
Modelling of
Financial Contracts
Production in the
Employer’s Market
Relationship between performance and
production of new financial contracts

by

W.M. Hartel

to obtain the degree of Master of Science,

Applied Mathematics specialisation financial engineering,

at the Delft University of Technology, faculty of EEMCS,

to be defended publicly on Friday July 26, 2019 at 11:00 AM.

Student number: 4340167
Project duration: February 1, 2019 – July 26, 2019
Thesis committee: Dr. P. Cirillo, TU Delft, supervisor

Prof. dr. ir. C.W. Oosterlee, TU Delft
Dr. J. Hoekman, IG&H Consulting

An electronic non-confidential version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Preface

This thesis is a research into the relationship between performance and sales of new financial contracts of
financial products providers in the employer’s market. This thesis is written in collaboration with IG&H Con-
sulting. Combining the performance scores given by advisors on financial providers and the production of
new contracts over the past two years, a logistic regression is fitted with a selected group of performance vari-
ables. The results show a significant positive effect of the performance on the production of new financial
contracts. The model predicts a potential growth in the number of contracts when there is an improvement
in the performance of providers in the eyes of advisors. The performance of the model is not fully satisfying
but it is a good starting point. It can be ameliorated in the future with the collection of contract specific in-
formation. The members of the thesis committee are: Dr. P. Cirillo (supervisor), Prof.dr.ir. C.W. Oosterlee, Dr.
J. Hoekman.

W.M. Hartel
Delft, July 2019
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1
Introduction

1.1. General Introduction

The Netherlands are often perceived as the world leading country in terms of financial products within the
employers market. Their system allows many possibilities for employers to invest money and insure them-
selves or their employees for the future. Employers usually close financial contracts with insurances, named
providers 1 afterwards. Most of the time, these entities make use of an advisor to look for a provider that
matches their wishes. IG&H Consulting, in the remainder of the document shortened to IG&H, is a sector
insider in the employer and advisor market. The company has a lot of experience working with and alongside
providers of financial products. Over the years, the organisation has built up knowledge about the sales of
financial products and the performance of financial providers. It expects the possibility to forecast the pro-
duction of contracts2 with the performance of a provider. In other words, IG&H expects that the performance
of a provider has a significant impact the number of new financial contracts closed at the corresponding
provider. IG&H has access to relevant data about the sales and the performance of providers. The second
set displays the performance scores provided by advisors about the different providers. The company would
like to know whether there exits a relationship between the performance and the number of signed contracts.
It believes that the performance can be used as a forecasting variable for the production of new financial
contracts. The research question we formulated in collaboration with IG&H is the following:

Which relationship exists between the performance and the production of new financial contracts between
employer and provider? What change can be predicted in the production if there is an improvement in the

performance of a provider?

The thesis will be divided in the next four chapters. The following chapter gives an overview of the two
data sets we have access to: the performance measurements and the sales data. In Section 2.4, we will lay
out some expectations of IG&H about the relationship. In Chapter 3, the mathematical tools used for this
project will be presented. Among other things, the logistic regression will be explained. Chapter 4 presents
the model results. In the first part of this chapter, we will check the assumptions of the model with the data.
In the second part, the in-sample and out-sample performance will be interpreted. Finally we will analyse the
forecasting results in the case of change in performance. The overall conclusions are summarised in Chapter
5.The results will be assessed if they match the expectation of IG&H and have a critical view on the model.
Also, further research opportunities are proposed for the company for the future.

Due to confidentiality, Chapter 2 and 4 are partially removed from the the public version. Instead, we
will give a short summary of the removed parts.

1Providers: in this thesis we will be referring to financial products (contracts) providers.
2Production of contracts: in this thesis we will be referring to the number of new signed contracts between an employer and provider.

1





2
Performance and Sales Data

2.1. Introduction

Some parts of this chapter have been removed from this version of the thesis because of confidentiality. In
this chapter, we describe the data we are using for the modelling. The first data set represents the sales infor-
mation of the new production of different financial products. The second data set displays the performance
measurements that gives an overview of performance scores about financial providers.

2.2. Sales Data

The sales data is the new production of financial contracts. This information is about the number of contracts
that a provider has closed. In the project, we focus the analysis on the contracts that are the most sensible for
performance scores. Furthermore, the analysis can be done with a limited number providers due to missing
sales data for the years we are investigating. In the confidential version, we lay out some details about the
data and some plots to give an idea of the type of data we are working with.

2.3. Performance Measurements

In this section, we present the performance measurements. The consulting firm has taken interviews with
advisors about the performance of financial providers. This data set is the collection of all the scores given
to providers. The scores are given to question about the product, process, services and the account manage-
ment. These score are given in the range of 1 to 10. Where 1 is the lowest score and 10 the highest score.
Advisors have a the possibility to fill it with quarters between two natural numbers. Thus the scores are given
in the interval [1,1.25,1.5,1.75,2, ...,9.75,10].

Moreover, we have the score given to the NPS question 1. On basis of this question, the company calcu-
lates the ’Net Promoter Score’ for a pension provider. This score is calculated by subtracting the percentage of
promoters (respondents giving a score of 9 or 10) by the percentage of detractors (respondents giving a score
of 0 to 6). The NPS scores is considered as an important performance score and overarching of all the score.
We expects this score to be highly correlated with the scores and to be of an high influence on the production.
The model makes use of this performance data to performs the forecasting of sales of new financial contracts.

1NPS Question:To what extent would you recommend [PROVIDER X] when it comes to pensions to friends, family and / or colleagues?

3



4 2. Performance and Sales Data

2.4. Performance and Sales Data Pooled

This section is meant to present the pooled data of the production of new contracts and the performance
scores of providers. With this pooled sample we wish to find a significant association between the perfor-
mance and the production. To be able to do so, we have to make some assumptions. First, due to lack of
data about the singing date of the contracts, we assume that contracts are signed end of the year after the
performance interviews are completed. Interviews are assumed to be done between the production of the
year before and the year of the new production. Second, advisors have the possibility of not answer at a score
in the survey. This is mostly because they don’t know about the subject asked. We assume that this is com-
pletely at random. Due to the regression method we are using, we are not able to use information when there
is missing data in some of the explanatory variables. Because of a scarce sample, we have chosen to fill the
missing score, but NPS grade, with the average scores given by advisors of the same score in the same year.

Furthermore, we discovered that the scores are (highly) positively correlated with each other. Partic-
ularly, the correlation between the NPS score and the other scores is high. IG&H expects the score of the
first question of the survey to be significantly related to the production, in terms of number of contracts. In
subsection 2.3, we explained the NPS score is considered as the summarizing score of the performance of
a provider due to the general formulation of the question and the high correlation with the other score. As
explained in the same subsection, this score is used to determine the Net Promoter Score. IG&H expects
a promoter, i.e an advisor that has given a 9 or 10 at the NPS score, to produce more at the corresponding
provider than a non promoter.

The pooled data set has 129 observations. We are using this sample as training data for the logistic regres-
sion. This sample has a similar contract number and proportion average than the whole data. Nevertheless,
the sample has a smaller variance than the whole data set. Due to lack of data, we are ignoring this difference
in variance.
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2.5. Explanatory Variables

In this section,we present the different explanatory variables at our disposal. We are looking for variables that
build a predictive model and explain the most of the variation in the response, i.e the number of contracts.

First, the most straight forward independent variable is the proportion of contracts of the year before.
The company expects that the contract proportion of a certain year is dependent of the proportion of contract
the year before. The fact that we are using data from different years in the response can create dependence
for advisors which are for both year present in our sample.

Second, we are able to use the raw scores as explanatory variables. Next to these score, we introduce
dummies in function of the scores. We expect promoters to produce more contracts than neutrals, and neu-
tral to produce more than criticasters. For this reason we introduce the following two dummies that we will
test their significance for the fit of the number of contracts:

Dummy Neutral =
{

1, if 6 < NPS score < 9

0, otherwise.

Dummy Promoter =
{

1, if > NPS score > 8

0, otherwise.

Furthermore, one of the problems of the scores is the subjectivity of the response given. The method of giving
a score is not always the same for every respondent which creates a bias. To eliminate some of the bias, we
decide to generate dummies for all the performance scores. We remark that average of the scores given are
all surrounding the 7. We can interpret that advisors scoring higher than 7 are happier than average on that
matter. For this reason IG&H expects that a provider produces more contracts than average with happier
advisors.

Dummy Score =
{

1, if Score > 7

0, otherwise.

Third, we can expect the production is dependent of the provider itself. To simulate this effect, we gen-
erate a dummy variable for each provider:

Dummy Provider P =
{

1, if relation with provider P

0, otherwise.





3
Methodology

3.1. Introduction

In this chapter, we introduce the methodology and the mathematical background used during the project.
As explained in Chapter 2, we chose to focus on the number of contracts of produced at providers as re-
sponse for our model. In the first section, we will introduce the basics of linear models and the binomial
distribution in the first section of preliminaries. This section is meant for readers with a introductory math-
ematical knowledge. We recommend the book of ’Introduction to statistical Learning’ [7] for further details
about these topics. In the second section, we will do an in-depth analysis of the logistic regression with some
background about generalized linear model (GLM) with the estimation of the regression coefficient through
maximum likelihood estimation. For further reading about GLM, we suggest the books ’Introduction to Gen-
eralized Linear Models’ [8] and ’Generalized Linear Models With Examples in R’ [9]. The aim of this chapter
is to prepare the reader for Chapter 4 of results.

3.2. Preliminaries

One of the most common regression models is the linear model. This section introduces the notation and
basics of linear regression and binomial distribution. It is meant to give introductory knowledge to have a
better understanding of the generalized linear model.

3.2.1. Linear Models

Let us consider a response Y = (Y1, ...,YM )T and p explanatory variables X = (I , X1, ..., Xp ) with I a vector with
ones and Xi a vector of size M

for individual i ∈ {1,2, ..., M } such that:
Y = Xβ+ε,

with β= (β0,β1, ...,βp )T and ε= (ε1, ...,εm)T so that εi ∼ N(0,1) for all i ∈ {1, ...,m} .

A linear regression is composed of the two components [8]. The first one, called the systematic com-
ponent, assumes the expected value of the response E(yi ) = µi to be linearly dependent to the explanatory
variables xk . We can describe this relation as

E(yi ) =µi =
n∑

k=0
βk xk,i , (3.1)

with β0,β1, · · · ,βp known as regression coefficients. The second component, called the random component,
assumes that the variance of the response yi is constant or, in the general, proportional to a known factor:
var

(
yi

)=σ2 for i = 1,2, · · · ,n.

7



8 3. Methodology

In Equation 3.1, µi for all i = 1,2, · · · ,n are known quantities, βk ,k ∈ {1,2 · · · , p} must be estimated from
the training data. β0 is also known as the intercept which is the term we will use in the results. A linear
model with one explanatory variable is called a simple linear regression [7]. The estimation of the regression
coefficients are usually done by minimizing the residual sum of squares (RSS), called Ordinary leats squares
(OLS) method.

RSS =
M∑

i=i

(
yi − ŷi

)2

with ŷi = β̂0+β̂1xi ,1+β̂2xi ,2+·· ·+β̂p xi ,p the estimated response of yi . Another measure used a lot in statistics
to measure the error of the fit is the root mean square error:

RMSE =
√

1

M
RSS

In Chapter 2, we noticed that our response correspond to a proportion. The linear regression explained
above, is not convenient for proportional data. In the next part we will introduce a type of model that is more
suitable for our response. Before that we recall the basics of the binomial distribution which will be needed
in the next section.

3.2.2. Binomial Distribution

IG&H expects we can find a model that would have a strong connection between the performance and the
yearly new premium. After some analyses shown in the appendix, we remark that the fit is the strongest and
more representative when we are take the number of contracts as a response. The number of contracts are
integers in the interval [0,n], with n the total number of contracts. We can argue that the number of contracts
signed at a provider are the number of ’successes’ over the total number of contracts. With this structure
we are inclined to say that the response is binomially distributed response. The Binomial Distribution is
an extension of the Bernoulli distribution where the response is a success ’1’ or a failure ’0’. The binomial
distribution is meant for probabilities of number of outcomes that have been a success over a certain number
of trials. As described in chapter 7 of Dobson’s book [8], if Z is a binary random variable with the two following
possible outcomes:

Z =
{

0 if the outcome is a success

1 if the outcome is a failure.

with probabilities P (Z = 1) = π and P (Z = 0) = 1−π. Consider Y = ∑n
j=0 Z j which counts the number of

successes realised over n trials.

Definition 3.2.1. If π j =π are all equal for the binary random variable Z j , Y is binomial if it has a distribution
function as followed:

P
(
Y = y

)= (
n

y

)
πy (1−π)n−y , y = 0,1, ...,n. (3.2)

Remark 1. The binomial distribution has the following expectation and variance:

E (Y ) = nπ,

V ar (Y ) = nπ(1−π).
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In our case, we consider every relationship where we have performance information and contract in-
formation as independent binomial random variable. The number of contracts signed at a provider will be
defined as Yi and Ni −Yi as the number of contracts, that have been signed at other three providers with Ni

the total number of contracts. In reality we are using the same advisor multiple times in our regression which
brings dependency between variables.

3.2.3. Statistical Tests

This subsection is meant to introduce some basic statistical tests we are using in the project. let us define
the significance threshold to be α= 0.05 for all our tests in this report. The first test we are introducing is the
t-test [1]. Let X̄ and Ȳ be the sample averages defined as:

X̄ = 1

n1

n∑
i=1

Xi , (3.3)

where X1, .., Xn1 and Y1, ..,Yn2 are independent normally distributed with N (µx ,σ2
x ) and N (µx ,σ2

y ) respec-
tively. The test has the following hypothesis:

H0 :µ1 =µ2

H1 :µ1 6=µ2,

with the following statistic:

t = X̄ − Ȳ√
s2

1
n1

+ s2
2

n2

,

with s2
1 and s2

2 the sample variances defined as s2 = 1
n+1

∑n
i=1

(
Xi − X̄

)2
. If the null hypothesis is true, than the

t-statistic is t-distributed.

The second test is the Kolmogorov-Smirnov (KS) test [3]. KS makes use of the Empirical Cumulative
Distribution Function (ECDF) defined as:

FEC DF (t ) = 1

n +1

n∑
i=1

IXi≤t .

Let X = (X1, .., Xn1 ) and Y = (Y1, ..,Yn2 ) with the corresponding ECDF Fn1 and Gn2 . The KS test has the
following hypothesis:

H0 : F =G ,

H1 : F 6=G ,

with the following statistic:

Dn1,n2 = supx |Fn1 (x)−Gn2 (y)|.
Under the Null hypothesis, by the theorem of Gvlivenko-Cantelli [5], this statistic converge almost surely to
zero. With the tables of Smirnov [4] we are able to calculate the p-value to admit or reject the null hypothesis.

Finally, we introduce the measure of correlation and it’s test. The Pearson correlation [7] is defined as:

ρ = cor (X ,Y ) =
∑n

i=1 (xi − x̄)
(
yi − ȳ

)√∑n
i=1 (xi − x̄)2

√∑n
i=1

(
yi − ȳ

)2
, (3.4)

where x̄ and ȳ are the averages of the samples defined in Equation 3.3. The associated test is defined with the
following hypothesis:

H0 : ρ = 0

H1 : ρ 6= 0,
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with the corresponding statistic [6]:

t = ρ√
1−ρ2

p
n −2

.

t has a t-distribution with n −2 degrees of freedom if H0 is true.

3.3. Logistic Regression

In this section we are introducing the logistic regression. This model is part of a large family called General-
ized Linear Models (GLM). This type of models were introduced by Nelder and Wedderburn in 1972 in their
book ’Generalised Linear Models’ [10]. As the name suggests, it is a generalization of the linear regression
where we are allowed to omit certain assumptions which gives us more liberty in the modelling of certain
type of data. On one hand, the response distribution can belong to a more general family, the exponential
family. This is defined by the random component. In the first subsection we will describe the exponential
family and the implication for the modelling. On the other hand, the response can have a more general sys-
tematic component. We will make use of a link function to relate the expected value of the response with
the linear predictor. This will be introduced in the second subsection. Furthermore, we will explain about
the estimation of the regression coefficients, the residuals, the goodness of fit measures and finally some
resampling methods to test our model.

3.3.1. Random Component

As seen in the first section, the gaussianity of the response in an important assumption for linear models. In
our case, the response has binomial distribution which is not convenient for linear models. GLM allows the
response to belong to a larger family called the exponential dispersion model family (EDM), or exponential
family. This family includes continuous EDMs as the normal and gamma distributions, or discrete EDMs as
the Poisson and binomial distribution.

Definition 3.3.1. Y has a distribution belonging to the exponential family if its probability function can be
written as follows:

P (y,θ,φ) = a(y,φ)exp

(
yθ−κ (θ)

φ

)
, (3.5)

where:

• θ is the canonical parameter

• κ(θ) is the cumulant function

• φ> 0 is the dispersion parameter

• a(y,φ) is a normalizing function so that
∫
ΩP (y,θ,φ)d y = 1 or

∑
ΩP (y,θ,φ) = 1 for continuous and dis-

crete variable respectively.

Definition 3.5 shows the structure of a distribution belonging to the EDM. Let Y ∼ Bi n(n,π) or Bi n(p,n,π)
with 0 < π < 1 the probability of success, p = 0,1/n,2/n, ...,1 the ratio of success and n the number of trials.
We can derive the following equation:

P
(
p;π,n

)= (
n

np

)
πnp (1−π)n(1−p)

=
(

n

np

)
exp

[
n

(
p log

π

1−π + log(1−π)
)]

. (3.6)
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In Equation 3.6, we recognize the form of (Equation 3.5) with θ = log
(

π
1−π

)
, φ = 1

n , κ = −l og (1 −π) and
a(y,φ) = ( n

np

)
. We can confirm that the binomial distribution is part of the exponential family. In the book of

Dobson [8], you can find more detail about the EDM family with the specific form of the mean and variance
for distributions belonging to this family.

3.3.2. Systematic Component

Besides assuming a broader random component, GLM assumes a more general systematic component than
the linear models. We are able to link the linear predictor ν=∑p

k=0βk xk to the meanµ through a link function
[9] h defined as followed: h(µ) = ν.

Definition 3.3.2. h, mapping from R to R, is a link function if h is monotonic and differentiable.

The monotonicity makes sure that ν is mapped to only one value of µ. Differentiation is a condition to
make the estimation possible (Subsection 3.3.3). A special case of a link function is ν= θ(µ) of Definition 3.3.1
called the canonical link function.

Remark 2. For a linear models, the response is normal distributed. Thus θ =µ and the canonical link function
is the identity function ν= h(µ) =µ.

In the case of our response, we are interested in the proportion of successes pi = Yi /ni for each relation.
The mean of the number of successes is E(Yi ) = niπi which gives us the mean of the proportion E(pi ) = πi .
Looking at Equation 3.6, we recognize the canonical link function which we will use in Chapter 4:

h(πi ) = log

(
πi

1−πi

)
(3.7)

=
p∑

k=0
βk xk .

To sum up, our model is represented by the following two components:{
Yi ∼ Bi n(ni ,πi )

log
(

πi
1−πi

)
=∑p

k=0βk xi k .
(3.8)

The fraction πi
1−πi

is called the odds ratio (OR). The OR can be rewritten to find the response of our model as:

πi =
exp

(∑p
k=0βk xi k

)
1+exp

(∑p
k=0βk xi k

) , (3.9)

with xi 0 = 1 for the intercept.

3.3.3. Coefficient Estimation

As explained in Subsection 3.2.1, linear models make use of ordinary least square for the estimations of the
regression coefficients. This method is appropriate when we assume the response to be approximately nor-
mally distributed whereas for other distributions within the EDM family it is not satisfactory. GLM makes
use of the maximum likelihood for the estimation (MLE).This method is useful for testing hypotheses and
measuring the goodness-of-fit which will be discussed in Subsection 3.3.6. In this part we explain the MLE.

The main idea behind this method is finding estimates that maximizes the log likelihood function. As-
sume Yi has a probability distribution P (yi ;µi ,φ) with meanµi = E(yi ) and dispersion termφ. As seen before,
the mean will be written as a function of the linear predictor:

νi =β0 +β1xi ,1 +·· ·+βp xi ,p . (3.10)
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The log-likelihood function for the regression parameters estimators β= (β1, ...,βp ) is definied as:

l
(
β;y

)= n∑
i=0

l og (P (yi ;µ,φ)).

Let us consider the case of the logistic regression where we have Y = (Y1,Y2, ...YM ) i.i.d binomial distributed
variables and Xi = (X1,i , X2,i , ...Xp,i ) as explanatory variables of response i . To find the estimates β̂ of β =
(β0,β1, ...,βp ) we are maximising the following log likelihood function [8]:

l
(
π,y

)= M∑
i

li
(
πi , yi

)= M∑
i

[
yi logπi +

(
ni − yi

)
log(1−πi )+ log

(
ni

yi

)]
.

This maximum is found by finding the null point of the differential equation of log likelihood function over
the coefficients.

U (βk ) = ∂l
(
π,y

)
∂βk

(3.11)

= ∂l
(
π,y

)
∂π

∂π

∂βk

=
M∑
i

∂l
(
πi , yi

)
∂πi

∂πi

∂βk

=
M∑
i

(
yi

πi
− ni − yi

1−πi

)
∂πi

∂βk
,

with the corresponding probability of success:

πi =
exp

(∑p
k=0βk xi k

)
1+exp

(∑p
k=0βk xi k

)
∂πi

∂βk
=

xi ,k exp
(∑p

j=0β j xi j

)
(
1−exp

(∑p
j=0β j xi j

))2 .

Equation 3.11 is called the score function. If there is p regression coefficients, there will be p score functions.
By solving the equations U (βk ) = 0 with k ∈ {1, ..., p} we are able to find the estimates β̂.

Now that we have considered the problem, we propose a method to solve this it. One of the ways to
compute MLE’s is by using the Newton-Raphson iteration [11] where we need the second of the log likelihood
function called the observed information matrix with the following elements:

J j k
(
β
)=−U (β j )

∂βk
= dU (β j )

dπ

∂π

∂βk
. (3.12)

To find the the estimates β̂ = (
β̂0, β̂1, · · · , β̂p

)
with the use of Newton–Raphson iteration would be described

by the following:

β̂(r+1) = β̂(r ) + J (β̂(r ))−1U (β̂(r )).

with J (β(r )
k ) the observed information matrix. In the book of Dunn and Smyth [9], the authors describe the

Fisher scoring method that is used for our estimation of the regression coefficients. The Fisher method is a
version of the Newton-Raphson iteration by using the expected information matrix defined as I (β) = E

[
(J (β)

]
instead of the observed matrix. I (β) is a function with the average information given by the parameters from
the model. The authors [9] explain that the use of the expected information I (β) has some advantages. First,
the expected information is much simpler to evaluate for the logistic regression. Second, the observed is
guaranteed to be positive only in the situation that β̂MLE = β whereas I (β) is positive for any parameter
value. Third, the expected matrix has a very elegant relationship [12] with the variance of the score function
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I (β) = var (U (β)). We are able to calculate the elements of the expected information matrix with equation
3.12 :

I j ,k = E
(

J j k
(
β
))

.

The fisher scoring iteration is described by:

β̂(r+1) = β̂(r ) + I (β̂(r ))−1U (β̂(r )).

The authors [9] remark that the variance of the coefficients are the diagonal elements of the inverse
information matrix.

var
(
β̂k

)≈ Ikk
(
β
)−1

sd
(
β̂k

)≈ Ikk
(
β
)−1/2 .

Maximum likelihood has some neat properties that is handy for the modelling of a GLM [9]:

1. MLEs are invariant. If f (β) is a one-to-one function of β, the f (β̂) is the MLE of f (β).

2. MLEs are asymptotically unbiased and efficient. E() converge to β when the number of samples goes
to infinity (n →∞)and there are no other asymptotically estimators with smaller variance.

3. MLEs are consistent. Not only the expacted value, but the estimator β̂→β when n →∞.

4. MLEs are asymptotically normally distributed. Let β0 the true value. As n →∞,

β̂∼ Np

(
β0, I

(
β0

)−1
)

, (3.13)

with Np the multivariate normal distribution of dimension p, with p the number of regression coeffi-
cients.

In the following subjection we are looking at the hypothesis testing of the parameters that have been found
by MLE. We will make use of the last asymptotically property given by the list above.
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3.3.4. Hypothesis Testing

In this subsection, we are introducing the Wald statistic for hypothesis testing and performing the confidence
interval for the regression coefficients found with MLE. This statistic is based on the Property 4 of previous
subsection. If we look at Equation 3.13, we can rewrite it as follows:

(β̂−β0)T I (β0)(β̂−β0) ∼χ2
p , (3.14)

as n → ∞. For our model we are interested in testing if a certain explanatory variable x j is relevant in the
linear predictor (Equation 3.10). This is the same as testing the following hypothesis:

H0 :β j =β0 = 0,

H1 :β j 6= 0.

We are able to test the hypothesis by using the Wald statistic:

W =
(
β̂ j −β0

j

)2

ˆvar
(
β̂ j

) , (3.15)

where ˆvar
(
β̂ j

)= 1
I
(
β̂ j

) . If H0 is true, the statistic is χ2
1 distributed when n →∞ [9]. This results from Equation

3.14 where we assume β and β0 are equal. When W is small, the distance between β̂ and β0 is small and thus
it is evidence that supports H0. In Chapter 4, we will make use of the Z statistic which is defined as:

Z =
p

W =
β̂ j −β0

j

ˆsd
(
β̂ j

) , (3.16)

with ˆsd
(
β̂ j

)= 1√
I
(
β̂ j

) . With this transformation of W, we conclude that Z ∼ N (0,1) when n →∞ if H0 is true.

In Chapter 4, we are comparing the coefficients of two models where we will use the previous equation to
compute the p-value of the difference between coefficients.

Based on the Wald statistic we are able to find the 100(1−α)% confidence interval of single parameters
β j with Equation 3.16:

β̂ j − z
√

var
(
β̂ j

)<β j < β̂ j + z
√

var
(
β̂ j

)
, (3.17)

with z the quantile of the standard normal distribution such that P (Z > z) = 1−α when Z ∼ N (0,1). In this
report we make use of α= 0.05. According the table of the standard normal distribution z = 1.96. Dunn and

Smyth [9] argue that this method is most common due to the explicit solution and that β̂ j and
√

var
(
β̂ j

)
are

found directly from the fitting algorithm fisher scoring iteration.

3.3.5. Residuals

In this subsection, we are defining the residuals we analyse in Chapter 4. In the book by Dunn and Smyth
[9], the authors explain that the response residuals (yi −ni π̂), which is often used in LM, is inadequate due
to the dependence between the variance and the mean. Assume Y = (Y1, ...,YM ) are i.i.d binomial distributed
random variables and π̂= (π̂1, ..., π̂M ) the estimated probability of success found with the MLE β̂ in Equation
3.9. One can make use of the Person residuals [8]:

rP j =
y j −n j π̂ j√

n j π̂ j
(
1− π̂ j

) , (3.18)

where j ∈ {1, ..., M }.

The next residual measure is the deviance residuals. For this residuals, we need to introduce the deviance
function of the binomial distribution [8]:

d(yi , π̂i ) = 2

[
yi log

(
yi

ni π̂i

)
+ (

ni − yi
)

log

(
ni − yi

ni −ni π̂i

)]
, (3.19)
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where i ∈ {1, ..., M } and π̂i is the estimated probability of success for Yi with MLE solution β̂. Using the previ-
ous equation, the deviance residual is defined as [8]:

d j = sign
(
y j −n j π̂ j

)
d(y j , π̂ j )1/2

= sign
(
y j −n j π̂ j

){
2

[
y j log

y j

n j π̂ j
+ (

n j − y j
)

log
n j − y j

n j −n j π̂ j

]}1/2

, (3.20)

where j ∈ {1, ..., M }. The standardized version of the previous residual (Equation 3.20) is defined as:

rD j =
d j√

1−h j

, (3.21)

where h j is the j-th diagonal of the hat matrix. This matrix is equal to H = X
(
X T X

)
X T where X is the M ×p

matrix with the values of the p explanatory variables of the M binomial distributed responses of our sample.

Data points with large residuals (outliers) and/or high leverage may have an high influence on the out-
come and the accuracy of a regression. In 1977, Cook and R. Dennis [15] propose a distance that measures
the effect of deleting a given observation for linear models. Dunn and Smyth [9] describe the following ap-
proximation of the Cook’s distance for GLM:

D ≈
(

r ′2
P

p ′

)
h

1−h
, (3.22)

where r ′
P is the standardized Pearson residual, h is the diagonal of the hat matrix which measures the leverage

and p ′ is the number of regression parameters.

The course material of ’Regression Methods’ of The Pennsylvania State University [16] explains some
thumb rules to define the observations. If Di is greater the 0.5, then the ith observation may be influential. If
Di sticks out from the other D j values, it is almost certainly influential in the fit.

3.3.6. Goodness of Fit

After the estimation of the regression coefficient β= (
β0,β1, ...,βp

)
, it is important to measure the goodness-

of-fit of the model. In this part we introduce some method to measure the goodness of fit of the model. We
these methods, we will able to compare different models with each other. The first goodness-of-fit measure
we are using is the deviance:

D =
M∑

i=1
d

(
yi , π̂i

)
, (3.23)

with d
(
yi , π̂i

)
introduced in Equation 3.19. If the model is correct D ∼χ2

(
M −p

)
[8].

The second measure is the pseudo-R2 proposed by McFadden in 1974 [13] which is a version of the well-
known R2.

pseudo R2 = 1− l
(
β̂;y

)
l
(
β̃0;y

) , (3.24)

where l
(
β̃;y

)
is the maximum log likelihood of the null model 1 and l

(
β̂;y

)
is the maximum log likelihood

of the full model. With this method, we are analysing how much better the full model is than only using an
intercept. Comparing to the traditional R2, we can interpret the log likelihood of the intercept model as the
total sum of squares, and the log likelihood of the full model as the sum of squared errors. The ratio of these
likelihoods shows the level of improvement over the intercept model.

The third measure we are using is the Akaike Information Criterion (AIC), named after its creator Hiro-
tugu Akaike [14].

AIC =−2l (β̂,y)+2p, (3.25)

1Model fit with only the intercept (intercept model) as regression coefficient
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where p is the number of unknown parameters, l (β̂,y) is the maximised log likelihood with the estimated
parameters [9]. A lower AIC value indicates a more parsimonious model relative to the fit with a higher AIC.
This measure is convenient because it penalises for the number of coefficients so that a complicated model
will not be validated.

3.3.7. Resampling Method

Besides looking at the goodness-of-fit and the coefficients of the model, it is important to analyse the pre-
dictive power of the model. The goodness-of-fit measures are based on the the training data. We are now
interested in the the prediction errors when using a different samples. We are not able to get new data, so we
make use of the resampling method to rearrange our sample. There exists multiple methods such as cross
validation and bootstrap.

First, let us consider the k-fold cross validation. This method randomly divide the observations into k
groups of (approximately) the same size. This first group, or fold, is used for validation and the k-1 groups
are used to fit the model. After that, we compute the MSE between the predicted value and the true values of
the validation fold with the fitted model. We repeat this k times with each time choosing a fold for validation.
This results in k estimates MSE1,... MSEk . To be able to compare it with the average estimate, we take the
square root of each MSEi and get the root mean square estimates RMSE1,... RMSEk . The cross validation
(CV) estimate of this method is the average of these values [7]:

CVMSE = 1

k

k∑
j=1

MSE j , (3.26)

CVRMSE = 1

k

k∑
j=1

RMSE j , (3.27)

This measure can be used to see the accuracy of the prediction or to compare two model with the same fold
distribution.

The second method is the bootstrap. Let us assume M observations in our data set. The bootstrap
method resamples the data into M new observations with random combinations of the original data with re-
placement [7]. This way we refit each time the model and calculate the error or an estimate for each bootstrap
simulation.



4
Results

Due to confidentiality, the results of the project are not made public. We give a short summary of this chapter.
We have presented the results in three sections. In the first section, we checked the assumptions of the logistic
regression with the available data. In the second part, we described the model that maps the relationship
between the performance and the production of financial contracts. In that section we did an analysis of
the in-sample performance with help of the goodness-of-fit measures and residual analysis. Furthermore,
we looked at the out-sample performance with help of the k-fold cross validation. In the last section, we
reflected on the effect of change in performance scores on the production of new contracts.

The results show a significant positive effect of the performance on the production of new financial
contracts. The in-sample and out-of-sample achievements of the model with the performance variables is
significantly better compared to a model with only the proportion of contracts signed the year before. This
means that the performance variables add significant value to the model. Nevertheless, this model is not fully
satisfied because of the rather low goodness-of-fit measures and out-of-sample performance. This is mainly
due to the lack of data. In chapter 5, we propose some future research to ameliorate the model. In the last
section of the chapter, we have simulated the change of the total number of new contracts if there were more
promoters in our sample. We noticed a linear growth of the total number of contracts when the percentage
of promoters grows. However the confidence interval was large, there was an average growth.
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5
Conclusion

This project had two main goals. The first goal was to analyse the relationship between the performance
and production at providers of new financial contracts within the employer’s market. The second goal was to
forecast the production of new contracts when the performance of a provider is improved in the eyes of the
advisor. In this chapter we will: summarise the project, present the main results, have a critical view on the
model and the results of this project, and finally propose possible future research.

5.1. Summary

First of all, to discover a relationship between performance and production, we have chosen to focus on
the number of contracts. We are assuming that every contract is equally important and that the size does
not intervene with the choice of the provider. Moreover, the performance of the provider in a relationship
advisor/provider is measured by the scores given by the advisor in the survey or interview carried out by
IG&H. We noticed that the scores are all positively correlated with each other. To avoid multicollinearity, we
have chosen to omit certain explanatory variables in our model. Furthermore, we introduced dummies for
each score with an threshold of a score above 7. This can be considered as a dummy presenting the advisors
scoring above average on the corresponding score. We created two dummies for the two NPS status: neutral
and promoter. Lastly, we introduced dummies for the provider represented in the relationship to discover if
the providers have a fixed effect in the contract proportion.

Secondly, using the contract proportion as a response and the performance variables as independent
variables, we performed a logistic regression. We found the best fit model with the following explanatory
variables: dummy promoter, dummy digital service, score inside service and the proportion of contracts
produced the year before at the same provider. This selection was found by removing the non-significant
variables and choosing between collinear variables. Finally, we performed a prediction on the total number
of contracts in the situation the percentage of promoters grew. We made the assumption that neutrals would
be the most likely to turn into promoters. We showed the prediction together with the bootstrap interval. In
the following section we present the main conclusion of our project.

19
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5.2. Main Findings

First of all, we can conclude that there exists a significant positive relation between the performance and the
production of new financial contracts within the focus of our data. This is proven by the significant positive
regression coefficients of the performance variables in our logistic regression. We found that there is a clear
difference in the production at provider with promoters and non-promoter. The regression coefficient of the
promoter dummy shows a significant positive effect on the number of contracts. However, it is noticeable
that the dummy neutral was not significant. This suggests no significant proof of added value to take the
difference between neutral and critic into consideration.

Secondly, the selected performance variables in the model add significant value in the explanation of
the variation of the response. Comparing with a model with only the proportion of contracts produced the
year before, the model has a better in-sample and out-of-sample performance. Nevertheless, the in-sample
performance (McFadden’s R2 = 0.2) is still not high. Not all the variation of our response can be explained
by the variables used. Besides, the out-of-sample performance of the model is weak on individual level. The
average RMSE of the number of contracts is similar to the average number of contracts. This model is not
satisfying for prediction on individual observations. However, the model performs much better taking the
sum of the predicted number of contracts. The RMSE was relatively low compared to the total number of
new contracts.

Thirdly, although the conservative confidence interval is large, we can predict that, the total number of
contracts of a sample is growing on average when the number of promoters grows. The relationship between
the percentage of promoters and the total number of contracts seems to be linear with a positive slope. We
can conclude that on average the more promoters a provider has, the more contracts the provider is produc-
ing.

Finally, it is important to mention some limitations of this research. The collection of data is done on
a small part of the advisors and providers. We cannot be completely sure of the representativeness of the
performance scores given by the interviewed advisors and the sales of other providers. Furthermore, the
logistic regression assumes that the responses are independent. In our data set we have used the providers
and advisors multiple times as independent variables in the same or different years. We have noticed that due
to missing data and low correlation we could assume independence. This assumption is disputable. Lastly,
the in-sample and out-of-sample performance of our model suggests that more explanatory variable exists
to explain the remaining variation of the response. Due to time and resources limitations, we were not able
to face these challenges.

5.3. Future Research

On one hand, the in-sample and out-of-sample performance of our model is not fully satisfying. Due to time
and resource limitations, we were not able to explore new data. To be able to have a better prediction power,
we believe that the performance scores are not enough as explanatory variables. We would suggest to collect
more information about the contracts we are analysing. It would be interesting to know information about
the employers who signed the contracts. For example, we would be able to know if employers were new in the
market, or if they had a contract at another provider. This information can be used to discover the reasons of
the departure of the employee to another provider.

On the other hand, we have noticed that the collection of the data is done uniformly in the past 3 years.
We would suggest to undertake the same research based on more years of performance and sales data for the
same providers. This way it would be possible to include the time component into the model. Moreover, it will
be possible to analyse the delta of the scores and in the number of contracts. In our project, the dependence
between the responses is low and so we were able to use a GLM. When collecting more of the same providers,
the dependence between the responses will grow. We would suggest to use Generalized Estimation Equations
(GEE) to perform analysis for this type of dependence (see for example [8]). We believe there is large future
potential in the combination of performance and production. With these future researches, IG&H can have
more insight in the employer’s market and will be able to perform better forecasts of the number of contracts.
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