions of the surface elevation amplitude.

Number of Index of agreement

layers 𝜅′
𝑚 = 𝜅′

𝑛 = 3 𝜅′
𝑚 = 𝜅′

𝑛 = 5

1 0.663 0.403
2 0.895 0.760
3 0.919 0.805
4 0.924 0.818

is pronounced in shallow water, where the transfer functions are also
more accurately described by the model. The limit case of 𝑘𝑛𝑑 → 𝑘𝑚𝑑
(on the diagonal) corresponds to the solution for the wave set-down
under a wave group, which can be described by the model with an
error lower than 10% for 𝑘𝑑 values up to 1.8.

Regarding the super-harmonic transfer function, the agreement with
the theoretical expression in the case of one layer is better than what
was observed with the sub-harmonic transfer function. The combina-
tions of 𝑘𝑚𝑑 and 𝑘𝑛𝑑 for which the error is less than 10% (green
area) increase remarkably with the number of layers and consequently
for three and four layers the model is capable of accounting even for
second-order interactions between intermediate and deep water waves.
In this case, the diagonal where 𝑘𝑛𝑑 = 𝑘𝑚𝑑 corresponds to the self
interacting super-harmonic transfer functions, 𝐺2𝑚

𝜂 and 𝐺2𝑛
𝜂 , and thus

the values are the same as the ones corresponding to the normalised
second-order amplitude of the surface elevation, 𝜂02𝑆𝑊 ∕𝜂02𝑆𝑡, presented
in Fig. 5a.

Additionally, in Fig. 8 the normalised sub-harmonic and super-
harmonic transfer functions of the depth-integrated horizontal veloc-
ities 𝐺𝑚±𝑛

𝑈,𝑆𝑊 ∕𝐺𝑚±𝑛
𝑈,𝑡ℎ in the case of two vertical layers are showed as a

function of the dimensionless depths 𝑘𝑚𝑑 and 𝑘𝑛𝑑. Here, in contrast to
the transfer functions of the surface elevation amplitude, the combi-
nations of 𝑘𝑚𝑑 and 𝑘𝑛𝑑 for which the model reproduces accurately the
transfer functions of the horizontal velocities is much more limited. The
deviation from the theoretical solution is larger for the second layer
near the surface compared to the first layer near the bottom, while the
relative error stays below 20% (green area) in both layers up to 𝑘𝑚𝑑
and 𝑘𝑛𝑑 values of 0.85.

Moreover, the derived second-order sub-harmonic and
super-harmonic transfer functions of the surface elevation amplitude
are evaluated using the following index of agreement (Kennedy et al.,
2001):

𝐼𝐴 = 1 −

√

√

√

√

√

1
2𝜅′

𝑚𝜅′
𝑛 ∫

𝜅′𝑚

0 ∫

𝜅′𝑛

0

(

𝐺𝑚+𝑛
𝑆𝑊

𝐺𝑚+𝑛
𝑡ℎ

− 1

)2

+
(𝐺𝑚−𝑛

𝑆𝑊
𝐺𝑚−𝑛
𝑡ℎ

− 1
)2

𝑑(𝜅𝑚)𝑑(𝜅𝑛)

(53)

here 𝜅𝑚 = 𝑘𝑚𝑑 and 𝜅𝑛 = 𝑘𝑛𝑑, while the model is evaluated for two
ases: (a) 𝜅′

𝑚 = 𝜅′
𝑛 = 3 and (b) 𝜅′

𝑚 = 𝜅′
𝑛 = 5. An 𝐼𝐴 value of 1

ndicates a perfect agreement with the theoretical transfer functions.
he results are summarised in Table 4, where it is noticed that the index
f agreement increases from 0.663 for one layer to 0.924 for four layers
or the first case and from 0.403 for one layer to 0.818 for four layers
or the second case.

. Wave generation and absorption using derived solutions

In the previous section the linear and non-linear solutions of the
on-hydrostatic governing equations have been derived when one, two,
hree and four vertical layers are employed. These derived expressions
an be used to formulate improved wave generation and absorption
oundary conditions for non-hydrostatic models. In SWASH model
here are two methods to generate waves, the weakly reflective wave
eneration method where the waves are generated at the boundary of
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Fig. 7. Normalised sub-harmonic (below diagonal) and super-harmonic (above diagonal) transfer functions 𝐺𝑚±𝑛
𝜂,𝑆𝑊 ∕𝐺𝑚±𝑛

𝜂,𝑡ℎ for one, two, three and four vertical layers as a function
of the dimensionless depths 𝑘𝑚𝑑 and 𝑘𝑛𝑑.
Fig. 8. Normalised sub-harmonic (below diagonal) and super-harmonic (above diagonal) transfer functions of the depth-integrated horizontal velocities 𝐺𝑚±𝑛
𝑈,𝑆𝑊 ∕𝐺𝑚±𝑛

𝑈,𝑡ℎ in the case of
two vertical layers as a function of the dimensionless depths 𝑘𝑚𝑑 and 𝑘𝑛𝑑.
the computational domain and the internal wave generation method
where the waves are generated inside the computational domain over
an area called source area (Vasarmidis et al., 2019, 2021). Here we will
apply the derived solutions in the former method but the application
in the latter one is also straightforward.

According to the weakly reflective wave generation method, waves
are generated by imposing the horizontal velocities of the incident
waves in each layer over the vertical direction of the computational
boundary. Additionally, in order to absorb the reflected waves that
are propagating towards the generation boundary and to prevent re-
reflections a radiation condition is applied at the same location in each
layer. As a result the imposed horizontal velocity for layer 𝑘 (𝑧 ≤ 𝑧 ≤
11

𝑘−
𝑧𝑘+ ) is given by (Blayo and Debreu, 2005):

𝑢𝑘 = 𝑢𝑘,𝑡 +
𝑐0
𝑑
(𝜂𝑡 − 𝜂𝑖) (54)

where 𝑐0 is the local wave speed, 𝑢𝑘,𝑡 is the target horizontal velocity
for layer 𝑘, 𝜂𝑡 is the target surface elevation and 𝜂𝑖 is the instantaneous
surface elevation computed at the cell next to the boundary. The value
of 𝑐0 should be decided a priori by the user and in case that the
reflected wave approaches the wave generation boundary with a speed
of 𝑐 = 𝑐0, then the wave will be perfectly absorbed at the location of the
boundary (Higdon, 1987). In most nearshore applications it is assumed
that the reflected waves propagate with the shallow water wave speed
(𝑐0 =

√

𝑔𝑑), which is independent of the wave number, since in coastal
areas the short waves (high-frequency energy) are dissipated near the
shoreline while long waves (low-frequency energy) are reflected back.
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Table 5
Summary of wave conditions of the under examination cases.

Wave Wave height [m] Wave period [s] Dimensionless depth [–]
conditions

1st order monochromatic 𝐻 = 0.05 𝑇 = 5.0 𝑘𝑑 = 4.02
1st order monochromatic 𝐻 = 0.05 𝑇 = 4.1 𝑘𝑑 = 5.98
2nd order monochromatic 𝐻 = 0.80 𝑇 = 12.0 𝑘𝑑 = 0.55
2nd order monochromatic 𝐻 = 1.20 𝑇 = 7.0 𝑘𝑑 = 1.05
2nd order bichromatic 𝐻𝑚 = 0.60 𝐻𝑛 = 0.80 𝑇𝑚 = 10.0 𝑇𝑛 = 12.0 𝑘𝑑𝑚 = 0.68 𝑘𝑑𝑛 = 0.55
2nd order bichromatic 𝐻𝑚 = 1.00 𝐻𝑛 = 1.20 𝑇𝑚 = 6.5 𝑇𝑛 = 7.0 𝑘𝑑𝑚 = 1.16 𝑘𝑑𝑛 = 1.05
Fig. 9. Definition sketch of the implemented set-up for the numerical simulations, where L represents the wave length of each examined case.
In the above formulation (Eq. (54)), the imposed target horizontal
velocity components, 𝑢𝑘,𝑡, for each layer can be defined using the
derived linear and non-linear velocity amplitudes. Additionally, the
corresponding surface elevation amplitude that has also been derived
can be used as the target surface elevation 𝜂𝑡. In this way, any difference
between the target surface elevation, 𝜂𝑡, and the instantaneous surface
elevation, 𝜂𝑖, is taken as reflection and thus it is absorbed at the
generation boundary of the computational domain.

To demonstrate the ability of the SWASH model to generate accu-
rately linear and non-linear waves using the derived solutions, first-
and second-order monochromatic waves and second-order bichromatic
waves are examined in the following sections. The cases under con-
sideration are summarised in Table 5 and were categorised based on
Le Méhauté’s diagram (Méhauté, 1976). The numerical flume used for
all the following cases is presented in Fig. 9, with a weakly reflective
wave generator positioned at the left boundary and a sponge layer at
the right boundary.

4.1. First-order monochromatic waves

At first, we consider two test cases of first-order monochromatic
waves (Table 5) with a wave height 𝐻 = 0.05 m, a water depth of
𝑑 = 25 m and two different wave periods 𝑇 of 5 s and 4.1 s. The
resulting dimensionless depths 𝑘𝑑 of these highly dispersive waves are
4.02 and 5.98 and thus two vertical layers are applied in order to
keep the relative error in wave dispersion below 1% (Table 1). For
both cases, the grid cell size 𝛥𝑥 is determined by the condition of
having at least 50 grid cells per wave length, resulting in values of
𝛥𝑥 = 0.5 m and 𝛥𝑥 = 0.3 m for the first and second cases, respectively.
Furthermore, an automatic time step control is used throughout the
simulations, following the CFL (Courant–Friedrichs–Lewy) condition.
According to this criterion, the time step is reduced by half when the
Courant number exceeds a specified maximum value, and it is doubled
when the Courant number falls below a specified minimum value. For
this study, a maximum CFL value of 0.5 and a minimum CFL value of
0.2 are applied in all simulations.

In SWASH, in case of a multi-layer layout of the model, the target
horizontal velocity component in the formulation of the weakly reflec-
tive wave generation boundary (Eq. (54)) is described by default by a
12
hyperbolic cosine profile, and the theoretical velocities resulting from
first-order Stokes (Airy) wave theory are imposed. However, since now
the exact solutions of the governing equations have been defined, the
derived expressions as discussed in Section 3 can be implemented in the
code. In Fig. 10, the normalised surface elevation 𝜂∕𝛼0 and wave height
𝐻∕𝐻0 are presented for both wave conditions, where 𝐻0 is the target
wave height and 𝛼0 = 𝐻0∕2. The waves are generated at the boundary
of the computational domain by imposing the theoretical solutions
(blue dashed lines) and by imposing the linear derived solutions (red
dashed lines) of Section 3.1 (Eqs. (29)–(31)).

As it is observed, when the theoretical solutions are used as the
target horizontal velocity 𝑢𝑘,𝑡 (Eq. (54)) at the boundary, a sharp
decrease of the surface elevation amplitude and consequently of the
wave height is noticed at the first computational cells next to the
wave generation boundary, leading to a bad agreement with the target
profile. This is a well-known deficiency of the model (Vasarmidis et al.,
2021), and the deviation of the generated surface elevation from the
target one is becoming larger for higher values of dimensionless depth.
More precisely, in the case of 𝑘𝑑 = 4.02 the resulting wave height is
9% smaller than the target one, while for 𝑘𝑑 = 5.98 the percentage
difference increases to 15%.

This deficiency can be explained by Fig. 2, where it can be noticed
that in the case of two layers and 𝑘𝑑 values larger than 2.5, the derived
solutions of the layer-integrated horizontal velocities 𝑈 deviate signifi-
cantly from the theoretical ones, and for 𝑘𝑑 ≥ 4.0 even a reverse flow is
observed at the bottom layer. As a result, since the imposed theoretical
solutions do not verify the system of the linearised governing equations
(Eqs. (21)–(27)), these solutions are transformed at the first cells as they
propagate inside the computational domain leading to a decrease in
the surface elevation amplitude. In addition, the transformation of the
surface elevation affects the computed instantaneous surface elevation
𝜂𝑖 at the cell next to the generation boundary which differs from the
target one 𝜂𝑡. Subsequently, the imposed radiation condition at the
boundary considers this difference as a reflected wave and tries to
absorb it, leading to further disturbance of the generated wave profile.

A common technique to overcome this deficiency is calibration
by using a larger wave height as an input. However, this calibration
procedure to achieve the target wave height inside the computational

domain is becoming even more difficult in the case of irregular waves
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Fig. 10. Comparison between computed (dashed lines) and target (solid lines) normalised surface elevation 𝜂∕𝛼0 and wave height 𝐻∕𝐻0 for the case of linear waves with
dimensionless depth (a, (b) 𝑘𝑑 = 4.02 and (c, (d) 𝑘𝑑 = 5.98. The waves are generated at the boundary of the computational domain by imposing the theoretical solutions (blue
dashed lines) and the derived solutions (red dashed lines).
since, as it is also witnessed here, the sharp decrease of the surface
elevation amplitude is different for each 𝑘𝑑 value and hence for each
frequency. So in case of irregular waves, imposing a larger significant
wave height as an input leads to an overestimation of the low frequency
energy (small 𝑘𝑑 values) due to the fact that the velocities of the model
in this range of frequencies agree well with the theoretical ones.

On the other hand, by using the first-order derived solutions as an
input at the weakly reflective wave generation boundary, we avoid the
problem of the sharp decrease of the surface elevation and thus the
need of calibration. As it is shown in Fig. 10, the computed surface
elevation and wave height have an excellent agreement with the target
values all over the computational domain of four wave lengths. Further-
more, it has to be mentioned that using three or four layers with the
corresponding derived velocity expressions as input results in identical
profiles. This excellent agreement indicates that the derived solutions
can be used to significantly improve the capability of the model to
accurately generate linear waves at any depth. The same conclusion
holds valid for any non-hydrostatic wave model.

4.2. Second-order monochromatic and bichromatic waves

In this section, the capability of the model to generate accurately
second-order monochromatic and bichromatic waves using the de-
rived solutions is examined. Two different second-order monochro-
matic waves are considered. The first case has a wave height 𝐻 of 0.8 m
and a wave period 𝑇 of 12 s, while in the second case the wave height
𝐻 is equal to 1.2 m and the wave period 𝑇 equal to 7.0 s. Both cases
are investigated in a computational domain with constant water depth
of 𝑑 = 10 m which results in dimensionless depths 𝑘𝑑 of 0.55 and 1.05.
Two vertical layers are applied to achieve a relative error below 5% for
the second-order surface elevation amplitude (Table 2) and below 1%
for the wave dispersion (Table 1). The model is applied with a grid cell
size (𝛥𝑥) of 1 m and 0.5 m for the first and second cases, respectively.

In Fig. 11, the normalised surface elevations 𝜂∕𝛼0 for both cases are
presented for a computational domain of five wave lengths. The waves
are generated at the boundary of the computational domain by impos-
ing either the first-order solutions (blue dashed lines) or both the first-
and second-order solutions (red dashed lines). For the second-order
wave generation the derived horizontal velocity components of Sections
13
3.1 (Eqs. (30)–(31)) and 3.2 (Eqs. (41)–(42)) are used to calculate the
target horizontal velocity 𝑢𝑘,𝑡 (Eq. (54)) for each layer, while for the
radiation condition at the boundary the target surface elevation 𝜂𝑡 is
calculated using the derived second-order surface elevation amplitude
(Eq. (40)).

As it can be deduced from Fig. 11, when only the first-order
solutions are imposed, free spurious waves are introduced at the
wave generation boundary. These spurious waves propagate with a
different wave speed than the second-order wave, leading to the non-
homogeneous surface profile that is observed. The maximum relative
error in the surface elevation amplitude in the whole computational
domain is 12.7% and 8.9% for the case with 𝑘𝑑 0.55 and 1.05,
respectively.

Free spurious waves have to be eliminated both in numerical models
and experimental facilities, since they can affect significantly wave
processes such as wave breaking, overtopping and runup. As it can be
witnessed, when the derived second-order solutions are also imposed
at the boundary, the resulting surface profiles are homogeneous in the
whole domain and agree very well with the target theoretical profiles.
For the second-order wave generation, the maximum relative error in
the surface elevation amplitude is only 2.8% for 𝑘𝑑 = 0.55 and 1.7% for
𝑘𝑑 = 1.05. The fact that the error is smaller for the latter case can be
justified by Fig. 5 where the ratios of second-order surface 𝜂02𝑆𝑊 ∕𝜂02𝑆𝑡
is 1.04 and 0.98 for 𝑘𝑑 values of 0.55 and 1.05, respectively.

Additionally, two cases of second-order bichromatic waves are also
examined. As mentioned in Section 3.4, the wave-wave interaction
of two harmonics with frequencies 𝜔𝑚 and 𝜔𝑛 forces a second-order
wave group composed of four bound components, one sub-harmonic,
𝜔𝑚−𝜔𝑛, and three super-harmonics, 2𝜔𝑚, 2𝜔𝑛 and 𝜔𝑚+𝜔𝑛. These bound
wave components play a important role on the wave transformation
processes in shallow water (Madsen and Sørensen, 1993; Hamm et al.,
1993). The bound super-harmonic components influence the shape
and asymmetry of the waves, and consequently, the location of wave
breaking, while the bound sub-harmonic component, which is also
referred to as infra-gravity wave, is released after wave breaking and
significantly contributes in coastal erosion, wave overtopping and wave
penetration inside harbours.

The first bichromatic case (Table 5) is composed of two primary

waves with wave heights 𝐻𝑚 = 0.6 m and 𝐻𝑛 = 0.8 m and wave periods
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Fig. 11. Comparison between computed (dashed lines) and target (solid lines) normalised surface elevation 𝜂∕𝛼0 for the case of second-order monochromatic waves with
dimensionless depth (a) 𝑘𝑑 = 0.55 and (b) 𝑘𝑑 = 1.05. The waves are generated at the boundary of the computational domain using first- (blue dashed lines) and second-order (red
dashed lines) wave generation.

Fig. 12. Comparison between computed (dashed lines) and target (solid lines) normalised surface elevation for the case of second-order bichromatic wave with dimensionless
depths 𝑘𝑑𝑚 = 0.68 and 𝑘𝑑𝑛 = 0.55 at a distance from the wave generation boundary (a) 𝑥 = 0 m and (b) 𝑥 = 150 m.
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Fig. 13. Comparison between computed (dashed lines) and target (solid lines) normalised surface elevation for the case of second-order bichromatic wave with dimensionless
depths 𝑘𝑑𝑚 = 1.16 and 𝑘𝑑𝑛 = 1.05 at a distance from the wave generation boundary (a) 𝑥 = 0 m and (b) 𝑥 = 150 m.
𝑇𝑚 = 10.0 s and 𝑇𝑛 = 12.0 s, respectively. The second case considers
slightly steeper waves with wave heights 𝐻𝑚 = 1.0 m and 𝐻𝑛 = 1.2 m
and wave periods 𝑇𝑚 = 6.5 s and 𝑇𝑛 = 7.0 s, respectively. For both cases
two vertical layers are applied while the waves propagate over a flat
bottom with water depth of 𝑑 = 10 m. As a result, the dimensionless
depths are 𝑘𝑑𝑚 = 0.68 and 𝑘𝑑𝑛 = 0.55 for the first case and 𝑘𝑑𝑚 = 1.16
and 𝑘𝑑𝑛 = 1.05 for the second case, respectively.

In Figs. 12 and 13, the target (solid black lines) and computed
(dashed red lines) surface elevations are presented normalised using the
primary amplitudes 𝛼𝑚 and 𝛼𝑛. The surface elevations are measured at
two locations, one next to the wave generation boundary and one at a
distance of 150 m (wg1 and wg2 in Fig. 9). To generate the waves in
the numerical boundary of SWASH, six components are imposed, two
for the primary waves and four for the bound waves, calculated using
the derived second-order transfer functions of horizontal velocities and
surface elevations of Section 3.4. The resulting profile is compared
with the theoretical solutions given by Schäffer (1996) and Sand and
Mansard (1986), where an excellent agreement can be noticed for both
cases at all locations. It is noteworthy that the magnitude of transfer
functions for the first case where shallower water waves interact is at
least double compared to the second case where deeper water waves
are investigated.

5. Conclusions

In this study, the non-hydrostatic governing equations of the multi-
layer SWASH model have been analysed to define the linear and
non-linear properties of the model when up to four vertical layers
are applied. Tables have been defined, indicating dimensionless wa-
ter depth ranges over which the model achieves the target accuracy
depending on the number of layers employed. The derived solutions
are also used to formulate higher-order hydraulic boundary conditions,
targeting on improving and extending the wave generation capabilities
of models based on non-hydrostatic equations.
15
First, a Stokes-type Fourier analysis on a flat bottom has been per-
formed in order to define the first-, second- and third-order equations.
Subsequently, by solving the system of equations, expressions have
been derived for wave dispersion, surface elevation, horizontal and
vertical velocities and non-hydrostatic pressure for linear and non-
linear monochromatic waves. The derived solutions are then compared
with the ones resulting from Stokes wave theory in order to determine
the level of accuracy of the model.

From the linear analysis, it can be argued that the model can achieve
excellent dispersion accuracy using a few vertical layers, since in the
case of three layers the error stays below 1% up to a 𝑘𝑑 value of
16.41. However, the improvement in accuracy for the velocities and
dynamic pressure is not as pronounced as for the wave dispersion. This
is reflected in the limited range of dimensionless depths over which the
relative error stays below 1% and 3%. From the non-linear analysis,
a major improvement of the capability of the model to represent the
Stokes second-order properties is noticed when a multi-layer layout is
applied. The Stokes third-order surface component and the amplitude
dispersion are also satisfactorily described by the governing equations
of the model although for a smaller range of 𝑘𝑑 values than the
second-order.

Additionally, the capability of the non-hydrostatic equations of
SWASH model to describe the second-order sub-harmonic and super-
harmonics resulted by wave-wave interaction of two first-order wave
components has been examined. In general, for a multi-layer layout the
model is capable of accounting for sub-harmonics forced by interactions
between shallow water waves and intermediate-deep water waves,
while for super-harmonics even by interactions between intermediate
and deep water waves.

Subsequently, the derived expressions for horizontal velocities and
free surface have been utilised to formulate weakly reflective boundary
conditions to generate first-order monochromatic waves and second-
order monochromatic and bichromatic waves.

The comparison of the normalised surface elevation and wave

height, generated by imposing the first-order theoretical and derived
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solutions, shows that the latter are able to accurately reproduce the
linear target profiles. The use of the derived solutions as the target
horizontal velocity in the weakly reflective wave generation boundary
avoids the well-known sharp decrease in surface elevation and wave
height at the first computational cells, resulting in a significantly better
agreement with the target wave.

Regarding the second-order wave generation, the results demon-
strate the benefits of implementing the derived expressions in the model
for wave generation. The free spurious waves, that are introduced
at the wave generation boundary by applying linear conditions, are
eliminated by imposing both the first- and second-order derived so-
lutions. Consequently, the resulting surface profiles are homogeneous
and in very good agreement with the target theoretical profiles in the
whole computational domain. Finally, the model’s ability to accurately
simulate the second-order bound wave components of bichromatic
waves is noteworthy, as these components play an important role in
wave transformation processes in shallow water. The model’s ability to
accurately generate and simulate these bound wave components will be
valuable in predicting and understanding the impact of bound waves on
coastal areas.
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