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A Three-Level Extension for Fast and Robust
Overlapping Schwarz (FROSch) Preconditioners
with Reduced Dimensional Coarse Space

Alexander Heinlein, Axel Klawonn, Oliver Rheinbach, and Friederike Röver

1 Fast and Robust Overlapping Schwarz preconditioners

The Fast and Robust Overlapping Schwarz framework [7, 8], which is part of the
Trilinos Software library [18], contains a parallel implementation of the generalized
Dryja–Smith–Widlund (GDSW) preconditioner. The GDSW preconditioner is a two-
level overlapping Schwarz domain decomposition preconditioner [17] with an energy
minimizing coarse space [3, 4]. It is constructed based on a domain decomposition of
the computational domainΩ into 𝑁 nonoverlapping subdomains {Ω𝑖}𝑖=1,...,𝑁 . These
are then extended by 𝑘 layers of elements, resulting in a corresponding overlapping
domain decomposition

{
Ω′
𝑖

}
𝑖=1,...,𝑁 . The two-level GDSW preconditioner can then

be written as
𝑀−1

GDSW = Φ𝐾−1
0 Φ𝑇︸     ︷︷     ︸

coarse level

+
∑︁𝑁

𝑖=1
𝑅𝑇𝑖 𝐾

−1
𝑖 𝑅𝑖︸              ︷︷              ︸

first level

, (1)

where Φ contains the coarse basis functions. Contrary to the classical approach,
where the coarse basis functions are chosen as nodal finite element functions on
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a coarse triangulation, for the GDSW preconditioner, these are chosen as discrete
harmonic extensions of certain interface functions ΦΓ to the interior of each subdo-
main. In particular, the functions ΦΓ are restrictions of the null space of the global
Neumann matrix to the vertices, edges, and faces, which form a nonoverlapping de-
composition of the domain decomposition interface. The matrix 𝐾0 = Φ𝑇𝐾Φ is the
coarse matrix and the matrices 𝐾𝑖 = 𝑅𝑖𝐾𝑅𝑇𝑖 , 𝑖 = 1, . . . , 𝑁 , correspond to the over-
lapping subdomain problems on the first level. The local subspaces corresponding to
the overlapping subdomains are denoted as𝑉1, . . . , 𝑉𝑁 , and the GDSW coarse space
is denoted by 𝑉0. For scalar elliptic problems, the condition number is bounded by

𝜅(𝑀−1
GDSW𝐾) ≤ 𝐶

(
1 + 𝐻

𝛿

) (
1 + log

(
𝐻

ℎ

))2
, (2)

where 𝐶 is a constant independent of the finite element size ℎ, the size 𝐻 of the non-
overlapping subdomains, and the width of the overlap 𝛿 = 𝑘ℎ; see [3]. The GDSW
coarse space can be constructed in an algebraic fashion, i.e., without geometric
information. For a further reduction of the coarse space, the FROSch framework
provides an implementation of a reduced dimensional coarse space (RGDSW) [11].
For the reduced dimensional GDSW coarse space, the basis functions are constructed
from nodal interface functions. Two options are currently available in FROSch: a fully
algebraic version (Option 1) [5, 11], where the interface values are defined through
the number of adjacent vertices, or the less algebraic version (Option 2.2) [5, 11],
where the interface values are defined through the distance to the adjacent vertices;
cf. [5, 11]. In general, the two options result in different partitions of unity. The
interior values of each subdomain are determined as in the classical GDSW approach.

2 Three-level extension

For a large number of subdomains, the coarse problem of the two-level (R)GDSW
preconditioners may become too large to be solved by a sparse direct solver. As in
the three-level BDDC methods [19], we can resolve this by applying the GDSW
preconditioner recursively to the coarse problem [9, 10]. This technique can be ex-
tended to a multi-level version, as in multi-level BDDC [1, 16] (which compete with
inexact FETI-DP methods [13]), multilevel Schwarz methods [14, 15], or multigrid
methods. We only discuss the three-level extension in this paper.

To apply the (R)GDSW preconditioner to the coarse problem, we need to define
an additional layer of decomposition. We therefore decompose the domain into
non-overlapping subregions Ω𝑖0 of diameter 𝐻𝑐, whereas each subregion is a union
of subdomains. To obtain overlapping subregions Ω′

𝑖0, we extend each subregion
by recursively adding layers of subdomains, as we do with finite elements on the
subdomain level; see Figure 1. We denote the subregion overlap by Δ. The notation
on the subdomain level is kept consistent with the two-level method.
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Fig. 1: Structured decomposition of an exemplary two-dimensional computational domain Ω into
nonoverlapping subregions Ω𝑖0(left), a zoom into one overlapping subregion Ω′

𝑖0 consisting of
subdomains Ω𝑖 (middle), and a zoom into one overlapping subdomain Ω′

𝑖 (right). Each level of
zoom corresponds to one level of the preconditioner; image from [9].

We define the three-level GDSW preconditioner [9, 10] by

𝑀−1
GDSW−3L = Φ

( third level︷      ︸︸      ︷
Φ0𝐾

−1
00 Φ

𝑇
0 +

second level︷                ︸︸                ︷∑︁𝑁0

𝑖=1
𝑅𝑇𝑖0𝐾

−1
𝑖0 𝑅𝑖0

)
Φ𝑇 +

first level︷               ︸︸               ︷∑︁𝑁

𝑗=1
𝑅𝑇𝑗 𝐾

−1
𝑗 𝑅 𝑗 , (3)

where the first level and the matrices Φ are defined as in the two-level method and
where 𝐾00 = Φ𝑇0 𝐾0Φ0 and 𝐾𝑖0 = 𝑅𝑖0𝐾0𝑅

𝑇
𝑖0. The restriction operators, restricting

to the overlapping subregions Ω′
𝑖0, are defined as 𝑅𝑖0 : 𝑉0 → 𝑉0

𝑖 := 𝑉0 (Ω′
𝑖0) for

𝑖 = 1, ..., 𝑁0. The respective coarse space is denoted as𝑉00 and spanned by the coarse
basis functions Φ0.

3 Implementation

The Fast and Robust Overlapping Schwarz (FROSch) framework [7, 8] is part of
the package ShyLU from the Trilinos software library [18]. It contains parallel im-
plementations of the GDSW and RGDSW preconditioners based on the Trilinos
linear algebra interface Xpetra; it enables the use of both Trilinos linear packages
Epetra and Tpetra. To test the three-level extension to the FROSch implementation,
we considered a linear elasticity model problem on the unit cube [0, 1]3 with ho-
mogenous Dirichlet boundary condition on 𝜕Ω. We use piecewise trilinear finite
elements and a structured decomposition of the computational domain. To assemble
the stiffness matrix we apply the Trilinos package Galeri. Here, each process owns
the same number of rows of stiffness matrix resulting in different subdomain sizes.
We use a generic right-hand side vector in which each entry is set to one. If the
coarse space is constructed as described in Section 1, the columns of the matrix Φ
will be a generating set of the coarse space. However, for our model problem, the
columns will not be linearly independent and, hence, not form a basis of the coarse
space. This is because the restriction of the six-dimensional null space, consisting of
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translations and linearized rotations, to an interface component may yield linearly
dependent vectors. For instance, the restriction of the null space to a single vertex
yields only a three dimensional space. In order to make sure that the coarse matrix
𝐾0 is invertible, we have to deal with this in our implementation. In particular, before
building 𝐾0, we replace linearly dependent coarse functions by null vectors until all
other basis functions are linearly independent; in order to identify linear dependen-
cies, we perform local orthonormalization using LAPACK’s SGEQRF routine for
computing a QR factorization using Householder transformations. This procedure
yields zero rows and columns in 𝐾0. Therefore, in order to make 𝐾0 invertible, we
finally replace those rows and columns by the corresponding unit vectors, leaving a
one on the diagonal and zeros otherwise. This also has the nice side effect that the
size of the coarse matrix is always the number of interface components times the
dimension of the null space. The coarse level is decomposed into subregions in an
unstructured way using the Parallel Hypergraph and Graph Partitioning (PGH) from
the Trilinos package Zoltan2 [20]; see also [12]. As a Krylov iteration method, we
apply the preconditioned conjugate gradient method (PCG) provided by the Trili-
nos package Belos (BelosPseudoBlockCG). The implementation offers a condition
number estimate using the tridiagonal matrix constructed in the Lanczos process.
We use the relative stopping criterion ∥𝑟𝑘 ∥2/∥𝑟0∥2 ≤ 10−6, where 𝑟𝑘 is the residual
in the 𝑘-th iteration step and 𝑟0 is the initial residual. For all tests, we chose 203 ∗ 3
rows of the stiffness matrix for each process and approximately 83 subdomains per
nonoverlapping subregion. The overlap is obtained by extending each subdomain by
one layer of elements and by extending each subregion by one layer of subdomains.
We performed all numerical tests on the GCS supercomputer SuperMUC-NG. The
INTEL 19.0 compiler is used. The sparse linear subproblems arising in the precon-
ditioner are solved using the sparse direct linear solver PardisoMKL [2].

4 Weak parallel scalability results for the three-Level extension

In this section, we focus on weak parallel scalability results for the three-level GDSW
preconditioner with a reduced dimensional coarse space. We always use Option 1
to construct the coarse basis functions. In Trilinos the data is distributed among the
processes via the map object. We use a repeatedly decomposed map to determine
the interface Γ. This map can be passed as an input to the FROSch framework.

For our weak parallel scalability tests, we consider three different setups to de-
termine the interface Γ, which result in different sizes and sparsity patterns for the
coarse problem; see Figure 2. We either use the Geometric Map, which is constructed
from the structured non-overlapping domain decomposition on the first level, or the
Algebraic Map [6], which is built algebraically from the uniquely decomposed row
map of the input matrix. In particular, the interfaces and hence the vertices, edges,
and faces may differ slightly for the two different maps; this effect may be more
pronounced for unstructured domain decompositions.
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Fig. 2: Sparsity of the coarse matrix 𝐾0 for our linear elasticity model problem in three dimensions
with 216 subdomains; using the Geometric Map (left) and the Algebraic Map, with rotations
(middle) and without linearized rotations (right). The subdomain size is chosen such that each
process of the uniquely decomposed map owns 303 nodes.

Fig. 3: Weak numerical scalability for the three- and two-level method with a reduced dimensional
coarse space; see Table 1 for the data; using the Geometric Map and the Algebraic Map with and
without rotations.

Fig. 4: Weak parallel scalability for the three- and two-level method with a reduced dimensional
coarse space; see Table 1 for the data.

When using the Algebraic Map, we also consider the case where the rotations
are neglected (Algebr. w/o Rotat.). In Figure 2, we only see minor differences in
the sparsity pattern of 𝐾0 using the Geometric and the Algebraic Map. For higher
numbers of subdomains, the differences between these two approaches will be more
visible: for our largest test case with 85 184 subdomains, we have 539 460 as a
maximum nonzero entries per core in 𝐾0 for the Geometric Map; this compares to
578 340 maximum nonzeros per core for the Algebraic Map. For all input maps, the
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Two-level Three-level
# Subd. # Subr. # Dofs Map 𝜅 (𝑀−1𝐾) Iter Solver Time 𝜅 (𝑀−1𝐾) iter Solver Time

1 000 4 2.4 · 107
Geom. 51.45 57 15.11s 90.46 72 16.99s
Algebr. 50.73 49 14.54s 103.02 60 16.12s

Algebr. w/o Rotat. 166.68 70 15.48s 429.05 93 17.91s

13 824 27 3.3 · 108
Geom. 53.61 61 38.40s 116.19 90 24.89s
Algebr. 51.08 49 36.39s 127.91 72 23.38s

Algebr. w/o Rotat. 182.46 73 22.75s 594.97 101 21.58s

27 000 64 6.5 · 108
Geom. 53.77 62 87.28s 122.18 95 30.87s
Algebr. 51.12 50 82.01s 137.42 75 28.46s

Algebr. w/o Rotat. 191.12 73 33.17s 663.44 112 26.02s

39 304 125 9.4 · 108
Geom. 53.82 62 153.88s 128.39 98 35.12s
Algebr. 51.12 50 144.01s 137.96 74 30.63s

Algebr. w/o Rotat. 198.05 74 47.48s 745.26 114 31.40s

64 000 216 1.5 · 109
Geom. - - - 135.58 98 37.29s
Algebr. - - - 143.87 76 32.81s

Algebr. w/o Rotat. - - - 717.06 110 38.24s

85 184 275 2.0 · 109
Geom. - - - 108.49 99 40.80s
Algebr. - - - 150.37 77 39.87s

Algebr. w/o Rotat. - - - 729.14 115 46.45s

Table 1: Data corresponding to Figure 3 and 4. By Iter, we denote the number of PCG iterations,
and 𝜅 is the condition number of the preconditioned operator. Solver Time is the time to build
the preconditioner and to perform the Krylov iterations; see also Figure 3 and 4. The subdomain
size is chosen such that each process of the uniquely decomposed map owns 203 nodes. We have
𝐻𝑐/𝐻 ≈ 8. One layer of finite elements respectively one layer of subdomains is chosen as the
overlap for each level.

two- and the three-level method are numerically scalable, whereas the Algebraic Map
without Rotations yields the highest iteration counts and condition number estimates;
cf. Figure 3 and Table 1. Replacing the direct solver for the coarse problem (used in
the two-level method) by the application of the RGDSW preconditioner for the three-
level method generally results in higher condition number estimates and iteration
counts.

However, the three-level extension of the FROSch framework shows a better
parallel weak scalability than the two-level method; cf Figure 4 and Table 1. The
Solver Time is the time to build the preconditioner and to perform the Krylov
iterations. The time includes the factorization and forward backward substitution for
the sparse direct solvers. For the three-level method the time for the unstructured
decomposition of the coarse problem is also included. For all test settings, the three-
level method is faster for 13 824 and more cores. Moreover, at 39 304 cores the
three-level method is faster by more than a factor of four: Using the three-level
method, we obtain a Solver Time of 35.12 𝑠 using the Geometric Map and 30.63 𝑠
using Algebraic Map. This compares to a Solver Time of 153.88 𝑠 for the Geometric
Map and 144.01 𝑠 for the Algebraic Map in the two-level method. Using Algebraic
Map without Rotation results in a smaller coarse problem, making the two-level
methods more competitive. Here, the three-level method (Solver Time 31.40 𝑠) is
still faster by a factor of 1.5 than the two-level method (Solver Time 47.48 𝑠). As the
results are clear, we did not perform tests beyond the 39 304 cores for the two-level
method. To illustrate the strong influence of the size of the coarse problem on the
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preconditioner time, we consider the test case of 39 304 cores in Table 2. For this
test case, the solution of coarse problem 𝐾0 in the Geometric Map setup takes 78%
(120.19 𝑠) of the total Solver Time (153.88 𝑠).

Two-level method Three-level method
# Subd. # Subr. # Dofs Map Size 𝐾0 𝐾0 Solve Time Size 𝐾00 𝐾00 Solve Time

1 000 4 2.4 · 107
Geom. 4 374 0.24s 6 <1e-5s
Algebr. 4 374 0.22s 6 <1e-5s

Algebr. w/o Rotat. 2 184 0.08s 3 <1e-5s

13 824 27 3.3 · 108
Geom. 73 002 12.03s 366 0.01s
Algebr. 73 002 12.04s 366 0.01s

Algebr. w/o Rotat. 36 501 2.02s 174 0.003s

27 000 64 6.5 · 108
Geom. 146 334 59.38s 1 056 0.08s
Algebr. 146 334 45.75s 1 116 0.08s

Algebr. w/o Rotat. 73 167 11.69s 546 0.04s

39 304 125 9.4 · 108
Geom. 215 622 120.19s 2 508 0.29s
Algebr. 215 622 114.06s 2 556 0.25s

Algebr. w/o Rotat. 107 811 22.14s 1 290 0.11s

64 000 216 1.5 · 109
Geom. 355 914 - 4 980 0.81s
Algebr. 355 914 - 4 938 0.63s

Algebr. w/o Rotat. 177 957 - 2 319 0.21s

85 184 275 2.0 · 109
Geom. 477 042 - 6 432 0.63s
Algebr. 477 042 - 6 660 0.72s

Algebr. w/o Rotat. 238 521 - 3 222 0.16s

Table 2: Cost for solving the problem on the coarsest level. Solve Coarse Problem Time includes
the time of the factorization of the problem as well as the forward and backward substitution in the
Krylov iterations.

For this test case, the solution of coarse problem 𝐾0 in the Geometric Map setup
takes 78% (120.19 𝑠) of the total Solver Time (153.88 𝑠). This time compares to
less than a second (0.29 𝑠) to solve the coarse problem corresponding to 𝐾00 in
the three-level method. Similar results are obtained for the Algebraic Map where
114.06 𝑠 for the two-level method compare with 0.25 𝑠 for the three-level method.
For the Algebraic Map without Rotations the size of the coarse problem is reduced
by a factor of two; cf. Table 2. Therefore, the cost of the coarse problem reduces to
22.14 𝑠 for the two-level method, which compares to 0.11 𝑠 for the three-level method.
Although the Algebraic Map has the largest coarse problem size (see Table 2) this
is consistently the fastest setup of the three-level method. The stronger connectivity
given by this coarse problem improves the iteration count and therefore decreases the
Solver Time. Resulting in the highest number of iterations (cf. Table 1) the Algebraic
Map without rotations is the slowest test case.
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