
Inferring Robust Plans with a
Rail Network Simulator

Master’s Thesis

Reuben Gardos Reid

Inferring Robust Plans with a
Rail Network Simulator

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Reuben Gardos Reid

Algorithmics Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands

www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2023 Reuben Gardos Reid.

Inferring Robust Plans with a
Rail Network Simulator

Author: Reuben Gardos Reid

Abstract

Over 700 trains in the Netherlands are used daily for passenger transporta-
tion. Train operations involve tasks like parking, recombination, cleaning, and
maintenance, which take place in shunting yards. The train unit shunting prob-
lem (TUSP) is a complex planning problem made more difficult by uncertainties
such as delays. Most existing approaches overlook these disturbances and the
approaches that consider them incorporate heuristics to enhance the robustness
of their solutions to disturbances. This thesis proposes an alternative approach:
utilizing probabilistic programming to turn an existing planning algorithm and
simulator into a generative model of the TUSP. The model introduces dis-
turbances without the need to modify the planning algorithm or simulator.
Through two types of inference, we infer a distribution of robust solutions for
the TUSP. Empirical results demonstrate the effectiveness of our approach for
inferring robust plans in small-scale scenarios.

Thesis Committee:

Chair: Prof. Dr. M.M. de Weerdt, Faculty EEMCS, TU Delft
Daily Supervisor: Dr. S. Dumančić, Faculty EEMCS, TU Delft
Committee Member: Prof. Dr. R.M.P. Goverde, Faculty CEG, TU Delft

Daily Co-Supervisor: ir. I.K. Hanou, Faculty EEMCS, TU Delft

Preface

The completion of this thesis report marks the end eight months of work, beginning
in November 2022, and marks the culmination of my time as a master’s student in
Delft.

The thesis may have started eight months ago, but its real origins reach back
several years. Outside of computer science, I am fascinated by urbanism–especially
by the ways that people move around their environments, whether by public transit
or by bike. Throughout my bachelor’s and master’s, I have been looking for ways to
combine these interests with my computer science education in a meaningful way.
This thesis is another step on that journey.

This project would not have come about were it not for Sebastijan Dumančić.
His seminar on probabilistic programming inspired my interest in the subject and ul-
timately brought about the conversation that led to my choosing this thesis. Thank
you to Sebastijan, Issa Hannou, and Mathijs de Weerdt for your collective super-
vision throughout this project. Week in and week out, I appreciated the calm,
unwavering support and guidance.

Thank you to my friends and teammates from Force Elektro. Having such a
tight-knit and welcoming community for ultimate frisbee here in Delft has been a
highlight of the last two years. The trainings and tournaments were a very welcome
change of pace after long days of studying.

Many of those long days were spent in the CS offices of Echo or B28. Thank you
to the friends who were there, day after day. Whether they were about our projects
or our lives, the hours of discussions kept me going throughout the project.

Finally, thank you to my family for your emotional and financial support. To
my parents especially, thank you for your trust and support, even when the journey
takes me far from home.

Reuben Gardos Reid
Delft, the Netherlands

July 17, 2023

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 Why Probabilistic Programming? . 2
1.2 Robustness . 3
1.3 A Motivating Example . 4
1.4 Assumptions . 5
1.5 Research Questions . 5

2 Literature 7
2.1 Background . 7
2.2 Related Work . 11
2.3 Conclusion . 13

3 Problem Setting 15
3.1 Problem . 15
3.2 Method . 16
3.3 Evaluation . 16
3.4 Conclusion . 17

4 Methodology 19
4.1 TORS and Planner Set-up . 19
4.2 Generative Model . 20
4.3 Inference . 21
4.4 Visualizing the Distribution . 23
4.5 Conclusion . 23

v

Contents

5 Results 25
5.1 Experimental Setup . 25
5.2 Revisiting the Motivating Example 27
5.3 3-Train Instances . 30
5.4 Large Scenario Performance . 32
5.5 Robustness Evaluation . 33
5.6 Conclusion & Answers to Research Questions 35

6 Conclusions and Future Work 37
6.1 Key Findings . 37
6.2 Contributions . 37
6.3 Limitations . 38
6.4 Future Work . 39

Bibliography 43

A Assorted Pseudocode 47
A.1 Greedy Planning Agent . 47
A.2 Sequence Shuffling . 48

B Selected 2-Train Plan 49

vi

List of Figures

1.1 The Kleine Binckhorst shunting yard in The Hague, Netherlands 3
1.2 Scenario displaying the utility of a robust plan 4

2.1 An example train/shunting unit . 7
2.2 Example of matching incoming and outgoing trains 8

5.1 Examples of two common shunting yard layouts 25
5.2 Log likelihoods, 2 train scenarios, MH and IS 28
5.3 Trie representing plans for a 2-train scenario 29
5.4 Log likelihoods, 3 train scenarios, IS . 30
5.5 Log likelihoods over time, 3 train scenarios, MH 31
5.6 Log likelihood of two selected instances of MH over inference steps . . . 32
5.7 A direct evaluation of the robustness of 3-train plans 34

B.1 Shunt yard layout for the 2 train scenarios. 49

vii

Chapter 1

Introduction

The Dutch Railways (Nederlandse Spoorwegen, or NS) aims to move 1.4 million
people around the Netherlands daily. In their 2021 report, NS asserts that more
than 700 trains are required to accomplish such a task. Throughout the day, those
trains need to be cleaned and maintained. They might also be recombined to adjust
their size to match the changing demand during peak hours of the day. Most of
these tasks are performed at centralized locations called shunting yards. Creating a
schedule for such a shunting yard is a complex and time-consuming task for human
planners to carry out and a computationally intense task for computers to complete.
It is, however, a task that planners must complete daily to meet the rail network’s
demands and maintain a quality service for passengers.

Sahinidis [2004] describes that, since exploration began on applying optimiza-
tion to real-world domains like transportation, it was recognized that most problems
would exhibit uncertainty. Solutions created without taking this into account are
likely to fail at some point when used in a real-world context with uncertainty. Ide-
ally, the solutions should exhibit robustness against such effects–they should remain
valid even as the scenario changes.

Making the shift from the deterministic to the stochastic problem is difficult. For
many problems, seeing how something like a delay affects the rest of the scenario
is not trivial. In the context of operations research, these small-scale events are
referred to as disturbances [Cacchiani et al., 2014]. If an algorithm is to address
such events, it is often the case that the programmer has to guess how disturbances
propagate through a scenario. In the case of a disturbance like a train entering a
shunting yard late, how will its tardiness interact with the rest of the trains already
present? What are the correct rules to introduce in order to minimize that effect?

Is it possible to avoid directly answering such questions while still considering the
stochastic elements of a problem? This thesis introduces an approach to augment
existing planning algorithms to extract plans that are robust to stochasticity.

1

1. Introduction

1.1 Why Probabilistic Programming?

The approach introduced here is mainly built on the Probabilistic Programming
(PP) paradigm. At the most basic level, it consists of programs that contain random
choices. These programs can be thought of as statistical models. What benefits does
that offer? Why use PP as a starting point?

There exist other attempts at constructing robust plans for the problem at hand.
Existing techniques, such as those developed in van den Broek [2022], modify the
planning algorithm itself in order to increase the robustness of its output. This thesis
takes a different approach, attempting to increase the robustness without modifying
the planning algorithm, thereby decoupling the planner from the need to consider
uncertainties. A further benefit of this choice is that the process becomes agnostic
to the planning algorithm used. As long as the planning algorithm is suitable for the
deterministic version of the problem, it fits within the framework of this approach.

Probabilistic Programming is relevant in this case for two main reasons. The
first benefit it offers is an approach to modeling the problem in a way that takes
advantage of existing models. The idea is to augment a deterministic simulator with
non-deterministic capabilities using a probabilistic programming language (PPL). It
is a technique that has gained attention recently. Wood et al. [2022], for example,
made use of an agent-level epidemiological simulator to characterize how different
health policies could affect rates of COVID in a population. In this case, defining a
generative model would consist of building an agent-level simulator in a PPL. This
process is greatly simplified because the simulator encapsulates the complex logic
behind simulating an entire population.

The problem of planning schedules for shunting yards–referred to in the literature
as the train unit shunting problem (TUSP), is a similar, complex problem. Defining
a purely statistical model of the problem would be difficult. PPLs afford us enough
flexibility to program the entire TUSP from scratch. While this flexibility is great,
the complexity of the problem means that this programming process would be time-
consuming. Luckily, one of the advantages of defining a statistical model in a PPL
is that it is possible to make arbitrary calls to external code within the definition
of the model. In this manner, the external code can encapsulate the logic of the
problem.

For the TUSP, an existing simulator, Treinonderhoud-en-rangeersimulator/Train
Maintenance and Shunting Simulator (TORS), is used. TORS models the operations
of a shunting yard and includes a framework for implementing and applying planning
algorithms to solve instances of the TUSP. Being able to call the simulator from
within the generative function means that the entire model of the TUSP can be
neatly encapsulated within a single function call. In the same way that the approach
is agnostic to the planner used, the exact simulator is not essential either. This
freedom theoretically extends the method to other problems beyond the TUSP.

The second benefit of PP is one of Bayesian inference in general. After applying
some inference methods to the model, the output is not a single solution but a
distribution over solutions. This behavior differs significantly from the standard

2

1.2. Robustness

Figure 1.1: The Kleine Binckhorst shunting yard in The Hague, Netherlands. Dia-
gram from SporenPlan.nl1.

optimization approaches to planning problems in that they only output one best
solution. For the TUSP, the distribution over solutions translates to a distribution
over plans. The idea is that the density of this distribution should correspond to
the robustness of the plan at that point in the distribution.

1.2 Robustness

What is robustness in this case? Given that, in real life, a human performs nearly
every action represented in the problem, many variables within the TUSP could
assume some uncertainty to simulate disturbances. For example, some tasks involve
cleaning the inside of a train unit. The duration of this task will vary from execution
to execution.

For this thesis, the scope of the TUSP is limited, eliminating service tasks and
recombinations, thereby limiting the points at which uncertainties can exist to the
arrival and departure times. Therefore, the simulated uncertainty will come from
stochastic arrival times. When supplied to the planner and simulator, the delays
will correspond with some departure times that may or may not be delayed from
the scheduled departure times. A robust plan is then defined as one that results in
the smallest possible outgoing delays in the event of incoming delays.

Relating this definition to the distribution of plans, the denser, more robust
portions correspond to plans that maintain minimal outgoing delays under some
uncertainty in arrival times.

1http://www.sporenplan.nl/html_nl/sporenplan/ns/ns_nummer/gvc-bkh.html

3

http://www.sporenplan.nl/html_nl/sporenplan/ns/ns_nummer/gvc-bkh.html

1. Introduction

Entrance/Exit
Track A

Track B

Prior to t = 0

12 21

t = 10, both arrived

2

1

1
2

3 21
7

t = 15, train 2 leaves

2
13

(a) Feasible plan, on-time (b) Feasible, train 1 late (c) Robust plan, train 1 late

Figure 1.2: Scenario displaying the utility of a robust plan in the case of a late train.
The leftmost column shows the case where both trains are on time, but the plan is
not robust. The middle column shows the same plan, but with train 1 late, blocking
train 2. The rightmost column shows the robust plan, where train 1 is late, but
train 2 is unaffected.

1.3 A Motivating Example

Before clearly defining the research questions, the following provides concrete mo-
tivation for the need for valid and robust plans. Previously, it was mentioned that
trains must visit shunting yards to be repaired and cleaned, among other tasks. Fig-
ure 1.1 shows the layout of one such yard called “Kleine Binckhorst” in The Hague.
Shunting yards are generally connected to the greater rail network at several points
and expand to many tracks within the yard. For this example, let us consider a
simpler example with only two track sections and one connection to the rest of the
rail network.

Any shunt plan operating this theoretical yard is sensitive to internal and external
delays. As discussed previously, external delays will be the focus of this work, i.e.,
trains arriving at the yard later than anticipated. Ideally, the plan should absorb this
delay and still have all trains ready to leave the yard with as little delay as possible.
Suppose a yard cannot fulfill this role. In that case, the resulting delays can have
cascading effects on the rest of the schedule inside the yard and throughout the
greater network–an undesirable situation for passengers and the railway operator.

Consider the following example illustrated in Figure 1.2. Two trains are sched-
uled to arrive at a shunting yard at timestep t = 0 and t = 5. They must leave at

4

1.4. Assumptions

t = 20 and t = 15 respectively. Assume that the original shunt plan calls for both
trains to be parked on track A while they are in the yard. If the first train has a
delay of more than five timesteps, the plan suddenly becomes invalid because train
2, which was supposed to arrive at 5 and leave at 15, becomes stuck behind train 1,
which arrived sometime after 5 and will not leave until t = 20.

A robust plan is to place the trains on separate tracks so their departures do
not depend on one another. In the context of this example, this thesis aims to
infer a distribution over possible plans for moving the two trains in and out of the
yard, where the distribution is denser at the robust plan, placing the two trains on
separate tracks.

1.4 Assumptions
For readers already familiar with the TUSP, it may interesting to note that the
following assumptions are made. All problem instances considered in this work
consist of single train units, and those train units do not require any servicing.
Furthermore, there are no personnel. These assumptions mean that the matching,
servicing, and personnel scheduling problems do not apply. For those unfamiliar,
chapter 2 provides the necessary background.

1.5 Research Questions
In order to explore the creation of robust plans, this thesis attempts to answer the
following questions.

• RQ 1 How can a distribution of robust shunt plans be inferred given a distri-
bution over arrival times?

– RQ 1.1 How can the modeling and inference process capture the cycle of
planning and replanning?

– RQ 1.2 Which inference technique can infer the distribution of plans the
best?

– RQ 1.3 How much more effective are plans characterized by the distribu-
tion as robust compared to those not?

To answer the research questions, the following chapter gives a more in-depth
description of the train unit shunting problem and other existing software pack-
ages built upon within the methodology. A background on Probabilistic Program-
ming and inference is given, followed by an overview of related works on solving
the train unit shunting problem or similar problems. Before detailing the method
implemented in this thesis, an abstract framework for the problem, method, and
evaluation is described in chapter 3. chapter 4 follows with a description of the
concrete implementation of that framework before finally evaluating the proposed
approach in chapter 5.

5

Chapter 2

Literature

As this thesis is the result of an application of probabilistic programming to the train
unit shunting problem, there is some background knowledge that readers unfamiliar
with either area might find helpful. Thus, an overview concerning the TUSP, the
simulator and planning package used, probabilistic programming, and inference tech-
niques are given. Next, the approach of this thesis is compared with existing work
relating to probabilistic programming in the context of simulation based-models and
attempts aimed at solving the TUSP.

Figure 2.1: An example train or shunting unit consisting of two VIRM train units,
with 4 carriages each. Illustration from Wikimedia1.

2.1 Background

2.1.1 The Train Unit Shunting Problem

Three relevant terms to discuss the problem are trains, train units, and carriages.
Train carriages are the smallest unit and may or may not be permanently connected
with other carriages to form train units. In the problem, trains might also be referred
to as shunting units within the context of the shunting yard. With that terminology
in hand, the problem is as follows.

The train unit shunting problem (TUSP) is a problem in which incoming trains
must be received and routed through a shunting yard so that the correct trains can
leave the yard in the correct order at a scheduled time. As per the literature, there
are several sub-problems that more concretely define and subdivide the problem,
including sub-problems that extend the original.

1https://commons.wikimedia.org/wiki/File:NS_VIRM_train_side_profile.svg

7

https://commons.wikimedia.org/wiki/File:NS_VIRM_train_side_profile.svg

2. Literature

Figure 2.2: Example of matching incoming and outgoing trains from Freling et al.
[2005]

The original definition of the TUSP is given by Freling et al. [2005]. It defines
the matching and parking sub-problems. Matching refers to pairing incoming and
outgoing train units to meet train type and schedule requirements. Figure 2.2 illus-
trates the matching of train units in arriving shunting units (top) with train units
in departing shunting units (bottom). Based on the figure, the incoming train 3678
and train 3628 will need to be coupled at some point between the arrival of the two
incoming trains and the departure of the outgoing train. The parking sub-problem
requires that each train unit, or combination of train units, is assigned to a parking
track that is both vacant and long enough for the train unit(s) to sit on. Lentink
[2006] introduces the routing sub-problem. Solving the routing sub-problem requires
finding a route through the shunting yard for a shunting unit such that it does not
collide with other units.

Moving beyond general train movements, van den Broek et al. [2020] introduces
the service-scheduling sub-problem. The servicing sub-problem can be viewed as a
special case of the parking sub-problem, where specific shunting units must go to
servicing tracks between arrival and departure to be cleaned, inspected, or repaired.
Each service track also has several constraints, such as the type of tasks it can
complete, the number of trains it can handle, and how long it takes to complete a
task. A human must perform each train movement and service task. To consider
this, van den Broek [2022] describes the addition of personnel scheduling to the
problem. Such a solution must then factor in both the availability of personnel and
the time they spend moving from task to task.

2.1.2 Simulator and Planning Package

In order to craft and validate solutions to the TUSP, a simulator and accompanying
planning module are used. Started as a bachelor project at Utrecht University and
further expanded in J. G. V. D. Linden et al. [2021], the Treinonderhoud-en-rangeer-
simulator/Train Maintenance and Shunting Simulator (TORS) package provides an
environment in which shunting yard layouts can be loaded and used to execute
scenarios. In order to execute a scenario, the simulator provides an interface with
which the planning module can interact.

First, an overview of the simulator on which the generative model is built is given.

8

2.1. Background

As discussed in the previous two chapters, one of the benefits of simulation-based
models is that nearly all complicated business-related logic can be encapsulated
inside the simulator.

To build a generative model around the simulator, it is not essential to know
the internal workings of the system, though the code is available on GitHub2. It is
sufficient to know the inputs and outputs and whether the simulator represents the
problem correctly. In other words, TORS can be treated as a black box.

As input, TORS needs four pieces of information. A configuration file lists several
business rules that govern the simulation, dictating which actions are valid from a
given state. A location definition defines the tracks, how they connect, and their
properties, such as whether they are electrified and whether a train is allowed to
park on them. An agent file instructs TORS on which planning agent to use when
executing the scenario. Finally, a scenario file defines the times at which trains
arrive, their properties, and the scenario’s duration.

The output of TORS contains the plan created during a run. The plan is repre-
sented by a list of the actions supplied by the planning agent at each point of the
simulator. Examples include Arrive, Move, and Exit actions.

The agent is an interchangeable piece of TORS, allowing for any planning algo-
rithm to be implemented to guide the simulator. Location and scenario information
is available to the planner from the beginning of the simulation, so that it can plan
for the entire scenario. At each simulation step, TORS offers the agent a list of
valid actions to take, and the agent must choose one to continue the simulation. In
theory, any planning algorithm could be used, and a number of possible methods are
discussed in subsection 2.2.1, and the exact planner used in this thesis is discussed
in chapter 4.

2.1.3 Probabilistic Programming

As briefly mentioned in the introduction, Probabilistic Programming (PP) offers a
way to describe random processes in a rich manner. Instead of describing them in
mathematical terms, it becomes possible to describe them in the form of functions
using a probabilistic programming language (PPL). These are the same as a normal
function but include points in the program where the program makes random choices,
meaning the function generates different outputs each time it is called–a generative
function or generative model. While the output is random, it is distributed according
to the model defined by the function.

The utility of the generative function comes from the implementation of the
random choices within it. In a PP, the stochastic choices within the function are
special sample statements. They are special in that they allow the programmer
to query the model. A query is done by conditioning some random choices to
specific values, often referred to as observations. With a model and observations, an
inference method can characterize the distributions of the other unobserved random
choices in the model.

2https://github.com/AlgTUDelft/cTORS

9

https://github.com/AlgTUDelft/cTORS

2. Literature

2.1.4 Inference

Given a generative model implemented in a PPL, the goal is often to provide some
constraints, referred to here as “observations”, to the model to investigate the re-
sulting posterior distribution. This process is referred to as inference, and there are
several approaches from which to choose. For an excellent in-depth explanation and
demonstration, the reader may refer to the “Algorithms for Inference” chapter in
Goodman et al. [2016].

In the most basic models that only contain discrete variables, one option is
to enumerate all of the combinations of choices for values within the model and
count how many times the provided observation conditions are met. While this
is guaranteed to produce an exact and correct answer, it is inefficient on discrete
models with many possible combinations of assignments for random variables. It is
also intractable on models with continuous random variables. Rejection sampling
is a simple alternative. By taking many samples of the model and only keeping
those that match the observations, it is possible to get an estimate of the posterior
distribution. While both options are simple to implement and useful in models with
a few discrete variables, they do not perform well on large, continuous models.

Another class of inference methods falls under variational inference. These meth-
ods approximate the posterior distribution with a continuous set of simpler distri-
butions. The distance between the approximation and the actual distribution is
optimized using gradient descent to fit the approximation. This descent is possible,
even without direct access to the posterior–which is a necessary property because
the whole point of inference is to find some approximation of the posterior.

Monte Carlo (MC) methods form a class of inference techniques where the guid-
ing principle is to repeatedly take random samples of a model in order to characterize
the posterior distribution in question. One of the most straightforward flavors of
MC methods is importance sampling (IS). Similarly to rejection sampling, IS takes
several random samples. However, instead of rejecting samples that do not match
the observations, it uses all samples and weights each sample based on how well it
matches the observation.

If it is possible to execute the model partially–that is, run the generative function
up to a certain point–then it is also possible to use particle filtering. Also referred
to as sequential Monte Carlo, this technique takes several samples in parallel, each
representing a particle. It pauses execution at points in the function where there
are observed random values and assigns each particle a weight based on how well it
matches the observations before resampling the population based on the weights–
filtering out particles that do not conform well to the observations and extending
the lives of those that do.

Another common MC method is Markov chain Monte Carlo (MCMC). Instead of
taking many random, independent samples, the idea is to iterate on a single sample,
changing a subset of the random choices within the model. By taking iterative steps,
this builds a chain where each step depends only on the previous (a Markov chain).
Over a large number of inference steps, the accumulation of the states of the chain

10

2.2. Related Work

begins to resemble the posterior. There are a large number of variations on this
method. The main design decisions are: how to select the subset of random choices
to update and how to update those choices–also known as the proposal.

A common MCMC method is the Metropolis-Hastings (MH) algorithm [Hastings,
1970]. The algorithm works as described above, making a Markov chain. At each
step, a proposal distribution is centered at the current value of each random choice.
The algorithm then samples new values for the random choices from the proposal
distribution to create the next step.

Two general drawbacks to remember when dealing with MCMC algorithms are
that the samples are autocorrelated and initial samples might be non-representative
of the real posterior. Autocorrelation means that samples close in time (inference
time) are correlated. The samples are correlated by definition since they depend
directly on their predecessors. The related effect to watch out for is that larger
numbers of samples do not necessarily give larger amounts of information if most
of the additional samples are correlated with existing samples or with each other.
Initial samples being non-representative of the actual posterior means that many
of the first samples might come from a low probability density region and thus
should not be relied upon to characterize the posterior. This period in inference is
commonly referred to as burn-in. To counteract it, one might throw out the samples
from the burn-in period [Raftery and Lewis, 1996] to prevent them from influencing
the resulting posterior.

In theory, all of these inference methods will deliver similar results. Some might
be slow and accurate, others less accurate but quick to complete. The choice mainly
comes down to the constraints made by the type of model used. Once the model is
defined in chapter 4, the chosen inference methods and the motivation for choosing
them are given.

2.2 Related Work

In general, probabilistic programming allows for defining probabilistic distributions
that would otherwise be difficult or impossible to define. Writing a model as a
program is often a much easier task. It allows the modeler to reason about the
situation more clearly than formulating it purely mathematically [Goodman et al.,
2016]. While using a program to define a statistical model allows for great flexibility,
it can still be work-intensive, as with developing any piece of software. The process
becomes incredibly time-consuming when the simulation logic is complex.

To this end, Baydin et al. [2019] introduced a framework for coupling scientific
simulators to probabilistic programming languages to create models that incorporate
the complex logic of the existing simulators. Baydin et al. [2020] applied this work
to the particle physics domain using the SHERPA3 simulator. Wood et al. [2022]
demonstrate similar techniques in the epidemiological setting, using an agent-based

3Simulation of High-Energy Reactions of PArticles – https://sherpa-team.gitlab.io/

11

https://sherpa-team.gitlab.io/

2. Literature

epidemiological dynamics model, FRED4 Grefenstette et al. [2013], to create a gen-
erative model of the outcomes of public health policy decisions.

Traditionally, statistical methods like Bayesian inference require that a likelihood
can be calculated for the model in question. Calculating the likelihood of generative
models defined on top of simulators is difficult. In the case of a black-box simulator,
the likelihood is completely unknown. In this case, it is necessary to use so-called
“likelihood-free” inference methods, which often use a sampling procedure.

In their section on simulation-based inference, Lavin et al. [2022] highlight Ap-
proximate Bayesian Computation as a pioneering method for handling likelihood-free
models. Gutmann and Corander [2016] give an overview of methods to perform in-
ference on likelihood-free models and suggest a framework for reducing the number
of samples needed. Reducing the number of samples, or the number of times the
simulator must be run is significant in cases where a single simulation run is costly.
Meeds and Welling [2015] also propose an inference approach for likelihood-free
models that can be run in parallel, reducing the impact of long-running simulations.

2.2.1 TUSP Solution Methods

Until this point, most approaches to solving the TUSP have used a deterministic
formulation of the problem. The first approach comes from the work by Freling
et al. [2005], which introduced the TUSP. They split their approach into two steps:
one to match the incoming trains to outgoing demand and the other to assign in-
coming trains to parking tracks. For the first step, they create a model and apply
standard MIP (Mixed Integer Programming) solving techniques. The second step is
formulated as a set partitioning problem, which they then solve using a column gen-
eration algorithm to assign trains to their parking tracks. With their approach, they
can solve 24-hour scenarios involving hundreds of trains that pass through without
parking and roughly 80 trains that must be parked. Their runtime for solving these
scenarios is one hour.

Athmer [2021] approaches the problem from the evolutionary algorithms (EA)
perspective. The TUSP formulation used includes the matching, servicing, parking,
and routing problems. The report mentions that the diverse set of plans generated
by the algorithm would be useful to human planners, giving them similar alternatives
if the initially selected plan fails due to disruptions or disturbances in the schedule.
However, this is only mentioned in passing and is not focused on in the methodology
nor evaluated in the results. The method can solve a larger number of trains.
Scenarios with 20 to 30 trains were possible within under 10 minutes.

van Cuilenborg [2020] takes a multi-agent pathfinding approach, where an agent
represents each train. Their approach can solve scenarios with between three and ten
trains within a five-minute timeout. With a 30-minute timeout, all of the variants of
their approach solved all 4-train scenarios, with most of the variants solving nearly
all of the seven and eight-train scenarios as well.

4A Framework for Reconstructing Epidemiological Dynamics – https://fred.pub-
lichealth.pitt.edu/

12

https://fred.publichealth.pitt.edu/
https://fred.publichealth.pitt.edu/

2.3. Conclusion

At the time of writing, there are few attempts at creating robust plans for the
TUSP. Trepat Borecka et al. [2021] takes a multi-agent perspective as well, but with
the addition of deep reinforcement learning. In their work, they use a heuristic for
robustness against disturbances in the duration of service tasks. They use the time
each train dwells on a service track as a measure of robustness. The longer a train is
on a service track, the more leeway there is in the schedule if the task takes longer
than scheduled or cannot be started on time. Their work includes a wide variety of
results, but generally, their approach can solve around half the tested scenarios with
six or seven trains. The runtime is quite quick as the agent acts on a predetermined
policy, but that ignores the training time, which was more than a day in some cases.

In another approach to deal with disturbances, van den Broek [2022] extends his
previous local search, simulated-annealing approach from 2016. To guide the search,
van den Broek uses several surrogate robustness measures. The surrogate measures
include measures of the slack in the schedule–where the slack is how long a particular
action can be delayed in a schedule before it disrupts the subsequent action. Other
measures quantify the number of actions that depend on previous actions and the
lengths of those dependence chains. By feeding such measures to the search, the
algorithm can provide plans that remain feasible in the event of disturbances, such
as uncertain arrival times and varying duration in service tasks.

In comparison, this thesis introduces uncertainty to the arrival times and at-
tempts to find solutions that continue to function in the presence of said uncertainty.
However, that divergence in formulation does not mean that the deterministic ap-
proaches are not useful for the stochastic equivalent. Given that the approach of this
thesis builds on top of a deterministic simulator and planner, the approaches men-
tioned above are all theoretically viable options to plug into the stochastic approach
as a planner. The trait that could render some deterministic methods impractical
in this work is their time to solution. The planner runs a large number of times
during the search for a robust solution. If the runtime of the planner is not small
enough, then the time to a robust solution becomes too long. The other downside
of all approaches listed is that the implementations are not available; thus, from a
practical standpoint, simply “plugging them in” requires a large amount of time for
implementing them in a way compatible with TORS.

2.3 Conclusion
In this chapter, we have provided background on the TUSP, the TORS package,
Probabilistic Programming, and an assortment of inference methods. In the related
work, we touched on a number of works utilizing simulators within models to perform
simulation-based inference. These approaches are similar to ours but applied to other
contexts, such as physics and public health policy. Lastly, we gave an overview of
approaches for solving the TUSP, all of which are relevant for our method because
it uses a planning algorithm internally–the choice of which is covered in chapter 4.

13

Chapter 3

Problem Setting

Thus far, the various components of the methodology have been introduced: a
simulator, a planner, probabilistic programming, and inference. However, the exact
ways the components build upon one another still need clarification. To this end,
this chapter describes the framework this thesis proposes at an abstract level. To
what class of problems can this framework be applied? What must a method provide
to solve the problem? How is the performance of a method evaluated?

3.1 Problem

The problem class that this framework applies to is quite large. Any planning
problem should suffice as long as access to a simulator and a planning algorithm
exists. The problem should have some deterministic variables in the simulator and
planner but are stochastic in the real-world version of the problem.

For the variables within the problem where stochasticity should be introduced,
it is vital to have control of their values via input to the simulator. It is irrelevant
whether this is by controlling how they are sampled or directly supplying values to
use, only that it is possible to control them externally. Regardless of the method
chosen, it relies upon the ability to control such variables. It is also necessary to be
able to relax rules and constraints in the simulator–by completely turning off a rule,
for example. This is because the method will rely on the fact that solutions are not
just valid or invalid but measurably better or worse than others continuously.

The requirements for the planner are flexible. It can be an offline planner that
optimizes a complete solution all at once, or it could be online: acting on a policy
while executing a scenario using the simulator. A correct or performant planner is
not a constraint, but its runtime will affect on the convergence of the method. The
possible implications are discussed in section 3.2.

15

3. Problem Setting

3.2 Method

As a reminder, the method must use the simulator and planner to characterize some
distribution over possible plans such that the plans in the densest points of the
distribution are more robust to the uncertainty of certain chosen variables within
the problem.

For a method to solve the problem at hand, it must be able to explore the space
of uncertainty on the variables where stochasticity is introduced. This exploration
would likely be done using samples from a probability distribution. The chosen
distribution should ideally resemble the distribution of values for the variable in the
real world. If the actual distribution is unknown, a more “uninformed” distribution,
like a normal or uniform distribution, is also a possible starting point. The method
must then be able to supply the values to the simulator/planner and run a scenario.

The chosen method must also be able to read the outcome of the simulation
beyond a simple failure or success. The method must be able to assign a robustness
score to the simulation result. This is the minimal requirement for creating a distri-
bution over plans. The score assigned to the result of an execution of the planner
and simulator is the basis for the density of the distribution.

It was previously mentioned that the correctness of the planner is not a hard
constraint, and this ability of the method to score the result of the simulation is the
reason. If the planner does not produce a viable plan, the method should score the
execution of that plan poorly, giving it little or no weight in the distribution. In
this way, the method can handle even a poorly performing planner. Though such a
situation might not produce many robust plans–or any at all, the distribution will
reflect that, having a low density for all of the resulting non-robust plans.

3.3 Evaluation

There are several possible metrics on which the method might be evaluated, and
certain problems will have unique metrics. However, the following are more generally
applicable to all problems and methods.

Examining the resulting distribution of robustness scores for a given problem
instance gives some intuition as to the range of plans explored by that method. A
method should explore many plans with a high score and avoid spending too much
time exploring plans that are not robust–or even worse, exploring plans that are
only valid after relaxing the constraints of the problem. For the evaluation, that
means that the distribution to look for is skewed with the tail towards less robust
plans.

As the method relies on taking many samples over time, it is also interesting
to examine the scores of the plans it explores and how they trend over steps of
inference. A performant method will likely converge towards more robust plans as
inference proceeds. Methods that reach this point quickly are desirable because they
will not spend time exploring less-robust plans.

16

3.4. Conclusion

Plan length is another metric of interest, as it is generally preferable to carry out
less work–fewer steps in a plan–if it does not change the outcome. For this reason,
examining the lengths of plans over inference steps might be informative. As the
distribution of plans is created, it is interesting to see if there are any trends in the
length of the plans. It is difficult to say whether more robust plans have a longer
or shorter plan length, which might vary from problem to problem. For example,
seeing the plan length trend upward as robustness increases is not necessarily bad.
It might reflect a trait of the problem where longer plans are necessary to achieve
robustness.

Lastly, it is interesting to see how the robust plans actually perform under the
chosen uncertainty. There are two possible options from which to choose. The rules
relaxed in the simulator should be returned to their original settings for both options.
The first option is to take the best plan from the distribution for a single scenario
and execute the scenario many times, resampling the uncertain variables each time
and recording the percentage of times the plan fails. The other option would be to
repeat the same but with the top n plans simultaneously. This alternative might
shed some light on the utility of having a distribution of plans to choose from rather
than one single plan.

3.4 Conclusion
Having this abstract definition of the framework aids in understanding our method
and the ease of implementing future variations on our method, and we now have a
framework for this thesis that we can implement in chapter 4.

17

Chapter 4

Methodology

This chapter details the components created to implement and test the inference
of robust plans. First, a concrete definition of the generative model is given. This
model represents the stochastic TUSP and is the model on which inference is per-
formed. Given the model, the two chosen inference methods are motivated, and
their application to the generative model is described.

4.1 TORS and Planner Set-up

In subsection 2.1.2, we introduced TORS. It will act as the simulator at the center
of our method. It lets us directly include the TUSP in our model. In section 3.1,
we described the necessary abilities for the simulator and planner. TORS provides
both the ability to control the uncertain variables and turn off related business rules
that govern the simulation.

In our case, it is necessary to be able to control the arrival times. We do so
via the scenario definition file that dictates each train’s arrival and departure times.
The relevant business rule we must disable is the depart-on-time rule. Deactivating
it allows for late departures, meaning our method can explore some plans that are
not good but still get all of the trains out of the shunting yard.

We summarized many planners in chapter 2. Unfortunately, none of them are
implemented in TORS. We attempted to implement the simulated annealing ap-
proach by van den Broek [2016] but could not complete our implementation due to
time constraints.

Instead, we modified and used an example planner included in the TORS package–
a greedy planner. The idea is relatively simple. At each point where the simulator
offers the planner a set of actions to choose from, the planner assigns a priority to
each action based on each active train. It then chooses the action with the highest
priority. We made one modification to the planner to hopefully allow it to perform
better over the course of many iterations. To do so, we added an ε factor such that
it would take a random action with probability ε. We fixed this value to 0.2 as

19

4. Methodology

1 @gen function solve_shunt_plan(scenario, location, agent)
2 sampled_scenario = @trace(sample_arrivals(scenario), :arrivals)
3

4 # TORS (Simulator/Planner)
5 plan = run_shunt_plan(sampled_scenario, location, agent)
6

7 @trace(calculate_delays(plan, scenario), :delays)
8

9 return plan
10 end

Listing 1: Generative function written using Gen.jl for the TUSP, wrapping the
TORS simulator and planning package.

the planner began to perform worse with higher values. The pseudo-code for the
algorithm is given in Appendix A.

4.2 Generative Model

In order to perform inference, a generative model around the simulator must first
be defined. The model is defined using the generative function API from Gen1

introduced and developed by Cusumano-Towner et al. [2019]. As discussed in sub-
section 2.1.3, a generative model is defined here to be a function that takes some
input, performs some stochastic computation, records the stochastic choices, and re-
turns both the return value of the function itself as well as the stochastic choices.

In the case of the TUSP, the generative function is defined as follows:
The @trace call assigns a sampled value to an address. When a function is

called inside a @trace, all of the addresses assigned at @trace calls inside of the
inner function are nested under the address of the outer @trace. For example, in
line 2, all arrival times that are sampled within the inner function (for example a-1,
a-2, ..., a-3 are nested under the :arrivals address.

The sampling process for arrivals is simple. For each arriving shunting unit, a
sample is taken from a normal distribution centered at its scheduled arrival time.
That sampled time is then taken as the new scheduled arrival time for that simulation
run–simulating a delay.

The reason for using a normal distribution here is that there is little precedent
set in the literature nor delay data to reference. van den Broek [2022] assumes a
uniform distribution. However, this seems to be too simple an assumption. We
assume here that trains are more likely to arrive at their scheduled time than early
or late, leading us to choose a normal distribution over a uniform.

1https://www.gen.dev/

20

https://www.gen.dev/

4.3. Inference

For delays, the process is nearly as simple. Each exiting shunting unit in the plan
returned from TORS is matched with its scheduled departure. The model takes the
difference between the two times as the delay of that shunting unit. The address for
that delay is then assigned by sampling from a normal distribution with a small
variance centered around the delay time. The reason for using a normal distribution
here is more technical than anything. Of course, an exact delay value is calculated,
but each random choice must be just that: random. It cannot be assigned directly.
By centering a normal distribution on the delay value with a variance of 0.1, we
essentially assign the delay to an exact value while meeting the requirement that
all random choices must take a randomly sampled value. If a unit scheduled to
depart does not do so before the end of the scenario, then the corresponding delay
is infinite.

Thus we have a generative model of the TUSP with stochastic arrival times
and observable exit times. The function produces a trace consisting of a plan (the
function’s return value), a series of sampled arrival times, and a series of sampled
delays, which can be used to infer a distribution over robust plans.

4.3 Inference

Having defined the simulator, problem instances, and generative model, we can now
describe the inference methods we will use. Both methods are implemented using
Gen’s standard inference library.

In general, the goal of performing inference is to characterize a posterior distribu-
tion. In this context, this is a discrete distribution over the plan space of the TUSP,
given a location and scenario, conditioned on observing no delay in the executed
plan. Given that enumerating the entire planning space is intractable, Monte-Carlo
sampling methods are necessary. They will give an estimate of the distribution in
question.

4.3.1 Importance Sampling

Importance sampling (IS) will act as a baseline inference method against which
further methods can be compared. Out of the Monte-Carlo methods family, IS is
the most straightforward. It is also supported out-of-the-box by Gen2, and we make
use of that provided functionality.

For the generative model of the TUSP, IS runs the generative model n times to
create n traces or samples of the scenario. As defined in section 4.2, each run of the
generative model resamples the arrival times from distributions centered around the
arrival times of the starting scenario, runs the TORS using those arrival times, and
records the outgoing delays that result from the simulator run. For each trace, Gen
assigns a weight based on observing 0 outgoing delay from the executed plan. Traces
with a delay for each train closer to 0 have a higher weight, and those with more

2https://www.gen.dev/docs/stable/ref/importance/

21

https://www.gen.dev/docs/stable/ref/importance/

4. Methodology

delay have a lower weight. After all of the samples are gathered, their weights are
normalized. This entire process yields traces containing shunt plans with weights
corresponding to the plan’s ability to maintain 0 outgoing delays in the presence of
stochastic arrival times relative to the other sampled plans.

4.3.2 Markov Chain Monte Carlo

While IS is straightforward, it does not take advantage of the structure of the prob-
lem in any way and relies purely on sampling enough plans from scratch in hopes
of covering the distribution well enough. In comparison, Markov chain Monte Carlo
(MCMC) methods iterate on a solution over time to characterize a distribution over
plans. In each iteration, arrival times in the generative model are resampled from
a proposal distribution, updating the scenario. Then the previous shunt plan is
reused for as many steps/actions as possible. When the previous plan is no longer
valid, we let the planning agent proceed with the remainder of the scenario, yielding
an updated plan with updated outgoing delays. The previous and updated plans
are compared based on their adherence to the 0 observed outgoing delay, and the
better plan can be accepted with some probability. The details of the resampling
and acceptance processes can change, but this is the general MCMC framework.

To find robust solutions to the TUSP, it makes sense to apply an iterative method
like MCMC because we can let reality dictate the iteration process. The intuition is
that resampling a scenario represents the real-time, continuous update of a situation
where some units will arrive in the yard at the expected time and some will deviate.
Each iteration mimics what might happen in the real world. The previous itera-
tion’s shunt plan represents the plan created before realizing any possible arrival
delays. That existing plan is executed as long as possible until some disturbance
occurs, like an early/late train unit arrival. At that moment, the human operator,
represented by the planning agent, must take over and solve the scenario from the
current time onward. This motivation addresses the first research subquestion: How
can our modeling and inference process reflect the real-world cycle of planning and
replanning?

For our implementation, we make use of the inference library implemented by
Gen3. Gen provides functions that can be used for crafting MCMC inference meth-
ods. The mh function is utilized to construct the iterative process defined above
using the Metropolis-Hastings algorithm for MCMC. For the proposal distribution,
we use a normal distribution with a variance smaller than the variance of initial
distribution over each arrival time. After the first trace is initialized, the subse-
quent arrival times vary from their previous time according to this normal proposal
distribution, shifting slightly earlier or later at each inference step.

3https://www.gen.dev/docs/stable/ref/mcmc/

22

https://www.gen.dev/docs/stable/ref/mcmc/

4.4. Visualizing the Distribution

4.4 Visualizing the Distribution
With a model and inference methods in place, we already have enough to begin
creating distributions over plans. However, a post-processing step is helpful to visu-
alize and inspect the constructed plans. One helpful property of repeatedly sampling
plans from the same scenario is that the plans naturally start with the same few
actions. Whether the first train is late or early, its arrival will likely be the first
action taken. This property makes the trie data structure is a fitting representation
of the plans.

Also known as a prefix tree, the trie represents a set of words with common
prefixes as a tree of letters, with the root being the first common letter of all of the
words in question [Connelly and Morris, 1995]. If there are multiple first letters, as
is likely the case with a random group of words, then the empty string is the root
node, with each of the unique first letters as children.

We can map our distribution of plans to the trie data structure by taking each
action as a letter. The Tries.jl package4 makes this trivial by allowing arbitrary
tuples in place of letters as keys to the trie. The weights of each of the branches
of the trie are set to the weight of the plan in the distribution. In this way, it is
possible to visualize the distribution of plans. Unfortunately, even for small problem
instances, it is difficult to fit an entire visualization into a single figure, so this method
is most well-suited for interactive plotting backends5.

4.5 Conclusion
In the background in chapter 2, we discussed the TUSP and the TORS package,
fulfilling the problem section laid out in chapter 3. This chapter described how
we use the TORS simulator in our method to satisfy the requirements outlined in
chapter 3. We then gave our method, describing the generative model and how we
apply inference techniques. The first research sub-question has also been addressed:
we can capture the real-world planning and replanning process in the inference
method. What now remains to be seen is how the method performs.

4https://github.com/gkappler/Tries.jl
5The PlotlyJS backend of the Plots.jl package (https://docs.juliaplots.org/) provides one such

interactive backend

23

https://github.com/gkappler/Tries.jl
https://docs.juliaplots.org/

Chapter 5

Results

5.1 Experimental Setup
Experiments are conducted on the DelftBlue Supercomputer provided by Delft High
Performance Computing Centre [DHPC]. Each experiment runs on a single core
on a “Standard” node whose characteristics can be found on the supercomputer’s
specification page1. Unless otherwise specified, each scenario is run with a time-out
of 2 hours.

Figure 5.1: Examples of two common shunting yard layouts from Huizingh [2018].

5.1.1 Problem Instances

In order to evaluate the method, several locations and scenarios are needed. Huiz-
ingh [2018] describes the two most common types of shunt yard layouts: carousel
and shuffleboard. For this evaluation, a graph representing a shuffleboard layout is
constructed, arrival and departure sequences are generated, and a final conversion

1https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1

25

https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1

5. Results

is made to add details necessary for compatibility with TORS. Such details include
switches, track lengths, train characteristics, and scheduled arrival and departure
times for each incoming and outgoing train.

The difficulty of the instance can vary in several ways, including how shuffled the
arrival sequence of the trains are when compared with the departure sequence. If
train A arrives before B and train A must leave before B, then the scenario becomes
more difficult to solve. Assuming we are using an intelligent planner, it must be
careful not to block A from leaving on time. If we use a more random planner,
the instance becomes more challenging to solve because the planner is less likely to
randomly come across the specific sequence of actions needed to arrange the trains
in a way that allows all of them to leave on time.

With such complexities in mind, a number of scenarios are generated, varying
the size and the amount of shuffling between arrival and departure sequences. The
settings are summarized in Table 5.1. To keep the changes to the sequences con-
sistent, they were not shuffled randomly but modified by reversing the order of a
subsequence. The larger the subsequence, the more complex the problem. The exact
function is in the appendix in section A.2.

As a reminder of the assumptions made in section 1.4, the instances have trains
of only one train unit, none have service tasks, and no personnel to consider for any
of the problem instances.

5.1.2 Inference Settings

In addition to varying the size and sequence of scenarios, two settings relating to
inference may be varied.

The first setting is the variance of the distribution of each arrival time–the priors
of the generative model. While this is a setting for the model and inference, it is
tightly coupled to the difficulty of a scenario. In theory, a larger variance in the
arrival time should make a scenario more complicated because the plan has to deal

N Trains Shuffle Init. Var. Prop. Var. Inference Iter. Time Gap

2 N trains 100 0.5 IS 5000 400
3 N trains−1 50 0.1 MH
4 N trains−2 10
5 …
10
15
20

Table 5.1: List of values for each variable during experiments. The time gap is
the time between each arriving train and each departing train. All combinations of
values are used. Example: 3 trains, shuffle of 2, initial variance of 100 and proposal
variance of 0.5×100 = 50 is be an example of a single run.

26

5.2. Revisiting the Motivating Example

with a wider range of interactions between trains in the yard, possibly making a
robust plan more challenging to construct.

The second setting only applies to MH: the variance of the proposal distribution.
Similarly to the variance of the initial distributions of arrival times, this setting is
coupled with the scenario’s difficulty. However, it should also affect on the ability of
MH to characterize the distribution over plans. Thus, a several are tried, each set
as some percentage of the initial variance.

Table 5.1 lists each variable that changes throughout experiments and the values
used. An exhaustive list of combinations generates a list of experiments to run.

5.2 Revisiting the Motivating Example

In section 1.3, an example was given involving two trains. In that section, the robust
plan was discerned to be a plan that placed the two trains involved on separate
parking tracks upon their arrival; that way, one of them being late would not block
the other from leaving on time. This example helps test whether the method works
because there are only a few possible plans, and it is easy to reason about the
robustness of each of them, meaning we can verify the robustness of the outcome
manually. In the experiments, the problem instances involving two trains differ
slightly from the example given in the introduction: there are three parking tracks,
not two. A diagram of the layout is given in Appendix B. However, the reasoning
that the two trains should end up on different tracks still stands. What remains to
be seen is whether the method produces a distribution that reflects that.

In Figure 5.2, the distribution of log-likelihoods for both inference methods is
displayed. The log-likelihood here represents the likelihood that a sample comes
from the posterior: the distribution of plans with 0 outgoing delays and varying
incoming delays. Note that it is the log likelihood. That means that less negative
values closer to 0 represent a higher likelihood–closer to a probability of 1 in non-log
space.

In the IS (top) plot of Figure 5.2, the violin plots are added to further accentu-
ate the difference in the distributions of likelihoods. One interesting thing to note
regarding the distributions is that the Shuffle: 1 scenarios are all more distributed
than the Shuffle: 0 scenarios. This difference is because Shuffle: 1 means the two
trains are swapped when comparing the incoming and outgoing sequence. The swap
makes the repeated random sampling of plans by IS spend more inference time on
plans where one train blocks the other. In the Shuffle: 0 scenario, the incoming and
outgoing sequence is not swapped, meaning the last train to enter the yard is also
the first one to leave, making plans that allow both trains to leave on time more
likely in general.

The bottom plot for MH omits the violin plots because the values are so tightly
packed near 0. A small window is shown on one of the scenarios to highlight the
fact. The pattern shows that, while MH spends a small number of steps at very
unlikely samples, it quickly converges to the higher likelihood space by retaining the

27

5. Results

Sh
uffl

e:
0,

σ
:

10

Sh
uffl

e:
0,

σ
:

10
0

Sh
uffl

e:
0,

σ
:

50

Sh
uffl

e:
1,

σ
:

10

Sh
uffl

e:
1,

σ
:

10
0

Sh
uffl

e:
1,

σ
:

50

−3.0×10
8

−2.0×10
8

−1.0×10
8

0

Scenario

Lo
g

Li
ke

lih
oo

d

2 Trains: IS

Sh
uffl

e:
0,

σ
1:

10
0,

σ
2:

10

Sh
uffl

e:
0,

σ
1:

10
0,

σ
2:

50

Sh
uffl

e:
0,

σ
1:

10
,σ

2:
1

Sh
uffl

e:
0,

σ
1:

10
,σ

2:
5

Sh
uffl

e:
0,

σ
1:

50
,σ

2:
25

Sh
uffl

e:
0,

σ
1:

50
,σ

2:
5

Sh
uffl

e:
1,

σ
1:

10
0,

σ
2:

10

Sh
uffl

e:
1,

σ
1:

10
0,

σ
2:

50

Sh
uffl

e:
1,

σ
1:

10
,σ

2:
1

Sh
uffl

e:
1,

σ
1:

10
,σ

2:
5

Sh
uffl

e:
1,

σ
1:

50
,σ

2:
25

Sh
uffl

e:
1,

σ
1:

50
,σ

2:
5

−1.00×10
7

−7.50×10
6

−5.00×10
6

−2.50×10
6

0

Scenario

Lo
g

Li
ke

lih
oo

d

2 Trains: MH

−5.000×10
4

−1.750×10
5

−3.000×10
5

Figure 5.2: Log likelihood for 2 train scenarios with different levels of arrival and
departure sequence shuffle as well as different levels of arrival time variance–denoted
by σ1 in the labels. σ2 is the proposal variance for MH. “Shuffle: 0” are not shuffled
and thus less difficult, the higher the shuffle value, the more difficult the scenario.

28

5.2. Revisiting the Motivating Example

Figure 5.3: Overview of a trie representing the plans inferred using MH for the
2-train instance Shuffle: 1, σ1: 100, σ2: 100. The root node is the arrival action
for the first train in the arrival sequence. Paths down the trie represent alternative
plans in the distribution.

plan from the preceding, likely sample. The convergent behavior is the reason for
using a MCMC method for this problem, so this pattern is a great outcome.

Note that one of the scenarios in the lower plot (Shuffle: 1, σ1: 10, σ2: 1) failed to
reach the higher likelihood region that the other scenarios reached. The reason that
it failed to do so is likely because of the low variance of the proposal distribution.
If the proposal variance is very small and the initial trace is in a low likelihood area
of the planning space, then the random walk that MH must follow will take a large
number of samples. In this case, the number of samples was not high enough. In
MCMC-related terms, we might say that the burn-in period is long when setting the
variance of the proposal distribution too low.

The next question is whether the plans produced are recognizable as the robust
plan discussed in section 1.3. There are many scenarios to choose from, and inspect-
ing and discussing plans produced by each would take far too long. We will look
at Shuffle: 1, σ1: 100, σ2: 50 using MH. We chose this one because it reached the
high likelihood area and is slightly more difficult with the order of the two trains
swapped.

To visualize the distribution, we can use the trie method described in section 4.4.
Even with a 2-train scenario, this is a fairly large tree, so it would be ideal to view
it interactively. Nevertheless, the overview is shown in Figure 5.3. We examine the

29

5. Results

Sh
uffl

e:
0,

σ
:

10

Sh
uffl

e:
0,

σ
:

10
0

Sh
uffl

e:
0,

σ
:

50

Sh
uffl

e:
1,

σ
:

10

Sh
uffl

e:
1,

σ
:

10
0

Sh
uffl

e:
1,

σ
:

50

Sh
uffl

e:
2,

σ
:

10

Sh
uffl

e:
2,

σ
:

10
0

Sh
uffl

e:
2,

σ
:

50

−1.50×10
8

−1.00×10
8

−5.00×10
7

0

Scenario

Lo
g

Li
ke

lih
oo

d

Figure 5.4: Log likelihood using importance sampling for 3 train scenarios with
different levels of arrival and departure sequence shuffle as well as different levels of
arrival time variance–denoted by σ in the labels. Shuffle: 0 scenarios are not shuffled
and thus less difficult, Shuffle: 2 is the most difficult with the second two trains in
reverse order.

most robust plan with the highest likelihood to gauge whether the distribution acts
as expected. In the chosen scenario, the highest log-likelihood was −8.28. The list
of actions from this selected plan is included in Appendix B. The plan does not
exactly match the “ideal” robust plan introduced in chapter 1. It includes some
unnecessary extra moves–a side-effect of using a planner with some randomness
involved. However, it does reflect the idea that placing trains on separate branches
is ideal for avoiding conflicts when disturbances occur. In this way, it resembles the
robust plan discussed in chapter 1.

5.3 3-Train Instances

The log-likelihood distributions of the 3-train scenarios already change significantly
compared to those of the 2-train scenarios. In Figure 5.4, depicting the distribution
produced by importance sampling, the number of data points is far lower than the
number we saw in the two train scenarios. Given that the complexity of the planning
space increases each time the number of trains increases, it is not surprising that
the number of successful runs decreases. One extra factor playing a prominent role

30

5.3. 3-Train Instances

Sh
uffl

e:
0,

σ
1:

10
0,

σ
2:

10

Sh
uffl

e:
0,

σ
1:

10
0,

σ
2:

50

Sh
uffl

e:
0,

σ
1:

10
,σ

2:
1

Sh
uffl

e:
0,

σ
1:

10
,σ

2:
5

Sh
uffl

e:
0,

σ
1:

50
,σ

2:
25

Sh
uffl

e:
0,

σ
1:

50
,σ

2:
5

Sh
uffl

e:
1,

σ
1:

10
0,

σ
2:

10

Sh
uffl

e:
1,

σ
1:

10
0,

σ
2:

50

Sh
uffl

e:
1,

σ
1:

10
,σ

2:
1

Sh
uffl

e:
1,

σ
1:

10
,σ

2:
5

Sh
uffl

e:
1,

σ
1:

50
,σ

2:
25

Sh
uffl

e:
1,

σ
1:

50
,σ

2:
5

Sh
uffl

e:
2,

σ
1:

10
0,

σ
2:

10

Sh
uffl

e:
2,

σ
1:

10
0,

σ
2:

50

Sh
uffl

e:
2,

σ
1:

10
,σ

2:
1

Sh
uffl

e:
2,

σ
1:

10
,σ

2:
5

Sh
uffl

e:
2,

σ
1:

50
,σ

2:
25

Sh
uffl

e:
2,

σ
1:

50
,σ

2:
5

−2.00×10
8

−1.50×10
8

−1.00×10
8

−5.00×10
7

0

Scenario

Lo
g

Li
ke

lih
oo

d

Figure 5.5: Log likelihood over time using Metropolis-Hastings for 3 train scenarios
with different levels of arrival and departure sequence shuffle as well as different
levels of arrival time variance–denoted by σ1 in the labels. σ2 is the variance of the
proposal distribution. Shuffle: 0 are not shuffled and thus less difficult, 2 is ths most
difficult with the second two trains in reverse order.

here is the planner’s performance. Since the planner is so simple, it appears that
larger instances quickly become too difficult for it to solve.

As we saw in the 2-train scenarios, the higher the “shuffle” value of the scenario,
the lower and more varied the distribution of log-likelihoods is. It is difficult to make
a definitive judgment regarding the trend in Figure 5.4 because of how sparse the
data points are.

It is easier to see the downward trend of log-likelihoods from MH in Figure 5.5.
Much like the 2-train scenarios, the distributions produced by MH are much more
clustered closer to zero. Again, This is a positive outcome because the inference
steps are mostly spent exploring higher-quality, robust plans.

For MH, looking at the log-likelihood over time is interesting. Figure 5.6 shows
this for two selected instances. In Figure 5.5, we can see that the scenario that for
the scenario Shuffle: 2 σ1: 50, σ2: 25, there are a number of lower log-likelihood
samples scattered below the main cluster near the top, but without Figure 5.6, it
is unclear how the samples occurred. With the visualization over time, we can see

31

5. Results

1000 2000 3000 4000 5000

−2.00×10
8

−1.50×10
8

−1.00×10
8

−5.00×10
7

Iteration

Lo
g

Li
ke

lih
oo

d

Shuffle: 2, σ1: 50, σ2: 25
Shuffle: 2, σ1: 50, σ2: 5

Figure 5.6: Log likelihood of two selected instances of MH over inference steps.

that, compared to the other selected scenario, this one did not find a viable solution
until around 2000 steps in, while the other instance found a viable plan to iterate
on nearly instantly. The other thing to note with the scenario that takes longer to
find a viable plan is that it does not immediately find a robust plan. It first spends
some steps stuck at the viable but non-robust plan before evidently traversing the
gap to the more robust part of the planning place.

The lag before finding a robust plan could be viewed as both burn-in and au-
tocorrelation. It is another example of burn-in because the iterations before 2000
are spent in the non-viable plan space–essentially an infinitely unlikely part of the
distribution of robust plans. It is an example of autocorrelation because once one
viable plan is found, it spends more than 1000 steps of inference before breaking out
to higher log-likelihoods. As discussed in chapter 2, this is because subsequent steps
are correlated. This means that if a previous step was in a bad part of the planning
space, the next one is also more likely to be there as well. When using MH, our
method is not immune to the weak points of MCMC methods in general, and we
should not ignore their possible effects.

5.4 Large Scenario Performance
The obvious results missing are those with more than three trains present. The
inability to scale is an unfortunate drawback of the choice of the planning agent.
While it should explore the planning space as the number of inference steps ap-
proaches infinite, the increase in trains from 3 to 4 already appears too difficult for
the agent to provide usable plans within a reasonable time.

For this method, a plan must be reached where all of the trains exit–it is accept-
able if they are all late, but they must at least leave the shunting yard. Such a plan
must be reached because the model penalizes trains that do not depart with an infi-
nite delay. For inference, the log-likelihood becomes negative infinite, corresponding
to zero likelihood.

For IS, this means that all traces are equally bad, giving no information regarding
robustness whatsoever–which is no surprise given that a plan should ideally be valid

32

5.5. Robustness Evaluation

before its robustness is considered, and no valid plans are found. For MH, the
likelihood of 0 means that it never accepts any steps. Even though the MH algorithm
does accept some steps at random, this random acceptance is still tied to the log-
likelihood of the step. In Gen, this acceptance criterion compares log(rand()) with
the log-likelihood, and if log(rand()) is smaller than the log-likelihood, it accepts the
step. The condition is never met with a negative infinite log-likelihood, meaning no
steps are even accepted at random.

5.4.1 Attempts to Address Performance

In order to investigate the large-scale performance of the method, two alternatives
are attempted.

The first alternative is to run the inference with a longer time limit. In this case,
we ran a 4- and 5-train scenario for 8 hours. During that time, neither encountered
a plan where all the trains left the yard. This results in neither inference method
producing any interesting results. As before, all plans produced by IS are equally
bad. It appears that the combinatorial nature of the problem means that the number
of possible plans increases too quickly for an agent as poorly performing as the greedy
agent in use for these experiments.

The second alternative is to replace the infinite delay for the trains that do not
depart with a large, finite number. For example, this could be implemented by
assigning a delay of 10000 timesteps to any train that does not depart. It might
seem like this should at least aid MH, given that the likelihood of invalid plans will
no longer be exactly 0. Non-zero likelihood it should mean that at least some steps
should get accepted at random.

It is the case that some steps get accepted at random. Depending on how large
of a number is used for the delay, the point at which the MH inference process
begins to accept steps varies. However, no further progress is made toward valid
plans after that point. Unfortunately, this modification does not bring the method
closer to working on larger instances. The only thing that this changes is that MH
inference shifts from not accepting any steps whatsoever to accepting steps with
invalid plans. The resulting distribution of plans is the same. The distribution is
either empty when setting the penalty to infinite or filled with invalid plans with
very low likelihoods when setting the penalty to a large number.

Unfortunately, neither alternative produced results for the 4-train scenarios and
larger. The planner remains a limiting factor, significantly limiting our method’s
scalability.

5.5 Robustness Evaluation
While our approach failed to produce results for larger scenarios, we can still evaluate
the robustness of the three train scenarios. We use a fixed plan, running it over
many sampled arrival times and recording the percentage of times the plan succeeds
in solving the scenario. The idea is that, up until this point, we have claimed that

33

5. Results

10 50 100
0.0

0.2

0.4

0.6

0.8

Arrival Variance

%
of

In
st

an
ce

s
So

lv
ed

Fixed robust plan
Normal planner

Figure 5.7: A direct evaluation of the robustness of three different 3-train plans.
The blue represents the success rate of the inferred robust plan, and the orange
represents the success rate of the greedy planner running without any prior plan.

the weight of the distribution corresponds to the robustness of a plan, but we have
yet to test that directly.

For this evaluation, the sampling process for the arrival times matches that of
inference. Each arrival time is sampled from a normal distribution centered at its
corresponding scheduled arrival time. The planning agent replays the chosen plan
as it does during MH inference. The difference is that if some action from the plan
is not possible, the scenario fails rather than the planner picking up from where
the plan failed. The other difference from inference is that the rule for on-time
departures is switched back on, meaning that a late departure will also trigger a
failed scenario.

Figure 5.7 shows our evaluation of three different arrival variances. We take the
plan with the highest likelihood for each one from the corresponding distribution
inferred by MH. We use the 3-train scenario with Shuffle: 1 and σ1 equal to the
corresponding arrival variance we are testing. Then we take 5000 samples and
record the success rate of both the fixed plan and the greedy planner.

The results may appear impressive–the greedy planner can barely solve any in-
stances. However, it is a somewhat unfair comparison because the fixed robust plan
is the best sample out of 5000 steps of inference, whereas the greedy planner is
forced to plan from scratch each iteration. While it may not be the most interesting
comparison between the robust plan and the plain greedy planner, it is still inter-
esting to see that the percentage of instances solved stays relatively steady across
the different arrival variances. This steadiness might mean that the scenarios we are
dealing with are not actually made more difficult by the increase in arrival variance.
Since the number of trains is still low, it is possible that even with an arrival variance

34

5.6. Conclusion & Answers to Research Questions

of 100, it is not that difficult of a problem. The other option is that the method is
creating robust enough plans that they continue to perform well at higher variances.

5.6 Conclusion & Answers to Research Questions
Throughout this evaluation of our method, we have seen that, while it performs
on the smallest instances, it only scales to those with three trains or fewer. While
that is unfortunate in the interest of making practical use of our method, it is still
important to note that it did perform as expected on the 2-train scenario we first
introduced in chapter 1.

At this point, can also review and address our research questions. The imple-
mentation of our method in chapter 4 addressed the first sub-question. There we
showed that modeling and inference processes can be set up in such a way as to
replicate the real-life planning and replanning process.

The second sub-question (1.2) asks: which inference method can best infer the
distribution of plans? We answered this question by comparing IS and MH. From
the small-scale results we collected, MH appears to be the favorable choice here.
Especially once we moved from 2 to 3-train scenarios, it was hugely beneficial for
MH to be able to “remember” the plan it was exploring in the previous step of
inference. This behavior meant that once it made it to a robust part of the planning
space, it stayed there. MH is the inference method that better infers the distribution
over robust plans.

The last research question (1.3) is difficult to answer conclusively. While we
did see in section 5.5 that robust plans performed better than the raw planner, it
was impossible to compare less and more robust plans. The reason is that there
was not much variance in the log-likelihood within the robust part of the planning
space–the higher log-likelihood regions. This lack of variance meant only a handful
of definitively robust plans were in the distribution–likely because we could only
explore small scenario sizes. It seems plausible that there would be more alternatives
for robust plans with larger scenarios. To answer the sub-question: while it appears
that the high likelihood plans are indeed more robust, there is not sufficient evidence
to fully back up that claim.

35

Chapter 6

Conclusions and Future Work

This thesis has explored a novel way of introducing uncertainty to planning prob-
lems built upon simulators and planners that do not initially have the capability
to take uncertainty into account. As laid out in the introduction, the main goal
of introducing such uncertainty is to infer distributions of solutions robust to the
uncertainty. In this case, the TUSP has been used as a concrete example. Many
previous solution methods for the TUSP have not considered uncertainty, and those
that do must carefully modify the planning algorithm, adding heuristics to guide
the search towards more robust solutions. Our work offers a flexible alternative to
such methods.

6.1 Key Findings

In our evaluation of the proposed method, we found that, for 2-train scenarios, we
can infer a distribution that reflects our idea about what robust plans should look
like. Plans from the denser parts of the distributions move trains into separate
branches in the shunting yard. This pattern makes trains less likely to conflict with
one another, even in the presence of delays. For 3-train scenarios, we found that the
inferred robust plans had a much higher success rate than plans produced directly
by the greedy planner.

For both 2 and 3-train scenarios, we found that Metropolis-Hastings was more
efficient in exploring the planning space. Once it has entered a robust region of
the plan space, it does not return to worse regions. importance sampling could not
match the efficiency of MH. Since each sample is independent of the others, the
plans are constructed from scratch, meaning that IS spends more time exploring
worse plans. For this reason, MH is the preferred inference method here.

6.2 Contributions

This work introduced a framework for introducing uncertainty to planning prob-
lems. The main benefit of our approach is the flexibility regarding the choice of the

37

6. Conclusions and Future Work

simulator and planner. There are few constraints on the choice of a simulator. So
long as the parts of the problem subject to uncertainty can be exposed via input
to the simulator, and the rules governing the simulation can be changed easily, it is
possible to use the simulator as the core of the generative model.

The same applies to the constraints for the planner as well. The only hard
constraint for the planner is that it can interact with the simulator to attempt to
provide a solution. The planner’s quality will, of course, affect the quality of the
outcome of our approach. However, even a naïve planner that does not perform
well will not break the approach; it will merely decrease the quality of the resulting
distribution of plans.

Thus, in situations where a simulator and planners are available, and they do not
yet take uncertainty into account, the approach we have defined here offers a flexible
way to introduce uncertainty without having to take the time to modify either the
simulator or planner.

6.3 Limitations

The flexibility enabled by our approach does come with some drawbacks. The most
critical points that can make the approach unusable are the runtime and perfor-
mance of a planner. First, a longer runtime for a planner can quickly render our
approach too slow for real-world use. Because inference must execute the planner
and simulator possibly thousands of times over the course of one run, a planner
runtime on the order of a few minutes already becomes an issue. This drawback
might be countered by the fact that a slower planner would likely produce higher-
quality plans. If inference does not have to waste steps exploring many low-quality,
non-robust plans, then fewer steps are needed overall. If that is the case, then the
runtime is less of an issue. However, we have not evaluated that scenario, so the
trade-off is purely hypothetical.

The second limitation is the planner’s performance and how that affects the
ability to scale up to larger problem instances. While a poorly performing planner
does not stop our method from performing inference on the model, we have seen that
the resulting distributions of plans can quickly become sparse when using the greedy
planner on larger problem instances. At a certain scale (four trains in our case), the
distribution is completely empty, even after a significant number of samples. In this
sense, the planner’s performance can limit the scalability of our method.

Lastly, a limitation of this thesis is that we did not explore the utility of creating
a distribution of plans as opposed to one best plan. The idea of offering many
alternative plans is that a human planner can better use the result rather than only
having a single option. The human planner could choose from the available plans
using a combination of the plans’ reported robustness and their domain expertise.
However, we first need to scale to larger problem instances before we can investigate
the utility of such a feature because there are few alternative plans to consider on
the smaller scenarios.

38

6.4. Future Work

6.4 Future Work
Several future avenues of research have come up throughout this project. The first
and most obvious is experimenting further on the TUSP with our framework using
better planners. By doing so, we would get a better idea about the capability of our
approach and how well it can handle larger-scale, real-world scenarios.

Another exciting idea is to incorporate the use of different planners for different
steps of inference. While motivating the use of MH, we described the iterative
process as representative of the real world. A plan is created, and then if something
changes during the execution of the plan, someone must replan to reflect the new
scenario. We represent that in the proposal steps of MH. Each proposal step begins
with the most recent plan and executes that until either the end of the scenario or
the plan fails. In our current implementation, if the current plan fails, the original
planner resumes control, creating a new plan from that point forward. That point
where the planner takes over can be referred to as the replanning stage, and there
is some work dedicated to creating specialized replanning algorithms that might be
interesting to apply in this case. Onomiwo [2020] proposes one such approach. In
the context of our framework, it would be interesting to use such a replanning agent
for the proposal steps of the MH inference method.

When creating our model, we chose a normal distribution to represent the arrival
delays. The real-world distribution likely looks different, and having our model
reflect that would be ideal. If we had access to the actual measurements of arrival
delays, we could construct a distribution empirically. More realistic arrival times
would give us a more accurate distribution of robust plans.

In this work, we focused only on arrival delays and the corresponding depar-
ture delays they can cause. As discussed in chapter 2, many variables within the
TUSP are stochastic in the real world. Such variables might be the duration of
service tasks, the time to couple and decouple trains, the time to start and stop
a train–even the time different personnel take to walk between points in the yard.
Compared to arrivals and departures, making any of these variables stochastic would
add uncertainty within a scenario, not just at the beginning and end. These internal
uncertainties would open up the opportunity for incremental measures of success. It
would be helpful for incremental inference methods like Metropolis-Hastings (MH)
to understand that one plan is closer to the robust part of the planning space than
another, even if neither of them are good plans.

Incremental success measures also allow the use of another class of inference
methods discussed in chapter 2: particle filtering. We could not use particle filtering
with our model because there were no intermediate points in the model to pause
and evaluate the likelihood of the partially-completed plan. Particle filtering has the
benefit of evaluating many alternatives in parallel, something that an approach like
Metropolis-Hastings (MH) does not offer as easily. Parallel evaluation would become
especially useful if a slower planner is used because it would lessen the impact of the
planner’s runtime. Therefore, exploring the addition of internal uncertainties and
applying particle filtering would be interesting next steps for future research.

39

Acronyms

IS importance sampling. 10, 21, 22, 26, 27, 30, 32, 33, 35, 37

MC Monte Carlo. 10

MCMC Markov chain Monte Carlo. 10, 11, 22, 29, 32

MH Metropolis-Hastings. vii, 11, 22, 26–29, 31–35, 37, 39

PP Probabilistic Programming. 2, 5, 9, 13

PPL probabilistic programming language. 2, 9, 10

TORS Treinonderhoud-en-rangeersimulator/Train Maintenance and Shunting Sim-
ulator. 2, 8, 9, 13, 19–21, 23, 26

TUSP train unit shunting problem. 2, 3, 5, 7, 8, 12, 13, 19–23, 37, 39

41

Bibliography

Casper Athmer. An Evolutionary Algorithm for the Train Unit Shunting and Ser-
vicing Problem. Master’s thesis, Delft University of Technology, 2021. URL
http://resolver.tudelft.nl/uuid:0a65376e-bbb1-440b-95a2-586a369d9e98.

Atilim Güneş Baydin, Lei Shao, Wahid Bhimji, Lukas Heinrich, Lawrence Mead-
ows, Jialin Liu, Andreas Munk, Saeid Naderiparizi, Bradley Gram-Hansen, Gilles
Louppe, Mingfei Ma, Xiaohui Zhao, Philip Torr, Victor Lee, Kyle Cranmer, Prab-
hat, and Frank Wood. Etalumis: Bringing Probabilistic Programming to Scien-
tific Simulators at Scale. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–24, Denver
Colorado, November 2019. ACM. ISBN 978-1-4503-6229-0. doi: 10.1145/3295500.
3356180. URL https://dl.acm.org/doi/10.1145/3295500.3356180.

Atılım Güneş Baydin, Lukas Heinrich, Wahid Bhimji, Lei Shao, Saeid Naderiparizi,
Andreas Munk, Jialin Liu, Bradley Gram-Hansen, Gilles Louppe, Lawrence Mead-
ows, Philip Torr, Victor Lee, Prabhat, Kyle Cranmer, and Frank Wood. Efficient
Probabilistic Inference in the Quest for Physics Beyond the Standard Model,
February 2020. URL http://arxiv.org/abs/1807.07706.

Valentina Cacchiani, Dennis Huisman, Martin Kidd, Leo Kroon, Paolo Toth, Lucas
Veelenturf, and Joris Wagenaar. An overview of recovery models and algorithms
for real-time railway rescheduling. Transportation Research Part B: Methodolog-
ical, 63:15–37, May 2014. ISSN 0191-2615. doi: 10.1016/j.trb.2014.01.009. URL
https://www.sciencedirect.com/science/article/pii/S0191261514000198.

Richard H Connelly and F Lockwood Morris. A generalization of the trie data struc-
ture. Mathematical structures in computer science, 5(3):381–418, 1995. Publisher:
Cambridge University Press.

Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K.
Mansinghka. Gen: a general-purpose probabilistic programming system with
programmable inference. In Proceedings of the 40th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI 2019,

43

http://resolver.tudelft.nl/uuid:0a65376e-bbb1-440b-95a2-586a369d9e98
https://dl.acm.org/doi/10.1145/3295500.3356180
http://arxiv.org/abs/1807.07706
https://www.sciencedirect.com/science/article/pii/S0191261514000198

Bibliography

pages 221–236, New York, NY, USA, June 2019. Association for Computing
Machinery. ISBN 978-1-4503-6712-7. doi: 10.1145/3314221.3314642. URL
https://doi.org/10.1145/3314221.3314642.

Delft High Performance Computing Centre (DHPC). DelftBlue Supercomputer
(Phase 1). https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1, 2022.

Richard Freling, Ramon Lentink, Leo Kroon, and Dennis Huisman. Shunting
of Passenger Train Units in a Railway Station. Transportation Science, 39
(2):261–272, May 2005. ISSN 0041-1655. doi: 10.1287/trsc.1030.0076. URL
https://pubsonline.informs.org/doi/abs/10.1287/trsc.1030.0076.

Noah D Goodman, Joshua B. Tenenbaum, and The ProbMods Contributors. Prob-
abilistic Models of Cognition, 2016. URL http://probmods.org. Edition: Second.

John J. Grefenstette, Shawn T. Brown, Roni Rosenfeld, Jay DePasse, Nathan TB
Stone, Phillip C. Cooley, William D. Wheaton, Alona Fyshe, David D. Galloway,
Anuroop Sriram, Hasan Guclu, Thomas Abraham, and Donald S. Burke. FRED
(A Framework for Reconstructing Epidemic Dynamics): an open-source software
system for modeling infectious diseases and control strategies using census-based
populations. BMC Public Health, 13(1):940, October 2013. ISSN 1471-2458. doi:
10.1186/1471-2458-13-940. URL https://doi.org/10.1186/1471-2458-13-940.

Michael U. Gutmann and Jukka Corander. Bayesian optimization for likelihood-
free inference of simulator-based statistical models. Journal of Machine Learning
Research, 17(1):4256–4302, January 2016. ISSN 1532-4435. MAG ID: 2964129402.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109, April 1970. ISSN 0006-3444. doi: 10.
1093/biomet/57.1.97. URL https://doi.org/10.1093/biomet/57.1.97.

E. H. R. Huizingh. Planning first-line services on a NS service station : an exact
approach. info:eu-repo/semantics/masterThesis, University of Twente, Twente,
NL, May 2018. URL https://essay.utwente.nl/74968/.

J. G. V. D. Linden, J. Mulderij, B. Huisman, Joris W. Den Ouden, M. Akker, H.
Hoogeveen, and M. D. Weerdt. TORS: A Train Unit Shunting and Servicing
Simulator. AAMAS, 2021. doi: 10.5555/3463952.3464237.

Alexander Lavin, David Krakauer, Hector Zenil, Justin Gottschlich, Tim Matt-
son, Johann Brehmer, Anima Anandkumar, Sanjay Choudry, Kamil Rocki,
Atılım Güneş Baydin, Carina Prunkl, Brooks Paige, Olexandr Isayev, Erik Pe-
terson, Peter L. McMahon, Jakob Macke, Kyle Cranmer, Jiaxin Zhang, Haruko
Wainwright, Adi Hanuka, Manuela Veloso, Samuel Assefa, Stephan Zheng, and
Avi Pfeffer. Simulation Intelligence: Towards a New Generation of Scientific Meth-
ods, November 2022. URL http://arxiv.org/abs/2112.03235.

44

https://doi.org/10.1145/3314221.3314642
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://pubsonline.informs.org/doi/abs/10.1287/trsc.1030.0076
http://probmods.org
https://doi.org/10.1186/1471-2458-13-940
https://doi.org/10.1093/biomet/57.1.97
https://essay.utwente.nl/74968/
http://arxiv.org/abs/2112.03235

Bibliography

Ramon Lentink. Algorithmic Decision Support for Shunt Planning. PhD Thesis,
Erasmus Research Institute of Management, February 2006. URL http://hdl.ha
ndle.net/1765/7328.

Edward Meeds and Max Welling. Optimization Monte Carlo: Efficient and Em-
barrassingly Parallel Likelihood-Free Inference, December 2015. URL http:
//arxiv.org/abs/1506.03693.

NS. NS Annual Report 2021. Technical report, Nederlandse Spoorwegen, 2021.
URL https://www.nsannualreport.nl/annual-report-2021/reading-guide.

E. a. S. Onomiwo. Disruption Management on Shunting Yards with Tabu Search
and Simulated Annealing. Master’s thesis, Utrecht University, Utrecht, NL, 2020.
URL https://studenttheses.uu.nl/handle/20.500.12932/37757.

Adrian E Raftery and Steven M Lewis. Implementing MCMC. In David J Spiegel-
halter, editor, Markov chain Monte Carlo in practice, pages 115–130. Chapman
& Hall, 1996.

Nikolaos V. Sahinidis. Optimization under uncertainty: state-of-the-art and oppor-
tunities. Computers & Chemical Engineering, 28(6):971–983, June 2004. ISSN
0098-1354. doi: 10.1016/j.compchemeng.2003.09.017. URL https://www.scienc
edirect.com/science/article/pii/S0098135403002369.

Jacob Trepat Borecka, Nikola Bešinović, Yousef M. Maknoon, Rob M. P. Goverde,
and Wan-Jui Lee. Solving the train unit shunting problem using multi-agent deep
reinforcement learning with routing optimization. In 2021 INFORMS Annual
Meeting, page 12 p., October 2021. doi: 10.3929/ETHZ-B-000513034. URL
http://hdl.handle.net/20.500.11850/513034.

D. A. van Cuilenborg. Train Unit Shunting Problem, a Multi-Agent Pathfinding
approach. Master’s thesis, Delft University of Technology, 2020. URL http://re
solver.tudelft.nl/uuid:c9a0f41c-de6f-4ef4-8d94-6d0a89df3eec.

Roel van den Broek, Han Hoogeveen, and Marjan van den Akker. Personnel Schedul-
ing on Railway Yards. Algorithmic Approaches for Transportation Modeling, Op-
timization, and Systems, page 15, 2020. doi: 10.4230/oasics.atmos.2020.12.

Roel Wemarus van den Broek. Towards a Robust Planning of Train Shunting and
Servicing:. PhD Thesis, Utrecht University, May 2022. URL https://dspace.libra
ry.uu.nl/handle/1874/420470.

R.W. van den Broek. Train Shunting and Service Scheduling: an integrated local
search approach. Master’s thesis, Utrecht University, January 2016. URL https:
//studenttheses.uu.nl/handle/20.500.12932/24118.

45

http://hdl.handle.net/1765/7328
http://hdl.handle.net/1765/7328
http://arxiv.org/abs/1506.03693
http://arxiv.org/abs/1506.03693
https://www.nsannualreport.nl/annual-report-2021/reading-guide
https://studenttheses.uu.nl/handle/20.500.12932/37757
https://www.sciencedirect.com/science/article/pii/S0098135403002369
https://www.sciencedirect.com/science/article/pii/S0098135403002369
http://hdl.handle.net/20.500.11850/513034
http://resolver.tudelft.nl/uuid:c9a0f41c-de6f-4ef4-8d94-6d0a89df3eec
http://resolver.tudelft.nl/uuid:c9a0f41c-de6f-4ef4-8d94-6d0a89df3eec
https://dspace.library.uu.nl/handle/1874/420470
https://dspace.library.uu.nl/handle/1874/420470
https://studenttheses.uu.nl/handle/20.500.12932/24118
https://studenttheses.uu.nl/handle/20.500.12932/24118

Bibliography

Frank Wood, Andrew Warrington, Saeid Naderiparizi, Christian Weilbach, Vaden
Masrani, William Harvey, Adam Ścibior, Boyan Beronov, John Grefenstette, Dun-
can Campbell, and S. Ali Nasseri. Planning as Inference in Epidemiological Dy-
namics Models. Frontiers in Artificial Intelligence, 4, 2022. ISSN 2624-8212. doi:
10.3389/frai.2021.550603. URL https://www.frontiersin.org/articles/10.3389/frai
.2021.550603.

46

https://www.frontiersin.org/articles/10.3389/frai.2021.550603
https://www.frontiersin.org/articles/10.3389/frai.2021.550603

Appendix A

Assorted Pseudocode

A.1 Greedy Planning Agent

Pseudo code for the greedy planning planning agent.

def greedy_planner(self, state, epsilon, existing_plan, possible_actions):
Apply existing plan, if specified
if existing_plan is not None:

next_action_from_existing_plan = # get next action from existing plan
if next_action_from_existing_plan is not None:

return next_action_from_existing_plan

Otherwise continue with greedy plan
action_priority = sort([

get_action_priority(train, possible_actions)
for train in state.trains.values()

])

If there is an arrival or exit action, take it
for action in action_priority:

if action is ExitAction or action is ArriveAction:
return action

Choose random action with probability epsilon
epsilon_choice = random.random()
if epsilon_choice < epsilon:

action = random.choice(possible_actions)
return action

Otherwise, choose the best action
return action_priority[0]

47

A. Assorted Pseudocode

def get_action_priority(train, state, possible_actions):
priority = [(0, possible_actions[0])]
if state.time == train.arrival_time:

Add arrival action with priority 100 if it is an available action
if state.time >= train.arrival_time:

if (
train.current_track() == train.end_track
and train.end_side_track in train.current_track().next_tracks()

):
If the train is at its end track, facing the right way, and
if train.is_moving():

If it is still moving, add end move action with priority 5 instead
else:

If the train is at its exit track
add exit action with priority 100

else:
if not train.is_moving():

Add a move action with priority 5
else:

If already moving, get path to the end track and add a move action
with priority 5 to the next track on the path. If the train is facing
the wrong way, add a setback action with priority 20 instead.

Finally, add a wait action with priority 1 in case all of the other cases fail
return priority

A.2 Sequence Shuffling
Function used to shuffle scenario arrival/departure sequences to vary the difficulty
reverses the last number_of_reversals in the list of trains.

def shuffle(trains: list[int], number_of_reversals: int):
if number_of_reversals == 0:

return trains
return trains[:-number_of_reversals] + trains[-number_of_reversals:][::-1]

48

Appendix B

Selected 2-Train Plan

The following provides an example shunt plan and track layout inferred for a 2 train
scenario as discussed in chapter 5.

Figure B.1: Shunt yard layout for the 2 train scenarios. Node 14 acts as the en-
trance to the yard and does not count as a normal track. Entrance and exit actions
correspond with node 1 instead.

49

B. Selected 2-Train Plan

Train ID # Action

0 Arrive
0 BeginMove
0 Walking
0 EndMove
0 Walking
0 BeginMove
0 Move Path: 1A→8B
0 Move Path: 8B→9→10B
0 Move Path: 10B→11→3B
0 Walking
1 Arrive
1 BeginMove
1 Move Path: 1A→8B
1 Move Path: 8B→9→10B
1 Move Path: 10B→11→12B
1 Walking
0 EndMove
0 BeginMove
0 Move Path: 3B→11→10B
0 Move Path: 10A→9→8B
0 Move Path: 8A→1B
0 EndMove
0 Walking
1 Move Path: 12A→11→10B
1 Move Path: 10A→9→8B
1 Walking
0 Walking
1 Move Path: 8B→9→2B
1 EndMove
1 BeginMove
1 Walking
1 Move Path: 2B→9→8B
1 EndMove
0 Exit Time: 1300
1 BeginMove
1 Move Path: 8A→1B
1 EndMove
1 Exit Time: 1700

Table B.1: Sequence of actions in a selected 2-train plan. The associated layout and
track IDs for the movement actions can be found in Figure B.1. Train 0 is scheduled
to arrive at timestep 400, and train 1 at 800. They are scheduled to depart at
timestep 1300 and 1700 respectively.

50

	Preface
	Contents
	List of Figures
	Introduction
	Why Probabilistic Programming?
	Robustness
	A Motivating Example
	Assumptions
	Research Questions

	Literature
	Background
	Related Work
	Conclusion

	Problem Setting
	Problem
	Method
	Evaluation
	Conclusion

	Methodology
	TORS and Planner Set-up
	Generative Model
	Inference
	Visualizing the Distribution
	Conclusion

	Results
	Experimental Setup
	Revisiting the Motivating Example
	3-Train Instances
	Large Scenario Performance
	Robustness Evaluation
	Conclusion & Answers to Research Questions

	Conclusions and Future Work
	Key Findings
	Contributions
	Limitations
	Future Work

	Bibliography
	Assorted Pseudocode
	Greedy Planning Agent
	Sequence Shuffling

	Selected 2-Train Plan

