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A B S T R A C T   

Despite the proven effectiveness of seatbelt use in reducing traffic casualties, not wearing a 
seatbelt still contributes to a substantial proportion of fatal crashes worldwide. This problem has 
raised the need to better understand factors contributing to seatbelt use, particularly in multi- 
occupant vehicles. Among these factors, behavioural determinants of seatbelt use are difficult 
to measure and their data are not readily available. These behavioural factors may have shared 
influences on vehicle occupants, causing their seatbelt use choices to be correlated. These com-
plexities have prevented a comprehensive understanding of seatbelt use choices in the literature. 

This study aims to fill this gap by developing an econometric model that explains seatbelt use 
choices in multi-occupant vehicles. A set of binary logit models are constructed for seatbelt use 
choices and their utilities are correlated across vehicle occupants. A new latent variable repre-
senting the unobserved factors or ‘atmosphere’ of the vehicle is then incorporated into the model. 
The model is empirically tested using seatbelt use data from Tennessee, United States. Results 
indicate that vehicle body type and time of the day are significantly associated with seatbelt use. 
In addition, the collective seatbelt use in a vehicle is influenced by the unobserved atmosphere in 
the vehicle. Age, alcohol and drug consumption, higher proportion of old population and white 
racial mix, higher income per capita, and higher education levels are factors contributing to this 
latent atmosphere.   

1. Introduction 

The effects of wearing a seatbelt in reducing roadway injuries and fatalities have long been documented in the road safety literature 
(Knapper et al., 1976; Hodson-Walker, 1970). Previous studies have shown that proper use of seatbelt can decrease the likelihood of 
fatality in a traffic crash between 44% and 73%, depending on the seating position and vehicle type (Blincoe et al., 2015). However, 
factors such as perceptions of safety, discomfort and social influence may affect self-protective behaviour of vehicle occupants (Cunill 
et al., 2004) and thus enforcing seatbelt use is considered to be one of the most effective measures in increasing seatbelt use rates (Dee, 
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1998; Eby et al., 2000). Yet, non-compliance with seatbelt use rules still accounts for a considerable proportion of roadway casualties 
(Shakya et al., 2020). For example, previous studies have reported that a substantial portion of drivers who died in traffic crashes in 
Tennessee, United States, failed to wear their seatbelt properly at the time of the crash (Cherry et al., 2018; Hezaveh and Cherry, 
2019b; Hezaveh et al., 2019b). Similar findings have been reported in Canada (Jonah and Grant, 1985), China (Passmore and 
Ozanne-Smith, 2006), Malaysia (Kulanthayan et al., 2004), Pakistan (Klair and Arfan, 2014) and other parts of the world. These 
findings indicate that some individuals choose not to wear a seatbelt despite its proven effectiveness, raising the need to better un-
derstand factors influencing seatbelt use among vehicle occupants. Such an understanding can, in turn, lead to the deployment of more 
effective countermeasures to further increase seatbelt use rates. 

Past research has shown that seatbelt use is associated with a multitude of factors arising from spatial and temporal characteristics 
of driving, type of vehicle, demographic and socioeconomic attributes of the vehicle occupants and their behaviours, attitudes and 
social norms (Lund, 1986; Ali et al., 2011; Okamura et al., 2012; Hezaveh and Cherry, 2019b; Afghari et al., 2020). While extensive 
research has been dedicated to the understanding of the effects of the above factors on seatbelt use, the complexities of vehicle oc-
cupants’ choices in using seatbelt have been largely unexplored. 

1.1. Complexities of seatbelt use choices in multi-occupant vehicles 

One of the major challenges in understanding the seatbelt use behaviour of vehicle occupants is that a complete list of the factors 
contributing to such behaviour may not be readily available, especially from crash reports. In addition, the psychological and 
behavioural determinants of seatbelt use are very difficult to capture and the available data are usually limited. Recently, Afghari et al. 
(2020) incorporated residential location characteristics of vehicle occupants into their seatbelt use choices to overcome this challenge. 
They showed that ‘home-based’ characteristics of vehicle occupants may serve as a proxy for those attributes whose data are not 
available. In addition, it is intuitive to postulate that vehicle occupants’ seatbelt use is influenced by the attributes of geographic 
location where they come from because geography highly influences behaviours, attitudes, and social norms (Rentfrow, 2010). 

Seatbelt use choices of drivers and passengers in multi-occupant vehicles may be interrelated. This interrelationship may be due to 
the omission of psychological and behavioural factors from the analysis and can be manifested in unobserved errors with shared 
influences on the seatbelt use choices of vehicle occupants. For example, safety-conscious drivers may refuse to drive while the 
passengers are not wearing seatbelt. In the same fashion, safety-conscious passengers may force the driver to fasten the seatbelt. As a 
result, seatbelt use of front and rear passengers may be influenced not only by the seatbelt use of the driver but also by the seatbelt use 
of each other. 

In addition, the collective character of a vehicle may alter individual seatbelt use choices. For example, the seatbelt use choice of an 
occupant in a vehicle in which the other occupants are conformist may be completely different than the seatbelt use choice of the same 
occupant in another vehicle in which the other occupants are eccentric and non-obedient. This collective character of individuals have 
been shown to be significantly associated with and intuitively represent behavioural ambiance or atmosphere of a place (Lopez--
Pintado and Watts, 2008). As such, in this study, we refer to the collective (unobserved) character of vehicle occupants as “the at-
mosphere of the vehicle”. 

Finally, the above complexities are even more acute noting that the differences in the psychological and behavioural attributes of 
individuals may result in the varying effects of other external factors on their seatbelt use choices (Eluru and Bhat, 2007). For example, 
while many studies have shown that male drivers are less likely to wear seatbelt compared to female drivers (e.g., Pickrell and Ye, 
2009; Gkritza and Mannering, 2008; Hezaveh and Cherry, 2019a), other studies have shown that some male drivers may be more 
safety-conscious than female drivers and thus may be more likely to wear seatbelt (Abay et al., 2013). This heterogeneity in the effect 
of gender on seatbelt use arises from unobserved behavioural factors (i.e. safety-consciousness) and thus may result in erroneous 
inferences about the effect of gender if not accounted for in modelling seatbelt use. 

The above complexities associated with the seatbelt use choices of vehicle occupants have largely prevented a comprehensive 
understanding of such choices in the literature. One way of explaining these complexities is to develop a comprehensive econometric 
model that is capable of properly explaining the seatbelt use choices of driver and passengers in multi-occupant vehicles. 

1.2. Econometric modelling of seatbelt use choices in multi-occupant vehicles 

Seatbelt use choices of vehicle occupants are often obtained from crash reports or roadway observations in the format of a binary 
variable (i.e. zero for not wearing a seatbelt, and one for wearing a seatbelt). Univariate binary logit models have been widely used in 
the statistical literature as the modelling approach to estimate the effects of exogenous factors (e.g. the sociodemographic attributes, 
alcohol consumption, vehicle type) on individuals’ binary choices (Washington et al., 2020). These models are based on the random 
utility theory, according to which the utility of a choice consists of a linear combination of a deterministic and a stochastic term. The 
deterministic term indicates the systematic effects of observed factors whereas the stochastic term indicates the random error caused 
by unobserved factors on individual choices. An important limitation of the univariate binary logit model is that it does not account for 
the correlation between binary choices of multiple individuals. As a result, the multivariate version of this model is more suited to 
capture the possible correlations between seatbelt use choices of multiple occupants in one vehicle. Multivariate models have been 
extensively used in the transport and discrete choice model literature (Ravulaparthy et al., 2013; Golob and Regan, 2002; Bhat and 
Srinivasan, 2005; Russo et al., 2014) to capture the shared influence of unobserved factors on multiple dependent variables. In 
addition, the random parameters specification has been used in choice models to capture unobserved heterogeneity in data and ac-
count for the varied effects of explanatory variables on the dependent variable (Mannering et al., 2016). 
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Another limitation of the binary logit model is the assumption that the dependent variable (seatbelt use choice in this context) must 
not affect the explanatory variables. When this assumption is not met (for example, if the atmosphere of the vehicle is to be included in 
the model as an explanatory variable), the dependent variable would be endogenous with the explanatory variable. Simultaneous 
equation models have been largely used in the statistical literature to address the endogeneity problem in statistical and econometric 
models (Washington et al., 2020). These models are divided into two general categories of single-equation methods (indirect least 
squares, instrumental variables, two-stage least squares and limited information maximum likelihood) and system equation methods 
(three-stage least square and full information maximum likelihood) with the latter providing consistent and more efficient estimates 
(Washington et al., 2020). Among system equation methods, the full information maximum likelihood approach is the most appro-
priate for modelling discrete choice data (Guevara and Hess, 2019; Guevara and Ben-Akiva, 2010). In particular, the latent variable 
approach has been shown to be a promising alternative to address endogeneity but it comes with high computational cost and 
identification problems (Guevara, 2015; Afghari et al., 2018, 2019b). Another approach to address endogeneity is to jointly analyse the 
variables which are endogenous with each other. This approach was first introduced by Eluru and Bhat (2007) in order to investigate 
the relationship between seatbelt use and crash injury severity. They found that the joint model is able to address the bias in parameter 
estimates caused by the endogeneity between safety-conscious drivers and their injury severity in traffic crashes. 

Despite fairly extensive advancements in statistical modelling of seatbelt use, there is no econometric model that explains the 
complexities underlying seatbelt use choices of driver and passengers in multi-occupant vehicles. Modelling these choices requires 
various enhancements (e.g., multivariate setting and latent variables) of the existing statistical and econometric models. These en-
hancements lead to model estimation complexities, particularly using the maximum likelihood estimation. With the advanced 
computational capabilities, however, there is a great potential in developing these advanced econometric models and estimating them 
via simulation-based techniques such as Markov Chain Monte Carlo (MCMC) in the Bayesian framework (Oviedo-Trespalacios et al., 
2020). 

1.3. Study objectives 

While extensive research efforts have been dedicated to understanding the seatbelt use choices of vehicle occupants, a meaningful 
portion of vehicle occupants still do not wear seatbelt. Previous studies have mostly focused on the seatbelt use choices of drivers and 
passengers separately and thus the interrelationship between seatbelt use choices of drivers and passengers have not been well studied. 
This study aims to fill this gap by developing a comprehensive econometric model that systematically considers the seatbelt use choices 
of drivers and passengers and their interactions. Borrowing from the ecological and epidemiological studies (Suzuki et al., 2012; 
Kouvonen et al., 2008), we introduce a new latent variable representing the atmosphere of the vehicle and incorporate it into the 
econometric model. The hypothesized model is then empirically tested using seatbelt use data from crash reports in Tennessee, United 
States. To minimize the possible sample selection bias resulted by extracting seatbelt use data from crash reports (Peltzman, 1975), the 
data have been validated by roadside observations in Tennessee (Hezaveh and Cherry, 2019a; Hezaveh et al., 2019b). It is also 
important to note that the average seatbelt use rates of drivers and passengers in Tennessee are fairly high (around 90%) and thus the 
main challenge in this study is to formulate an econometric model that is capable of capturing the variation within the small proportion 
of non-wearing seatbelt individuals. 

2. Methodology 

It is hypothesized that the combination of the above modelling methodologies (a multivariate binary choice model with latent 
variables and random parameters) corresponds with the seatbelt use choices of driver and passengers in multi-occupant vehicles. In 
addition, residential location characteristics of vehicle occupants are used in the analysis as proxies for their behaviours and attitudes. 
To reduce the dimensions of the analysis and avoid autocorrelation between the residential location variables, principal component 
analysis is used to summarize these characteristics into orthogonal explanatory variables in the proposed model. The details of these 
methodological approaches are presented in the following sections. 

2.1. Latent variable multivariate binary choice model 

Let Yi = [Y1i, Y2i, …, Yji] be the vector of j (j = 1, 2, …, J; in our study J = 3) binary dependent variables representing seatbelt use 
choices (Yji = 0 if not wearing seatbelt, and Yji = 1 if wearing seatbelt) of jth vehicle occupant (e.g. driver, front seat passenger, rear 
seat passenger) in vehicle i. The utility of using seatbelt for a given vehicle occupant (Uji) is stated as: 

Uji = βjiXji + εji (1)  

where βji are estimable parameters (including the intercept), Xji are explanatory variables (e.g. sociodemographic factors, vehicle type) 
and εji is the random error term assumed to be identically and independently distributed across observations in each equation and 
describing the random part of the utility. To correlate the utilities of vehicle occupants within the same vehicle, a new random term 
(ηji) is added to the above utilities such that: 
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

U1i = β1iX1i + ε1i + η1i
U2i = β2iX2i + ε2i + η2i
.

.

.
Uji = βjiXji + εji + ηji

(2)  

where ηji is the random term and is specified to capture the correlation between seatbelt use of multiple occupants in the same vehicle 
(i.e. multivariate setting) and thus follows a multivariate normal distribution with mean 0 and variance-covariance matrix Θ: 
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⎣
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⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3) 

To account for the unobserved heterogeneity in the effects of explanatory variables on the dependent variables, model parameters 
are allowed to vary across vehicles: 

βji = βj + δji and δji ∼ Normal
(
0, υj

)
(4)  

where βj and υj are the mean and standard deviation of parameters across vehicles. If the standard deviation of the Normal distributions 
are zero (υj= 0), the model will reduce to the fixed parameters model. Assuming that εji is generalized extreme value distributed 
(McFadden, 1981), the probability of jth occupant wearing seatbelt in vehicle i can be presented as: 

P
(
Yji = 1

)
=

1

1 + e− (βjiXji+ηji)
(5) 

The likelihood of using seatbelt across all individuals can then be determined by the product of equation (4) over the entire ob-
servations. This model is referred to as the multivariate binary choice model in this manuscript. 

The atmosphere of the vehicle is now incorporated into the model as latent explanatory variables in the linear utility functions for 
the dependent variables (Equation (1)). More specifically, we define a new latent variable (Zi) for each occupant and insert it in the 
utility of the binary choice model for that occupant. It is hypothesized that this latent variable representing the atmosphere of the 
vehicle is a proportion (more on this will be presented later in this section) and thus is assumed to follow a beta distribution as (Afghari 
et al., 2021): 

P
(
Zji = z

)
=Γ(a+ b)

z(a− 1) (1 − z)(b− 1)

Γ(a)Γ(b)
(6)  

where Γ is the gamma function and a and b are the parameters of the beta distribution. The expectation of this latent variable is equal to 
E[Zji] = μ = a

a+b . Using a logit link function in the structural equation of the latent variable, the expectation of this latent variable can be 
expressed as a function of exogenous covariates: 

μji =
1

1 + e− (λjmji)
(7)  

where λj are estimable parameters, mji exogenous covariates, and the rest of notations are as previously stated. 
Similar to the approach used by (Sanko et al., 2014), we now employ a measurement equation to help inform the role of the latent 

variables in the model. More specifically, it is postulated that the latent variable for each vehicle occupant is measured by the pro-
portion of self-excluded seatbelt use –which is the proportion of seatbelt use for all vehicle occupants excluding the vehicle occupant of 
interest: 

P
(
X(p)

ji
)
= g

(
Zji, γj

)
whereX(p)

ji =

[∑j− 1
n=1Yni

]
+
[∑J

n=j+1Yni

]

J − 1
(8) 

X(p)
ji in the above equation is the proportion of self-excluded seatbelt use in the ith vehicle for the jth vehicle occupant and γj is an 

estimable parameter. It is worth mentioning that while X(p)
ji is endogenous with the seatbelt use of each vehicle occupant (Yji), 

employing a latent variable in the original utility function that is explained by exogenous covariates (mji in Equation (7)) and lacks a 
one-to-one relationship with X(p)

ji caused by the errors in X(p)
ji in Equation (8), corrects for such endogeneity in the overall model. 

Selecting the specific functional form for g(.) is not a trivial task and may require several trial and errors. However, previous studies 
have shown that choosing the same type of probability distribution for the endogenous and the latent variables (beta distribution in 
this study) enhances model estimation and provides promising results (Oviedo-Trespalacios et al., 2020). Therefore, the measurement 
equation is defined as: 
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P
(
X(p)

ji
)
=Γ(c+ d)

(
X(p)

ji
)(c− 1) (

1 − X(p)
ji
)(d− 1)

Γ(c)Γ(d)
where

c
c + d

=
1

1 + e− (γjZji)
(9) 

It is worth mentioning that the choice of the beta distribution as the distribution for X(p)
ji is based not only on its ability to enhance 

model estimation, but also on the theoretical hypothesis in this study in which the proportion of self-excluded seatbelt use in a vehicle 
(as a continuous variable) measures the atmosphere of the vehicle for each occupant. This hypothesis is primarily motivated by 
psychological research showing that becoming attracted to strangers –which is the main element of being influenced by the atmos-
phere– is better predicted by the proportion of their similar behaviours rather than the number of their similar behaviours (Byrne and 
Nelson, 1965). 

This elaborate model for the seatbelt use choices of vehicle occupants is referred to as the latent variable model in the frequentist 
approach (Sanko et al., 2014) and does not have a closed from to be estimated using the regular maximum likelihood estimation 
technique. However, it has an elegant hierarchical representation in the Bayesian approach (Oviedo-Trespalacios et al., 2020): 

P
(
Y1i, Y2i, …, Yji

)
∼ Multivarite binary logit − normal

(
βj, υj,Θ, Zji

)
(10)   

Zji ~ beta (a, b) where a
a+b =

1
1+e− (λjmji )

structural equation 

X(p)
ji ~ beta (c, d) where c

c+d =
1

1+e− (γZji )
measurement equation 

Bayesian estimation offers a significant advantage over the maximum likelihood estimation in that complicated likelihood func-
tions and posteriors can be considered in model estimation (For more details on the Bayesian estimation of hierarchical models see 
Bolduc et al. (2005)). As such, the Bayes’ theorem is used to estimate the model in which posterior estimates are drawn based on 
random sampling from the likelihood and the prior (Washington et al., 2020; Lord and Washington, 2018). Standard MCMC sampling 
method is used to simulate the posterior densities in the above Bayesian framework because the above model is intractable analyti-
cally. Within the estimation process and for identification purposes, the parameters of latent variables in the utility functions are fixed 
(υj= 0) and one of the shape parameters in each of the beta distributions (b in the structural equation and d in the measurement 
equation) is set to unity. 

2.2. Model selection and goodness-of-fit 

The suitability of the hypothesized latent variable multivariate model is tested by applying it on empirical data and comparing its 
statistical fit with that of the alternative models. In addition, fixed and random parameters variants of the models can be estimated 
separately and their statistical fit can be compared to ensure whether the parameters are fixed or random.1 

Deviance Information Criterion (DIC) is used as the measure of fit for model selection in the Bayesian paradigm. DIC is the hier-
archical modelling generalization of the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) and is defined as 
(Geedipally et al., 2014): 

DIC=D(Θ) + PD (11)  

where 

D(Θ)=E[ − 2 log L]

PD =D(Θ) − D(Θ)

In the formulation above, L is the likelihood of the model at convergence, Θ is the total number of parameters,PD is the effective 
number of parameters reflecting model complexity and D(Θ) is the deviance evaluated at a posterior summary of Θ. In addition, the 
McFadden pseudo-rho squared (ρ2) is used as a widely accepted measure of goodness-of-fit for discrete choice models (McFadden, 
1973): 

ρ2 = 1 −

[

Dm/D0

]

(12)  

where Dm and D0 are the deviance of the full model and the deviance of the null model, respectively. A model with a lower DIC or a 
higher ρ2 is usually preferred over the other models. 

Geedipally et al. (2014) have shown that DIC is only comparable for the models that have the same likelihood structure i.e. nested 

1 The random parameters specification in the Bayesian approach is slightly different than the frequentist approach in that it is assumed that the 
additional variance in the parameters comes from unobserved heterogeneity and thus an additional level of hierarchy is introduced into the 
Bayesian models (Oviedo-Trespalacios et al., 2020; Rusli et al., 2018). One way to investigate the suitability of random parameters in capturing 
unobserved heterogeneity, in such a specification, is to compare the statistical fit of the fixed and random parameters models. 
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models, and leads to erroneous inferences otherwise. As such, Mean Absolute Deviance (MAD) and Mean Squared Predictive Error 
(MSPE) are also used to compare the performance of the models that are not nested: 

MAD=
1
N

∑N

i=1

⃒
⃒Yji − P

(
Yji
)⃒
⃒ (13)  

MSPE =
1

N − P

∑N

i=1

(
Yji − P

(
Yji
))2 (14)  

where N is the sample size and P is the number of estimated parameters. The model with smaller MAD and MSPE is usually preferred 
over the other models. 

2.3. Principal component analysis 

In estimating the above latent variable model, residential location characteristics of vehicle occupants can be used as proxies for 
their behaviours and attitudes (Hezaveh and Cherry, 2019b; Afghari et al., 2020). However, these characteristics may have high 
autocorrelation with each other as previously shown in the statistical analysis of behavioural data (Huitema, 1986; Huitema and 
McKean, 1991). Principal Component Analysis (PCA) is a common approach used in the statistical literature (Tipping and Bishop, 
1999) to summarize data when there are too many variables in the analysis (Henry and Hidy, 1979). The PCA creates a set of new 
variables, referred to as principal components (PC), each of which is a linear and orthogonal combination of the original variables in 
such a way that each orthogonal combination captures the maximum variability in the original set of variables and has the minimum 
autocorrelation with other linear combinations. The principal components can be obtained by applying the orthogonal transformation 
and finding the Eigenvectors and Eigenvalues of the Spearman correlation matrix of the original set of explanatory variables. The 
principal components are then arranged based on their decreasing contribution to the total variance of the original set of explanatory 
variables: the first principal component explains the highest variability in the explanatory variables; the second principal component 
explains the second highest variability in the explanatory variables, and so forth (the cumulative contribution of all principal com-
ponents is equal to 1). These principal components can then be used in the analysis as representatives of the original set of variables. 
The number of principal components to be used in the model depends on the specific research objective, though the common practice is 
to use all principal components with Eigenvalues greater than one (Tipping and Bishop, 1999). 

3. Empirical data 

The empirical data in this study were provided by Tennessee Integrated Traffic Analysis Network (TITAN), which is a state-wide 
repository for traffic crashes and surveillance reports completed by Tennessee law enforcement agencies. For the year 2016, the data 
include 247,536 crashes and information about 725,388 drivers who were involved in traffic crashes. TITAN also provides information 

Table 1 
Summary statistics of variables used in the study.   

Mean St. D. Min Max 

Driver 
Seatbelt use (dummy) 0.92 0.26 0.00 1.00 
Age 37.04 17.54 17.00 92.00 
Alcohol consumption (dummy) 0.02 0.16 0.00 1.00 
Distraction (dummy) 0.05 0.25 0.00 1.00 
Drug consumption (dummy) 0.01 0.12 0.00 1.00 
Gender: male 0.55 0.50 0.00 1.00 
Front seat passenger 
Seatbelt use (dummy) 0.93 0.26 0.00 1.00 
Age 36.84 18.61 17.00 99.00 
Alcohol consumption (dummy) 0.02 0.13 0.00 1.00 
Drug consumption (dummy) 0.01 0.08 0.00 1.00 
Gender: male 0.47 0.50 0.00 1.00 
Rear seat passenger 
Seatbelt use (dummy) 0.88 0.32 0.00 1.00 
Age 33.52 17.80 17.00 99.00 
Alcohol consumption (dummy) 0.02 0.13 0.00 1.00 
Drug consumption (dummy) 0.00 0.07 0.00 1.00 
Gender: male 0.52 0.50 0.00 1.00 
Driving characteristics 
Driving during the day (dummy) 0.69 0.46 0.00 1.00 
Driving in clear weather conditions (dummy) 0.75 0.43 0.00 1.00 
Driving in rainy weather conditions (dummy) 0.12 0.33 0.00 1.00 
Vehicle body type: large vehicles (dummy) 0.17 0.38 0.00 1.00 
Speed limit (mph) 40.04 13.78 0.00 70.00  
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regarding seatbelt use by occupants at the time of the crash. For this study, we defined seatbelt ‘non-use’ as vehicle occupants who did 
not restrain both lap and shoulder seat belt at the time of a crash. Furthermore, occupants’ home locations were geocoded using only 
recorded addresses with an accuracy level of the premise (e.g., property name, building name), address-level accuracy, or intersection 
level accuracy and used in the analysis (For more details about the geocoding process of the home addresses please see Merlin et al. 
(2020) and Hezaveh et al. (2019a)). 

Due to the very few number of observations for vehicles with more than three occupants, the data were further down sampled to 
only include three-occupant vehicles. As a result and after controlling for the number of occupants in vehicles and cleaning the data (i. 
e., removing the incomplete records and error entries), 10,950 records (3 650 vehicles each with 3 occupants) with a Tennessee 
address were selected for assignment to the census tract data. Census tract data from the U.S. survey in 2010 were also used for 
obtaining sociodemographic and socioeconomic data elements including total population (and its proportions of different age cohorts), 
percentage of racial mix (white, black, Hispanic, etc.), transport mode share for work-commute, average travel time, average 
household size, proportion of educational levels, average income, income per capita, average vehicle ownership, and proportion of 
vacant houses. To prevent outliers, we only considered the census tracts that had more than 20 observations. Table 1 and Table 2 
present the summary statistics of the variables and the census tract data considered as input for model estimation in this study. 

4. Results 

To test the applicability of the proposed latent variable multivariate model, it was estimated against the empirical data. While it is 
intuitive to assume that the seatbelt use choices of all vehicle occupants are interrelated, the magnitude of this interrelationship may 
vary across vehicle occupants. For example, one may argue that the seatbelt use choice of the driver may be only slightly associated 
with the seatbelt use choices of the front-seat and the rear-seat passengers due to the heavy enforcement of the seatbelt use for the 
former occupant. As a result, a restricted variant of the latent variable multivariate model was also estimated in which the latent 
variable is only included in the utilities of the front-seat and rear-seat passengers. Further, two additional model specifications were 
also estimated to serve as the benchmark for testing the performance of the proposed latent variable model in this study. These two 
models are (i) univariate joint models with contemporaneous seatbelt use choices of vehicle occupants as explanatory variables (Eluru 
and Bhat, 2007), and (ii) a multivariate model without the latent variable. Fig. 1 presents the schematic diagram of the modelling 
framework in this study. The proposed multivariate model with latent variables is obtained when the observed effects among seatbelt 
uses are set to zero (J arrows are removed). The multivariate model without latent variables is obtained when the observed effects 
among seatbelt uses and the observed effects of latent variables are set to zero (J and L arrows are removed); and the univariate joint 
models are obtained if the observed effects of latent variables and the unobserved effects among seatbelt uses are set to zero (L and the 
C arrows are removed). 

In all of these models, explanatory variables were tested for multicollinearity by computing the Pearson correlation coefficients, 

Table 2 
Summary statistics of census tract information used in the study.   

Driver Front seat passenger Rear seat passenger 

Mean St. D. Min Max Mean St. D. Min Max Mean St. D. Min Max 

Total population density (1 000 person/ 
km2) 

0.731 1.009 0.000 33.099 0.734 0.870 0.000 10.513 0.754 0.879 0.000 10.513 

Percentage of population under 16 years 
old 

0.241 0.079 0.000 0.602 0.240 0.081 0.000 0.572 0.242 0.083 0.000 0.713 

Percentage of population above 60 0.185 0.092 0.000 0.894 0.184 0.091 0.000 0.894 0.182 0.090 0.000 0.746 
Percentage of white race 0.704 0.326 0.000 1.000 0.695 0.328 0.000 1.000 0.689 0.332 0.000 1.000 
Percentage of commuting to work by car 0.933 0.073 0.000 1.000 0.927 0.090 0.000 1.000 0.926 0.091 0.000 1.000 
Percentage of commuting to work by car 

pool 
0.113 0.084 0.000 0.817 0.112 0.085 0.000 0.817 0.112 0.085 0.000 0.678 

Percentage of commuting to work by bus 0.013 0.038 0.000 0.385 0.016 0.047 0.000 0.500 0.017 0.048 0.000 0.617 
Percentage of commuting to work by 

bike 
0.001 0.006 0.000 0.104 0.001 0.008 0.000 0.185 0.001 0.007 0.000 0.104 

Percentage of commuting to work by 
walk 

0.014 0.035 0.000 0.419 0.016 0.043 0.000 0.500 0.016 0.043 0.000 0.500 

Average travel time (hours) 0.429 0.102 0.000 1.098 0.425 0.099 0.000 0.882 0.424 0.101 0.000 0.882 
Average household size 2.610 0.528 0.000 16.233 2.609 0.756 0.000 37.675 2.613 0.688 0.000 30.723 
Percentage of high school education 0.525 0.188 0.000 0.970 0.530 0.186 0.000 0.970 0.533 0.185 0.000 0.970 
Percentage of college education 0.214 0.079 0.000 0.642 0.211 0.077 0.000 0.642 0.211 0.078 0.000 0.541 
Percentage of post-secondary education 0.192 0.112 0.000 0.637 0.191 0.112 0.000 0.677 0.188 0.112 0.000 1.000 
Average household income ($100,000) 0.451 0.223 0.000 2.147 0.440 0.218 0.000 2.012 0.434 0.217 0.000 2.383 
Income per capita 0.223 0.102 0.000 1.202 0.219 0.097 0.000 1.054 0.216 0.097 0.000 1.054 
Number of vacant houses 0.117 0.099 0.000 0.925 0.121 0.099 0.000 0.676 0.123 0.098 0.000 0.688 
Proportion of households with 0 vehicle 0.073 0.093 0.000 0.733 0.080 0.102 0.000 0.733 0.083 0.106 0.000 0.733 
Proportion of households with 1 vehicle 0.339 0.143 0.000 0.892 0.344 0.146 0.000 0.806 0.349 0.146 0.000 0.880 
Proportion of households with 2 vehicles 0.372 0.125 0.000 0.786 0.363 0.129 0.000 0.746 0.361 0.132 0.000 0.786 
Proportion of households with 3 or more 

vehicles 
0.216 0.119 0.000 0.694 0.210 0.121 0.000 0.756 0.205 0.120 0.000 0.694  
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and the variables with correlation coefficients higher than 0.7 were excluded from the models. The explanatory variables were inserted 
into the models using stepwise variable selection criterion. All models were estimated in the Bayesian framework. In the absence of 
solid prior information, non-informative priors were assigned to all parameters in the form of normal distribution with mean 0 and 
standard deviation 100. In addition, non-informative priors in the form of exponential distributions (with parameter 1) were assigned 
to the standard deviation of random parameters (Afghari et al., 2019a). Finally, non-informative priors in the form of a Wishart 

distribution (

⎡

⎣
0.1 0.005 0.005
0.005 0.1 0.005
0.005 0.005 0.1

⎤

⎦, was assumed as the hyper-prior for the variance-covariance matrix of the random error terms 

(Afghari et al., 2016). MCMC simulation was used to estimate the posterior in all models which resulted in two Markov chains 
converging after 50,000 iterations. The convergence was ensured by visual monitoring (obtaining stabilized and well-mixed chains) as 
well as assessing the Gelman-Rubin statistics (RGelman-Rubin →1). The simulation process was continued for additional 10,000 iterations 
in order to generate posterior samples for developing inferences about parameters. 

During the estimation process, we found that while census tract variables were not statistically significant in any of the models, 
their principal components were indeed statistically significant in the latent variable model and provided more insight about the 
effects of residential location characteristics on seatbelt use (more on this will be presented later), hence justifying the need to use the 
principal component analysis in this study. The results of the principal component analysis i.e. the Eigenvalues, proportion of 
explained variability, and cumulative proportion of explained variability are provided in the appendix. 

4.1. Model selection 

The goodness-of-fit measures were calculated for all model candidates in order to select the model with the superior statistical fit. 
The results are reported in Table 3. 

Fig. 1. Schematic diagram of the modelling framework for seatbelt use in three-occupant vehicles (C: unobserved factors shared among seatbelt 
uses, J: observed effects of seatbelt uses on one another; L: observed effects of latent variables on seatbelt uses). 
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Table 3 
Results of goodness-of-fit measures for model candidates.   

Joint models Multivariate model without latent variables Multivariate with restricted latent variables Multivariate with unrestricted latent variables 

Driver Front-seat 
passenger 

Rear-seat 
passenger 

Driver Front-seat 
passenger 

Rear-seat 
passenger 

Driver Front-seat 
passenger 

Rear-seat 
passenger 

Driver Front-seat 
passenger 

Rear-seat 
passenger 

MAD 0.057 0.044 0.108 0.028 0.035 0.053 0.083 0.042 0.036 0.007 0.010 0.011 
MADN 0.378 0.296 0.462 0.184 0.235 0.227 0.551 0.282 0.151 0.004 0.005 0.005 
MSPE 0.028 0.021 0.054 0.006 0.011 0.013 0.028 0.019 0.006 0.000 0.001 0.000 
MSPEN 0.275 0.214 0.406 0.064 0.115 0.088 0.221 0.084 0.032 0.004 0.008 0.003 
D0 1948.0 1928.0 2 640.0 506.3 514.4 831.9 506.3 514.4 831.9 506.3 514.4 831.9 
D 867.1 663.1 1 576.0 1 414.6 1999.0 336.8 
ρ2  0.555 0.656 0.403 0.236 − 0.079 0.818 

DIC 875.8 671.1 1 587.0 2 443.0 2 909.0 671.5 

MADN: Mean absolute deviance for individuals who have not worn seatbelt, MSPEN: mean squared predictive error for individuals who have not worn seatbelt, D0: Null deviance, D: Deviance at 
convergence, ρ2: McFadden rho squared. 

A
.P. A
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The multivariate model with unrestricted latent variables has lower MAD for drivers, front-seat passengers and rear-seat passengers 
(0.007, 0.010, and 0.011 respectively) in comparison with the joint model (0.057, 0.044 and 0.108, respectively) and the multivariate 
model without latent variables (0.028, 0.035, and 0.053, respectively). This difference in the mean absolute deviances significantly 
increases for the vehicle occupants who have not used seatbelt (second row in Table 3). The same results were found for MSPE across 
the model candidates. In addition, the multivariate model with unrestricted latent variables has a substantial higher ρ2 (0.818) 
compared to all other model candidates. Finally, the multivariate model with unrestricted latent variables has a substantial lower DIC 
(671.5) compared to the multivariate model with restricted latent variables (2 909.0). These findings indicate that the proposed 
multivariate model with unrestricted latent variables has consistently improved statistical fit in comparison with the alternative 
models. This superiority in the statistical fit indicates that the correlation between seatbelt use choices of vehicle occupants arises from 
two distinct sources, (1) the latent ‘atmosphere’ measured by the self-excluded seatbelt use choices of vehicle occupants and predicted 
by their underlying socioeconomic attributes, and (2) other unobserved factors captured by the contemporaneous error terms. The 
proposed latent variable is a better predictor of seatbelt use choices in multi-occupant vehicles in comparison with the sole use of 
observed seatbelt use choices (in the joint model and in the multivariate model with endogenous variables) or the sole use of unob-
served correlations between seatbelt use choices (in the multivariate model). It also supports our hypothesis that the atmosphere of the 

Table 4 
Result of the latent variable multivariate model of seatbelt use choices in multi-occupant vehicles.  

Vehicle occupant Variable Mean St. D. 95%Credible Interval 

2.5% 97.5% 

Driver Constant − 13.860 5.301 − 22.420 − 6.748 
Vehicle body type: large vehicles 4.276 2.527 0.482 10.030 
Time of day - daytime 3.433 2.094 0.263 8.304 
Latent variable for the driver 62.880 23.700 33.010 93.340 
Structural equation 

Constant 0.627 0.021 0.585 0.667 
First PCa of the front-seat passenger − 0.053 0.010 − 0.074 − 0.033 
First PC of the rear-seat passenger − 0.047 0.011 − 0.068 − 0.026 
Front-seat age 0.282 0.026 0.232 0.335 
Rear-seat age − 0.065 0.023 − 0.113 − 0.021 
Front-seat alcohol consumption − 1.191 0.225 − 1.653 − 0.764 
Rear-seat alcohol consumption − 0.671 0.226 − 1.096 − 0.246 
Front-seat drug consumption − 2.218 0.369 − 2.970 − 1.569 

Measurement equation 
γ (coefficient of the latent variable) 9.913 0.029 9.857 9.972 

Front-seat passenger Constant − 6.196 1.340 − 9.076 − 4.170 
Latent variable for the front-seat passenger 38.750 7.083 28.560 52.590 
Structural equation 

Constant 0.668 0.022 0.626 0.712 
First PC of the driver − 0.083 0.009 − 0.100 − 0.062 
First PC of the rear-seat passenger − 0.021 0.010 − 0.041 − 0.002 
Driver age 0.203 0.019 0.165 0.238 
Driver alcohol consumption − 1.355 0.161 − 1.697 − 1.047 
Rear alcohol consumption − 0.888 0.206 − 1.297 − 0.526 
Driver drug consumption − 1.728 0.229 − 2.157 − 1.303 
Rear drug consumption − 0.532 0.312 − 1.114 0.092 

Measurement equation 
γ (coefficient of the latent variable) 9.903 0.029 9.848 9.963 

Rear-seat passenger Constant − 25.120 9.669 − 42.240 − 13.640 
Latent variable for the rear-seat passenger 71.420 27.410 39.050 117.100 
Structural equation 

Constant 0.984 0.022 0.943 1.027 
First PC of the driver − 0.093 0.010 − 0.113 − 0.074 
First PC of the front-seat passenger − 0.061 0.010 − 0.078 − 0.040 
Driver age 0.155 0.027 0.101 0.207 
Front age 0.173 0.028 0.119 0.235 
Driver alcohol consumption − 1.535 0.185 − 1.925 − 1.206 
Rear alcohol consumption − 0.626 0.180 − 0.996 − 0.265 
Driver drug consumption − 1.295 0.193 − 1.643 − 0.902 
Rear drug consumption − 1.882 0.361 − 2.594 − 1.226 

Measurement equation 
γ (coefficient of the latent variable) 9.798 0.026 9.747 9.850 

Variance-covariance σ11 (driver) 5.789 5.689 1.097 23.820 
σ12 = σ21 (driver/front-seat passenger) 8.369 6.857 1.722 27.670 
σ13 = σ13 (driver/rear-seat passenger) 6.235 5.208 0.685 18.900 
σ22 (front-seat passenger) 12.970 9.912 2.133 35.170 
σ23 = σ23 (front-seat/rear-seat passengers) 10.910 10.430 0.815 37.020 
σ33 (rear-seat passenger) 10.920 12.550 0.316 42.230  

a PC: Principal component. 
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vehicle influences the occupants’ seatbelt use choices. 
It is worth mentioning that while estimating the models, we found that the fixed parameters variants of all models had lower DIC 

compared to their random parameters variants implying that the unobserved heterogeneity in the effects of explanatory variables on 
seatbelt use choices is not statistically significant for this sample data. However, this finding may be an artefact of the random pa-
rameters specification in Bayesian statistics in which the Bayesian inference, by definition, accounts for the uncertainty in parameters 
via Bayes theorem. Further specifying the parameters to be random is just adding another level of hierarchy into the models and thus 
evaluating the statistical significance of such parameters (even if applicable) may not necessarily be indicative of the presence/absence 
of unobserved heterogeneity in data. 

Fig. 2. Density plots of latent variables for drivers, front-seat and rear-seat passengers in the sample.  
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4.2. Model results 

The multivariate model with unrestricted latent variables is selected for making inferences about the effects of explanatory vari-
ables on seatbelt use choices of drivers and passengers. The result of this model is presented in Table 4. According to the 95% credible 
intervals, drivers of larger vehicles (i.e. trucks, vans, and buses) with multiple occupants are more likely to use seatbelt than the drivers 
of smaller vehicles with multiple occupants (i.e. passenger cars). This finding is intuitive and indicates that drivers of larger vehicles 
(buses/trucks) are more likely to wear seatbelt compared to drivers of passenger cars. While this finding is in contrast with the seatbelt 
use rates of professional versus regular drivers in the literature (Afghari et al., 2020; Kim and Yamashita, 2007), it might reflect the 
difference in the seatbelt use behaviour of professional drivers in the presence and absence of other passengers (i.e. large vehicles with 
multiple versus single occupants). In addition, drivers are more likely to wear seatbelt during the day than during the night. This 
finding is also consistent with the previous findings in the literature (Chaudhary et al., 2005; Chaudhary and Preusser, 2006; Solomon 
et al., 2007; Tison et al., 2010; Vivoda et al., 2007) and might reflect the behaviour of high-risk individuals in not wearing seatbelt 
during the night (Noordzij et al., 1988). 

The parameters of latent variables representing the atmosphere of the vehicle are positive for all vehicle occupants indicating that 
higher values of the latent variable are associated with increased likelihood of seatbelt use. This finding implies that there is indeed an 
unobserved factor in the vehicle that jointly influences collective seatbelt use behaviour of vehicle occupants. To better illustrate the 
effects of this unobserved factor on seatbelt use, the densities of the latent variables are plotted for seatbelt wearing and non-wearing 
occupants (Fig. 2). These density plots show that the mean of latent variables are substantially higher for those occupants who wear 
seatbelt (green curves) compared to those occupants who do not wear seatbelt (red curves). This finding implies that the higher 
proportion of occupants wear seatbelt in the vehicle, the more likely another occupant is to wear a seatbelt. 

The above finding supports our hypothesis about the effects of the collective unobserved character in the vehicle (which we have 
named it ‘the atmosphere of the vehicle’) on seatbelt use choices. Another interesting finding is that the magnitude of the parameter of 
the latent variable for the rear-seat passenger (71.420) is larger than its counterparts for the driver and the front-seat passenger 
(62.880 and 38.750, respectively) implying that the rear-seat passenger is influenced to a higher extent by the atmosphere of the 
vehicle compared to the driver and the front-seat passenger. This finding reflects the varied effects of unobserved factors on vehicle 
occupants, depending on their seating position and is consistent with the findings of previous studies suggesting that there is a dif-
ference between seatbelt wearing behaviour of vehicle occupants in single-occupant versus multi-occupant vehicles (Drury and Drake, 
2002; Hong, 1998). 

The parameters of explanatory variables within the structural equations for the latent variables show that the first principal 
components of vehicle occupants are statistically significant in these equations and predict the latent variables. The parameters of 
these principal components are negative indicating that they have decreasing effects on the probability of seatbelt use choices. Since 
the actual values of the principal components do not provide direct interpretation about the determinants of the atmosphere, a cor-
relation analysis is now conducted between the first principal components and the census tract data in order to shed more light on their 
effects on the vehicle atmosphere (Table 5). 

The Pearson correlation coefficients reported in Table 5 show that higher percentage of old population (older than 60 years old) and 
white racial mix, higher percentage of commuting trips by car, higher average travel time, higher percentage of the population with 
college and bachelors education levels, higher income (average household income and income per capita), and higher vehicle 

Table 5 
Pearson correlation coefficients between census tract data and their first principal component.  

Variable First PC of the driver First PC of the front-seat passenger First PC of the rear-seat passenger 

Total population density (1 000 person/km2) 0.405 0.436 0.474 
Percentage population under 16 years old 0.118 0.083 0.131 
Percentage population above 60 − 0.103 − 0.094 − 0.132 
Percentage of white race − 0.599 − 0.633 − 0.658 
Percentage of commuting to work by car − 0.413 − 0.452 − 0.472 
Percentage of commuting to work by car pool 0.371 0.369 0.344 
Percentage of commuting to work by bus 0.528 0.546 0.553 
Percentage of commuting to work by bike 0.092 0.086 0.119 
Percentage of commuting to work by walk 0.376 0.361 0.392 
Average travel time (hours) − 0.206 − 0.223 − 0.219 
Average household size 0.057 − 0.007 0.046 
Percentage of high school education 0.625 0.631 0.600 
Percentage of college education − 0.132 − 0.159 − 0.127 
Percentage of bachelors education − 0.645 − 0.627 − 0.616 
Average household income ($100,000) − 0.813 − 0.825 − 0.812 
Income per capita − 0.756 − 0.765 − 0.752 
Number of vacant houses 0.440 0.482 0.440 
Proportion of households with 0 vehicle 0.748 0.747 0.756 
Proportion of households with 1 vehicle 0.634 0.599 0.609 
Proportion of households with 2 vehicles − 0.730 − 0.745 − 0.757 
Proportion of households with 3 or more vehicles − 0.590 − 0.620 − 0.626 

PC: Principal component. 
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ownership are all associated with lower values of the principal components and thus higher values of the latent variable in the vehicle 
(as a result of the negative association between principal components and atmosphere in the structural equations). Bearing in mind 
that the parameters of the latent variables are positive, these findings imply that the above census tract characteristics are ultimately 
associated with higher likelihood of seatbelt use choices. On the contrary, higher population density, higher percentage of young 
population (under 16 years old), larger average household size, and higher number of vacant houses are associated with higher values 
of the principal components, lower values of the latent variable, and lower likelihood of seatbelt use choices. 

In addition to the principal components, vehicle occupants’ age, alcohol and drug consumption are also statistically significant in 
the structural equations. The parameters of age is mostly positive, indicating that older occupants have a positive influence on the 
latent variable in general and increase the likelihood of using seatbelt. This finding is intuitive and in line with the previous findings in 
the literature (Calisir and Lehto, 2002; Glassbrenner et al., 2004) indicating that older people are more likely to wear seatbelt. On the 
contrary, the parameters of alcohol and drug consumption are negative indicating that they have decreasing effect on the latent 
variable, and thus result in lower likelihood of seatbelt use. These findings are also intuitive and consistent with the previous findings 
in the literature (Foss et al., 1994). 

Overall, the above correlation coefficients and parameter estimates indicate the contribution of census tract variables, age, alcohol 
and drug consumption to a latent construct and consequently to the vehicle occupants’ decisions to wear a seatbelt. We argue that 
because it is very difficult to measure or disentangle the components of this latent construct from crash reports or even ask them in 
surveys, the census tract attributes, age, alcohol and drug consumption are used as proxies in order to capture a part of this latent 
construct. While perhaps each of the correlation coefficients or parameter estimates does not have a particular interesting meaning, 
they are rather showing a broader effect –the effect of an unobserved factor that is latent to the analyst and yet is present in the vehicle. 

As a final note, it is worth mentioning that we did try to include these variables directly in the utilities of seatbelt use choices but 
they were not statistically significant. The lack of their statistical significance in the utility functions and their statistical significance in 
the structural equations of the latent variables illuminates the main advantage of the proposed latent variable modelling methodology 
in this study. 

5. Conclusions 

The complexities of seatbelt use choice behaviour of individuals in multi-occupant vehicles have largely prevented a compre-
hensive understanding of these choices and their contributing factors. On the one hand, psychological and behavioural determinants of 
seatbelt use are difficult to measure and are not usually available. On the other hand, these factors may have shared influences on the 
seatbelt use choice behaviour of driver and passengers causing their choices to be interrelated. This study investigated these com-
plexities by developing a comprehensive econometric model that explains seatbelt use behaviour of vehicle occupants and testing that 
model using data from Tennessee, United States. 

Empirical testing of the proposed econometric model showed that it has substantially improved statistical fit compared to the 
alternative models and indicated that using a latent variable measured by observed seatbelt use choices and socioeconomic attributes 
can better explain the complexities of seatbelt use choices compared to directly using the observed seatbelt use choices. The results of 
this model showed that drivers of larger vehicles are more likely to use seatbelt in comparison with smaller vehicles. In addition, older 
front-seat passengers are more likely to use seatbelt, raising the flag for applying behavioural policies and countermeasures to the 
younger generation. 

More importantly, we theoretically hypothesized and then empirically showed that there is a common underlying unobserved 
factor in a vehicle –we named it ‘vehicle atmosphere’– that affects vehicle occupants’ decisions to wear seatbelt. This unobserved 
factor measured by the proportion of self-excluded seatbelt use choice of vehicle occupants jointly influences seatbelt use of the driver 
and seatbelt use of other passengers. The impact of this unobserved factor is larger for the rear-seat passenger in comparison with the 
driver and the front-seat passenger. In addition, we found that higher proportion of old population and white racial mix, higher income 
per capita, higher education levels and higher vehicle ownership are highly correlated with this unobserved factor. 

This study is not without limitations. From the methodological perspective, we did not examine the temporal variation in the 
seatbelt use choices of vehicle occupants. While these choices were assumed to be static in our model specifications, it is possible that 
vehicle occupants change their seatbelt use choice behaviour dynamically and with respect to the real-time behaviour of each other. 
Investigating the temporal variation in seatbelt use choices using proper methodological approaches such as dynamic discrete choice 
models is a worthy research direction given proper data exist (e.g., from naturalistic driving experiments). 

From the empirical perspective, an important limitation of this study is that vehicle occupants’ data have been extracted from crash 
reports and thus may not be a proper representative of all vehicle occupants in Tennessee. Although seatbelt use data have been 
validated with roadside observations, the data may still be subject to selectivity bias because risky individuals are more likely to be 
involved in crashes and thus are over-represented in crash data (Mannering et al., 2020). In other words, vehicle occupants who are 
involved in crashes may have different risk profiles than the ones whose data are obtained from roadside observations, despite the 
percentage of seatbelt use may be similar in these two samples. This selectivity bias may have affected the causal inference obtained 
from the data analysis in this study. As such, the findings of this study should be interpreted with caution. In particular, the effect of the 
atmosphere on seatbelt use might be more subtle for less-risky individuals who may have been under-represented in the crash data. 
Future research should repeat this study using roadside observations and a more random sample of vehicle occupants. 

In addition and due to the lack of data, we only included residential location characteristics as proxies of individuals’ behaviour in 
the models. Future research should collect merely behavioural data, test alternative constructs for the unobserved factor hypothesized 
in this study and validate our findings. As previous studies have shown that the overall atmosphere of a place might be related to social 
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influence (Lopez-Pintado and Watts, 2008), additional empirical data should be collected to further investigate what portion of this 
unobserved factor could be related to social influence. In addition, we did not examine the effects of transport mode on seatbelt use in 
multi-occupant vehicles. The seatbelt use choices of drivers and passengers may be significantly different in ridesharing modes (e.g., 
taxi) compared to the private vehicles. Future research should explore these differences. Finally, we only considered three-occupant 
vehicles in this study due to the small number of records of vehicles with more than three occupants. Further research is needed to 
compare the results with data consisting additional occupants which might reveal differential effects of variables and strengthen the 
atmosphere component in the analysis. In addition, the three-occupant vehicles obtained from crash data might not be a proper 
representative of all three-occupant vehicles. As a result, it is important to validate the findings of this study using data from obser-
vational studies that do not rely on crash occurrence because multi-occupant vehicles are more likely to be reported in crash databases 
(Chang and Mannering, 1998). 
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Appendix. Result of the principal component analysis  

Table A1 
Eigenvalues, proportion of explained variance and cumulative proportion of explained variance for the first five principal components    

Driver Front-seat passenger Rear-seat passenger 

First principal component 
Eigenvalue 5.423 5.606 5.638 
Proportion of explained variance 0.258 0.267 0.269 
Cumulative proportion of explained variance 0.258 0.267 0.269 

Second principal component 
Eigenvalue 2.818 2.694 2.721 
Proportion of explained variance 0.134 0.128 0.130 
Cumulative proportion of explained variance 0.392 0.395 0.398 

Third principal component 
Eigenvalue 2.254 2.135 2.130 
Proportion of explained variance 0.107 0.102 0.101 
Cumulative proportion of explained variance 0.500 0.497 0.500 

Fourth principal component 
Eigenvalue 1.766 1.778 1.763 
Proportion of explained variance 0.084 0.085 0.084 
Cumulative proportion of explained variance 0.584 0.581 0.583 

Fifth principal component 
Eigenvalue 1.089 1.123 1.084 
Proportion of explained variance 0.052 0.053 0.052 
Cumulative proportion of explained variance 0.636 0.635 0.635  
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