<]
TUDelft

Delft University of Technology

Automated surface melt detection over the Antarctic from Sentinel-1 imagery using deep
learning

Zhu, Qi; Guo, Huadong; Zhang, Lu; Liang, Dong; Wu, Zherong; de Roda Husman, Sophie; Du, Xiaobing

DOI
10.1016/j.jag.2024.103895

Publication date
2024

Document Version
Final published version

Published in
International Journal of Applied Earth Observation and Geoinformation

Citation (APA)

Zhu, Q., Guo, H., Zhang, L., Liang, D., Wu, Z., de Roda Husman, S., & Du, X. (2024). Automated surface
melt detection over the Antarctic from Sentinel-1 imagery using deep learning. International Journal of
Applied Earth Observation and Geoinformation, 130, Article 103895.
https://doi.org/10.1016/j.jag.2024.103895

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1016/j.jag.2024.103895
https://doi.org/10.1016/j.jag.2024.103895

International Journal of Applied Earth Observation and Geoinformation 130 (2024) 103895

Contents lists available at ScienceDirect

International Journal of Applied Earth Observation and
Geoinformation

journal homepage: www.elsevier.com/locate/jag

Automated surface melt detection over the Antarctic from Sentinel-1 imagery
using deep learning

Qi Zhu >, Huadong Guo ™*¢, Lu Zhang >*%", Dong Liang ™®¢, Zherong Wu ¢,
Sophie de Roda Husman ¢, Xiaobing Du %"*

2 Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, China
b International Research Center of Big Data for Sustainable Development Goals, Beijing, 100094, China

¢ University of Chinese Academy of Sciences, Beijing, 100049, China

4 School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, Ithaca, NY, 14850, USA

¢ Department of Geoscience & Remote Sensing, Delft University of Technology, Delft, 2628CN, The Netherlands

ARTICLE INFO ABSTRACT
Keywords: Surface melt plays a vital role in impacting the polar mass balance and global sea level rise. Over the past
Surface melt detection decades, synthetic aperture radar (SAR) imagery has garnered considerable attention due to its capacity to
Deep learning provide high-precision and long-term information. However, the traditional SAR-based large-scale surface melt
Ama,mtic . detection methods utilizing co-orbit normalization predominantly depend on reference images and the precise
Sentinel-1 imagery . . . s L. . .. . P
Attention DeepLabv3-+ spatial registration to mlFlgate geometric distortions arl.smg from diverse incidence angles. Consequently, both
the absence of reference imagery and the movement of ice sheets and shelves present challenges to the method.
In this study, we address this issue by developing a reference-free deep learning network integrating the
Convolutional Block Attention Module (CBAM) into DeepLabv3+ to automatically detect surface melt and
establishing the surface melt dataset based on multi-temporal Sentinel-1 SAR imagery, encompassing diverse
surface conditions of the Antarctic. Our model achieves an accuracy of 95.67%, surpassing the reference-
based method and an advanced deep learning-based approach by 4.23% and 4.67%, respectively. Moreover,
compared to 500 m resolution UMelt product and the kilometer-level results obtained from Advanced
Scatterometer (ASCAT) and Special Sensor Microwave Imager Sounder (SSMIS), our model demonstrates the
capability to accurately capture the small-scale melting patterns of ice shelves with a higher spatial resolution of
40 m. Notably, our findings underscore the dispensability of reference imagery in traditional methods through
the formidable information extraction capabilities of deep learning. We finally applied the proposed method
to extract and analyze the spatiotemporal characteristics of surface melt on the Larsen C Ice Shelf during
the 2019/2020 period. The corresponding code of this study is at https://github.com/Tangyu35/Surface-melt-
detection.
1. Introduction sheet and its shelves due to resultant changes in stress. Substantial
damage resulting from crevasses may trigger natural processes inducing
The polar ice sheet stands as the largest cold source globally and meltwater-induced vertical fracturing, ultimately leading to glacier
serves as a highly sensitive indicator of global climate change. Ac- calving (Arthur et al., 2020). Therefore, precise estimation of surface

curately estimating surface melt is crucial for assessing the loss of
ice sheet material and surface albedo. In light of the ongoing and
accelerating global climate change, there has been a recent increase
in the duration and extent of surface melt observed on the Antarctic
ice sheet (Jakobs et al.,, 2021). The consequential accumulation of
significant surface meltwater poses a threat to the stability of the ice

melt on the ice sheet/shelf is imperative for effectively monitoring ice
sheet stability and gaining further insights into its response to global
sea level rise (Zhu et al., 2023a).

Over the past two decades, the advancement of earth observa-
tion technology has yielded ample data support for polar monitoring,
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establishing it as a crucial method for detecting surface melt (Liang
et al., 2021b). Currently, most surface melt products rely on microwave
radiometer and microwave scatterometer images, typically possessing
low or medium resolution. Liang et al. (2019) conducted a compre-
hensive analysis of long-term surface melt in Antarctica and Greenland
by leveraging data from Scanning Multichannel Microwave Radiometer
(SSMR), Sensor Microwave/Imager (SSM/I) and Special Sensor Mi-
crowave Imager Sounder (SSMIS). Their study revealed an upward
trend in surface melt on the surface of Greenland and a downward
trend in Antarctica, with a certain negative correlation between the
two regions. These datasets offer broad coverage and high temporal
resolution, rendering them suitable for large-scale and long-duration
detection of polar surface meltwater. However, their spatial resolution
remains coarse, typically around 25 km or 4.25 km, which poses a
challenge for precise detection of surface meltwater and analysis of
melting patterns (Benn et al., 2017).

With the increasing availability of medium and high-resolution
Synthetic Aperture Radar (SAR) data, known for its effectiveness in
overcoming cloud and rain interference, the efficient acquisition of
high-resolution surface melt information from ice sheets has emerged
as a pressing challenge. SAR, known for its finer resolution and capac-
ity to function independently of weather and illumination conditions,
presents a novel approach for surface melt detection. Liang et al.
(2021a) developed a co-orbit normalization algorithm utilizing time-
series Sentinel-1 images to generate surface melt maps across the
pan-Antarctic region. Expanding on this methodology, Hu et al. (2022)
applied a similar technique to derive time-series surface melt products
in Greenland. However, in the context of implementing SAR data
for large-scale surface melt detection, particularly in Antarctica, the
complexity of the algorithm often necessitates the utilization of the
fixed threshold method (Liang et al., 2021a). Moreover, the need for
corresponding reference imagery severely restricts the generalizability
of these methods. Given these challenges, there is a pressing demand
for a SAR-based reference-free surface melt detection method that offers
higher accuracy and a more straightforward processing pipeline

Recently, deep learning has shown superior performance in many
computer vision fields (Ma et al., 2024b; Wu et al., 2023). Compared
with conventional methods, deep learning methods generate features
tailored for the applications automatically, rendering these methods a
better choice. SAR imagery is characterized by its substantial volume
and intricate features, often accompanied by complex patterns and
susceptibility to noise interference and overlapping shadows, which
poses challenges that conventional resolution methods struggle to ad-
dress (Guo et al., 2020). The deep learning technology, leveraging
the data-driven nature, presents a promising solution by harnessing a
extensive dataset for learning. The networks acquire the ability to dis-
cern abstract patterns from vast samples, which enhances the model’s
capability for generalization, rendering it a highly effective tool for the
processing and analysis of SAR images (Zhu et al., 2021). Nevertheless,
to the best of our knowledge, there is presently no specialized SAR
image database designed explicitly for surface melt detection. This
limitation has impeded the progress of deep learning technology within
the realm of surface melt detection.

Here, we aim to establish the first deep learning surface melt dataset
and introduce an automated framework for surface melt detection
using deep learning techniques. We utilize an advanced deep neural
network model, DeepLabv3+ (Chen et al.,, 2018), renowned for its
superior performance when compared to other semantic segmentation
networks in earth observation applications (Zhang et al., 2021). The
DeepLabv3+ architecture integrates an atrous spatial pyramid pooling
(ASPP) module, which amalgamates feature information from multiple
scales through pooling operations conducted on feature maps. Addition-
ally, DeepLabv3+ accomplishes a significant expansion of the receptive
field by utilizing atrous convolutions in contrast to traditional convo-
lutions (Chen et al., 2018). These characteristics make the network
well-suited for detecting surface meltwater, as it can precisely capture
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the distribution and occurrence of surface meltwater at various scales,
which varies significantly on different ice shelve (Banwell et al., 2021;
Zhu et al.,, 2023a). However, some surface meltwater is located in
complex terrain, such as mountainous high-altitude areas or within
radar shadows, making it challenging for deep neural networks to
discern these occurrences (Niu et al., 2023). Simultaneously, differing
from conventional images in computer vision, remote sensing images
typically feature multiple channels and higher resolution. The resulting
substantial increase in data volume poses considerable challenges to
network performance. Hence, we introduce an attention mechanism
that empowers the network to extract relevant and informative features
by assigning greater weights to regions of interest, which further bol-
sters the network’s detection meltwater capability (Woo et al., 2018;
Ma et al., 2024a). The primary contributions of this work are threefold,
as follows:

1. We establish a surface melt detection dataset on the Antarctic
based on multi-temporal Sentinel-1 images, includeing 9305
samples and corresponding labels.

2. We propose a fully automated surface melt detection framework
using deep learning. The improved DeepLabv3+ network model,
combined with the attention mechanism, is applied to detect
surface melt.

3. We demonstrate that deep learning effectively overcomes the
observation geometry problems caused by satellite orbits and the
reliance on reference images of the conventional melt detection
framework by intensive experiment.

2. Study area and dataset
2.1. Study sites and Sentinel-1 imagery

The study sites used to train and verify the melt detection algorithm
cover the areas in the Antarctic that have undergone intense surface
melt. The training and testing sites in our work are selected to ensure
(1) the spatial and temporal heterogeneity and diversity within the
Antarctic ice shelf region, and (2) encompassing a variety of envi-
ronments and terrains, including near the grounding line, primary ice
shelf regions, and high-altitude mountainous zones, corresponding to
different stages of melting (melting start, melting peak, and melting
end). Finally, we choose the Larsen C ice shelf (Site 1 in Fig. 1) on
Antarctic Peninsula, the Fimbul (Site 2) and Borchgrevink (Site 3) ice
shelves in the Queen Maud Land, and the Shackleton ice shelf (Site 4)
on East Antarctica. It is worth noting that all study areas are within the
Antarctic coastline to eliminate the ocean influence on melt detection.

We collected the Sentinel-1 imagery in Extra Wide (EW) mode with
a 40 m spatial resolution for the study sites. The HH polarization
products, commonly employed in marine, ice, and polar applications,
with an incidence angle ranging from 18.9° to 47.0°, were selected to
establish the dataset. The selected training and testing dataset cover
the austral summer seasons from 2015 to 2021. Consistent with the
spatial distribution of regions, we obtain SAR imagery at different times
for every study site. Fig. 2 shows the data distribution of the training
dataset where different colors represent four different study sites, and
the circle’s size represents the data volume’s relative size. The Table 1
presented comprehensively illustrates the quantity of Sentinel-1 images
utilized for each study site across various temporal intervals. The
variations in image numbers across months may arise from differences
in image coverage and absence of melting events in certain study sites
during specific months.

2.2. Establish surface melt detection dataset
We utilized a rapid and efficient framework for detecting surface

melt based on the Google Earth Engine (GEE), harnessing an extensive
dataset of Sentinel-1 imagery and employing a co-orbit normalization
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Fig. 1. Spatial distribution of study sites across the Antarctic continent. The Antarctic coastline and ice shelves’ boundary are downloaded from Gerrish et al. (2020).

Table 1

Sentinel-1 imagery number of each site in our dataset. Note that the number denotes the total imagery involved in creation
the dataset, between which there may be overlap to fully cover the study sites. Therefore, the number of images does not

represent the proportion contained in the dataset.

Time Site 1 Site 2 Site 3 Site 4
(Year-Month) (Larsen C ice shelf) (Fimbul ice shelf) (Borchgrevink ice shelf)  (Shackleton ice shelf)
2016-11 0 0 0 4
2016-12 0 48 13 14
2017-01 0 44 22 10
2017-02 0 0 0 10
2017-11 0 0 0 6
2017-12 0 0 9 12
2018-01 0 0 13 33
2018-02 0 0 0 10
2018-10 0 0 22 0
2018-11 40 0 22 8
2018-12 44 0 22 15
2019-01 40 52 38 15
2019-02 0 0 29 9
2019-10 25 0 36 0
2019-11 22 0 31 7
2019-12 28 0 30 26
2020-01 28 49 30 12
2020-02 22 0 0 12

method. Within the GEE platform, the Sentinel-1 data underwent pre-
liminary processing steps, encompassing the elimination of thermal
noise, radiometric correction, and rectification for topographic varia-
tions (Gorelick et al., 2017). However, for the precise identification

of freeze—thaw transitions, further refinement was indispensable, par-
ticularly in addressing speckle noise reduction and the elimination of
artefacts such as black edges. To address speckle noise, we implemented
a boxcar filter, while an entropy value filter was employed to effectively
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eliminate areas afflicted by black edges exhibiting low and irregular
backscattering coefficients. To achieve a comprehensive coverage of
the study area, all images were meticulously merged and subsequently
cropped based on the ice shelf boundary.

Following the data preprocessing, the surface melt detection pro-
cedure was executed. Variations in incident angles among SAR images
posed challenges for surface melt detection due to differing observation
geometries. Considering that SAR images captured from the same orbit
have the same observation geometry, any change in the backscattering
coefficient between winter and summer SAR images will likely be a
consequence of melting events on the surface (Liang et al., 2021a).
Therefore, we use the co-orbit normalization method to normalize the
product imagery with the winter reference imagery from the same or-
bits. The Eq. (1) represents the formula for the co-orbit normalization.

O orbit—norm(X: ¥) = aorbil—srudy(xa Y)/Uorbit—ref(x’ ) @

where, the “orbit” refers to the relative orbit numbers in the GEE Data
Catalog, which are restored in the GEE database with the “relative-
OrbitNumber” parameter. o,,4_sudy(Xs ¥)s Corpir—re s (X: ¥) @0 Cpppis_porm
(x,y) represent the backscatter coefficient of the SAR data under
study at the geographical position, the corresponding location in the
winter reference image and the normalized imagery in (x,y) pixels,
respectively.

Time filtering was carried out to separate the winter reference
images and the study period images for surface melt detection analysis
from the entire Sentinel-1 SAR dataset. SAR imagery from June and
July for each year were selected as the reference winter images for
all years, considering these two months are the coldest time period
in Antarctica and do not experience melting (Liang et al., 2019).
The other SAR images were selected as the study period images for
surface melt detection. Finally, a freeze-thaw image set was obtained
using the unified threshold (-2.66 dB, consistent with Liang et al.
(2021a) and Zhu et al. (2023a)).

After the surface melt detection, the results of the subsequent sur-
face melt detection were subjected to manual examination and refine-
ment by experienced experts to eliminate potential areas that could
lead to misjudgment. We implemented elevation masking (1500 m) to
exclude high-altitude regions where melt occurrences are improbable,
while ice crevasses and fluctuations in local incidence angle are less
frequent (Liang et al., 2021a; de Roda Husman et al., 2024). Addition-
ally, we employed co-orbit normalization with reference imagery to
correct geometric distortions. Furthermore, we applied the normalized
Radon transform method to identify damaged areas on the Antarctic Ice
Shelves (Izeboud and Lhermitte, 2023), thereby eliminating potential
sources of interference.

Fig. 3 presents surface melt samples from the Larsen C ice shelf
on December 15, 2019, derived from Sentinel-1 images. Overall, the
algorithm has successfully obtained precise surface melt distribution
information, as depicted in Fig. 3(a) and (d). Fig. 3(b) and (c) showcase
regions with ice crevasses on the Larsen C surface (identified in black
boxes in Fig. 3(a)) and their corresponding detection results. It is evi-
dent that our approach effectively mitigates the impact of ice crevasses
on surface melt detection. In areas where surface meltwater occurs
within ice crevasses (see Fig. 3(b)), our database accurately annotates
them as “Thaw”. Conversely, in areas where surface meltwater is absent
within ice crevasses (shown in Fig. 3(f)), we correctly label them as
“Freeze”. Finally, we applied them as our surface melt dataset used to
further DL training and testing. Finally, we applied them as our surface
melt dataset used to further DL training and testing.

To facilitate training of the network, the post-mosaicking Sentinel-
1 images were divided into smaller blocks of size 512 x 512 using a
sliding window approach. To preserve the integrity of edge information
within the image blocks, a 20% overlap was incorporated between
consecutive images. As a result, a first dataset comprising 9305 pairs of
SAR images for surface melt detection, along with their corresponding
labels, was acquired. The SAR images and labels were saved in the
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Fig. 2. Temporal distribution of Sentinel-1 imagery acquisitions used for automated
surface melt extraction, where different colors represent training sites and a test site
(red rectangles and the blue rectangle shown in Fig. 1, respectively), and the size of
the circle represents the relative size of the data volume. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

lossless JPEG and PNG format, respectively. The data from the Fimbul
(Site 2) and Borchgrevink (Site 3) Ice Shelves are used to train our
model, while the imagery from the Larsen C (Site 1) and Shackleton
(Site 4) Ice Shelves area employed to test the performance.

3. Methodology

Fig. 4 depicts the architecture of the Attention DeepLabv3+ model
(Section 3.1.1) containing the attention mechanism (Section 3.1.2) to
explore surface melt information extraction based on multi-temporal
SAR images. ResNet (Section 3.2.1) and MobileNetV3 backbone (Sec-
tion 3.2.2) are implemented to extract semantic information from the
input imagery, where the former is a classic backbone in the com-
puter vision field, while the latter is a novel architecture focusing on
lightweight deep neural network design. In Section 3.3, we introduced
five evaluation indexes.

3.1. Attention DeepLabv3+

3.1.1. DeepLabv3+ model

DeepLabv3+, a state-of-art deep neural network model for semantic
segmentation adopts the encoder—decoder structure where the encoder
captures multi-scale features, and the decoder recovers the image res-
olution (Fig. 4). Atrous convolution is utilized within the ASPP to
specifically manage the output feature map resolution and modify the
field-of-view (FOV) without increasing the parameter count. It could
precisely capture object boundaries by obtaining multi-scale contextual
information and has been widely employed to many remote sensing
segmentation missions (Wang et al., 2021; Du et al., 2021).

3.1.2. Attention mechanism

The attention mechanism can increase the representation power of
networks by learning contextual information and analyzing the internal
correlation. The main idea of it is to increase the weights of meaningful
information and ignore the irrelevant (Woo et al., 2018). The attention
mechanism has been extensively exploited for designing modern deep
neural network architectures (Zhu et al., 2023b). In this study, CBAM,
shown in Fig. 5, consisting of a channel attention module (CAM) and
a spatial attention module (SAM), is incorporated in the DeepLabv3+
model (namely, Attention DeepLabv3+), where the former focuses on
“what” is helpful in a given feature map U and the latter aims to find
“where” the meaningful information is.
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In our model, the CBAM is integrated after each parallel atrous 3.2. Backbone
convolution in the ASPP layer obtained by atrous convolution from
different scales. It is also placed before the low-level feature extraction
in the Decoder to capture the rich contextual information derived from

the Backbone (Fig. 4).

3.2.1. ResNet

Upsample

—_————

The residual block attempts to solve the gradient explosion and
the higher requirement for computation resources by training the



Q. Zhu et al.

International Journal of Applied Earth Observation and Geoinformation 130 (2024) 103895

Channel
Attention

( Convolutional Block Attention Module (CBAM) \

Spatial
Attention

\.

Fig. 5. The overview of the Convolutional Block Attention Module (CBAM).
Source: This figure is adapted from Woo et al. (2018).

additional layers as an identity function (f(x) = x) (He et al., 2016).
The residual block profoundly influences the design of modern deep
neural networks (Vaswani et al., 2017). The main branch of the residual
block stacks two 3 x 3 convolutional layers. A Batch Normalization
(BN) layer is placed after the convolutional layer and a ReLU activation
function (Nair and Hinton, 2010) follows the first BN layer. Meanwhile,
the residual block includes a residual connection that directly feeds the
input layer x to the addition operator, through which the inputs can
forward propagation faster across layers.

3.2.2. MobileNetV3
The Google proposed a lightweight network MobileNet for bal-
ancing computation performance in 2017, and accuracy, which has
three versions. Here, we provide a general review of the MobileNetV3
(Howard et al., 2019; Hu et al., 2018). Depthwise separable convolution
proposed in MobileNetV1 is implemented in MobileNetV3 for each
channel of the input feature, significantly reducing the computation re-
source and model size. Compared with MobileNetV1 and MobileNetV2,
MobileNetV3 adopts a novel nonlinear activation function (hard-swish,
defined in Eq. (2)), and a powerful network architectural, Squeeze and
Excitation block.
ReLU6(x + 3)

z @

hard-swish(x) = x
3.3. Evaluation index

Five evaluation metrics are utilized to evaluate the learning ability
of Attention DeepLabv3+ models, namely Pixel accuracy, Mean Inter-
section of Union (MIoU), Precision, Recall, and F, score. Pixel accuracy
simply reflects the proportion of correctly segmented samples in the
imagery. Intersection of Union (IoU) represents the intersection of the
detection result and the ground truth to their union, and MIoU is the av-
erage IoU of all predicted classes. Precision refers to correctly predicted
pixels to all detected ones, while Recall indicates the percentage of
correctly predicted masks to the positive. Finally, F, score is calculated
based on the Precision and Recall. For a more detailed description of
the indexes, the authors recommend He et al. (2022).

3.4. Implementation details

We use a central processing unit (CPU) with processor Inter(R)
Xeon(R) Gold 6226R (2.69 GHz), a graphics processing unit (GPU)
with RTX 8000 with 48G memory in total, and python programming
implementation. The PyTorch framework is applied under the Linux
system. The largest batch size for each backbone is used to fully utilize
the GPU’s power (32 for the ResNet backbone and 64 for the MobileNet
backbone). We opted for the binary cross-entropy as our loss function
and conducted training for each model over 100 epochs. The learning
rate was set to 0.005, employing an adaptive decay value of le—4,
in line with the original implementation of DeepLabv3+ (Chen et al.,
2018).

Table 2
Comparison of the performance (%) and computation cost between DeepLabv3+
configured with ResNet and MobileNet backbone on the test set.

Backbone CBAM  PA MIoU Precision  Recall F; Para.
ResNet 95.47 91.09 95.42 95.25 95.34 40.28M
93.65 87.75  93.60 93.34 9347  39.75M
MobileNet v 95.67 91.45 95.47 95.58 95.53 11.25M
X 94.08 88.55 94.12 93.74 93.93 11.13M
Table 3

Comparison of the performance (%) and computation cost between DeepLabv3+
configured with ResNet and MobileNet backbone on the training set.

Backbone CBAM  PA MIoU Precision  Recall F; Para.
ResNet v 95.97 92.00 95.93 95.73  95.83  40.28M
94.37 89.02 94.35 94.03 94.19 39.75M
MobileNet 4 96.34 92.67 96.13 96.25 96.19 11.25M
X 95.08  90.34  95.13 94.73 9493 11.13M

4. Experiments results
4.1. Accuracy assessment and ablation study

In our study, we utilized ResNet and MobileNetV3 backbones to
extract contextual information from SAR imagery, while integrating
CBAM into the DeepLabv3+ model to capture attention weights in both
channel and spatial dimensions. To assess the efficacy of these modules,
we performed ablation experiments. The evaluation metrics of diverse
melt detection models are summarized in Table 2 (on test set) and
Table 3 (on training set).

The ablation experiments were conducted on the surface melt
dataset. Deep learning-based surface melt detection has demonstrated
remarkable accuracy on test set, particularly when incorporating
CBAM. The MIoU surpasses 0.91, while the F; score exceeds 0.95.
Specifically, MobileNetV3-DeepLabv3+ achieves the highest MIoU of
0.9145 and F, score of 0.9553. This model effectively utilizes the chan-
nel and spatial attention obtained through CBAM, in conjunction with
the MobileNet backbone’s efficient extraction of low-level features.

4.1.1. The impact of CBAM module

Based on the test set (Table 2), the incorporation of CBAM has
a positive impact on surface melt detection accuracy. Specifically,
CBAM integration yields a MIoU of 0.9109 and an F; score of 0.9534,
resulting in a notable improvement of 3.34% and 1.87% in the ResNet-
DeepLabv3+ model, respectively. In the case of the MobileNetV3 back-
bone, the application of CBAM leads to a 2.90% boost in the MIoU
metrics, further confirming the enhanced expressiveness of the net-
work due to CBAM and its subsequent improvement in melt detection
accuracy.

Additionally, it is noteworthy that, owing to the adaptable nature
of the CBAM module and its lightweight design, despite the significant
enhancement in model accuracy, computational expenses and training
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Fig. 6. Backscatter echo characteristics, the surface melt detection result and the corresponding ground truth of Antarctic ice sheet. The SAR images are stretched using histogram
equalize method in ArcMap. Legend—black: no image or masked by elevation, blue: thaw and white: freeze. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

duration have only seen a slightly increase. The total parameter incre-
ments for the ResNet and MobileNet backbones were a mere 0.53M and
0.12M respectively, representing a mere 1.33% and 1.07% increase.

4.1.2. The impact of network backbone

ResNet and MobileNetV3 backbones were employed to evaluate the
model’s performance. According to Table 2, MobileNetV3 exhibits a
slight performance advantage over the ResNet backbone in melt detec-
tion. When applying CBAM, MobileNet achieved a 0.36% improvement
in the MIoU metric compared to ResNet. However, when CBAM was not
applied, there was a 0.80% improvement. This enhancement is due to
the SE block utilized in MobileNetV3 (Howard et al., 2019), which still
provides partial attention mechanisms when CBAM is absence.

More meaningfully, MobileNetV3’s primary focus on lightweight
network design provides evident advantages in inference speed. Based
on our experiments (with implementation details matching
Section 3.4), the ResNet-DeepLabv3+ model achieves a frame rate of
23.88 frames per second (FPS), whereas the MobileNetV3-based model
is capable of inferring 85.16 images per second, which is 3.56 times
faster than ResNet-DeepLabv3+.

4.2. Melt detection performance on different ice sheet surface conditions

The dry snow area, melting area, and refreeze area represent three
distinct surface environments (Liang et al.,, 2021a). Fig. 6 visually
presents the detection results achieved by our algorithm under these
aforementioned surface conditions, providing corresponding SAR im-
agery and ground truth values. The primary objective is to virtually
demonstrate the changes in SAR backscattering characteristics before
and after surface melt. The co-orbit normalization method ensures
that observational geometry between the reference and experimental

SAR imagery are approximately identical by acquiring them from the
same orbit of the Sentinel-1 satellite. In the SAR images, the C-band
electromagnetic waves effortlessly penetrate the small-sized dry snow,
resulting in weak echoes and forming deep black regions (Figs. 6(a) and
6(b)). Conversely, the presence of liquid water generated by melting
exerts a substantial absorption effect on electromagnetic waves, leading
to a pronounced decrease in backscattering echoes and the appearance
of darker areas in the image (Fig. 6(a)). Consequently, differentiating
these dry snow regions from the surface melt area, particularly in high-
altitude regions, presents a significant challenge due to their similar
backscatter coefficients. Fig. 6(c) showcases the detection outcomes
obtained from the test site. Our method accurately identifies the frozen
area, with an accuracy of 95.67%, particularly in ice shelf regions, as it
exhibits distinct backscatter echoes that differ significantly from other
areas and performed well in high-altitude mountainous regions, which
is typically challenging due to their low backscattering echoes, as well
as the presence of overlap and radar shadows at high altitudes.

5. Discussion
5.1. Comparison with other surface melt methods

The Table 4 presents a comparative analysis between our method
and various surface melt detection methods, focusing on the data
sources, spatiotemporal resolution, and detection accuracy. The Fig. 7
showcases our detection findings in comparison to results obtained
through various methods. These methods encompass UMelt, a deep
learning method based on U-Net (de Roda Husman et al., 2024), out-
comes obtained through the Advanced Scatterometer (ASCAT) (Wang
et al., 2022) and results derived from SSMIS data (Trusel et al., 2012).

The surface melt detection from ASCAT (Fig. 7(b)) and SSMIS
(Fig. 7(c)) captures the majority of melting patterns on the Shackleton
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Fig. 7. Qualitative comparison of surface melt on the Shackleton Ice Shelf during the 2016-2017 melt season, including (a) our results, (b) UMelt, (¢) ASCAT, and (d) SSMIS at

the beginning (30 November 2016), peak (17 January 2017), and end (16 February 2017).

Source: The comparative results for UMelt, ASCAT, and SSMIS are provided by de Roda Husman et al. (2024).

Table 4

Comparison with existing surface melt detection methods. (FH: Fixed threshold, AOT: Adaptive optimal threshold, BTM: Brightness temperature
method, IWTM: Improved wavelet-transform method, EDM: Edge detection method, CON: co-orbit normalization and DL: deep learning)

Surface melt detection method Data source

Spatial resolution Temporal resolution Overall accuracy

BTM with FH (Bergeron et al., 2014) AMSR-E and AMSR-2 12.5 km Daily 83.30%
IWTM with AOT (Liang et al., 2019) SMMR, SSM/I and SSMIS 25 km Daily 82.57%
EDM with AOT (Wang et al., 2018) SSM/I and QuikSACT 25 km Daily 81.00%
EDM with FH (Antropova et al., 2022) RADARSAT-2 SAR 4.8 m Every 6 days 83.91%
CON with FH (Liang et al., 2021a) Sentinel-1 SAR 40 m Every 6 days 91.2%

DL with U-Net (de Roda Husman et al., 2024) Sentinel-1, ASACT and SSMIS 500 m Daily 91.0%

Our method Sentinel-1 SAR 40 m Every 6 days 95.67 %

Ice Shelf. However, it appears that SSMIS underestimates surface melt-
water in the western region of the Shackleton Ice Shelf. Despite offering
high temporal resolution with daily data collection, these methods
suffer from relatively coarse spatial resolution, posing a significant
challenge in accurately capturing minor melting patterns (de Roda
Husman et al., 2024). Moreover, the presence of mixed pixel scenarios
hinders their precision in surface melt detection (Johnson et al., 2020).

UMelt, trained on Sentinel-1, combining the ASCAR and SSMIS
datasets, demonstrates heightened sensitivity in detecting subtle melt-
ing events, particularly along the grounding line and within the Masson
Island (de Roda Husman et al., 2024). However, the pursuit of com-
prehensive product coverage and a temporal resolution (every 12 h)
necessitates a compromise in spatial resolution (500 m). The relatively
simple architecture of U-Net makes it changeling to obtain multi-
scale semantic information, which restricts the further improvement of
accuracy (Zhang et al., 2021).

The proposed Attention DeepLabv3+ model has the ability to detect
surface melt on multi-scale feature maps due to the ASPP and the
attention mechanism can enhance the weights of the regions of surface
melt. It accurately discerns the melting patterns of the Shackleton
Ice Shelf (Fig. 7(a)), achieving an impressive accuracy of 95.97%,
surpassing the baseline by 4.23% and the UMelt by 4.67%. While we
acknowledge the presence of some misclassifications (highlighted in
red boxes in Fig. 6(c)), and the Sentinel-1 data struggles to detect the
surface melt with the presence of liquid water in ice regions (southeast
of the Shackleton Ice Shelf, shown in Fig. 7) (Zheng et al., 2020; Liang
et al., 2021a), which can both be attributed to the same low backscatter
coefficients.

However, Our model demonstrates particular proficiency in cap-
turing nuanced small-scale melt patterns, exemplified by the northern
Shackleton Ice Shelf (Fig. 7(a)). In this context, UMelt tends to over-
estimate the surface meltwater, which is primarily attributed to the
impact of training on lower-resolution ASCAT and SSMIS data. Our

model performs well on detecting high-altitude mountainous regions
surface melt (Figs. 6(c) and 6(d)). Additionally, the higher spatial
resolution of our product (40 m) enhances its capability for precise
detection of meltwater patterns and spatial distribution. This is crucial
for advancing our understanding of ice shelf melting patterns and
intricately delineating the significant impact of surface meltwater on
global sea-level rise (Zhu et al., 2023a).

5.2. Performance evaluation for surface melt detection between deep learn-
ing and co-orbit normalization

Surface melt detection using SAR imagery faces challenges such as
misidentifying ice crevasses, exposed ice, and misclassification due to
radar shadow and radar imagery geometry (Liang et al., 2021a; de
Roda Husman et al., 2024). The co-orbit normalization method applies
reference imagery to normalize the images from the product period
to mitigate these factors. However, reference-based methods present
significant challenges when the absence of reference imagery and the
pronounced movement occurring at ice sheets and shelves, where the
former may lead to a decrease in the coverage range of data products,
potentially stemming from the lack of winter reference images, while
the latter may misinterpretation of displacement caused by ice shelves
movement as surface melt.

Fig. 8 delineates our deep learning model and the traditional
method results, demonstrating in areas affected by partial ice crevasses
(highlighted by black boxes in Fig. 8(b) and (d)) and SAR geometry
effects induced by variations in radar incidence angles due to terrain
undulations (Fig. 8(c)). The primary aim of Liang et al. (2021a) is to
rapidly obtain melt information across the Antarctic by co-orbit normal-
ization. Therefore, precise spatial registration between the reference
and product images has not been executed (Liang et al., 2021a), as it
would notably degrade algorithm performance. This works well at most
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Fig. 8. Qualitative comparison of surface melt on the Shackleton Ice Shelf using our deep learning method and co-orbit normalization method from Liang et al. (2021a) on

December 6, 2016.

Antarctic regions where the motions are generally not pronounced.
However, as shown in Fig. 8, the method yielded erroneous classi-
fications, especially at the leading edge of the Shackleton Ice Shelf
with fast ice velocity and regions with pronounced terrain undulations
(highlighted by black boxes in Fig. 8(f) and (g), respectively).

Contrarily, our approach effectively addressed these challenges
(highlighted by black boxes in Fig. 8(j) and (k)) by employing the dam-
age detection algorithm proposed by Izeboud and Lhermitte (2023).
Additionally, the robust multi-scale semantic information extraction
capability of DeepLabv3+ and the most vital features for melt detection
derived from the CBAM mechanism facilitated more precise results.
While we acknowledge that DL-based surface melt detection cannot
completely eliminate the impact of ice crevasses and terrain undula-
tions may still yield misclassifications, but it has achieved significant
improvements compared with existing methods (Liang et al., 2021a; de
Roda Husman et al., 2024).

5.3. Time series surface melt mapping for Larsen C ice shelf (LCIS)

The LCIS stands as the largest ice shelf along the eastern coast
of the Antarctic Peninsula. It undergoes more notable rises in both
oceanic and atmospheric temperatures when compared to other areas
within the Antarctic region (Hubbard et al., 2016). In July 2017, LCIS
witnessed the detachment of A-68, a colossal iceberg weighing 1 trillion
tons and surpassing twice the size of Luxembourg, with an expansive
area of 5800 km?. Given this context, continuous and precise monitor-
ing of surface melt on the LCIS assumes paramount importance as it
represents a significant factor contributing to the ice shelf’s collapse.

The surface melt map of LCIS for the period of 2019/2020 was
generated using the proposed deep learning method (Fig. 9). The
melting process of LCIS initiates near the continental section of the AP,
exhibiting significantly earlier surface melt compared to the remainder
of the ice shelf (Figs. 9(a) and 9(b)). This pattern starkly contrasts with
its neighboring ice shelves, such as Wilkins and George VI ice shelves,
where surface melt typically commences near the coastline influenced
by warmer oceanic conditions (Zhu et al., 2023a). Gradually, the
surface melt on LCIS progresses from north to south, nearing complete
melt by December 19th and persisting until mid-March 2020. The
southern section of the ice shelf experiences initial freezing, with only
minimal surface melt remaining near the mainland by April 12th. The
time-series surface melt mapping of Larsen C reveals a period of intense
melting during 2019/2020, spanning over 100 days. These findings
are consistent with Bevan et al. (2020), which reported the highest
recorded melting in 40 years for the same period. This significant melt
underscores the cessation of the apparent decline in ice shelf surface
melt observed since the turn of the century.

5.4. Advantages, limitations and future work

5.4.1. Advantages

Compared to traditional surface melt detection methods, our work
demonstrates major improvements in two key aspects: (1) Establish-
ment of a substantial surface melt detection dataset encompassing
the Antarctic region. (2) Introduction of a reference-free automated
melt detection workflow utilizing deep learning. Through our proposed
method, surface melt information can be directly obtained after basic
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Fig. 9. Time series surface melt information for Larsen C Ice Shelf in 2019/2020.

pre-processing of SAR images, eliminating the need for manual thresh-
old selection that often introduces errors. The frequent occurrence of
surface melt in complex terrains poses a considerable challenge for
accurate detection (Wang et al., 2022). Moreover, the abundance of
SAR imagery data presents a significant hurdle to efficient surface melt
detection (Liang et al., 2021a). In response to these challenges, we
introduce the Attention DeepLabv3+ to detect the surface melt, which
can extract multi-scale semantic information to capture the distribution
patterns of the image features from the ASPP layer, while the CBAM
mechanisms enhances the expression ability of surface meltwater re-
gions in the feature map, thus achieving precise classification of surface
meltwater through continuous reinforcement learning and training. The
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results in our experiences demonstrate that the proposed Attention-
DeepLabv3+ model effectively mitigates misjudgments caused by the
aforementioned factors, including ice crevasses, radar shadows, and
terrain undulations regions and reduces reliance on reference images,
thereby improving the classification accuracy of surface meltwater

5.4.2. Limitations

While the proposed model offers notable advantages, the approach
still has certain limitations. One is the requirement for substantial
computing resources and a lengthy training time, with the ResNet-
based Attention DeepLabv3+ model taking approximately 30 h to train.
Moreover, the model encounters difficulties accurately identifying and
classifying high-altitude regions with overlaps and shadows and surface
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meltwater occurring on ice regions without snow cover, resulting in
misjudgments under these specific conditions. Improving the model’s
capacity to handle such scenarios is an area that demands future re-
search and development efforts. Finally, as our model is purely trained
on Sentinel-1 imagery, its temporal resolution is constrained, which
may miss the extraction and monitoring of some melting patterns of
the ice shelves.

5.4.3. Prospects for improvement

There are several aspects in our existing model that offer opportuni-
ties for improvement. Firstly, augmenting the size of training samples
stands as a straightforward approach to enhancing the network’s accu-
racy by maximizing the model’s potential. Secondly, Niu et al. (2023)
has affirmed the potential use of utilizing Sentinel-2 optical imagery in
detecting surface meltwater on the Amery Ice Shelf. This inspired us
to integrate the SAR imagery and the optical imagery, incorporating
with richer spectral information and higher spatial resolution to fur-
ther enhance the bolster network’s performance. Moreover, introducing
a more sophisticated decoding layer in comparison to DeepLabv3+
or adopting novel network structures like the Transformer architec-
ture (Dosovitskiy et al., 2020; Zhu et al., 2023b) presents an alternative
pathway to augment the model’s generalization capabilities.

6. Conclusion

The automated extraction of surface melt holds significant im-
portance in monitoring ice sheet mass balance and investigating the
mechanisms underlying ice shelf disintegration, particularly within the
context of global climate change. In this study, we have introduced
a novel surface melt detection dataset focused on the Antarctic, en-
compassing 9305 training samples along with corresponding labels
derived from multi-temporal Sentinel-1 imagery. Our work involved the
development of a reference-free automated framework for surface melt
detection by integrating the attention mechanism into the DeepLabv3+
model. This approach streamlines the overall detection process while
ensuring accuracy by reducing reliance on reference images. The suc-
cessful application of our melt detection framework across diverse
Antarctic surface conditions underscores its high level of generaliza-
tion. This success augurs well for its potential wider applicability and
relevance, extending beyond Antarctica to regions such as Greenland
and Alaska.
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