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As social robots see increasing deployment within the general public, improving the interaction with those
robots is essential. Spoken language offers an intuitive interface for the human–robot interaction (HRI), with
dialogue management (DM) being a key component in those interactive systems. Yet, to overcome current
challenges and manage smooth, informative, and engaging interaction, a more structural approach to com-
bining HRI and DM is needed. In this systematic review, we analyze the current use of DM in HRI and focus
on the type of dialogue manager used, its capabilities, evaluation methods, and the challenges specific to DM
in HRI. We identify the challenges and current scientific frontier related to the DM approach, interaction
domain, robot appearance, physical situatedness, and multimodality.
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1 INTRODUCTION

For humans, spoken communication is a natural way of interacting with each other, their smart
speakers, and even their pets. Social robots are robots that are designed specifically to interact with
their human users [16], for example, by using spoken dialogue. For social robots, the interaction
with humans plays a crucial role [8, 32], for example, in the context of elderly care [18] or educa-
tion [10]. Robots that use speech as a main mode of interaction do not only need to understand
the user’s utterances but also need to select appropriate responses given the context. Dialogue

management (DM), according to Traum and Larsson [104], is the part of a dialogue system that
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Fig. 1. The integration of the dialogue manager into a spoken dialogue system.

performs four key functions: (1) it maintains and updates the context of the dialogue, (2) it includes
the context of the utterance for interpretation of input, (3) it selects the timing and content of the
next utterance, and (4) it coordinates with (non-)dialogue modules. In spoken dialogue systems,
the dialogue manager receives its input from a natural language understanding (NLU) module
and forwards its results to a natural language generation (NLG) module, which then generates
the output (see Figure 1).

In contrast to general DM, DM in human–robot interaction (HRI) has to also consider and
manage the complexity added by social robots (see Figure 2). The concentric circles of the figure
describe decisions that have to be made when designing a dialogue manager for HRI. From each
circle, one or more options can be chosen and combined with each other. The robot appearance,
modalities of the interaction, interaction scenarios, and physical environment influence the DM.
Their combination leads to high variability, but also great complexity. While pure neural networks
are used for DM in non-HRI contexts [15, 112], this approach is not adopted generally for HRI,
where sparse data, need for robustness, and control of high-stakes interactions pose additional
constraints.

While DM and HRI have not been studied extensively in combination, this is not the case for the
fields individually. Harms et al. [43], Brabra et al. [15], Deriu et al. [25], Zhao et al. [112], and Trung
[105] investigate DM, but not from a robotics perspective, and Skantze [98] looks at turn-taking, a
part of DM. While there are reviews on DM in HRI, these have a specific user-group focus, such as
patients suffering from dementia [92]. An overview of the present and future of natural language
in HRI, without a specific focus on DM, is provided by [69], [74], and [72]. In contrast to those
reviews, we focus on dialogue managers that are used in physical robots and provide a general
overview of DM in HRI. With this review, we aim at giving HRI researchers an overview of the
currently used DM systems and their capabilities, to help them make a more informed decision
when choosing a dialogue manager for their system.

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 2, Article 22. Publication date: June 2024.
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Fig. 2. Dialogue management in human–robot interaction is influenced by multiple factors that show high

variability. Different robot appearances can be combined with varying modalities, interaction domains, and

environments. Some examples are given for each factor to illustrate it.

2 REVIEW

We conducted a systematic review using the PRISMA protocol [76]. We determined inclusion
and exclusion criteria, mentioned below, which guided the selection steps, based on our research
questions:

RQ1: Which robots are commonly used for DM? (Section 2.1).
RQ2: Which types of dialogue managers are commonly used in HRI, and what are the reasons?

(Section 2.2).
RQ3: Which capabilities do current dialogue managers used in HRI have? (Section 2.3).
RQ4: How are dialogue managers in HRI evaluated? (Section 2.4).
RQ5: What are the main challenges for DM in HRI? (Section 2.6).

We used Scopus, IEEE, and ACM for the literature search using the search terms “Robot
AND ‘mixed initiative”’ and “Robot AND (‘dialog manager’ OR ‘dialogue manager’),” resulting in
949 papers (ACM: 556, Scopus: 278, IEEE: 115). Performing a second search with the more general
search terms “Robot AND (dialog OR dialogue)” but a restriction to relevant conferences (HRI, IUI,
ICMI, AAMAS, SIGGRAPH, HAI, SIGDIAL, RO-MAN, IROS, INTERSPEECH, DIS, MHAI, AAAI)

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 2, Article 22. Publication date: June 2024.
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led to another 504 papers (ACM: 62, Scopus: 350, IEEE: 92). To make sure also that papers that use
the term “interaction” instead of “dialogue” in the abstract and title are included, we performed
a third search with the search term “‘social interaction’ AND robot AND speech.” This led to 209
(ACM: 20, Scopus: 134, IEEE: 55) papers. All papers were imported into Rayyan [81] for further
processing.

The formal exclusion criteria were chosen to filter out papers shorter than four pages, reviews,
demonstrator papers, and results that are not scientific papers or did not include a physical robot.
Furthermore, we excluded papers written before 2005 since the NLU modules and DM capabili-
ties have improved a lot since then. Additionally, the papers needed a focus on spoken DM or
DM capabilities of the dialogue manager. DM capabilities are the conversational abilities the di-
alogue manager possesses. We decided to scope the review to only include papers that describe
a whole dialogue manager. While other components like dialogue state trackers do help the dia-
logue manager, by providing information that the dialogue manager can then use to decide what its
next action should be, they are out of scope for this survey. After duplicate deletion and keyword-
based filtering (“dialog,” “dialogue,” “dialogs,” “dialogues,” “conversation,” “conversational,” “conver-
sations,” and “discourse”), all authors independently performed a manual abstract screening of the
remaining 753 papers, excluding papers that do not sufficiently focus on spoken HRI. Conflicting
decisions were discussed until an agreement was reached. A subsequent paper screening led to a
total of 68 papers analyzed for this review.

2.1 Robot Appearance

We classify the 69 robots found in the 68 papers by their appearance using the taxonomy in [8].
Figure 3 shows the resulting distribution of the various types of robots found. Humanoid robots

(41%) are one of the most dominant categories in spoken HRI. Within this category, the NAO robot,
used in 10 papers, is the most commonly used humanoid robot [4, 13, 21, 24, 26, 36, 64–66, 79]. The
Pepper robot [50, 78, 109] and Maggie [2, 3, 41] are used in three papers each. A robot bartender [33,
84], Armar 3 [47, 87], and the PR2 robot [37, 108] are mentioned twice, while all other humanoid
robot appearances occur just once [22, 27, 52, 59, 62, 73, 103]. The second biggest category consists
of functional robot appearances (30%); the design of those robots is influenced by the task they
are used for. The three Segway-based robots in this category are used for delivery and navigation
[5, 102, 111]. Mobility plays a role for all robots in this category as they are used to help with
information and action requests based on instructions [1, 7, 23, 30, 58, 71, 88–90, 93], act as a guide
[35, 62, 63, 70, 91, 107], or learn location names [34, 77].

For the robots based on body parts, two robotic heads were used: Flobi [20, 54] and Furhat
[19, 53, 99]. In contrast to robotic heads, which do not have manipulators, robotic arms are used for
object manipulation and grasping. We found robotic arms in five of the papers [82, 83, 95, 96, 101].
Robots based on other body parts were not found in any of the papers. All of the artifact-shaped
robots found in the papers are robotic wheelchairs [29, 44, 45, 106], which are used for navigation.
The papers using android robots all use ERICA as the robot [49, 56, 57, 75]. One of the robots was
not described sufficiently to classify it [38].

Based on the diversity of robot types used, we can conclude that the use of spoken dialogue
systems is not restricted to specific robots with certain shapes or features, which adds to the high
variability of factors influencing the DM (see Figure 3).

2.2 Types of DM in HRI

While the first DM approaches starting in the 1960s were purely handcrafted, there has been a
development into the direction of probabilistic and hybrid approaches. We use the framework pro-
vided by Harms et al. [43] as a basis for the classification of dialogue managers into handcrafted,
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Fig. 3. Appearance of the robots used in the surveyed papers.

probabilistic, and hybrid approaches. For handcrafted approaches, the rules and states of the di-
alogue manager are defined by experts and developers, whereas the rules and states are learned
from data by probabilistic approaches. Hybrid approaches are a combination of handcrafted and
probabilistic ones. In total, 45 of the 68 papers use handcrafted approaches, 12 use probabilistic
ones, and 11 make use of a hybrid approach (see Figure 4). From 2006 to 2010, 17 of the 23 included
dialogue managers were handcrafted, with model-based approaches making up over 50% in total.
Model-based approaches stayed popular from 2011 to 2015, but (partially observable) Markov

decision processes ((PO)MDPs) saw an increased use as well. From 2016 onward, those two
approaches were surpassed by hybrid ones that can combine the advantages of both.

2.2.1 Handcrafted Approaches. The main difference between the different handcrafted ap-
proaches lies in the information encoded in the states of the dialogue manager. Finite-state ma-

chines (FSMs) are a simple approach to handcrafted DM, where the states of the FSM directly
correspond to the dialogue states. A simple FSM approach is used in [93], where the focus of the
interaction lies in the learning of tasks through dialogue. [58] uses a composition of multiple FSMs
to manage the different interactions their robot is offering. However, nowadays they are mostly
used as building blocks in combination with other additional functionalities in the surveyed papers.
For example, [30] uses an FSM with predefined dialogues for knowledge acquisition but aims at
adding an autobiographical memory to the robot. Dialogue managers based on state charts, which
are used to implement interaction patterns, are used in [20, 54, 82, 83]. Interaction patterns are
based on general sequences that can be found during dialogues and are defined before the inter-
action. Another dialogue manager based on state charts is IrisTK, which adds recursion [53, 99].
Building upon IrisTK, [53] adds a data-driven turn-taking approach to the system.

To allow the human user to take more initiative and provide information more flexibly in di-
alogues, frame-based systems have been used [12]. Frame-based approaches employ empty slots,
typically information units required to fulfill the user’s request, that can be filled at any point of
the conversation. [41] presents such a system, where multiple slots can be filled at a time, for ac-
tion requests for the robot Maggie. A frame-based approach is also adopted in [109], where the
user’s food preferences are determined in an interview-like conversation by using slot-filling.

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 2, Article 22. Publication date: June 2024.
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Fig. 4. The dialogue management approaches over the years used in the surveyed papers.

The third handcrafted approach is the model-based approach. In addition to the frames with
slots, a model-based dialogue manager has more complex states. Those states include some form
of model, for example, about the user, the environment, the situation, or the context. Model-based
dialogue managers often consider the user model, including the user’s goals and intention [21,
88, 90, 91, 102, 107, 108]. User models that influence the DM can also be based on the displayed
emotion [3, 26] or personality [4] of the user. For long-term interaction, including a model of the
conversation history is especially relevant and enables the dialogue manager to learn from past
interactions. Cobot’s dialogue manager described in [91] is designed for a long-term interaction
and therefore uses the conversation history to avoid repetitive dialogue or unnecessary offers.
In [27], the robot collects and stores user data that influences later conversations with the user.
[62, 63] use a stack to keep track of unfinished conversation sequences for tracking the context
during the interaction. The dialogue manager used in [78] groups utterances into contexts, which
then can be focused during different points of the conversation.

The Information State Update approach [104] used by [88–90] stores and uses among other things
the dialogue context, information about the possible referents of pronouns, and information about
the current turn and initiative. [1, 7, 95] also use the dialogue context and user’s intention, in
addition to objects referenced in the environment, to determine the next dialogue move. Multiple
expert modules, activated based on domain scores, are used by [77] and [34].

Plan-based systems, which belong to the model-based approaches, treat the conversation as a
planning problem and aim at reaching a goal state by selecting from predefined actions. Plan-based
DM is used by [84], [2], and [33], who use the planner for the dialogue and action generation. Other
plan-based systems are used by [106] for navigation of a robotic wheelchair and by [36], with
additional rule-based speech overlap management, which is integrated in the cognitive DIARC
architecture. [23] uses answer set programming for their planning module, which can generate a
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high-level plan based on the user’s request and a low-level plan for the motion planner. In [19], a
goal, based on novelty, dialogue history, relevance, and diversity, is used for the utterance selection,
while [35] performs logical inference over the goals and beliefs to this end.

The dialogue manager used by [52] can be used as a model-based one, but a simplified version
can also be used as a frame-based or FSM dialogue manager. Two dialogue managers do not fit
the classification and were therefore classified as other handcrafted. [22] used timed Petri nets to
improve multimodal interaction, especially in respect to turn-taking. Petri nets are state-transition
networks that have tokens, which determine the current configuration state and whether a tran-
sition is enabled. In addition to utilizing this approach, timed Petri nets use real-time transitions
of the tokens to be able to model the configuration according to the input. [79] uses a dialogue
manager that uses XML files for generating the dialogue in Slovac languages.

2.2.2 Probabilistic Approaches. In contrast to handcrafted approaches, probabilistic approaches
learn the dialogue policy directly from data. A probabilistic approach used in only one surveyed pa-
per is the example-based approach [103], which looks up the most similar utterance in its database,
consisting of numerous conversations, and uses the answer given there as its own.

A popular probabilistic approach used in DM is POMDPs. MDPs model the dialogue as a Markov
process, moving from one state to another based on learned transition probabilities. For POMDPs,
the current state is not known and is estimated based on observations (e.g., perceived actions and
utterances) and their probabilities. The robotic wheelchairs used in [45] and [44] use dialogue to
check their spatial semantic representation and make sure that it corresponds to the real environ-
ment by asking questions about the environment. The POMDP dialogue manager in [5] rewards
successful conversations, leading to task completion, while additional questions, confirmations,
and unsuccessful conversations are penalized. Two POMDPs, one for the DM and another one
for deciding when to update the knowledge base, are used for improving the augmentation of
the knowledge on an as-needed basis. [24] allows flexible navigation between the different sub-
dialogues to enable the user to change their mind about the order in which they want to do certain
tasks. A Bayesian approach to learning the best dialogue strategy is used by [29] for a robotic
wheelchair. Integrating reasoning with probabilistic common-sense knowledge enables the robot
in [111] and [70] to ignore irrelevant variables while planning. Another approach for limiting the
state space is used in [64], where probabilistic rules are used for Bayesian networks. (PO)MDPs
are also used for multimodal dialogue, where they learn the strategies from multimodal instead of
pure dialogue data [47, 71, 87].

We did not find a system purely based on an end-to-end learning approach, but end-to-end ap-
proaches are in fact used as parts of hybrid systems (see Section 2.2, Hybrid Approaches). A prob-
abilistic approach that does not fit into either category described earlier is used by [101]. They
generate all possible linguistic expressions for an action, which is possible since they use a simpli-
fied sentence structure. Then they use expected log loss reduction and Bayesian logistic regression,
predicting which utterance should be selected. Using the best score, an utterance is selected and
produced. After the production, the appropriateness of the utterance is rated based on the user’s
reaction and the example is added to the training set. This leads to active learning during the
conversation.

2.2.3 Hybrid Approaches. Instead of focusing on either a handcrafted or data-driven approach,
in recent years it has become more popular to use a combination of the two. These so-called hybrid
approaches can be fitted according to the needs of the target application and the availability of data.
The option to combine approaches can compensate for their weaknesses and utilize their strengths.
Hybrid approaches are often used when the dialogue manager is distributed in a variety of sub-
modules that focus on different aspects of the DM, like turn-taking, engagement management, or
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Table 1. Common Conversational Capabilities Observed

in the 68 Surveyed Papers

Conversational Capability Amount
Confirm 13
Ask for confirmation 24
Ask for repetition/rephrasing 10
Ask clarification questions 17
Reference resolution/spatial grounding 24
Acquire knowledge 21

problem handling. [56] combines a finite-state turn-taking machine with a deep neural network in
order to improve the dialogue manager’s turn-taking capabilities. Turn-taking is also integrated
into the otherwise model-based dialogue manager in [37] by adding a combination of incremental
processing and lexical prediction. In [13], an FSM approach is combined with self-supervised learn-
ing to handle disengagement. To handle problems occurring during the dialogue more efficiently,
[38] adds an FSM with four states (Start, Normal, Help, Error) to the dialogue manager ARIADNE
[46]. [96] also uses an FSM for tracking the general state of the dialogue system but makes use of
external services for questions and declarative utterances.

[57] uses logistic regression to select so-called experts, which can have different strategies, while
[49] relies on a priority system in combination with additional triggers for a backchannel and
backup question module. Backchannels are short responses that are integrated into the conversa-
tion while listening, to show engagement (e.g., “hmm,” “yeah”). In [75], a dialogue act tagger based
on supervised machine learning (Support Vector Machines) is used to decide whether a statement
response should be generated, based on either a decision tree or a response using an example-based
approach. If neither have a sufficiently high confidence score, a backchannel is produced instead.

It is also possible to make use of probabilistic rules for DM to reduce the parameter space by
including expert knowledge [66]. A combination of a POMDP and a model-based approach is used
in [65], where the user’s goal and actions are modeled using Bayesian inference. A combination of
an example-based and agenda-based approach is used in [59]. While the agenda graph is designed
manually, the examples that are mapped to the nodes are learned from human–human dialogues.

2.3 Communication Capabilities in HRI

We list common capabilities that were explicitly mentioned in the reviewed papers in Table 1.

Confirm. Explicit confirmations by the robot for establishing common ground are important,
especially for task-based interaction, to increase task success [102]. Common ground describes
shared beliefs, for example, about the environment or the state of the conversation [100], which
is relevant if the human and robot have to achieve a task together. Example use-case scenarios
include movement instructions [35, 41], receptionist tasks [47, 52, 90], grasping [83], delivering
items [102], or the establishment of common ground in situated interactions [21].

Ask for confirmation. A clear trend across more than one-third of all papers is the robot’s ability
to ask for confirmation. This can happen either explicitly (e.g., “Do you want...?”, with an option for
the user to (dis-)confirm) or implicitly (e.g., “I will now...”, with an option to cancel the action if it
is not the desired one). [82, 83] use a correctable information request pattern for implicit confirma-
tions and an explicit confirmation after an Information Request pattern for integrating confirma-
tion questions into their task-based interaction. Confirmations by the human can be used to ensure
common ground about the environment [21, 47, 99], to elicit information about user preferences
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[70, 109], to confirm the correctness of past actions [64], or to make sure that the conversation is
not terminated too early [93]. At the same time, unnecessary confirmation or clarification ques-
tions can make the conversation inefficient and increase user frustration and are therefore often
associated with a cost in reinforcement learning settings [5, 29, 44, 64, 111]. For example, robots
that navigate or deliver items [5, 29, 66, 111] or make appointments and book something [52, 90]
often ask for confirmation, since a later correction after performing the action is more costly. To
avoid unnecessary confirmation questions, [65] assigns a negative value to the reward function
of their reinforcement learning dialogue strategy for additional confirmations, while the robot in
[101] learns when and how to confirm through active learning. Since robots have to deal with
challenging environments with noise, confirmation questions are used when the confidence that
the utterance was understood correctly is low [41, 77, 89, 90, 108].

Ask for repetition/rephrasing. In case of speech recognition problems, a repetition of the utter-
ance can already help resolve them, while rephrasing gives the human the option to produce a dif-
ferent utterance that is easier to understand for the robot than the first one. To determine whether
repetition is needed, different strategies are available. Robots ask users to repeat an utterance when
the recognition is below a threshold [41], when no match for the input was found [20, 35], or in case
of underspecification [65, 66]. If no grounding is achieved for object names that are referred to by a
gesture accompanying a pronoun, the robot in [63] asks for repetition. Like repetition, rephrasing
can be used when the dialogue manager finds no match for the input [35, 50, 59] or if the dialogue
manager is uncertain either about the dialogue state [5] or about the correct recognition of the
utterance [41].

Ask clarification questions. Clarification questions are asked in those cases where the robot is
unsure if it has understood the utterance correctly [5, 22, 88, 89, 102] or when it is missing in-
formation [35, 38, 41, 47, 109]. Additional information to make complete plans [23] or determine
the current context [108] can be acquired through clarification questions. If most parts of a user
request are already specified and only some need additional clarification, [20] suggests to let the
robot already start the action while clarifying the missing parts.

Reference resolution/spatial grounding. Something that distinguishes robots from conversational
agents is that they are physically embodied and situated in an environment. That is why situa-
tional grounding is important for robots that, for example, engage in navigation [44, 45, 66, 91] or
deliveries [102] or give a tour in the environment [63, 82, 93]. Situational grounding refers to the
robot’s ability to ground concepts and referenced objects in the real world (“Give me the red cup”
would refer to a specific red cup that is present in the environment, not to the concept of a red
cup in general). The robot in [21] engages in a naming game of objects in the environment with
the user and focuses on establishing common ground. To do so, it makes its knowledge explicit,
such that the human can correct it if necessary. Robotic arms that grasp and move objects need to
identify the object the user is talking about correctly [83, 95, 101]. For multimodal dialogue where
the human refers to objects in the environment that are related to the robot’s task, the robot also
needs to be aware of which object the human is referencing using the available modalities (e.g.,
gestures, speech, gaze) [1, 7, 47, 87].

Acquire knowledge. If the human is talking to the robot about previously unseen or unheard
objects or people, the robot should be able to make sense of them. Knowledge augmentation allows
for new knowledge to be added to the knowledge base of the robot. For navigating robots, questions
about their environment improve their knowledge about the spatial semantic representation [44,
45]. In the delivery domain, knowledge augmentation is used to learn names of objects or people
that have to be delivered/should receive the delivery but are not yet in the knowledge base [5,
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102]. Another context in which knowledge from previous interactions and users is used is for
recommendations based on (assumed) user preferences [70, 107]. The robot in [90] is able to acquire
and store knowledge, which is explicitly declared. In some cases the interaction with the robot is
used to teach it new actions [95], for grasping methods in combination with object names [83], or
for following instructive tasks [93]. Other forms of knowledge acquisition include active learning
from past interactions [101], the internet [78], or updates of the world model [23] in order to avoid
failures of the interaction. Another case of knowledge acquisition takes place when the robot learns
personal information about the human and stores it in a knowledge base [3, 30].

2.4 Evaluation Methods of DM in HRI

Evaluation metrics. Different techniques have been used for evaluating the performance of dia-
logue managers in general. A detailed survey of them can be found in [25]. For the evaluation of
dialogue managers in HRI, subjective and objective measures can be used (see Table 2).

Dialogue and tasks are often tightly coupled in task-based systems, and the dialogue is needed
to achieve the goal. For task-based studies we therefore observed a high number of papers report-
ing the task success rate, a metric also observed as a common evaluation method by [25]. Since 58
of the 68 papers report on task-based interactions, task success offers an easily accessible option to
evaluate the interaction. Number of turns is a metric that can be used independent of the system
and would aid in the comparability of different systems and tasks if reported for all studies. How-
ever, the evaluation of the system still depends on the type of system used [25]. Even though this
can partly account for the high number of different evaluation metrics, it would be advantageous
if common metrics, like the number of turns, would be integrated into the evaluation of all studies
to make them more comparable.

Method of evaluation. Performing user studies for the evaluation has the advantage that they
allow to evaluate the performance of the dialogue manager and robot in a real interaction, while
allowing the users to give their opinions in questionnaires, like the Godspeed questionnaire [9].
That way, user frustration and other subjective measurements can be included in the evaluation.
However, user studies are resource and time intensive. In the reviewed papers, 35 user studies
were reported, with a few (3) of those being in-the-wild studies, which take place outside of the lab
[13, 19, 53]. Other evaluation methods include simulations (7) and evaluations based on a corpus
of previously gathered data (10), while some papers just describe possible interaction scenarios
(17). Crowdsourcing can be used to evaluate the dialogue manager independently from the robot
[5, 102] or the interaction from a third person point of view.

The participant numbers reported for the user studies differ greatly, ranging from 2 to 97 par-
ticipants, with an average of 21 participants (SD 18.4). Three studies [41, 70, 101] mention tests
with users but do not report any specifics about the number of participants. For in-the-wild studies
it is more difficult to report exact participant numbers, since it is not always clear if every user
interacted only once, which is why [13, 19, 53] report the total number of recorded interactions
instead.

Evaluation of parts vs. the whole system. Due to the integration of the dialogue manager into a
bigger system, the dialogue manager is often evaluated in combination with the other modules of
the robot. For example, the task success can include the dialogue but also the motor functions to
achieve the task. While the integration of dialogue managers into a robot opens up the possibility of
using evaluation methods that assess the whole system, it complicates the evaluation. An example
is that the dialogue manager gets the information from the speech recognition module, which
can introduce misunderstandings that the dialogue manager then has to deal with. To avoid those
problems, simulations or corpus-based evaluations can be used. An evaluation of the dialogue
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Table 2. Subjective and Objective Measures Used for Evaluating DM in HRI

Subjective measures
User satisfaction [19, 26, 102]
User frustration [5, 102]
Perceived interaction pace [24]
Perceived understanding [66, 102]
Scales from social psychology/communication [103]
Naturalness and pleasantness [66, 71]
Ease of use [24, 102]
Likability of the robot [27, 38, 57, 63, 103]
(Modified version of) the Godspeed questionnaire [33, 75]
Items from the Interpersonal Communication Satisfactory Inventory [19]
Perceived common ground [21]
Likelihood of usage in the future [5, 24, 102]
Appropriateness of the answer [35, 66]

Objective measures
Number of turns [21, 33, 38, 47, 59, 65, 66, 87, 102, 111]
Number of repair turns [62, 66]
Number of fallback utterances [75]
Number of rejected utterances [90]
Precision and recall [56, 75]
Accuracy [5, 44, 56, 64, 96, 111]
F1 scores [5, 56]
Task success rate [5, 21, 22, 33, 38, 47, 59, 71, 87, 90, 99, 102]
Entropy reduction [44, 45]
Latency and false cut-in rate [56]
Reward/cost functions [5, 29, 70, 87, 111]
Dialogue duration [66]

manager alone does not necessarily reflect how it would work in combination with the robot’s
other parts, especially if the robot makes use of multimodal data.

2.5 Action and Dialogue Coordination

As most robots used for spoken interaction not only engage in dialogue but also perform actions,
the dialogue and the actions have to be coordinated to ensure a coherent experience. [67] presents
an overview of the methods for end-to-end and modular action and DM coordination to help
system designers to make an informed decision about which coordination strategy to choose. A
collection of the approaches for this coordination that we observed in the surveyed papers can
be found in Table 3. Even though they have the physically situated embodiment, not all robots
perform non-dialogue actions. For those that perform actions and engage in dialogue, we observed
four different ways in which the action and dialogue managers were coordinated in the system.

As the most common coordination method (43%), we observed dialogue managers also being
responsible for the action selection. Actions can be, for example, selecting and navigating to loca-
tions [44, 45] or gestures of the robot [3]. The dialogue manager thus not only is able to perform
dialogue moves but also can select actions as the next interaction move. In contrast to this, only
three papers have an action manager that controls the dialogue moves as well.

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 2, Article 22. Publication date: June 2024.



22:12 M. M. Reimann et al.

Table 3. The Relation of the Dialogue and Action Manager to Each Other,

as Observed in the Surveyed Papers

Action and dialogue coordination

Only dialogue [52, 54, 56, 57, 75, 87, 109]
Dialogue manager and action manager interact
on one level/have a central interaction manager
controlling both

[22, 24, 53, 62, 99, 101]

Dialogue manager is also in control of actions [1, 3, 7, 20, 29, 30, 35, 41, 44, 45, 47, 60, 62–
66, 70, 71, 77, 78, 82, 83, 88–90, 96, 107, 111]

Action manager is also in control of dialogue [26, 58, 93]
Action manager makes decision based on input
received from dialogue manager

[2, 4, 13, 21, 23, 27, 33, 34, 36, 37, 49, 50, 73,
79, 84, 95, 102, 106, 108]

Instead of having one module control the output for both action and dialogue, it is possible to
have separate modules for both that interact on one level or are both controlled by a middleware
acting as a central component.

The second most common coordination strategy observed is to feed the output of the dialogue
manager into an action manager, which then, based on the received dialogue input, decides what
action to do next. The dialogue manager can, for example, create goals that are then passed to a
module that can choose an appropriate action for that goal [36, 37, 102, 108]. In cases where the
dialogue manager and action manager are chained, the dialogue manager does not directly have
information on which action will be produced based on its output. This approach allows to modify
the possible output actions and modalities without needing to change the dialogue manager itself.

2.6 Challenges

Dialogue managers that are integrated into a robot do not act independently but are part of a bigger
system architecture. While this is also true for dialogue managers used without robots, robots often
make use of additional sensors and actuators to integrate multimodal input and output into the
system. Currently, there is no commonly used off-the-shelf solution for spoken HRI, but instead
there is a variety of different frameworks, not only for DM, but also for the related modules. This
variety makes it challenging to select the most appropriate solution. Due to the tight coupling of
modules in a robot, the dialogue managers are also influenced by the problems of other modules,
such as speech recognition errors [34, 49, 57, 90]. Apart from improving the speech recognition
module directly, it is possible to include mechanisms into the dialogue manager that are responsible
for dealing with speech recognition errors [34].

Expectation management. Talking to a robot raises expectations about their conversational capa-
bilities. When those expectations are not met, the user can become frustrated [5]. Expectations are
shaped in part by the morphology of the robot [55], making the consideration of the morphology
on the expected conversational capabilities necessary. For example, [75] uses the Android robot
ERICA and states that “Erica’s realistic physical appearance implies that her spoken dialogue sys-
tem must have the ability to hold a conversation in a similarly human-like manner by displaying
conversational aspects such as backchannels, turn-taking and fillers.” The robot morphology does
not only affect the expectations, for example, regarding the human likeness of its conversational
capabilities, but also limits the tasks the robot can do, impacting the domains the robot has to be
able to converse about.
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In human–human conversations, common ground plays an important role and helps to reduce
miscommunication [100]. In spoken HRI this is even more challenging since the perception of
humans and robots is not the same and the human does not necessarily know what the robot
is able to perceive and understand. Expectations based on human–human conversations do not
necessarily hold for human–robot conversations. This can lead to a gap between the perceived
versus the real common ground [21].

Multimodality and situational grounding. Interactions with robots are not purely speech based,
but they can also make use of multimodal cues like gestures, gaze, or facial expressions. When the
robot is using multimodal input for deciding the next dialogue move, it is not enough to simply
detect the multimodal cues; they also need to be integrated for further processing. A separate
model for multimodal fusion can be used that then forwards the fused information to the dialogue
manager, as is done, for example, in [3, 47, 62, 71]. Before integrating multimodal cues, a decision
has to be made regarding the required modalities and which ones are necessary or expected in the
specific type of interaction and should be used by the robot. The robot morphology is impacting
the multimodal cue generation as well, as robotic heads, for example, cannot generate pointing
gestures. Therefore, the robot’s appearance is adding both restrictions and expectations and should
be chosen carefully.

HRI offers the additional challenge of grounding the interaction in the environment the robot
is physically located in. This is especially the case for multimodal interaction where the referral
of objects can happen, for example, through gestures [1, 7] or gaze [99]. A robot that is refer-
ring to locations around itself needs to know its own position as well as the names and places of
the locations around it [34, 42, 45, 77]. Grounding interactions in the environment is especially
challenging since the environment can change over time, with objects being placed and removed,
people appearing and disappearing, and the robot itself moving in the environment. The physical
environment of the robot also contains objects, which the robot or human can refer to. Especially
for robots that can perform object manipulation, it is important to be able to correctly understand
and produce references to those specific objects [62, 65, 83, 95, 101].

Multi-party and long-term interactions. When a robot is placed in an environment, it can en-
counter the same person multiple times or have longer interactions with the people, for example,
when acting as a guide [70, 107]. In longer conversations or long-term interactions with multiple
conversations, repetitions over time can annoy the user [91], and a lack of conversational memory
will prevent the conversation from moving away from superficial chit-chat or strictly task-based
conversations. To solve the problem of repetitions in long-term interactions, [91] suggests different
options, for example, producing a number of different utterances for the same context that could
reoccur and remembering previous utterances or even whole conversations. To understand the
robot’s behavior and its decisions, additional explanations might be required [27, 95]. Especially
if the robot fails without an explanation, the user might misinterpret the situation or cause the
failure again due to the lack of explanation.

Resources needed. However, this leads to the next problem, which involves the resources needed
for designing complex dialogue managers. For example, for handcrafted approaches the structure
has to be defined a priori [41, 52], knowledge has to be integrated [50], and even then it will not
be able to cover unknown situations [45, 90]. In contrast to handcrafted approaches, data-driven
ones need less human effort but rely on data for learning conversational behavior. However, data
collection in HRI is expensive [29], and for supervised learning expert feedback is needed [64]. It
is possible that the human and the robot follow different conversational strategies; for example,
one tries to exploit previous conversation topics, while the other one tries to explore new topics. If
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the robot does not notice those differences in strategies and rigidly follows its own strategy, it can
lead to high tension in the dialogue [19]. Collecting data in an HRI setting is a challenging task,
since the data are often multimodal and the interaction has to take place in a situated setting. This
means that the data collection requires time, human participants, and a system that can record all
the required signals. However, if a specific robot is used for recording data, the generalizability to
other robots is still unclear.

Variety of metrics and approaches. The reporting of user studies and their results is still lacking
uniformity. Exemplary of this are the multiple ways in which length can be assessed in the context
of dialogues. Some papers report the number of turns [19, 21, 47], while others focus on the length
of turns [27, 59] or the total amount of time [53]. An additional difficulty with using length as a
metric is that it is highly context dependent on whether a high or low number of turns is desir-
able in the conversation. While the heterogeneous reporting on the length can make comparisons
challenging, there are also still papers that do not report on the interaction length at all.

To date, handcrafted DM approaches are still very common in HRI, due to lack of data and the
aforementioned challenges due to the physical embodiment, but also because of the advantages
it offers. If the robot’s conversation domain is small and transparency is required, a handcrafted
approach might be a good option, whereas a probabilistic approach has the advantage that the
actions can be learned from real interaction data, leading to less expert knowledge being required.

2.7 Scoping

While the survey aims at giving an overview of the past and current state of DM in HRI, there
is still some related work that is not captured for various reasons. The related work we look at
in this section can be grouped into three categories: (1) end-to-end interaction management, (2)
cognitive architectures, and (3) end-user programming. One of the main reasons is the variety in
terminology used for DM in HRI, while another reason is that we only used papers with physically
situated robots where an interaction of a human and robot is part of the paper. The variety in
terminology is increased by HRI papers that include DM but do not specifically name the DM part.
Instead, they just describe how the dialogue is modeled in the overall dialogue system [14, 48].

For robots where end-to-end models are used, those models are not just used for the dialogue
manager but often to control the whole interaction [17, 28, 68]. In those cases the DM on its own is
the main focus of the research but is just a (desired) byproduct of the interaction output. Because of
this, we did not focus on such studies in this survey on DM in HRI. Papers that focus on non-verbal
modalities and evaluate the addition of those to already existing DM systems [31] were also out
of scope for this survey. This multimodal focus on the behavior generation that is accompanying
speech is something that can be found in end-to-end or data-driven systems, as discussed in a
survey paper by [80].

Besides the already mentioned DIARC architecture [36, 51, 107, 108], other cognitive architec-
tures are deployed in HRI that often feature plan-based DM. One example is ACT-R [6, 14], where
a procedural system is used to create output based on memories, goals, and other modules.

Not only the developer of the system but also the users can be involved in the development of
the dialogue design [39, 40, 85, 86]. In those cases the focus of the interaction and the evaluation
is not so much on the conversational abilities, but more on the interface and the user’s interaction
with it.

3 DISCUSSION

Our survey of literature that details DM in the context of HRI research revealed a variety of used
DM approaches, influenced by the task the robot should perform and the needed reliability and
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capabilities. In this section, we will discuss the key challenges that have to be faced to make
progress in DM for social robots.

Types of dialogue managers. For task-based human–robot dialogues, the majority of systems
are using handcrafted approaches (see Section 2.3), among which model-based approaches are the
most popular (see Figure 4). End-to-end approaches, like they are used for non-HRI task-based DM
[112], are mainly used in hybrid approaches in task-based HRI. The resources needed for design-
ing complicated dialogue managers constitute a challenge. For handcrafted approaches where the
structure has to be defined a priori, human effort is needed for the creation of the dialogue. In con-
trast to handcrafted approaches, data-driven dialogue managers need less human effort but rely
on data for learning conversational behavior, especially if it is combined with multimodal output.
However, data collection in HRI is expensive [29], and expert feedback is needed for supervised
learning [64].

Transferability from human–human conversation. In human–human conversations, common
ground plays an important role and helps to reduce miscommunication [100]. In spoken HRI
this is even more challenging since the perception of humans and robots is not the same, since
robots might not be able to perceive the same modalities as a human. Expectations learned from
human–human conversations do not necessarily hold for human–robot conversations. This can
lead to a gap between the perceived versus the real common ground [21]. The physical presence
of robots has an effect on the interaction [61]; however, it is not clear what exactly those influ-
ences look like for the different combinations as illustrated in Figure 2. This makes it challenging
to transfer knowledge gained from human–human or even human–agent interaction directly to
HRI.

Interaction domains. While the possible interaction domains for DM in HRI span a wide area
and can be combined with varying robots and environments (see Figure 2), most of them are task
based, for example, for deliveries or navigation. Avoiding unpredictable robot behavior seems to
be an important factor for DM in HRI, which makes handcrafted approaches a compelling option,
especially in task-based interaction domains, even though it does not provide the same flexibility
as data-driven approaches. One trend we observed is that hybrid approaches divide the dialogue
manager into smaller expert modules that are responsible for specific tasks within the dialogue
manager [57, 75]. Different experts use different DM strategies and approaches themselves, based
on the task that is assigned to them. This overall strategy of distributing the task to experts leads
to more flexibility in the construction of the interaction, since the parts that are responsible for
different tasks can use the approach that is best for that specific task.

Physical situatedness and embodiment. A capability that is specific to DM in robots is the ground-
ing of the dialogue in the physical environment. For DM in HRI, the user and the robot are both
physically situated in the environment, which can take different forms (see Figure 2). Because of
this, they are exposed to changes, for example, due to people moving or objects being moved. A
robot can encounter new or already known people [30] or unknown objects [83] during the con-
versation. This also relates to the question about endowing robots with a memory. More specifi-
cally, the physical situatedness of robots raises the question of how to manage such environmental
dynamics in a robot’s memory. Due to their situatedness in the real world, interactions can happen
more than once or for a longer time interval with the same robot. In those interactions repetitions
should be avoided [91]. The question then becomes how to endow a robot with an effective mem-
ory to sustain such long-term interactions.

Due to its physical presence in the environment, the robot’s appearance has to be taken into
account (see Figure 2). Due to its embodiment, the robot can manipulate its environment. Those

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 2, Article 22. Publication date: June 2024.



22:16 M. M. Reimann et al.

robot actions and the changes in the environment that arise because of them need to be reflected
in the dialogue.

When talking to a robot, the robot’s physical appearance raises expectations about conversa-
tional capabilities, like in the case of Android robots that look similar to humans, leading to high
expectations of their conversational capabilities [57, 75]. While the appearance influences expec-
tations about capabilities, it does not make explicit which ones are actually present, and users
can easily become frustrated when those expectations are not met. Therefore, to understand the
robot’s behavior and decisions, additional explanations will be required [27, 95]. To avoid future
failures, the robot should be transparent about the reason for a failure when it happens, so that
the user can try to avoid it in the future. The implications the chosen robot morphology has on
the dialogue are rarely discussed in the surveyed papers. Without this information, it is difficult
to judge if and how the obtained results are transferable to a different robot. If the choice of robot
and the resulting effects on the interaction were more commonly discussed in research papers, this
would help other researchers in choosing an appropriate robot appearance for their interactions.

DM as a part of a bigger (multimodal) system. Dialogue managers that are integrated into a
robot are part of a bigger system. Social robots are typically multimodal and therefore depend on
modules, such as sensors, while influencing other modules. Which modalities are included varies
from case to case, as indicated in Figure 2. By influencing the actuators of the robot, the dialogue
can have an immediate impact on the environment. The dialogue manager not only interacts with
the NLU and NLG modules but also is often linked to other modalities that, for example, manage
the perception and production of multi-modal cues, like gestures or gaze. The dialogue manager is
in addition influenced by the problems of certain modules, such as speech recognition errors [34,
49, 57, 90]. Apart from improving the speech recognition module directly, it is possible to include
mechanisms in the dialogue manager that are responsible for dealing with speech recognition
errors [34]. Due to speech recognition difficulties that are especially common in in-the-wild studies,
multiple common capabilities focus on types of repair (see Section 2.3). However, while repairing
problems in speech recognition with DM techniques is an option, making the reasons for the
failures explicit can help to improve the speech recognition in an HRI context. Speech recognition
in HRI is impacted by noise from the robot’s motor and the environment the robot is placed in,
especially during experiments outside of the lab [94, 97]. Robots can encounter multiple people,
both at the same time and at different times, whose age, accent, and way of speaking can vary. All
of those factors influence the performance of the speech recognition module.

During conversations, it is problematic if the robot loses track of the user or is ignoring multi-
modal cues [63] while the human expects the robot to be able to process them. Since the dialogue
manager is integrated into the robot’s architecture, the whole system should be taken into account
for the evaluation. This means that it is not enough to evaluate the dialogue manager in a decou-
pled manner. Rather, it is necessary to consider the effects of the integration into the robot. Using
real users for evaluations comes with the advantage that it provides a clearer picture of how the
system performs in actual interactions.

Recommendations and conclusion. Several of the challenges we outlined relate to the variance
of interaction domains, appearances, modalities, and environments in HRI that need to be incor-
porated into the DM approach. One of these challenges is the integration into a system with mul-
tiple components, since problems in the other modules that relate to the multi-modal features of
several robot types can impact the DM and need to be accounted for. Another challenge is the
lack of datasets for HRI to further evolve probabilistic and hybrid approaches to DM in HRI. The
data requirements are related not only to the domain of the interaction but also to the type of
robot and the location of the interaction, since those can impact the conversation. The problem
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of lack of data could be addressed by using large language models that only have to be fine-tuned
or can be directly prompted including recent turns in the conversation. However, they still have
difficulties with situational awareness and the integration of the robot’s sensors and actuators
[11, 110]. Human–robot datasets cannot easily be substituted by human–human datasets, since
robots have different abilities than humans and lack most of the common-sense abilities humans
have. Datasets, moreover, even need to take specific robot shapes and forms into account, as the
capabilities present in different robot platforms differ from each other. It is therefore important to
maximize transparency about the robot’s conversational capabilities.

HRI researchers new to DM can make an informed decision regarding the selection of a DM
approach by assessing which of the presented approaches fits their requirements and limitations
best. Based on our observations, hybrid approaches are a good option for more complex dialogue
managers where the dialogue is an essential part of the interaction. If the interaction is simpler
from a dialogue perspective or not enough data are available, handcrafted approaches, especially
model-based ones, are a viable option. While a variety of robots with a range of different shapes
and appearances has been used for spoken HRI so far, it would be helpful if the implications of
robot platform choices on the dialogue would be discussed more extensively. Especially due to the
situatedness in the environment, the required multimodal inputs need to be taken into account in
advance. As a start, we would suggest to include only those that are necessary for the interaction
so as to not overly complicate the DM system. Using already used evaluation metrics, especially
those that are easy to record, would help to compare the performance of the systems used.

Even though dialogue is common in HRI, it is rarely the main focus of the interaction design. In
current research, dialogue is often only seen as a tool to achieve a task with a robot. Moreover, in
papers that do take a DM perspective, the dialogue manager is typically evaluated in non-embodied
agents, which neglects robot-specific challenges that need to be addressed. In order to more struc-
turally address these challenges, it is important that the best of both fields is combined to develop
a more standardized approach for DM that can be drawn upon in the diverse interaction scenarios
that arise in HRI studies.
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