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Abstract
In this thesis, gate set tomography (GST) has been conducted on the nitrogen vacancy center (NV). Gate
set tomography is a protocol for characterization of logic operations (gates) on quantum computing
processors. The NV’s electron served as a qubit. The quantum circuits were run both experimentally
as well as on an NV-simulator. GST is different from its predecessors in the sense that it estimates
all aspects of the processor simultaneously, without assuming any of its parts to be ideal. However,
it does assume that the gates are Markovian. This allows to analyse the gate errors more precisely
via their error generators. In addition to this, the diamond norm and a measure of the amount of
model violation were used to examine the results. The electron qubit can couple to the nearby nitrogen
nucleus, which can cause non-Markovian dynamics. The nitrogen nucleus (𝑆 = 1) can be initialised
using nuclear spin polarization. The effects of different initialisation procedures on GST’s results were
researched. Furthermore, a dynamical decoupling XY-4 echo sequence could be employed to protect
the quantum state of the qubit. How the presence of the echo affected the estimated gates and their
errors was probed. It was discovered that the echo was extremely good at decreasing the amount of
model violation, most likely by preventing the electron from coupling to the nitrogen, which can lead
to non-Markovian dynamics. Without the echo, GST’s estimates were satisfactory only if the nitrogen
nucleus was initialised with a high enough fidelity, at least 0.95. Another topic for further research
would be to perform GST on the electron and the nitrogen system, by modelling the nitrogen nucleus as
a qutrit.
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1
Introduction

Near the end and at the beginning of the nineteenth century there were a couple of things "left" that
physicists could not get their minds wrapped around. “I have now put before you what I consider to be
the greatest difficulty yet encountered by the molecular theory”, said Maxwell of the discrepancy in the heat
capacity between observations and physical laws in 1869 [1]. Then Planck and Einstein came up with
solutions to respectively the black-body radiation problem (1900) and the photoelectric effect (1905).
However, this "Old Quantum theory" was short-lived [2] and the couple of things "left" would lead
to a whole new area in physics: quantum mechanics. As one revolution generates the next, so gifted
the founding fathers of quantenmechanik [3] us not only the laws governing the universe, but also the
opportunity to use these laws to create new technologies: the second quantum revolution [4]. Quantum
communication, computation, simulation, metrology, and sensing technologies are being developed all
over the world by thousands of scientists.

Forty years after Feynman’s proposal of using quantum physics to build a more powerful kind
of computer [5], the scientific community is unfortunately not (nowhere near) there. Nevertheless,
progress has been made and at least it has been established which properties a quantum computer
should have, by DiVincenzo’s criteria [6]. Three of these are i) controlled state preparation and ii) unitary
transformations of the qubits, and iii) state-specific quantum measurements. In this thesis, a powerful
tool towards realizing these three criteria is considered: gate set tomography (GST).

"Gate set tomography is not just hyperaccurate, it’s a different way of thinking" [7], is how its inventors like
to see it, and rightly so. GST has been proposed and developed by Nielsen et al [8] at Sandia National
Laboratories, and has been picked up by many since its birth in 2012. In Delft, it has been used to
demonstrate the existence of extremely fault tolerant semiconductor qubits [9]. In principle, a quantum
information processor executes three tasks: qubits are prepared in some state, then manipulated, and
finally measured. These operations form the gate set, for which GST finds the best-fit via maximum
likelihood estimation. GST’s "different way of thinking" lies in that it recognizes the inter dependency
of the gate set’s elements, instead of viewing the processor as a sum of its parts, like (some of) its
predecessors, state, process, and measurement tomography do. Moreover, it tells which types of errors
cause its estimations to differ from ideal, such that accuracy can be taken to even further levels, closer
and closer to ideal.

Nitrogen vacancy (NV) centers in diamond are one of the most advanced platforms for quantum
computation so far. In such systems, one carbon atom has been replaced by a nitrogen atom and
one has been kicked out to form a vacancy. The electron of the NV can be used as a qubit, as in
this thesis, possessing promising properties. These include second long coherence times, and a wide
working temperature range, up to room temperature. Nearby atoms can serve as qubits as well. The
surrounding carbon-13 atoms, for example, hold the record for the longest dephasing time (1.93 minutes)
for individually controlled qubits [10]. Furthermore, NV centers can be connected and entangled over
large distances, such that quantum computers can be formed by connecting many copies of simple
quantum processors. These quantum networks are suitable for investigating complex algorithms and
error correction [11], and teleportation-based protocols [12].

In this thesis, first, the literature research is presented. In Chapter 2, the necessary quantum theory
is discussed. As stated above, gate set tomography uses maximum likelihood estimation to optimize its
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results. To this end, it employs the Levenberg-Marquardt numerical optimization algorithm, which
is explained in Chapter 3. Then, in Chapter 4, gate set tomography is considered. In this work, the
electron of the NV center functions as qubit, so in Chapter 5 its physical system is described. The second
part of this thesis consists of GST experiments on the NV center, described in Chapter 6. The results are
given in Chapter 7 and discussed in Chapter 8. Finally, this work is concluded in Chapter 9. This thesis
was written as part of the double bachelor’s degree in Applied Mathematics and Applied Physics at
Delft University of Technology.



2
Quantum Theory

In this chapter, the quantum theory fundamental to the rest of this thesis, mainly to gate set tomography,
will be presented. Gate set tomography (GST) seeks to characterize quantum information processors.
Thus, to understand GST, one first needs to understand how quantum processors work. However, in
physics, but not confined to physics only, it is naive to question how something works before figuring
out why you want something to work. The answer to the why-question can be summarized in one
sentence: quantum information processors are used to manipulate qubits. Qubits will be the first
thing described in this chapter. Their mathematical description and the space where they live will be
presented. Secondly, the how-question will be considered. Quantum information processing employs
circuits of logic gates to manipulate qubits. The empirical observation that any description of reality is
exactly this, merely a description, holds for quantum processors as well. So finally, gate set tomography’s
description of quantum processors, its model, and its weak and strong points will be examined. For a
more detailed review, I refer to Nielsen and Chuang [13] and Nielsen et al. [8].

2.1. Quantum mechanics: states, Hilbert-Schmidt space and measure-
ments

This section starts off with a short recap of qubits and Hilbert space. Then, a description of qubits
commonly used in quantum information processing will be given, namely the density matrix. Gate
set tomography slightly transforms this notation into so-called superket’s and superbra’s, which will be
considered thereafter. Lastly, a useful tool for visualising one qubit and how a quantum processor
manipulates it will be presented: the Bloch sphere.

2.1.1. Quantum states in Hilbert-Schmidt space
According to the first postulate of quantum mechanics, quantum states ”live” in a complex 𝑑-dimensional
Hilbert spaceℋ , where per definition 𝑑 = 2𝑛 for a system of 𝑛 qubits, with 𝑛 finite, or more precisely
𝑛 = 1, in this thesis [13]:

Postulate 1. Associated to any isolated physical system is a complete normed complex vector space with inner
product (that is, a Hilbert space) known as the state space of the system. The system is completely described by its
state vector, which is a unit vector in the system’s state space.

An alternative formulation for the state vector approach known by most novices at quantum
mechanics (like in Griffiths [14]), employs so-called density operators or density matrices. Density matrices
are more general and are more convenient when, for example, describing systems whose state is not
completely known [13]. Then, the system’s density operator is defined as follows [13]:

Definition 2.1. A quantum state is described by a 𝑑 × 𝑑 density matrix 𝜌 : ℋ −→ℋ . More precisely,
suppose a quantum system is in one of the states

��𝜓𝑖

〉
with probabilities 𝑝𝑖 , where 𝑖 ∈ N, then the density

matrix is given by: 𝜌 ≡ ∑
𝑖 𝑝𝑖

��𝜓𝑖

〉 〈
𝜓𝑖

��.
A quantum state is called pure if 𝑖 = 1 in the equation above and mixed otherwise, i.e. if it is an

ensemble (sum) of pure states. A pure state can be represented by a unit vector in the Hilbert space,

3



2.1. Quantum mechanics: states, Hilbert-Schmidt space and measurements 4

in accordance with Postulate 1. Reading this postulate more carefully shows why the density matrix
notation is useful when dealing with real (actual) physical systems: the postulate only holds for isolated
physical systems. Strictly speaking, the only truly isolated physical system is the whole universe. So, as
every qubit ever considered is affected by some type(s) of noise, its state is in fact a mixed one. These
cannot be represented by traditional state vectors, hence the need for density matrices.

There are two necessary and sufficient conditions a density operator needs to satisfy to represent a
physically valid state [13]. Its trace needs to equal one (trace-1 condition) and it needs to be a positive
operator, i.e. the density matrix is positive semidefinite. The density matrices considered here are
assumed to be self-adjoint, i.e. Hermitian. For more details on the density operator I refer to Nielsen
and Chuang [13], as in this thesis it serves only as a way of introducing the state notation used in GST.

Hermitian matrices form a real 𝑑2-dimensional subspace of the Hilbert-Schmidt space ℬ(ℋ ), the
complex 𝑑2-dimensional vector space of 𝑑 × 𝑑 matrices. In this thesis, notation is slightly abused such
that ℬ(ℋ ) denotes the real subspace of the Hilbert-Schmidt space. It will be the qubits’ living-space, as
will become clear in the next section. From now on, until the Bloch sphere section, Nielsen et al [8] will
be followed.
ℬ(ℋ ) is endowed with an inner product: ⟨𝐴, 𝐵⟩ ≡ Tr(𝐴†𝐵). Analogous to the Dirac notation on

a Hilbert space, an element of the Hilbert-Schmidt space will be denoted by a column vector |𝐵⟩⟩, a
superket. Likewise, elements of the isomorphic dual space will be represented by superbra’s ⟨⟨𝐴|, such
that ⟨⟨𝐴|𝐵⟩⟩ = Tr(𝐴†𝐵). Often it is useful to define a basis {𝐵𝑖} for the Hilbert-Schmidt space, satisfying
the following, where 1 denotes the 𝑑 × 𝑑-dimensional identity map:

1. Hermiticity: 𝐵𝑖 = 𝐵†
𝑖

2. Orthonormality: Tr(𝐵𝑖𝐵 𝑗) = 𝛿𝑖 𝑗

3. Traceless for 𝑖 > 0: 𝐵0 = 1/
√
𝑑 and Tr(𝐵𝑖) = 0 ∀𝑖 > 0.

The normalized Pauli matrices {1/
√

2, 𝜎𝑥/
√

2, 𝜎𝑦/
√

2, 𝜎𝑧/
√

2} are commonly used as a basis for a single
qubit. Extension to 𝑛-qubit systems is achieved by utilising 𝑛-fold tensor products of the Pauli operators
and the identity operator.

2.1.2. Measurements
Now, measurements are described. In qubit systems, an outcome or measurement result can be seen as
one possibility out of a discrete set of 𝑘 alternatives. Furthermore, "each outcome’s probability is a linear
function of the state 𝜌" [8]. So, the 𝑖th outcome is represented by a dual vector ⟨⟨𝐸𝑖 |. The probability
of measuring this outcome when the initial state was 𝜌 is given by Pr(𝑖 |𝜌) = ⟨⟨𝐸𝑖 |𝜌⟩⟩. Here, the 𝐸𝑖 ’s
are effects. The set of effects {𝐸𝑖} is called a positive operator-valued measure (POVM) and completely
describes the measurement, since it provides the agent with the probability of each possible outcome.
In accordance with the laws of probability, effects satisfy

∑
𝑖 𝐸𝑖 = 1 and 𝐸𝑖 > 0.

A brief example will now be provided to illustrate the concepts explained above. Consider some
qubit, with density matrix as in Eq.(2.1). It follows that it can be represented by some |𝜌⟩⟩ ∈ ℬ(ℋ ). For
this, 𝜌 is written as a linear combination of the basis for the Hilbert-Schmidt space, the set of normalized
Pauli matrices, in this case: 𝜌 =

∑
𝑖 𝑐𝑖𝐵𝑖 (Eq.(2.2)). 𝑐𝑖 are real coefficients that can be found by taking

inner products: 𝑐𝑖 = Tr(𝐵†
𝑖
𝜌). |𝜌⟩⟩ is then given by the column vector c (Eq.(2.3)).

𝜌 =

(
3/4 (1 + 𝑖)/8

(1 − 𝑖)/8 1/4

)
(2.1)

𝜌 =
1√
2

(
1√
2

)
+ 1

4
√

2

(
𝜎𝑥√

2

)
− 1

4
√

2

(
𝜎𝑦√

2

)
+ 1

2
√

2

(
𝜎𝑧√

2

)
(2.2)

|𝜌⟩⟩ = 1√
2

©«
1

1/4
−1/4
1/2

ª®®®¬ (2.3)

The superbra notation of effects corresponding to measuring respectively the |0⟩ and |1⟩ state is

found in the same way. 𝐸0 =

(
1 0
0 0

)
and 𝐸1 =

(
0 0
0 1

)
are written as ⟨⟨𝐸0 | =

(
1/
√

2 0 0 1/
√

2
)
,
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⟨⟨𝐸1 | =
(
1/
√

2 0 0 −1/
√

2
)
. Finally, the probabilities of measuring 0 or 1 are given by the inner

products:

𝑝0 = ⟨⟨𝐸0 |𝜌⟩⟩ = Tr(𝐸0𝜌) =
3
4 (2.4)

𝑝1 = ⟨⟨𝐸1 |𝜌⟩⟩ = Tr(𝐸1𝜌) =
1
4 , (2.5)

which can be read off the diagonals of the density matrix (Eq.(2.1)) directly.

2.1.3. The Bloch sphere
Finally, the Bloch sphere will be introduced as an aid in visualising single qubit states. A single qubit
quantum state can be represented by a Bloch vector inside or on the Bloch sphere, a three-dimensional
sphere with unit radius. The derivation of the Bloch vector in the case of a pure qubit, one in the state
vector notation, is given in the appendix (A.1.1). When dealing with density matrices, the Bloch vector
is defined as follows. As explained and showed above, every 𝜌 can be written as

𝜌 =
1
2 (1 + 𝑣𝑥𝜎𝑥 + 𝑣𝑦𝜎𝑦 + 𝑣𝑧𝜎𝑧), (2.6)

where the coefficient in front of the identity matrix is fixed, because of the trace-1 condition on 𝜌. The
Bloch vector is then given by (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧). If the qubit’s state is pure, then its Bloch vector has length
one and thus lies on the Bloch sphere. A mixed state’s Bloch vector lies inside the Bloch sphere. An
example is depicted in figure 2.1. In the next section, the Bloch sphere will function as a useful tool for
visualizing operations on qubits.

Figure 2.1: The Bloch sphere. The |0⟩ and |1⟩ states correspond to the Bloch sphere’s intersection with the 𝑧-axis. A quantum
state

��𝜓〉
can be represented by a Bloch vector, whose angles with the 𝑧- and 𝑥− axes are 𝜃 and 𝜙 respectively. Figure is taken

from Nielsen and Chuang [13].

2.2. Quantum computation: logic gates, circuits and processors
In this section, the manipulation of qubits via quantum information processors will be explained using
a top-down approach. Firstly, processors and circuits will be described. Then, logic gates, comprising
quantum circuits, will be studied through the eyes of gate set tomography. Nielsen et al [8] is followed
in this section.

2.2.1. Processors and circuits
A quantum information processor runs quantum circuits by executing three steps on 𝑛 qubits. First, the
qubits are initialised into some state. Then, the qubits’ states are changed, or manipulated, by quantum
logic gates. The final step of a circuit is measurement of the qubits using the set of effects {𝐸𝑖}. The overall
circuit is a fixed-input classical output circuit (FI/CO); the input is ”fixed” by the state preparation, and the
output is classical measurement data. The middle part of this circuit is a quantum-input quantum-output
circuit (QI/QO); the input is quantum states, and the output produced by the logic gates is quantum
states. In figure 2.2, an example circuit of a 2-qubit processor is shown. Both qubits start off in the |0⟩



2.2. Quantum computation: logic gates, circuits and processors 6

state. Measurement is indicated by the icon of a half-circle with an arrow going through it. Gates (the
𝑋1/2 , 𝑌1/2 , 𝑌 and "crossed-circle" icons) are applied in between. Here, every step is a circuit layer. If
only one qubit is considered, as in this thesis, every circuit layer is comprised of only one logic gate.
The ”sandwiched” middle step 𝐶 of the circuit (the QI/QO circuit) is a sequence of quantum logic
gates: 𝐶 = (𝛾1 , ..., 𝛾𝐿) where 𝐿 is the number of circuit layers (gates applied), and 𝛾𝑖 ∈ {𝐺𝑖}𝑁G

𝑖=1 with
1 ≤ 𝛾𝑖 ≤ 𝑁G is some gate. Now, logic gates will be defined mathematically.

Figure 2.2: An example of a quantum circuit of a 2-qubit processor. The qubits start off in the |0⟩-state. A sequence of gates is
applied on them. The gates are indicated by the 𝑋1/2 , 𝑌1/2 , 𝑌 and "crossed-circle" icons. Measurement is depicted by the

half-circles with an arrow going through them. The qubits’ states are visualised by Bloch spheres in between every circuit layer.
Figure made with [15].

2.2.2. Logic gates and their properties
In this thesis, logic gates will transform a qubit via left multiplication with its superket. Such operators
are called superoperators. Their transfer matrix representation will be used:

Definition 2.2. Any superoperator Λ : ℬ(ℋ ) −→ ℬ(ℋ ) can be denoted by a 𝑑2 × 𝑑2 transfer matrix SΛ

that acts associatively on |𝜌⟩⟩ ∈ ℬ(ℋ ), i.e. Λ : |𝜌⟩⟩ ↦→ SΛ |𝜌⟩⟩.
The transfer matrix for a QI/QO circuit 𝐶 is denoted by 𝜏(𝐶) : ℬ(ℋ ) −→ ℬ(ℋ ), such that 𝜏(𝐶) =

𝐺𝛾𝐿 · · · 𝐺𝛾1 . Bluntly put, gates are considered physically valid when, if the input is physically valid, the
produced output is as well. Recall that a density matrix is considered physically valid if it satisfies the
trace-1 and positivity conditions. So, only i) trace-preserving and ii) completely positive superoperators
are considered physically valid. The first condition implies that Tr(𝜌) is equal to 1 before and after the
operation, so that the superoperator complies with the laws of probability. Secondly, a stronger condition
than simple preservation of positivity, 𝜌 ≥ 0, is required. If a superoperator Λ acts on a component
of a larger system, it has to actually preserve the positivity of that extended system, i.e. Λ ⊗ 1𝒜 ≥ 0
for any auxiliary state space 𝒜. Such a superoperator is called completely positive. The completely
positive and trace-preserving (CPTP) constraint is necessary and sufficient, but will not be assumed unless
stated otherwise, to for example probe how GST performs without the constraint. Hereafter, the term
”superoperator” will be used to refer to its transfer matrix.

In this thesis, five different superoperators will be estimated using gate set tomography. We will
refer to the superoperators as gates, since they will be employed in quantum circuits. As only one qubit
will be used, these superoperators are 4 × 4 matrices:

𝐼 =
©«
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

ª®®®¬ , 𝑋
𝜋/2 =

©«
1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

ª®®®¬ , 𝑌
𝜋/2 =

©«
1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0

ª®®®¬ ,
𝑋𝜋 =

©«
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

ª®®®¬ and 𝑌𝜋 =

©«
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

ª®®®¬ .
The gate names, excluding 𝐼, refer to the rotation axis and rotation angle of their operation on the
qubit. An example is given to illustrate how applying gates looks like. Suppose a qubit in the |0⟩- state

(𝑍-basis). Its density matrix is: 𝜌 =
( 1 0

0 0
)
, which becomes |𝜌⟩⟩ = 1/

√
2
(
1 0 0 1

)𝑇
in the superket

notation. Applying a gate on this qubit is now easy: the superoperator is multiplied with the superket.
For example, applying a 𝑋𝜋/2 gate on this qubit results in

|𝜌′⟩⟩ = 𝑋𝜋/2 |𝜌⟩⟩ = 1/
√

2
(
1 0 −1 0

)𝑇
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The transfer notation makes calculating circuits’ outcomes easy. The probability of an outcome 𝑖 after
applying some gate with transfer matrix 𝑆Λ is: 𝑝𝑖 = ⟨⟨𝐸𝑖 |SΛ |𝜌⟩⟩ = Tr(𝐸𝑖SΛ𝜌).

The action of all five given gates on |0⟩ is visualised using Bloch spheres. The initial state’s vector is
given in Fig. 2.3a, and the resulting states after applying one of 𝑋𝜋/2, 𝑌𝜋/2, 𝑋𝜋, 𝑌𝜋 on the initial state is
depicted in Fig.2.3b, 2.3c, 2.3d and 2.3e, respectively. The 𝐼 gate is the identity gate and its resulting
state is equal to the initial state.

(a) No gate or 𝐼 gate. (b) 𝑋𝜋/2 gate. (c) 𝑌𝜋/2 gate. (d) 𝑋𝜋 gate. (e) 𝑌𝜋 gate.

Figure 2.3: Visualisation of the gates used in this thesis via Bloch vectors. The initial state is |0⟩, depicted in 2.3a. The resulting
state after applying one of the gates, indicated in the secondary captions, is depicted in the remaining figures. Figures made using

Vos’ "Bloch widget" [16].

Lastly, a norm used for comparing gates is given, the diamond norm [8].

Definition 2.3. If 𝐺 and 𝐺0 are gates, then the diamond norm is

∥𝐺 − 𝐺0∥⋄ = sup
𝜌

(𝐺 ⊗ 1𝑑)[𝜌] − (𝐺0 ⊗ 1𝑑)[𝜌]


1 . (2.7)

𝜌 ranges over all valid quantum states. ⊗ denotes the tensor product.

Since the diamond norm ranges over all possible 𝜌’s, it cannot be computed analytically in most
cases. It is mostly computed using semidefinite programming. Stated simply, the diamond norm
tells how well two gates can be distinguished by looking at how different their resulting quantum
states are, giving an upper bound on this "distinguishability". For example, suppose either 𝐺 (with
probability 𝑝) or 𝐺0 (with probability 1− 𝑝) is applied on some quantum state. The maximal probability
of guessing correctly which one had been applied by measuring the resulting state is then given by
𝑝success = 1/2 + 1/2

𝑝𝐺 − (1 − 𝑝)𝐺0

⋄ [17].

2.2.3. XY-4 echo sequence
Like systems in the classical world, no quantum system is truly isolated. Quantum systems are extremely
sensitive to perturbations, caused by the system’s coupling to the environment. This results in loss of
quantum information: decoherence. Decoherence is an obstacle in quantum information processing, as
the lifetime of information can become too short for practical computation. Dynamical decoupling (DD)
methods seek to reduce perturbation of the qubit(s), by de-coupling the qubit from the environment.
This way, the qubit’s input state is preserved. DD can also be combined with gates, i.e. decoupling after
every gate operation, like in this thesis. In 1950, Hahn discovered that inverting the qubit by applying
a gate, inverts the perturbation Hamiltonian as well, time-reversing the perturbation and nullifying
it. The XY-4 sequence considered in this thesis is an example of such an inversion sequence. In this
subsection, first this mechanism is described intuitively, and then formally. To this end, a single spin- 1

2
system functions as a qubit, and the environment is modelled as a spin-bath.

First, the intuitive explanation [18]. The surrounding bath-spins flip-flop randomly, creating a slowly
varying magnetic field. This changes the qubit’s energy levels, resulting in a random phase evolution
and/or qubit flips. Now, inverting the state of the qubit via 𝜋-gates (recall that this flips a qubit’s
Bloch vector) inverts the magnetic field produced by the surrounding spins as well. If the pulse is
symmetric in time, i.e. the qubit is as long in the non-inverted state as in the inverted one, the effect of
the surrounding field is canceled. Of course this only works if the magnetic field is constant over time,
i.e. the next pulse comes before the environment has had time to change significantly. This condition
is satisfied by decreasing the waiting time. As pulses have finite lengths, this is reduction is limited.
Furthermore, multiple pulses can be applied to "protect" the qubit spin for longer times, i.e. increase the
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Figure 2.4: The XY-4 sequence. The input state is located at the left (blue) dashed line. After 𝜏/2, the XY-4 sequence is applied
using the gates: 𝑋 = 𝑋𝜋 and 𝑌 = 𝑌𝜋, with 𝜏 in between. After 𝜏/2, the inversion of the system-environment interaction has been
completed. In this work, the XY-4 has been combined with gate operations, which are applied at the blue lines. Figure adapted

from Souza et al [19].

qubit’s coherence time. However, the amount of power deposited in the system by applying gates has to
be taken into account as well to avoid heating effects or damaging the sample.

Secondly, the more formal description. The total Hamiltonian of the qubit-system and its environment
is [19]

𝐻 = 𝐻𝑆 + 𝐻𝑆𝐸 + 𝐻𝐸 . (2.8)

Here, 𝐻𝑆 is the qubit system Hamiltonian and 𝐻𝐸 is the environment Hamiltonian. 𝐻𝑆𝐸 is system-
environment interaction, given by

𝐻𝑆𝐸 =
∑
𝑘

𝛽𝑘𝑥𝑆𝑥 𝐼
𝑘
𝑥 + 𝛽𝑘𝑦𝑆𝑦 𝐼

𝑘
𝑦 + 𝛽𝑘𝑧𝑆𝑧 𝐼

𝑘
𝑧 , (2.9)

where 𝑘 indexes the environment spin and 𝑰𝒌 = (𝐼 𝑘𝑥 , 𝐼𝑘𝑦 , 𝐼𝑘𝑧 ) is the corresponding spin vector operator.
𝑺 = (𝑆𝑥 , 𝑆𝑦 , 𝑆𝑧) (Eq.(A.4)) is qubit’s spin vector operator. In a resonantly rotating (with the qubit)
reference frame considered here, 𝐻𝑆 = 0. If the energy level splitting of the qubit differs significantly
from the energy level splitting of the spin-bath (i.e. every spin in the environment), 𝐻𝑆𝐸 can be
approximated by a 𝑧 − 𝑧 interaction [20] (heterenuclear system). This causes qubit dephasing (𝑧-
component), but not qubit flips (𝑥− and 𝑦−components). If the energy level splitting are similar, this
approximation to 𝐻𝑆𝐸 cannot be made (homonuclear system). Dynamical decoupling aims to eliminate
the average time-independent 𝑆𝐸 interaction Hamiltonian over some time period 𝜏𝑐 , i.e. 𝐻𝑆𝐸 = 0,
by applying some inversion sequence. If the 𝑆𝐸 interaction includes all three components (𝑥, 𝑦, 𝑧:
homonuclear), then the decoupling sequence must include rotations around at least two different axes
[20].

Now, it will be showed that the XY-4 sequence (Fig.2.4) in fact eliminates the system-environment
Hamiltonian by applying the following 𝜋-pulses: [𝜏/2−𝑋𝜋 − 𝜏 −𝑌𝜋 − 𝜏 −𝑋𝜋 − 𝜏 −𝑌𝜋 − 𝜏/2]. The total
sequence is then given by [19]

𝑈 = 𝑒−𝑖𝐻𝜏/2 ©«
4∏
𝑘=2

𝑅𝑘 𝑒
−𝑖𝐻𝜏ª®¬𝑅1𝑒

−𝑖𝐻𝜏/2 , (2.10)

where 𝐻 is the total Hamiltonian (Eq.(2.8)), 𝑅1 = 𝑅3 = 𝑒−𝑖𝜋𝑆𝑥 (the 𝑋𝜋 gate) and 𝑅2 = 𝑅4 = 𝑒−𝑖𝜋𝑆𝑦 (the
𝑌𝜋 gate). Recall that 𝜋-pulses flip the sign of 𝐻𝑆𝐸. Thus, the above sequence is rewritten using

�̃�𝑘=1,5 = (𝐻𝐸 + 𝐻𝑆𝐸), (2.11)
�̃�𝑘=2,3,4 = [𝐻𝐸 + (−1)𝑘+1𝐻𝑆𝐸], (2.12)

such that 𝑈 =
5∏
𝑘=1

𝑒−𝑖�̃�𝑘𝜏𝑘 with 𝜏𝑘=1,5 = 𝜏/2 and 𝜏𝑘=2,3,4 = 𝜏. Using the Baker-Campbell-Hausdorff

formula,
log 𝑒𝐴𝑒𝐵 ≈ 𝐴 + 𝐵 + 1

2 [𝐴, 𝐵] +
1
12 ([𝐴, [𝐴, 𝐵]] + [[𝐴, 𝐵], 𝐵]), (2.13)

the matrix exponentials are computed explicitly. This results in zeroth and first order averages Hamiltoni-
ans: 𝐻0 = 𝐻𝐸 and 𝐻1 = 0 [19]. The second order term is non-zero, 𝐻2 = 𝜏2/8

[
[𝐻𝑒 , 𝐻𝑆𝐸], 𝐻𝑒 − 1/3𝐻𝑆𝐸

]
,

but is assumed (and higher order terms as well) small enough to conclude that 𝐻𝑆𝐸 is effectively
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eliminated by the XY-4 sequence over a time period 2𝜏. Note that by decreasing 𝜏 the second order term
can be decreased further.

Lastly, if the gates in the sequence are not perfect, pulse imperfections can accumulate and destroy
the state of the qubit by creating an effective general 𝑆𝐸 interaction [20]. Initially, the XY-4 sequence
was developed to combat this effect, as it applies pulses along different spatial directions. Furthermore,
more exotic sequences can be created by varying the rotation angles of the applied pulses and the times
between them. This, as well as imperfect echo sequences are beyond the scope of this thesis and more
can be found in Souza et al [19] [20].

2.3. Modelling quantum processors: gate sets, error generators and
gauge freedom

In the final section of this chapter, it will be explained how gate set tomography models quantum
processors. First, the notion of gate sets is introduced. Then, it will be presented what gate estimations
tell us about the modelled quantum processor. Lastly, one of the "flaws" of GST, precisely a consequence
of GST’s use of gate sets, is explained.

2.3.1. Gate sets and gate set models
Suppose a quantum processor can perform 𝑁G distinct gates, 𝑁𝜌 distinct state preparations, and 𝑁𝑀

distinct measurements, where the 𝑚-th measurement has 𝑁 (𝑚)E distinct outcomes. These operations will
be represented by

𝐺𝑖 : ℬ(ℋ) −→ ℬ(ℋ) for 𝑖 = 1, ..., 𝑁G ,

|𝜌(𝑖)⟩⟩ for 𝑖 = 1, ..., 𝑁𝜌 and

⟨⟨𝐸(𝑚)
𝑖
| for 𝑚 = 1, ..., 𝑁𝑀 and 𝑖 = 1, ..., 𝑁 (𝑚)E .

The notion of a gate set 𝒢 is used to model and describe a quantum processor’s behaviour:

Definition 2.4. A gate set 𝒢 ∈ ℳ (the ”matrix space”) is the set of a quantum processor’s all distinct
state preparations, gates and measurements, which are defined as above:

𝒢 =

{{
|𝜌(𝑖)⟩⟩

}
; {𝐺𝑖} ;

{
⟨⟨𝐸(𝑚)

𝑖
|
} }

.

Here ℳ is isomorphic to R𝑁e , where 𝑁e = 𝑑4𝑁G + 𝑑2
(
𝑁𝜌 +

∑𝑁𝑀

𝑚=1 𝑁
(𝑚)
E )

)
is the total number of

(real) elements in a gate set.

In the remainder of this thesis, various target gate sets will be estimated using a gate set model and
gate set tomography, which will be explained in the next chapter. Oftentimes, the target gate set is taken
to be the ideal gates a device is designed to implement. For now, a gate set model is defined:

Definition 2.5. A gate set model corresponds to a choice of a parameter space 𝒫 and a map𝑊 : 𝒫 −→ℳ.
Here𝒫 has dimension𝑁p and is isomorphic toR𝑁p . A gate set model associates every point in parameter
space with a gate set.

A gate set model is called fully parameterized if 𝒫 =ℳ and 𝑊(𝑥) = 𝑥, i.e. every element of every
operation in the gate set is an independent parameter: 𝑁 full

p = 𝑁e. Oftentimes a smaller gate set model is
defined (𝑁p < 𝑁e), which for example parameterises strict subsets ofℳ only, e.g. CPTP gate sets.

A TP parameterized gate set model has 𝑁p = 𝑁TP
p parameters, where

𝑁TP
p = 𝑁G𝑑

2(𝑑2 − 1) + 𝑁𝜌(𝑑2 − 1) +
(∑𝑁M

𝑚=1 𝑁
(𝑚)
E

)
𝑑2.

Such gate set models enforce density matrices to have unit trace, and the gates applied on them to
be trace-preserving. This results in the first row of every superoperator being [1, 0, ..., 0] and the first
element of every state preparation vector being equal to 1/

√
𝑑, because Tr(𝐵0) = 𝑑/

√
𝑑 =
√
𝑑.

A CP parameterized gate set model is, in comparison with the TP parameterized gate set model, a bit
more challenging to define and impose, since the CP constraint is a nonlinear inequality. Here, one
way to construct a mapping function 𝑊 whose range is constrained to CPTP gate sets is presented.
pyGSTi, the software used to conduct gate set tomography, uses this CPTP parameterization as well. A
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CP gate is written in terms of an error generator 𝐿, which is also a superoperator. If 𝐺𝑘 is the transfer
matrix of the (estimated) gate and 𝐺0

𝑘
is the corresponding error-free CPTP operation, then we define

𝐿 = log
(
𝐺𝑘(𝐺0

𝑘
)−1

)
such that

𝐺𝑘 = 𝑒𝐿𝐺0
𝑘

(2.14)

Error generators are modelled as post-gate error processes, meaning it is as if the error is applied directly
after the gate. CPTP maps form a semigroup, meaning products of CPTP maps are CPTP as well.
Thus, 𝐺𝑘 can be forced to be CPTP by having 𝑒𝐿 be a CPTP-map. Now, this is done by restricting
𝐿 to be of Lindbladian form, i.e. in accordance with the Lindblad Master Equation. The Lindblad
Master equation is the most general generator of Markovian dynamics in quantum systems [21]. That is:
𝜕𝜌/𝜕𝑡 = ¤𝜌 = 𝐿[𝜌] with 𝐿 Lindbladian describes Markovian dynamics, which will be defined in the next
section. For now, the Lindbladian form of 𝐿 is presented:

𝐿 =

𝑑2∑
𝑖=1

𝛼𝑖𝐻𝑖 +
𝑑2∑
𝑗 ,𝑘=2

𝛽 𝑗𝑘𝑆 𝑗𝑘 (2.15)

Here, 𝐻𝑖 and 𝑆 𝑗𝑘 are the following operators, acting on density matrices 𝜌:

𝐻𝑖 : 𝜌→ 𝑖[𝜌, 𝐵𝑖], (2.16)

𝑆 𝑗𝑘 : 𝜌→ 𝐵 𝑗𝜌𝐵𝑘 −
1
2 (𝐵𝑘𝐵 𝑗𝜌 + 𝜌𝐵𝑘𝐵 𝑗). (2.17)

𝛼𝑖 ∈ R, 𝛽 is a positive semidefinite (Hermitian) matrix, and 𝐵𝑖 is a basis for ℬ(ℋ) as described in Ch.2.1.
In this thesis, the basis will be formed by the normalized Pauli matrices {1/

√
2, 𝜎𝑥/

√
2, 𝜎𝑦/

√
2, 𝜎𝑧/

√
2},

so 𝑑2 = 4. This means 𝛽 is a 4 × 4 matrix. Beginning at 2, the indices in the second sum only go over
non-identity elements. This Lindbladian form of the error generator can be split into four parts, such
that each part corresponds to a known quantum logical error. These errors will be described in the next
subsection.

The number of parameters for such a CPTP gate set model is the same as for the TP model above.
With the CP model, the number of parameters is not reduced; it is the same as in the full model.

2.3.2. Error generators: small Markovian errors
The above formulation of the error generators allows us not only to impose the CPTP condition, but
to also analyse how the estimated gate differs from the ideal gate. In the pyGSTi authors’ opinion,
error generators are the most useful diagnostic for gate errors. The analysis relies on the assumption
that the target gate 𝐺0

𝑘
and the estimated gate 𝐺𝑘 differ by a small, Markovian-type amount. First,

’Markovianity’ is explained, a term for which in the scientific community many definitions exist. It is
oftentimes used to denote the "memory-less" property of a system. This notion is formalized by the
definition of Markovianity used in this thesis:

Definition 2.6. A quantum gate is Markovian if it is a solution of a master equation with generator in
Lindblad form (Eq.(2.15)), i.e. it can be written in the form of Eq.(2.14) with 𝐿 Lindbladian. Moreover,
the generator 𝐿 is time-independent.

So, maps with time-dependent generators are non-Markovian. The memory-less property means that,
at any point in time in the future, evolution depends only on the present state and not on any previous
states (the history of the system). That is, in a process changing a system’s state, 𝜌 −→ 𝜌′, 𝜌′ is completely
determined by 𝜌. To summarize this: any CPTP map, where the CPTP constraint is implemented as
above, describes Markovian dynamics. Now, an error is called small, if 𝐺𝑘 − 𝐺0

𝑘
is small, meaning that

terms of order 𝑂([𝐺𝑘 − 𝐺0
𝑘
]2) can be neglected. A sufficient condition for this is:

𝐺𝑘 − 𝐺0
𝑘


⋄
≪ 1, where

∥·∥⋄ is the diamond norm (Eq.(2.7)).
Recall the Lindbladian form of the error generator (Eq.(2.15)). We are going to split it into four terms,

each corresponding to some type of error. For now, we omit the factors 1/
√

2 in the Pauli basis, such
that {𝐵1 , 𝐵2 , 𝐵3 , 𝐵4} = {1, 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧} = {1, 𝑋, 𝑌, 𝑍}. We will index this set by 𝐵 and the set of Pauli
operators {𝑋,𝑌, 𝑍} (so without the identity matrix) by P.
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𝐿[𝜌] =
∑
𝐵

𝛼𝐵 𝑖[𝜌, 𝐵] +
∑
𝑃,𝑄

𝛽𝑃,𝑄
[
𝑃𝜌𝑄 − 1

2 (𝑄𝑃𝜌 + 𝜌𝑄𝑃)
]

(2.18)

= 𝛼1𝑖(𝜌1 − 1𝜌) +
∑
𝑃

𝛼𝑖 𝑖[𝜌, 𝑃] +
∑

𝑃,𝑄,𝑃=𝑄

𝛽𝑃,𝑄
[
𝑃𝜌𝑄 − 1

2 (𝑄𝑃𝜌 + 𝜌𝑄𝑃)
]
+∑

𝑃,𝑄,𝑃≠𝑄

𝛽𝑃,𝑄
[
𝑃𝜌𝑄 − 1

2 (𝑄𝑃𝜌 + 𝜌𝑄𝑃)
]

(2.19)

For every Pauli matrix 𝑃, 𝑃2 = 1. The first term above disappears and working out the third term gives:

𝐿[𝜌] =
∑
𝑃

𝛼𝑃 𝑖[𝜌, 𝑃] +
∑
𝑃

𝛽𝑃
[
𝑃𝜌𝑃 − 𝜌

]
+

∑
𝑃,𝑄,𝑃≠𝑄

𝛽𝑃,𝑄
[
𝑃𝜌𝑄 − 1

2 (𝑄𝑃𝜌 + 𝜌𝑄𝑃)
]
.

Now, we are going to work out the last term. Note that since 𝛽 is Hermitian, 𝛽𝑃,𝑄 = 𝛽𝑄,𝑃 , i.e.
Re(𝛽𝑃,𝑄) = Re(𝛽𝑄,𝑃) and Im(𝛽𝑃,𝑄) = − Im(𝛽𝑄,𝑃). The last term is split in distinct pairs of distinct indices,
and the notation 𝑃, 𝑄 > 𝑃 is used to denote that only one of the pairs 𝑃, 𝑄 and 𝑄, 𝑃 is considered. We
define 𝑐𝑃,𝑄 = Re(𝛽𝑃,𝑄) and 𝑎𝑃,𝑄 = Im(𝛽𝑃,𝑄). Lastly, [·, ·] is used to denote the commutator and {·, ·}
denotes the anticommutator.∑

𝑃,𝑄,𝑃≠𝑄

𝛽𝑃,𝑄
[
𝑃𝜌𝑄 − 1

2 (𝑄𝑃𝜌 + 𝜌𝑄𝑃)
]

=
∑

𝑅={𝑃,𝑄 |𝑃,𝑄>𝑃}
𝛽𝑃,𝑄

[
𝑃𝜌𝑄 − 1

2 (𝑄𝑃𝜌 + 𝜌𝑄𝑃)
]
+

∑
(𝑃,𝑄,𝑃≠𝑄)\𝑅

𝛽𝑄,𝑃
[
𝑄𝜌𝑃 − 1

2 (𝑃𝑄𝜌 + 𝜌𝑃𝑄)
]

=
∑
𝑃,𝑄>𝑃

Re(𝛽𝑃,𝑄)
[
𝑃𝜌𝑄 +𝑄𝜌𝑃 − 1

2 (𝑄𝑃𝜌 + 𝜌𝑄𝑃 + 𝑃𝑄𝜌 + 𝜌𝑃𝑄)
]
+∑

𝑃,𝑄>𝑃

Im(𝛽𝑃,𝑄)𝑖
[
𝑃𝜌𝑄 − 1

2 (𝑄𝑃𝜌 + 𝜌𝑄𝑃) −𝑄𝜌𝑃 + 1
2 (𝑃𝑄𝜌 + 𝜌𝑃𝑄)

]
=

∑
𝑃,𝑄>𝑃

𝑐𝑃,𝑄
[
𝑃𝜌𝑄 +𝑄𝜌𝑃 − 1

2 ((𝑃𝑄 +𝑄𝑃)𝜌 + 𝜌(𝑃𝑄 +𝑄𝑃))
]
+∑

𝑃,𝑄>𝑃

𝑎𝑃,𝑄 𝑖
[
𝑃𝜌𝑄 −𝑄𝜌𝑃 + 1

2 ((𝑃𝑄 −𝑄𝑃)𝜌 + 𝜌(𝑃𝑄 −𝑄𝑃))
]

=
∑
𝑃,𝑄>𝑃

𝑐𝑃,𝑄
[
𝑃𝜌𝑄 +𝑄𝜌𝑃 − 1

2
{
{𝑃, 𝑄}, 𝜌

}]
+

∑
𝑃,𝑄>𝑃

𝑎𝑃,𝑄 𝑖
[
𝑃𝜌𝑄 −𝑄𝜌𝑃 + 1

2
{
[𝑃, 𝑄], 𝜌

}]
To summarize, we have dissected the Lindblad:

𝐿 = 𝐿H + 𝐿S + 𝐿C + 𝐿A
=

∑
𝑃

ℎ𝑃𝐻𝑃 +
∑
𝑃

𝑠𝑃𝑆𝑃 +
∑
𝑃,𝑄>𝑃

𝑐𝑃,𝑄𝐶𝑃,𝑄 +
∑
𝑃,𝑄>𝑃

𝑎𝑃,𝑄𝐴𝑃,𝑄

We call each coefficient the rate of the corresponding error process, and {𝐻𝑃}, {𝑆𝑃}, {𝐶𝑃,𝑄}, {𝐴𝑃,𝑄}
the elementary generators of the mutually disjoint subspaces H, S,C, S, of the error generator space
(L = H ⊕ S ⊕ C ⊕ A). As we have seen above, every 𝐿 ∈ L can be written as a linear combination of
elementary generators with real coefficients. For overview, the elementary error generators:

𝐻𝑃[𝜌] = −𝑖[𝑃, 𝜌] = −𝑖𝑃𝜌1 + 𝑖1𝜌𝑃 (2.20)
𝑆𝑃[𝜌] = 𝑃𝜌𝑃 − 1𝜌1 (2.21)

𝐶𝑃,𝑄[𝜌] = 𝑃𝜌𝑄 +𝑄𝜌𝑃 − 1
2 {{𝑃, 𝑄}, 𝜌} (2.22)

𝐴𝑃,𝑄[𝜌] = 𝑖
(
𝑃𝜌𝑄 −𝑄𝜌𝑃 + 1

2 {[𝑃, 𝑄], 𝜌}
)

(2.23)
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Now, following Blume-Kohout et al.[22], these errors and their effect on the Bloch sphere will be
described.

Figure 2.5: a) The 1-qubit Hamiltonian error generator 𝐻𝑌 acts on the 𝑋 − 𝑍 plane by rotating: 𝑍→ 𝑋 and 𝑋 → −𝑍. b) The
1-qubit Correlation error generator 𝐶𝑋,𝑍 acts on the Bloch sphere by pulling it in the positive 𝑥− and 𝑧-axis, and the negative 𝑥−

and 𝑧-axis. c) The active error generator 𝐴𝑋,𝑌 shifts the Bloch sphere in the negative 𝑧-direction. Figures taken from
Blume-Kohout et al. [22]

Hamiltonian generators
The first class of errors we will consider, are Hamiltonian generators. Any unitary error can be written
as a linear combination of 𝑑2 − 1 (so 3 in the 1-qubit case) Hamiltonian generators (Eq.(2.20).a), and
they span the (𝑑2 − 1)-dimensional subspace H of L. We will explain them further for the 1-qubit case.
Hamiltonian generators generate unitary rotations of the Bloch sphere; coherent errors, a legitimate and
physically valid unitary error process, meaning the length of the Bloch vector of the state the gate acts
on, does not get shorter (i.e. no decoherence occurs). ®ℎ = (ℎ𝑋 , ℎ𝑌 , ℎ𝑍) is a pseudovector defining the
erroneous rotation, whose three ’coordinates’ tell how much the rotation differs from ideal with respect
to each Pauli axis (Fig.2.5.a). If G has only coherent errors, the error generator will consist entirely out of
generators from H, as the other subspaces contain non-coherent error generators. Coherent errors can
often be minimized by re-calibrating control (according to ®ℎ), or decoupling from nearby systems acting
on the ’main’-system’s Hamiltonian.

Figure 2.6: How the 1-qubit Pauli-stochastic error generators act on the 𝑋 − 𝑍 plane, forming ellipsoids by generating dephasing.
Figure is taken from Blume-Kohout et al. [22]

Stochastic generators
Stochastic generators form the second class of error generators and are convex mixtures (not linear
combinations!) of Hamiltonian generators, spanning S and C. Without proof, we state that any convex
mixture of unitary evolutions is generated by (1) the Hamiltonian generators and (2) some linear
combination of 𝑑2 − 1 stochastic Pauli generators (Eq.(2.21)) and (𝑑2 − 1)(𝑑2 − 2)/2 Pauli correlation generators
(Eq.(2.22)) [22]. 𝑆𝑃 terms shrink the Bloch sphere to an ellipsoid, generating dephasing towards the
𝑃 axis (Fig.2.6). Dephasing along other axes than the 𝑋,𝑌 and 𝑍 axis of the Bloch sphere is possible
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by combinations of the 𝑆𝑃 and the Pauli correlation 𝐶𝑃,𝑄 generators. 𝐶𝑃,𝑄 are never physically valid,
being non-CP maps (they can ’inflate’ the Bloch sphere, Fig.2.5.b). However, together with 𝑆𝑃 terms
they generate valid dephasing, by modifying 𝑆’ error rates (Fig.2.7).

Figure 2.7: Correlation errors, like 𝐶𝑋,𝑍 are never physically valid on their own, since they make the Bloch sphere "longer" in
some places. However, together with Stochastic error generators, correlation errors are physically valid (most right Bloch sphere).

Figure is taken from Blume-Kohout et al. [22]

Stochastic errors are not only produced by mixtures of different unitary rotations (Hamiltonian
generators), but can also be the consequence of minimally disturbing measurements whose outcomes are
ignored. An example is that when a qubit’s environment measures it (weakly) in the 𝑍 basis, the qubit
will dephase a little (a stochastic 𝑍 error).

Active generators
Active, or antisymmetric, generators (Eq.(2.23)) are ”everything that is left”; spanning the (𝑑2−1)(𝑑2−2)/2-
dimensional complement A of H ⊕ S ⊕ C. 𝐴𝑃,𝑄 generate affine shifts of the Bloch sphere (Fig.2.5.c),
moving the whole Bloch sphere into the 𝑅-direction (𝑅 being the Pauli different from 𝑃 and 𝑄). Like
the correlation generators, the 𝐴-type generators are not physically valid on their own. In combination
with stochastic 𝑆-type generators, they generate non-unital decoherence processes. The most widely
known example of this is 𝑇1 decay, when a qubit suddenly, irreversibly, decays from a excited state into a
lower state (amplitude damping) due to coupling with a large cold environment. Ampltitude damping
can be seen as a combination of stochastic Pauli errors and a non-CP affine shift, shrinking and shifting
the Bloch sphere (Fig.2.8). Apart form 𝑇1 decay, active errors are not as well understood as Hamiltonian,
or stochastic errors.

Figure 2.8: 𝑇1 decay is a combination of stochastic and active errors. Figure is taken from Blume-Kohout et al. [22]

2.3.3. Gauge freedom
In the final section of this chapter, the downpoint of gate set tomography will be described shortly, which
is gauge freedom. The representation of a gate set given in definition 2.4 is actually an over-specification of
the physical gate set, since the preparation, gate and measurement operations that a gate set describes are
actually relational and inter-dependent. This gives rise to gauge freedom: two (or more) descriptions of the
same system, differing by a gauge transformation, result in the same observable physics. More precisely,
it is said that at every ®𝜃 ∈ 𝒫 there are directions along which none of the predicted probabilities change.
Variations along these directions, gauge directions, do not affect the goodness-of-fit of the gate set model
to the gate (as observed probabilities do not change). However, gauge freedom makes it difficult to
compare gate sets with each other, as gauge transformations do not preserve distances in most metrics
used in quantum information.
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Definition 2.7. A gauge freedom exists, if there is a transformation 𝑇𝑀 :ℳ →ℳ that can be applied to
®𝜃 ∈ 𝒫 that changes ®𝜃, but not any observable probability that can be computed from the corresponding
gate set𝑊( ®𝜃).

These matrix-space gauge transformations give rise to gauge directions and act on gate sets as follows:

⟨⟨𝐸(𝑚)
𝑖
| → ⟨⟨𝐸(𝑚)

𝑖
|𝑀−1

𝐺𝑖 → 𝑀𝐺𝑖𝑀
−1 (2.24)

|𝜌(𝑖)⟩⟩ → 𝑀 |𝜌(𝑖)⟩⟩

Here, 𝑀 ∈ GL(𝑑2) is any invertible superoperator, an element of the ”gauge group” GL(𝑑2). Indeed,
we see that nothing observable changes: Pr(𝐸(𝑚)

𝑖
) = ⟨⟨𝐸(𝑚)

𝑖
|𝑀−1𝑀𝐺𝑖𝑀

−1𝑀 |𝜌(𝑖)⟩⟩ = ⟨⟨𝐸(𝑚)
𝑖
|𝐺𝑖 |𝜌(𝑖)⟩⟩.

Concluding, a quantum information processor does not have one true gate set. However, pyGSTi chooses
the "best" representation of the gate set, when conducting gate set tomography. Further details on gauge
freedom are beyond the scope of this thesis, but can be found in Nielsen et al. [8].



3
Numerical Optimization Theory

A popular algorithm for solving non-linear optimization problems is the Levenberg-Marquardt algorithm
(LM). It was proposed by Levenberg in 1944, when it apparently was not that popular, as it had to be
rediscovered by Marquardt in 1963. It is currently used in gate set tomography and will therefore be
described in this chapter. First, two concepts will be explained: linear least-squares problems, as these
appear in LM, and the Gauss-Newton method, as LM flows from this method. Then, it is explained how
LM iterates from one point to the next: by looking within a trust region. Using this approach instead of
the traditional line search method is what distinguishes LM from the Gauss-Newton method. Finally,
LM will be presented. Nocedal and Wright [23] is followed throughout this chapter.

3.1. Linear least-squares problems and the Gauss-Newton method
In this section, firstly least-squares optimization problems are formulated. Then, a couple of ingredients
used in the Gauss-Newton method will be discussed, such as the gradient and Hessian. Thereafter, linear
least-squares problems will be discussed. To conclude, the Gauss-Newton method will be considered.

3.1.1. Least-squares problems
In least-squares problems, the objective function 𝑓 looks as follows:

𝑓 (𝑥) = 1
2

𝑚∑
𝑗=1

𝑟2
𝑗 (𝑥). (3.1)

Here, every 𝑟 𝑗 : R𝑛 −→ R is smooth function, which are called residuals. Furthermore, we assume 𝑚 ≥ 𝑛.
The residual vector is defined:

Definition 3.1. The residual vector 𝑟 : R𝑛 −→ R𝑚 is given by: 𝑟(𝑥) = (𝑟1(𝑥), . . . , 𝑟𝑚(𝑥))𝑇 .

𝑓 in terms of the residual vector is then: 𝑓 (𝑥) = 1
2
𝑟(𝑥)2

2. The gradient and Hessian of 𝑓 become,
where 𝐽 is 𝑟’s Jacobian (Def.A.1):

∇ 𝑓 (𝑥) =
𝑚∑
𝑗=1

𝑟 𝑗(𝑥)∇𝑟 𝑗(𝑥) = 𝑟1(𝑥)


𝜕𝑟1
𝜕𝑥1
...

𝜕𝑟1
𝜕𝑥𝑛

 + · · · + 𝑟𝑚(𝑥)

𝜕𝑟𝑚
𝜕𝑥1
...

𝜕𝑟𝑚
𝜕𝑥𝑛

 =


𝜕𝑟1
𝜕𝑥1
𝑟1(𝑥)+ . . . + 𝜕𝑟𝑚

𝜕𝑥1
𝑟𝑚(𝑥)

...
. . .

...
𝜕𝑟1
𝜕𝑥𝑛

𝑟1(𝑥)+ . . . + 𝜕𝑟𝑚
𝜕𝑥𝑛

𝑟𝑚(𝑥)


=


𝜕𝑟1
𝜕𝑥1

. . . 𝜕𝑟𝑚
𝜕𝑥1

...
. . .

...
𝜕𝑟1
𝜕𝑥𝑛

. . . 𝜕𝑟𝑚
𝜕𝑥𝑛



𝑟1(𝑥)
...

𝑟𝑚(𝑥)

 = 𝐽(𝑥)𝑇 𝑟(𝑥) (3.2)

∇2 𝑓 (𝑥) = 𝐽(𝑥)𝑇 𝐽(𝑥) +
𝑚∑
𝑗=1

𝑟 𝑗(𝑥)∇2𝑟 𝑗(𝑥) (3.3)

15
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Note that when the gradient of 𝑓 has been computed, part of the Hessian (𝐽(𝑥)𝑇 𝐽(𝑥)) comes for (almost)
free. From now on, ∥·∥ will be used to denote the Euclidian norm ∥·∥2.

3.1.2. Linear least-squares problems
In this subsection, linear least-squares (LS) problems will be discussed, as they form subproblems in the
considered algorithms. In linear LS problems, the residual vector is of special form: 𝑟(𝑥) = 𝐽𝑥 − 𝑦, for
some matrix 𝐽 and vector 𝑦 (both independent of x). The objective function 𝑓 becomes:

𝑓 (𝑥) = 1
2
𝐽𝑥 − 𝑦2

, where 𝑦 = 𝑟(0). (3.4)

The gradient and Hessian of 𝑓 are:

∇ 𝑓 (𝑥) = 𝐽𝑇(𝐽𝑥 − 𝑦) and ∇2 𝑓 (𝑥) = 𝐽𝑇 𝐽. (3.5)

The second term in Eq.(3.3) disappears as taking second derivatives in linear problems gives 0. To find
the minimizer of 𝑓 , we first note that the 𝑓 (𝑥) in Eq.(3.4) is convex. Recall the definition of a convex
function [24]:
Definition 3.2. Let 𝑓 (𝑥) be a real-valued function defined over points 𝑥 ∈ 𝐷 ⊆ R𝑛 , where 𝐷 is either R𝑛
or a convex subset of R𝑛 . Then, 𝑓 (𝑥) is a convex function if and only if for any points 𝑥1 and 𝑥2 in 𝐷 and
0 ≤ 𝛼 ≤ 1, we have:

𝑓 (𝛼𝑥1 + (1 − 𝛼)𝑥2) ≤ 𝛼 𝑓 (𝑥1) + (1 − 𝛼) 𝑓 (𝑥2) (3.6)
Now let 𝑥1 , 𝑥2 ∈ 𝐷 and 𝛼 ∈ [0, 1]. Then,

𝑓 (𝛼𝑥1 + (1 − 𝛼)𝑥2) = 1
2

𝐽(𝛼𝑥1 + (1 − 𝛼)𝑥2) − 𝑦
2

=
1
2

𝐽𝛼𝑥1 + 𝐽(1 − 𝛼)𝑥2 − 𝑦 + 𝛼𝑦 − 𝛼𝑦
2

=
1
2

𝛼(𝐽𝑥1 − 𝑦) + (1 − 𝛼)(𝐽𝑥2 − 𝑦)
2
≤ 1

2

𝛼(𝐽𝑥1 − 𝑦)
2
+ 1

2

(1 − 𝛼)(𝐽𝑥2 − 𝑦)
2

= 𝛼2 1
2

𝐽𝑥1 − 𝑦
2
+ (1 − 𝛼)2 1

2

𝐽𝑥2 − 𝑦
2
≤ 𝛼 𝑓 (𝑥1) + (1 − 𝛼) 𝑓 (𝑥2),

where the triangle inequality and the fact that for 𝛼 ∈ [0, 1], 𝛼2 ≤ 𝛼, (1 − 𝛼)2 ≤ (1 − 𝛼), were used.
Furthermore, recall that any local minimizer 𝑥∗ of a convex function 𝑓 (𝑥) (∇ 𝑓 (𝑥∗) = 0) defined on a
convex subset 𝐶 of R𝑛 is also a global minimizer. Finding 𝑥∗ is thus solving ∇ 𝑓 (𝑥∗) = 0:

0 = 𝐽𝑇(𝐽𝑥∗ − 𝑦) ↔ 𝐽𝑇 𝐽𝑥∗ = 𝐽𝑇𝑦. (3.7)

These equations are called the normal equations for the linear LS objective function. The normal equations
will come back in the discussion of the Gauss-Newton method.

3.1.3. The Gauss-Newton method
Recall the (standard) Newton method, where the minimizer is found by solving

∇2 𝑓 (𝑥𝑘)(𝑥𝑘+1 − 𝑥𝑘) = ∇2 𝑓 (𝑥𝑘)𝑝 = −∇ 𝑓 (𝑥𝑘) for 𝑘 ≥ 0. (3.8)

The Gauss-Newton method modifies the Newton method, by approximating the Hessian as ∇2 𝑓𝑘 ≈ 𝐽𝑇 𝐽
(disregarding the second sum in Eq.(3.3)). This can be done because oftentimes either the ∇2𝑟 𝑗(𝑥) or the
𝑟 𝑗(𝑥) are relatively small, such that the first term of Eq.(3.3) is more important. Plugging ∇ 𝑓𝑘 = 𝐽𝑇

𝑘
𝑟𝑘

(Eq.(3.2)) and ∇2 𝑓𝑘 = 𝐽𝑇 𝐽 into the above equation gives the Gauss-Newton problem:

𝐽𝑇
𝑘
𝐽𝑘𝑝

GN
𝑘

= −𝐽𝑇
𝑘
𝑟𝑘 . (3.9)

Observe now that this is exactly of the form of the normal equations in Eq.(3.7). 𝑝GN
𝑘

is thus the solution
of the linear LS problem

min
𝑝

1
2
𝐽𝑘𝑝 + 𝑟𝑘2

. (3.10)

Thus, before the minimizer of the objective function 𝑓 is found, the above subproblem has to be solved,
i.e. computing the best optimization direction. To this end, the Levenberg-Marquardt method uses
a different strategy than the Gauss-Newton method: the trust region approach versus line search,
respectively. Both methods are discussed in the next section.
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3.2. Line search versus trust region approach
Iterative optimization methods try to find the minimizer of some objective function 𝑓 (𝑥) by producing
a sequence {𝑥𝑘} which terminates if it is not possible to come closer to the minimizer, or if it is close
enough to the optimal solution. In deciding how to move from the current point 𝑥𝑘 to the better, next
point 𝑥𝑘+1, often one of two strategies is used: line search, or the trust region. The (Gauss-) Newton
method and the method of Steepest Descent are the most widely known line search methods. They
choose a direction 𝑝𝑘 and search along it to find the next point 𝑥𝑘+1, i.e. solve

min
𝛼>0

𝑓 (𝑥𝑘 + 𝛼𝑝𝑘). (3.11)

The Levenberg-Marquardt algorithm considered here, is of the second strategy type. Trust region
algorithms use a model function 𝑚𝑘 , an estimate for the objective function 𝑓 in an area close to the current
point 𝑥𝑘 ; the trust region. The model 𝑚𝑘 is usually defined as the following quadratic function:

𝑚𝑘(𝑥𝑘 + 𝑝) = 𝑓𝑘 + 𝑝𝑇∇ 𝑓𝑘 +
1
2 𝑝

𝑇𝐵𝑘𝑝. (3.12)

Here, 𝑓𝑘 ,∇ 𝑓𝑘 and 𝐵𝑘 are respectively a scalar, vector and matrix. 𝐵𝑘 is the Hessian of 𝑓𝑘 (∇2 𝑓𝑘) or an
approximation of it. The difference between 𝑓 and the model function is𝑂

(𝑝2
)
, which is small when 𝑝

is small. Unlike in line search methods, where the direction 𝑝𝑘 to go along to the next point is calculated
from the current point and 𝑓 , in trust region algorithms a sub-optimization problem has to be solved to
find 𝑝𝑘 :

min
𝑝
𝑚𝑘(𝑥𝑘 + 𝑝), where 𝑥𝑘 + 𝑝 lies inside the trust region. (3.13)

Figure 3.1: Figure illustrating the line search and trust region approach. The line search method goes along the minimizer of 𝑚𝑘 ,
reducing 𝑓 only a small amount (as the next point is not that much closer to 𝑓 ’s minimizer than the current point). The trust

region approach however, looks inside the dotted circle for 𝑚𝑘 ’s minimizer, resulting in a greater reduction of the objective value.
Figure is taken from Nocedal and Wright [23].

For example, if the found 𝑝𝑘 does not result in a much better, so smaller, 𝑓 , the trust region is probably
too large, as far from 𝑥𝑘 the model 𝑚𝑘 may not be a good approximation of 𝑓 . Accordingly, the trust
region is shrinked and Eq.(3.13) is solved again. This reasoning is formalized by the algorithm below
(Alg.1). Here, the ratio between the actual reduction (numerator) and the predicted reduction (denominator)
is used to evaluate how well the function and its model match:

𝜌𝑘 =
𝑓 (𝑥𝑘) − 𝑓 (𝑥 + 𝑝𝑘)

𝑚𝑘(𝑥𝑘) − 𝑚𝑘(𝑥𝑘 + 𝑝𝑘)
. (3.14)

The predicted reduction will always be nonnegative: either 𝑚𝑘(𝑥𝑘 + 𝑝𝑘) < 𝑚𝑘(𝑥𝑘) (we are minimizing),
or 𝑝𝑘 = 0 (trust region is too large to find a smaller objective function value). There are three distinct
cases:

1. 𝜌𝑘 is negative (or zero). Then 𝑓 (𝑥𝑘 + 𝑝𝑘) > 𝑓 (𝑥𝑘) (or 𝑓 (𝑥𝑘 + 𝑝𝑘) = 𝑓 (𝑥𝑘)), which is rejected, as we
are minimizing. Accordingly, the trust region is shrinked.
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2. 𝜌𝑘 is close to one. The model function and objective function agree well in the current trust-region,
so in the next step it can be expanded.

3. 0 < 𝜌𝑘 << 1. The trust region is not altered.

Δ̂ is a bound on the step lengths in the following algorithm.

Algorithm 1 Trust region algorithm.

Given Δ̂ > 0,Δ0 ∈ (0, Δ̂), and 𝜂 ∈ [0, 1
4 ):

for 𝑘 = 0, 1, 2, . . . do
Obtain 𝑝𝑘 by (approximately solving) Eq.(3.13);
Evaluate 𝜌𝑘 in Eq.(3.14);
if 𝜌𝑘 < 1

4 then
Δ𝑘+1 = 1

4Δ𝑘
else

if 𝜌𝑘 > 3
4 and

𝑝𝑘 = Δ𝑘 then
Δ𝑘+1 = min(2Δ𝑘 , Δ̂)

else
Δ𝑘+1 = Δ𝑘 ;

end if
end if
if 𝜌𝑘 > 𝜂 then

𝑥𝑘+1 = 𝑥𝑘 + 𝑝𝑘
else

𝑥𝑘+1 = 𝑥𝑘 ;
end if

end for

To summarize, the difference between line search and trust region methods, is as follows. Line
search methods first fix 𝑝𝑘 and then compute the distance to go along it. This is contrary to trust region
algorithms, where first the maximum distance (the trust region radius) to the next point is set, and after
this the direction and step are calculated. If the next value of the objective function is not satisfactory,
the trust region radius is reduced and the subproblem of direction and step is solved again. Now, it can
finally be explained how the Levenberg-Marquardt method solves the subproblem (Eq.(3.13)).

3.3. The Levenberg-Marquardt method
The Levenberg-Marquardt algorithm has the same subproblem (Eq.(3.10)) as the Gauss-Newton method.
However, LM solves it differently by employing the trust-region method instead of line search. The
subproblem (now dropping the iteration counter 𝑘) and its solution are presented in the following
lemma (illustrated in Fig.3.2):

Lemma 3.1. The vector 𝑝LM is a solution of the trust-region subproblem

min
𝑝

𝐽𝑝 + 𝑟2
, subject to

𝑝 ≤ Δ,

if and only if 𝑝LM is feasible and there is a scalar 𝜆 ≥ 0 such that

(𝐽𝑇 𝐽 + 𝜆𝐼)𝑝LM = −𝐽𝑇 𝑟, (3.15)

𝜆(Δ −
𝑝LM

) = 0. (3.16)

The proof can be found in Nocedal and Wright [23]. Suppose the Gauss-Newton method gives 𝑝GN

as the solution of the subproblem (by applying some linear least-squares algorithm to Eq.(3.10)). The
lemma gives then two options for 𝑝LM:

1. If
𝑝GN

 < Δ, then 𝑝LM = 𝑝GN (Eq.(3.15) and Eq.(3.9) coincide as 𝜆 = 0)
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2. Otherwise, ∃𝜆 > 0 (𝑝LM = Δ), such that 𝑝LM solves Eq.(3.15).

If 1 is the case, we are done. Otherwise, Eq.(3.15) needs to be solved. Note that Eq.(3.15) are the normal
equations for the following linear LS problem:

min
𝑝

1
2


[
𝐽√
𝜆𝐼

]
𝑝LM +

[
𝑟
0

]
2

. (3.17)

Thus, before solving the subproblem (of 𝑝LM), another problem (sub-subproblem) has to be solved:
finding 𝜆. Fortunately, this is not so complicated and can be done with the rootfinding algorithm. What
rests then, is to solve Eq.(3.17). Details on the rootfinding algorithm and how the Levenberg-Marquardt
method can be implemented to solve Eq.(3.17) can be found in Nocedal and Wright [23].

Figure 3.2: Figure illustrating Lemma 3.1. 𝑝∗𝑖 is the solution corresponding to radius Δ𝑖 . If the solution lies strictly inside the trust
region (for 𝑖 = 1), then 𝜆 = 0 and 𝐽𝑇 𝐽𝑝∗ = −𝐽𝑇 𝑟. Otherwise (for 𝑖 = 2, 3:

𝑝∗ = Δ), 𝜆 > 0 and 𝑝∗ is collinear with the negative
gradient of the model function 𝑚 and normal to its contours. This is seen from noting that: 𝜆𝑝∗ = −𝐽𝑇 𝐽𝑝∗ − 𝐽𝑇 𝑟 = −∇𝑚(𝑝∗).

Figure is taken from Nocedal and Wright [23].



4
Gate Set Tomography

Quantum characterization, verification and validation (QCVV) protocols probe how qubits, logic operations,
and entire quantum processors behave. The many different protocols share their essential structure.
Firstly, data is collected from experiments, described by quantum circuits performed on the processor.
Then, the data is analysed to learn something about (an aspect of) the researched processor’s behaviour.
In this thesis, one such protocol is used: gate set tomography (GST). The term "gate set" has been
described shortly in Chapter 2. "Tomography" is best defined by a group at Sandia National Labs,
which has researched GST since 2012: "“Tomography” means the reconstruction of a comprehensive model (of
something) from many partial cross-sections or slices, each of which provides only a limited view that may be useless
by itself. Tomographic techniques are distinguished by their aspiration to construct a comprehensive model for a
system or component, by fitting that model to the data from many independent experiments" [8]. In this chapter,
the whole process behind gate set tomography will be explained. "Traditional" tomographies will be
presented, which are merged to realize GST. First, pyGSTi is introduced, a software for implementing
QCVV protocols.

"pyGSTi (Python Gate Set Tomography Implementation) is an open-source software for modeling and
characterizing noisy quantum information processors (QIPs), i.e., systems of one or more qubits" [25], and has
been developed by amongst others the group at Sandia National Labs mentioned above. In this thesis,
pyGSTiwas used to perform gate set tomography. So, some parts of this chapter have been explained
through the eyes of pyGSTi’s implementation of GST. It will be mentioned explicitly when that is the
case. The enthusiastic reader is referred to [25] and Nielsen et al [26] for respectively downloading
pyGSTi and more information on its mechanism.

4.1. An introduction to QCVV: state, process and measurement tomog-
raphy

In this section, standard state, process and measurement tomography will be presented. To this end,
we follow Nielsen et al [8]. As mentioned above, GST can be seen as a unification of the three. So,
understanding these protocols is one of the first steps toward understanding GST. First, some handy
definitions are introduced.

Definition 4.1. A set {|𝜌⟩⟩} of matrices |𝜌⟩⟩ ∈ ℬ(ℋ) is informationally complete (IC) if and only if it
spans the vector space ℬ(ℋ).

For example, the set of effects {𝐸(𝑚)
𝑖
} is IC if and only if it spans the entire set of effects, forming

a complete dual basis for states. This also means that the probabilities 𝑝(𝑚)
𝑖
(𝜌) = Tr

[
𝜌𝐸(𝑚)

𝑖

]
uniquely

identify 𝜌, meaning there �𝜌′, 𝜌 ≠ 𝜌′ consistent with the measurements.
Furthermore, the term ”fiducial” will be used quite often; it means ”accepted as a fixed basis of

reference”. The meaning of this will become clear from the context.

20
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4.1.1. Quantum state tomography
Quantum state tomography is a procedure to experimentally determine the unknown quantum states
of a system (Fig.4.1). "Standard" tomographies use two ingredients: experiments and linear algebra
("linear inversion"). Furthermore, they assume the existence of a known informationally complete set.
In state tomography, this is the set of effects, {⟨⟨𝐸(𝑚)

𝑖
|}. Here, 𝑚 = 1 . . . 𝑀 with 𝑀 the number of fiducial

measurements and 𝑖 = 1 . . . 𝑁 (𝑚) are the outcomes of the 𝑚th measurement.
First, the experimental part is described. Here, all the effects are listed as {𝐸 𝑗 : 𝑗 = 1, ..., 𝑁 𝑓 1}, where

𝑁 𝑓 1 (=
∑
𝑚
𝑁 (𝑚)) is the total number of distinct measurement outcomes for all measurements performed.

Then, every 𝐸 𝑗 is applied to the unknown 𝜌 many times, to estimate the probability of the measurement
outcome. Copies of the unknown 𝜌 can be made as this is just "pressing a button" on the processor, i.e.
the entries of the states do not have to be known to create the states.

Now, the "theoretical" part. The true probabilities are given by Born’s rule: 𝑝 𝑗 = Tr
[
𝜌𝐸 𝑗

]
. Rewriting

this with the Hilbert-Schmidt space inner product (Ch.2.1) gives 𝑝 𝑗 = ⟨⟨𝐸 𝑗 |𝜌⟩⟩. Then,

®𝑝 𝑗 = 𝐴|𝜌⟩⟩, (4.1)

where 𝐴 is the known 𝑁 𝑓 1 × 𝑑2 matrix of effect vectors:

𝐴 =

©«
⟨⟨𝐸1 |
...

⟨⟨𝐸𝑁 𝑓 1 |

ª®®®¬ . (4.2)

Lastly, 𝜌 is reconstructed via linear inversion, using the experimentally acquired estimates for the
probabilities ®̂𝑝. Two cases are considered, namely:

1. 𝐴 is a square matrix and thus has an inverse;
2. The {⟨⟨𝐸(𝑚)

𝑖
|} form an overcomplete basis, i.e. 𝑁 𝑓 1 > 𝑑2 and 𝐴 is not square.

In the first case, inverting Eq.(4.1) gives: |𝜌⟩⟩ = 𝐴−1 ®̂𝑝. In the second case, a pseudo-inverse (definition
A.2) is used, resulting in: |𝜌⟩⟩ = (𝐴𝑇𝐴)−1𝐴𝑇 ®̂𝑝.

4.1.2. Quantum process tomography
Similarly to quantum state tomography, quantum process tomography tries to reconstruct gates 𝐺 (e.g.
quantum processes) from experimentally acquired data (Fig.4.1). This requires an additional assumption,
namely that a list {|𝜌𝑖⟩⟩} of 𝑁 𝑓 2 informationally complete fiducial quantum states is available. The
matrix of the column vectors of these states is defined:

𝐵 =

(
|𝜌1⟩⟩ . . . |𝜌𝑁 𝑓 2⟩⟩

)
. (4.3)

Like above, running experiments (of the form 𝐸 𝑗𝐺[𝜌𝑖]; preparing 𝜌𝑖 , applying 𝐺 and measuring with
possible outcomes {𝐸 𝑗}) allows the estimation of the probabilities 𝑃𝑗 ,𝑖 , where 𝑃𝑗 ,𝑖 = Tr(𝐸 𝑗𝐺[𝜌𝑖]) =
⟨⟨𝐸 𝑗 |𝐺 |𝜌𝑖⟩⟩. The estimated probabilities are combined into a 𝑁 𝑓 1 × 𝑁 𝑓 2 matrix 𝑃, such that 𝑃 = 𝐴𝐺𝐵.

Like previously, if 𝑁 𝑓 1 = 𝑁 𝑓 2 = 𝑑2, then 𝐺 is simply given by 𝐺 = 𝐴−1𝑃𝐵−1. Otherwise, if 𝑁 𝑓 1 > 𝑑2

and/or 𝑁 𝑓 2 > 𝑑2, the pseudo-inverse is used to obtain 𝐺 = (𝐴𝑇𝐴)−1𝐴𝑇𝑃𝐵𝑇(𝐵𝐵𝑇)−1.

4.1.3. Quantum measurement tomography
Quantum measurement tomography tries to reconstruct the POVM effects for an unknown measurement
and directly follows from generalising state tomography. If {𝐸 𝑗} is the unknown POVM, a vector
of estimated probabilities is defined of each unknown effect, with {𝜌𝑖} the known fiducial IC states:
[𝑝 𝑗]𝑖 = Tr[𝜌𝑖𝐸 𝑗] = ⟨⟨𝐸 𝑗 |𝜌𝑖⟩⟩. Using 𝐵 (Eq.(4.3)) we acquire: ®𝑝 𝑗𝑇 = ⟨⟨𝐸 𝑗 |𝐵. Finally, linear inversion
delivers: ⟨⟨𝐸 𝑗 | = ®𝑝 𝑗𝑇𝐵−1, where 𝐵−1 is the inverse or pseudo-inverse of 𝐵, as explained earlier.
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Figure 4.1: Structures of the circuits used in state, process and measurement tomography. In each protocol an unknown entity
(orange) is deduced by using observed probabilities and linear-inversion, under the assumption that some informationally

complete set (blue) is known. 𝜌’s are states, 𝑀’s are measurement effects, and 𝐺 is a gate. Figure is taken from Nielsen et al. [8]

4.1.4. The pre-calibration problem in standard tomography
State, process and measurement tomography all work under the assumption that some informationally
complete set is known exactly (Fig.4.1), i.e. calibrated. However, these assumptions are never satisfied
in practice, since this calibration leads to an infinite loop of self-referentiality. For state tomography,
known POVM’s are needed, which can be obtained through measurement tomography, for which the
results of state tomography are required. Likewise, fiducial states and measurement are necessary for
process tomography. As most processors possess only a few native states and measurements, these are
typically produced using quantum logic gates, that are yet to be estimated!

Gate set tomography overcomes this pre-calibration problem by not assuming anything about the
processor’s states, measurements and gates. GST treats the processor as a "black box" (Fig.4.2). That
is, circuits can be run by pressing the processor’s buttons, but how the buttons look exactly (in the
mathematical sense), the gate set, is assumed unknown, to be estimated by gate set tomography. In the
next section, linear GST, GST’s "first step", is described.

Figure 4.2: Gate set tomography treats the studied quantum processor as a black box. Circuits can be run by pressing the
processor’s buttons, but how the buttons look exactly (in the mathematical sense) is unknown. Figure taken from Blume-Kohout

et al [27].

4.2. Lineair gate set tomography
In this section, linear gate set tomography (LGST) is described as a starting point for gate set tomography.
Recall the gate set 𝒢 (Def.2.4). LGST constructs its low-precision estimate, by fitting it to data from a
particular set of short circuits. As LGST does not assume anything about the gate set, it does not suffer
from the above calibration problem. However, this unfortunately leads gauge freedom (Ch.2.7), which
makes the produced representation of the gate set not unique. Another downside of LGST is that it has
the same accuracy/effort scaling as process tomography.

4.2.1. The linear gate set tomography algorithm
LGST starts with the assumption that unknown IC sets of fiducial states {|𝜌′

𝑗
⟩⟩} and measurement

effects {⟨⟨𝐸′
𝑖
|} can be created (by "pressing" the right buttons on the processor). The sets of states and

measurements have respective dimensions 𝑁 𝑓 1 = 𝑁 𝑓 2 = 𝑑2, and will form an unknown reference frame.
Using larger sets does have practical advantages, but these are outside the scope of this thesis and
the interested reader is therefore referred to Nielsen et al [8]. Furthermore, finite sample error (i.e.
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�̂� = 𝑝 ±𝑂(1/
√
𝑁) in 𝑁 trials) in estimated probabilities and the IC sets will be ignored in this section, so

𝑝 = �̂�.
For each gate𝐺𝑘 to be reconstructed, a matrix𝑃𝑘 is defined as𝑃𝑘 = 𝐴𝐺𝑘𝐵, where [𝑃𝑘]𝑖 , 𝑗 = ⟨⟨𝐸′𝑖 |𝐺𝑘 |𝜌′𝑗⟩⟩,

similarly to process tomography. Now however, since the elements of 𝐴 and 𝐵 are not known, linear
inversion cannot be used to solve for 𝐺𝑘 . Instead, probabilities corresponding to the null operation (i.e.
no gate), the Gram matrix, are measured:

Definition 4.2. The Gram matrix for the fiducial states and effects is given by 1̃ = 𝐴𝐵.

The assumption that 𝐴 and 𝐵 are square and invertible, which follows from informational complete-
ness, allows us to invert the Gram matrix and solve for 𝐺𝑘 . Multiplying both sides of 𝑃𝑘 = 𝐴𝐺𝑘𝐵 with
1̃−1 gives:

1̃−1𝑃𝑘 = 𝐵−1𝐴−1𝐴𝐺𝑘𝐵 = 𝐵−1𝐺𝑘𝐵

𝐺𝑘 = 𝐵1̃−1𝑃𝑘𝐵
−1.

The above can be done for every 𝐺𝑘 . Furthermore, the ("true") native states 𝜌(𝑙) and native measurement
effects {𝐸(𝑚)

𝑙
} need to be reconstructed. This is achieved with the vectors of observable probabilities[ ®𝑅(𝑙)]

𝑗
= ⟨⟨𝐸′

𝑗
|𝜌(𝑙)⟩⟩ and

[ ®𝑄(𝑚)
𝑙

]
𝑗
= ⟨⟨𝐸(𝑚)

𝑙
|𝜌′
𝑗
⟩⟩. Measuring these is analogous to carrying out state

tomography and measurement tomography, respectively:

®𝑅(𝑙) = 𝐴|𝜌(𝑙)⟩⟩,
®𝑄(𝑚)𝑇 = ⟨⟨𝐸(𝑚)

𝑙
|𝐵.

Inverting above equations using the Gram matrix provides the whole gate set up to a gauge:

𝐺𝑘 = 𝐵1̃−1𝑃𝑘𝐵
−1 , (4.4)

|𝜌(𝑙)⟩⟩ = 𝐵1̃−1 ®𝑅(𝑙) , (4.5)

⟨⟨𝐸(𝑚)
𝑙
| = ®𝑄(𝑚)𝑇

𝑙
𝐵−1. (4.6)

Here, 𝐵 (Eq.(4.3)) is the gauge transformation, on which the gate set representation relies. So, choosing
another IC set of states leads to a different gate set, but not to different physics, as observed probabilities
stay the same. The best a priori choice for 𝐵 corresponds to the tomographer’s best a priori guess for the
fiducial states; 𝐵 implicitly defines the expected gauge. Oftentimes, a posteriori gauge-fixing is required
to reliably compute gauge-dependent quantifies. Unfortunately, that is beyond the scope of this thesis,
so I refer to Nielsen et al. [8] for more information.

4.2.2. Creating fiducial vectors
In the section above, fiducial informationally complete sets of states {|𝜌′

𝑗
⟩⟩} and measurements {⟨⟨𝐸′

𝑖
|}

were used. However, most quantum processors are able to create only one native state preparation, and
one measurement. To achieve IC sets, to create more states and measurements, the unknown gates are
applied to the native state and measurement. That is, preparation and measurement fiducial QI/QO circuits,
{𝐹𝑘} and {𝐻𝑘} respectively, are constructed:

⟨⟨𝐸′𝑖 | = ⟨⟨𝐸
(𝑚(𝑖))
𝑡(𝑖) |𝜏(𝐻ℎ(𝑖)), (4.7)

|𝜌′𝑗⟩⟩ = 𝜏(𝐹 𝑓 (𝑗))|𝜌(𝑟(𝑗))⟩⟩. (4.8)

Recall that 𝜏 denotes a QI/QO circuits (Ch.2.2.2). This way, every item in the IC set, indexed by 𝑖 or 𝑗, is
mapped to the native state index (𝑟(𝑗)) or native measurement index (𝑚(𝑖)) by its corresponding QI/QO
circuit (indexed by ℎ(𝑖) or 𝑓 (𝑗)). This section and the previous one are summarized in Fig.4.3.

4.2.3. Optimization procedure
Once again is repeated, that the ”probabilities” described above are actually observed frequencies and
thus estimations for the predicted probabilities. GST tries to locate the gate set that fits the observed
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Figure 4.3: The circuits used in linear gate set tomography to estimate native operations (yellow), whilst assuming the ability to
create, but not know, informationally complete sets (blue). Circuits used to estimate gates (a)) include informationally complete

sets of states and measurements (𝜌′
𝑖

and 𝑀′
𝑗
), which themselves are constructed by applying preparation and measurement

fiducial circuits (𝐹 𝑓 and 𝐻ℎ ) to the processor’s native state and measurement 𝜌(𝑟) and 𝑀(𝑚)(b)). c) Unknown gates make up 𝐹 𝑓
and 𝐻ℎ . Analogously to this, in d) - f) the circuits for producing the Gram matrix are depicted, which is equivalent to

sandwiching the null operation between the states and measurements. Figure taken from Nielsen et al. [8]

data best. To this end, LGST minimizes the squared difference of observed and predicted probabilities:

𝑓 (gate set) =
∑
𝑗

(𝑝(gate set)
𝑖

− 𝑓 (observed)
𝑗

)2. (4.9)

However, using particularly least-squares is not well-motivated. Another downside of this approach is
that not all circuits performed in obtaining the LGST data are included in 𝑓 (gate set), as these depend
on the choice of 1̃.

A better approach is to maximize the likelihood function: ℒ(gate set) = Pr(data|gate set), for which
the sum-of-squared objective function (Eq.(4.9)) is an approximation. This method views gate sets as
statistical models that predict circuit probabilities, over which we numerically vary to find the one
that maximizes ℒ; maximum likelihood estimation (MLE). This way, data from every circuit is used, and
the final gate set really does minimize the total squared error. As we will see in the next section, GST
employs MLE, whereas LGST serves only as a starting point for GST.

4.3. Long-sequence gate set tomography
Long-sequence gate set tomography (or just GST for short) is realized by modifying two aspects of
linear gate set tomography. First, GST has a different experiment design, since it employs deep circuits.
Secondly, as mentioned above, GST finds the best gate set via maximum likelihood estimation (MLE).
This is done in a 2-process. Before explaining these alterations in more detail, an example motivating
the use of deep circuits is given.

In linear gate set tomography, each entry of a superoperator 𝐺𝑘 is pretty close to being a linear
combination of observed probabilities. The accuracy of �̂�𝑘 is therefore limited by the finite sample error:
�̂�𝑘 = 𝐺𝑘 ±𝑂(1)/

√
𝑁 , where 𝑁 is the amount of times each circuit is performed. The use of deep circuits

in long-sequence GST forces the outcome probabilities to depend more sensitively on the elements of
𝐺𝑘 . For example, in Pr = ⟨⟨𝐸 | 𝐺𝑘𝐺𝑘𝐺𝑘𝐺𝑘 |𝜌⟩⟩, some entries of 𝐺𝑘 are up to four times more sensitive to
changes in 𝐺𝑘 , as in the circuit where 𝐺𝑘 appears only once. Now, it will be explained how GST cleverly
incorporates deep circuits in its experiment design.

4.3.1. Experiment design
The term experiment will be used to refer to an experiment design, that is a set of quantum circuits to be
run, together with the data acquired from running each circuit many times. Every long-sequence GST
circuit, specified by an (𝑗 , 𝑘, 𝑝, 𝑚) tuple, consists of three consecutive parts (Fig.4.4):

1. A state |𝜌′
𝑘
⟩⟩ is prepared by performing a fiducial circuit on a native preparation, like in LGST

(Ch.4.2.2).
2. A short circuit, a germ 𝑔, is repeated 𝑝 times.
3. A measurement {⟨⟨𝐸′

𝑖
(𝑚) |} is carried out by performing a fiducial circuit followed by a native

POVM measurement, like in LGST (Ch.4.2.2).
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In the sandwiched step, 𝑔𝑝 is called a base circuit and 𝑝 a germ power. Like LGST, GST assumes the
ability to create informationally complete sets of states and measurement out of the processor’s native
states and measurements. This allows performing tomography on 𝜏(𝑔𝑝

𝑗
) via estimation of probabilities

𝑝 = ⟨⟨𝐸′
𝑖
(𝑚) |𝜏(𝑔𝑝

𝑗
)|𝜌′

𝑘
⟩⟩. Errors that commute with 𝜏(𝑔), can be "separated" from 𝜏(𝑔𝑝

𝑗
), such that repetition

of the germ amplifies them (they get multiplied with each other as well).
To achieve maximum accuracy, every parameter in the gate set that can be amplified, must be

amplified. However, this excludes two types of parameters. Firstly, gauge parameters, as these cannot
be measured at all (as they are independent of observed probabilities). Secondly, state preparation and
measurement (SPAM) operations cannot be amplified, as these appear only once in each circuit. Now,
we will dive into the details of steps 1, 2 and 3. It will be explained how pyGSTi chooses the right set of
germs 𝑔𝑖 , germ-powers 𝑝 and SPAM pairs to amplify all 𝑁non-gauge

p amplifiable parameters.

Figure 4.4: The experiment design for long-sequence GST. a) A circuit consists of a germ g that is repeated a p amount of times,
sandwiched between an effective state preparation 𝜌′ and an effective measurement 𝑀′ =

{
𝐸′
𝑖

}
. b) The states and measurements

are produced by applying a preparation fiducial circuit 𝐹 and measurement fiducial circuit 𝐻 from an informationally complete set,
respectively after and before a native state 𝜌 or native measurement 𝑀. c) The fiducials and germ consist of native operations of a
gate set. In this case, the preparation fiducial circuit has depth 3, the germ has depth 4 and the measurement fiducial has depth 2.

Figure taken from Nielsen et al. [8]

Fiducial selection
In this section the selection of informationally complete sets of effective state preparations and effective
measurements will be described (selection of {𝐻𝑘} and {𝐹𝑘}, Eq.(4.8), Eq.(4.7)); fiducial selection.
Theoretically, any set of 𝑑2 random circuits is IC, as it spans ℬ(ℋ). However, it is preferred to have
”maximal” linear independency of the circuits (more uniformly IC sets decrease the prefactor in the
accuracy scaling). The spectrum of the Gram matrix quantifies the amount of linear independence.

The Gram matrix will not have 𝑑2 non-zero singular values (Def.A.3) if either {|𝜌′
𝑗
⟩⟩} or {⟨⟨𝐸′

𝑖
}

is informationally incomplete. The fiducial set is close to being linearly dependent if the 𝑑2-th largest
magnitude singular value is close to zero. An optimal fiducial set, so whose elements span ℬ(𝐻) as
uniformly as possible, is thus found by maximising the smallest of the top 𝑑2 singular values of the
Gram matrix over some candidate fiducial sets. In practice, a candidate set is composed of all the
possible circuits of some maximal depth.

To compute the Gram matrix, estimates of the actual gates are needed (as the sets of preparation and
measurements are created using gates). If the best-fit gate is close to the actual gate, then produced
states and effects will be close to the expected ones, and thus close to being uniformly IC. Otherwise,
fiducials are selected again, by using the new estimates of the gates (provided by GST). Thus, it is
possible that multiple experiment-generation steps are necessary to find the optimal set of fiducials.

In the next section, where base circuit and germ selection will be discussed, it is assumed that
fiducial selection has been successful.

Germ selection
In gate set tomography, errors in the gate set are modelled as small perturbations to the target gate set.
A set of germs that amplifies all errors that can be amplified, is called amplificationally complete (AC). In
this section we will derive a notion of completeness for germs, so a necessary and sufficient condition
for an AC germ set.

At the beginning of this section, a short example portraying the benefit of deep circuits was given.
Now, a similar example will be given, but this time to motivate the use of germs other than the gates
themselves. The reason is that single gates amplify some, but not all parameters of the gate set. Suppose
𝐺𝑥 is an exact 𝜋/2 rotation, but now around the wrong axis, i.e. 𝐺𝑥 = 𝑒−𝑖(𝜋/4)(cos 𝜖𝜎𝑥+sin 𝜖𝜎𝑦 ), in which 𝜎𝑥
and 𝜎𝑦 are the Pauli operators, and 𝜖 is some small constant. This ”tilt error” cannot be amplified by
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raising 𝐺𝑥 to some power. Take for example 𝑝 = 4, then 𝐺4
𝑥 = 𝑒−𝑖(𝜋)(cos 𝜖𝜎𝑥+sin 𝜖𝜎𝑦 ) = 1̃ (this equality can

be verified by, for example, writing out the matrix exponential Taylor expansion). Other circuits are
needed to amplify such errors. Here, 𝐺𝑥𝐺𝑦 suffices, 𝐺𝑦 being a perfect 𝜋/2 rotation around the 𝑦-axis.
𝐺𝑥𝐺𝑦 is a rotation by 2𝜋/3 + 𝜖/

√
3, so repeating this germ a 𝑝 amount of times ensures that 𝜖 can be

estimated up to 1/(𝑝
√
𝑁).

Generally, every circuit amplifies some nontrivial linear combination of gate set parameters. In
choosing a set of germs, a list of candidate germs is created, i.e. all circuits shorter than some cutoff
depth. The Jacobian will be the tool to identify the linear combination of parameters a candidate germ
amplifies:

Definition 4.3. If ®𝜃 ∈ 𝒫 is a vector of gate set parameters, the Jabobian of 𝜏(𝑔) : ℬ(ℋ) −→ ℬ(ℋ) is given
by:

∇(𝑝)𝑔 B
1
𝑝

𝜕[𝜏(𝑔)𝑝]
𝜕 ®𝜃

����
𝑊( ®𝜃)=𝒢

. (4.10)

Like in LGST, where the elements of 𝜏(𝑔) could be accessed because IC sets of fiducials were used,
the full Jacobian here is accessible. 𝜏(𝑔) is 𝑑2 × 𝑑2 and 𝑁p is the amount of parameters in the gate
set, so ∇(𝑝)𝑔 is a 𝑑4 × 𝑁p matrix. The linear combinations of model parameters that 𝜏(𝑔) amplifies are
indicated by its 𝑑4 right singular vectors, the eigenvectors of the matrix ∇(𝑝)𝑇𝑔 ∇

(𝑝)
𝑔 [28]. The amplification

is quantified by the corresponding singular values. A parameter combination is not amplified at all if it
has zero singular value. Thus far, only one germ was considered. A set of 𝑁𝑔 germs gives the following
𝑁e × 𝑁p Jacobian, where 𝑁e = 𝑁 full

p = 𝑑4𝑁G:

𝐽(𝑝) =

©«
∇(𝑝)𝑔1
...

∇(𝑝)𝑔𝑁𝑔

ª®®®®¬
. (4.11)

In pyGSTi’s germ selection, the fact that base circuits of length 𝐿 >> 1/𝜂, with 𝜂 the rate of
stochastic noise, do not give interesting information is ignored. That is, the gates are assumed to be
reversible/unitary (𝜏(𝑔)−1 = 𝜏(𝑔)†), which is justified for small 𝜂. This assumption makes it possible to
define the 𝑝 −→ ∞ limit in Eq.(4.11). First, the product rule and 𝜏(𝑔)−1 = 𝜏(𝑔)† give:

∇(𝑝)𝑔 =
1
𝑝

𝑝−1∑
𝑛=0

𝜏(𝑔)𝑛 𝜕𝜏(𝑔)
𝜕 ®𝜃

𝜏(𝑔)𝑝−1−𝑛 (4.12)

=

 1
𝑝

𝑝−1∑
𝑛=0

𝜏(𝑔)𝑛∇(1)𝑔 (𝜏(𝑔)†)𝑛
 𝜏(𝑔)−(𝑝−1). (4.13)

With a result from representation theory, namely Schur’s lemma, it is found that taking 𝑝 −→ ∞ results
in:

lim
𝑝−→∞∇

(𝑝)
𝑔 =

∏
𝜏(𝑔)

[
∇(1)𝑔

]
, (4.14)

where
∏

𝜏(𝑔) is the projection onto the commutant of 𝜏(𝑔), the subspace of matrices that commute with
𝜏(𝑔). The critical reader that does not believe this claim without proof, and rightly so, is referred to
Nielsen et al [8], as unfortunately representation theory is outside the scope of this project. Finally, as
promised, amplificational completeness for germs can be defined:

Definition 4.4. The set of germs {𝑔𝑖}
𝑁𝑔

𝑖=1 is AC if and only if the right singular rank of its Jacobian (the
𝑝 −→ ∞ limit of Eq.(4.11)), equals the total number of physically accessible (gauge-invariant) parameters
in the gate set 𝑁nongauge

p .

Thus, pyGSTi can build an AC set of germs by adding germs to the germ set until its Jacobian has
rank 𝑁nongauge

p . This subsection is concluded with an example [29]. Consider a set of three single-qubit
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trace-preserving gates. A gauge transformation is given by 𝐺𝑘 −→ 𝑇𝐺𝑘𝑇
−1, where 𝑇 is some invertible

trace-preserving operator. The TP condition reduces the amount of parameters of an unknown 𝑑2 × 𝑑2

matrix from 𝑑4 (= 𝑑2𝑑2) to 𝑑2(𝑑2 − 1). Now, there are 12 gauge parameters (𝑑 = 2) coming from 𝑇,
responsible for gauge-variant parameters, and 36 (3 × 12) parameters coming from the three gates we
are trying to estimate. This results in 36 − 12 = 24 gauge-invariant parameters. So, according to the
definition above, it is sufficient to add germs until the Jacobian of the set of germs has rank 24. More
rigorous germ-selection is done by adding and removing germs, and only keeping those that lower a
certain score function. pyGSTi uses the following one:

𝑓 ({𝑔1 . . . 𝑔𝑁𝑔 }) =
Tr[(𝐽†𝐽)−1]

𝑁𝑔
. (4.15)

Base circuit selection
The final step of GST’s experiment design is base circuit selection: choosing germ powers 𝑝. The goal
is to map every parameter ®𝜃 in the gate set model to a probability that depends on it as 𝑝𝜃, where 𝑝
is the germ-power. To achieve this, every germ is sandwiched for multiple 𝑝’s (a motivating example
can be found in A.4.1), where 𝑝(𝑔, 𝑙) = ⌊𝑙/

��𝑔��⌋. Here, 𝑙 is the logarithmically-spaced approximate depth
of a base circuit and

��𝑔�� is the depth of the germ. For example, the (single) germ 𝐺𝑥𝐺𝑦𝐺𝑦 has
��𝑔�� = 3.

𝑙 = 1, 𝑚, 𝑚2 , 𝑚3 , . . . for some 𝑚 ∈ R and Nielsen’s group [8] has empirically found 𝑚 = 2 to work
reliably. For 𝑚 = 2 we define 𝐿 B 𝑙. So, the germ 𝐺𝑥𝐺𝑦𝐺𝑦𝐺𝑥𝐺𝑦𝐺𝑦 is repeated once for 𝐿 = 8, and twice
for 𝐿 = 16. 𝑝 is made germ-dependent, because a base circuit’s overall depth is more relevant than its
power. Consider 𝑔1 with depth 1, and 𝑔2 with depth 3, then 𝑔9

1 and 𝑔3
2 both have overall depth 9. This

process is illustrated in Fig. 4.5(2). In this thesis, 𝐿max = 16. The reasoning behind this choice can be
found in A.4.2.

Figure 4.5: The road-map to designing a GST experiment. Step 1. An amplificationally complete set of germs is chosen, so one
amplifying all gauge-invariant parameters in the gate set. Step 2. Base circuits are defined by choosing powers 𝑝 = ⌊𝐿/

��𝑔��⌋, with
𝐿 = 1, 2, 4, . . . and

��𝑔�� the germ’s depth. Step 3. Each base circuit is sandwiched between each of 𝑁 𝑓 1 × 𝑁 𝑓 2 fiducial pairs,
defined by 𝑁 𝑓 1 preparation and 𝑁 𝑓 2 measurement fiducial circuits. Step 4. Optional fiducial pair reduction (FPR) can be applied to

reduce the amount of circuits to be run, whilst retaining sensitivity to every base circuit’s amplified parameters. Step 5.
Visualization of a GST experiment design as a grid of plaquettes. Every plaquette is a base circuit, ordered by germ and 𝐿. Each

square within a plaquette corresponds to a fiducial pair. Figure taken from Nielsen et al. [8]

The experiment design is completed by sandwiching every germ between every pair of fiducials for
the multiple germ powers, as can be seen in figure 4.5.

Fiducial reduction
Lastly, since the elements of a gate set are interdependent, not all circuits of the experiment design need
to be run to find the optimal gate set. Fiducial pair reduction (FPR) is used to eliminate unnecessary
circuits. In this thesis, FPR was not conducted, as the amount of circuits run was not that large. So, the
interested reader is once again referred to Nielsen et al [8].
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4.3.2. The optimisation procedure: gate set parameters estimation
Recall the very beginning of this section. There, it was stated that two of GST’s characteristics make
it one of a kind: its experiment design, and its use of maximum likelihood estimation (MLE). In this
subsection, the second characteristic will be explained. First, the maximum (log) likelihood function is
considered. Then, the algorithm used to find the maximum is explained.

The loglikelihood function
Let 𝒢 indicate the gate set model, 𝑠 index a conducted circuit and 𝑁𝑠 the amount of times circuit 𝑠 was
repeated in the GST-experiment. Additionally, let 𝑚𝑠 be the number of outcomes of 𝑠, and the number
of times outcome 𝛽𝑠 was observed be denoted by 𝑁𝑠,𝛽𝑠 . The likelihood function of circuit 𝑠 is derived
from the probability mass function of a multinomial distribution [30]:

ℒ𝑠 =
𝑁𝑠 !∏

𝛽𝑠 (𝑁𝑠,𝛽𝑠 !)
∏
𝛽𝑠

𝑝
𝑁𝑠,𝛽𝑠

𝑠,𝛽𝑠
. (4.16)

Assuming that
∑
𝛽𝑠
𝑁𝑠,𝛽𝑠 = 𝑁𝑠 , 𝒢 is TP (so that the probabilities sum to one: ∀𝑠,∑𝛽𝑠 𝑝𝑠,𝛽𝑠 = 1) and setting

the observed frequency 𝑓𝑠,𝛽𝑠 = 𝑁𝑠,𝛽𝑠/𝑁𝑠 :

log(ℒ𝑠) = log©« 𝑁𝑠 !∏
𝛽𝑠 (𝑁𝑠,𝛽𝑠 !)

∏
𝛽𝑠

𝑝
𝑁𝑠,𝛽𝑠

𝑠,𝛽𝑠

ª®¬
= log(𝑁𝑠 !) − log©«

∏
𝛽𝑠

(𝑁𝑠,𝛽𝑠 !)
ª®¬ + log©«

∏
𝛽𝑠

𝑝
𝑁𝑠,𝛽𝑠

𝑠,𝛽𝑠

ª®¬
= log(𝑁𝑠 !) −

∑
𝛽𝑠

log
(
𝑁𝑠,𝛽𝑠 !

)
+

∑
𝛽𝑠

𝑁𝑠,𝛽𝑠 log
(
𝑝𝑠,𝛽𝑠

)
= 𝑁𝑠

∑
𝛽𝑠

𝑓𝑠,𝛽𝑠 log
(
𝑝𝑠,𝛽𝑠

)
+ log(𝑁𝑠 !) −

∑
𝛽𝑠

log
(
𝑁𝑠,𝛽𝑠 !

)
Here, 𝑝𝑠,𝛽𝑠 is the probability predicted by 𝒢 of getting outcome 𝛽𝑠 from circuit 𝑠. From now on, the
factors independent of these probabilities are omitted, such that the total loglikelihood for the entire
GST-experiment becomes:

log(ℒ𝑠) =
∑
𝑠

log(ℒ𝑠) =
∑
𝑠,𝛽𝑠

𝑁𝑠 𝑓𝑠,𝛽𝑠 log
(
𝑝𝑠,𝛽𝑠

)
. (4.17)

Here 𝑠 ranges over all the conducted circuits. If the gate set model is not TP constrained, another, more
general likelihood function is used. pyGSTi always uses the general logℒ (A.4.3).

The probabilities 𝑝𝑠,𝛽𝑠 are nonlinear functions of parameters of 𝒢, which makes maximizing
the GST likelihood function nontrivial. The probabilities 𝑝𝑠,𝛽𝑠 oscillate, resulting in an extremely
non-convex loglikelihood function with many local maxima, resembling an egg crate. If the CP
condition is implemented, more problems are created by gauge freedom. Ignoring the CP constraint
makes optimization easier, but can lead to unphysical gate sets with zero or negative likelihood. The
optimisation procedure described next can reliably deal with these complications.

The optimisation algorithm
Now a way of how parameter-estimation can be conducted using long-sequence gate set tomography is
presented. The algorithm, summarized in Algorithm 2, is used by pyGSTi as well. 𝒟0 is the full GST
data set, so all the circuits of the experiment design and their outcomes. ®𝜃0 is the initial vector of model
parameters, which is oftentimes provided by linear GST. ®𝜃 is the vector of the parameters of 𝒢; these
are being optimized such that the gate set they form fits observations best. Truncate(𝒟0 , 𝐿) results in a
subset𝒟 of𝒟0, by only including circuits with base circuit depth ≤ 𝐿. Argmin(𝑆,𝒢 ,𝒟 , ®𝜃1) gives the ®𝜃
at which the statistic 𝑆(𝒢( ®𝜃),𝒟) is minimal, in which the local optimizer is seeded at ®𝜃1.
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Algorithm 2 Long-sequence gate set tomography

®𝜃← ®𝜃0
for 𝐿 ∈ 1, 2, 4, 8, . . . do
𝒟 ← Truncate(𝒟0 , 𝐿)
®𝜃← Argmin(𝜒2 ,𝒢 ,𝒟 , ®𝜃)

end for
®𝜃← Argmin(− logℒ ,𝒢 ,𝒟0 , ®𝜃)

The optimization procedure is executed in multiple ”stages”: for 𝐿 = 1, 2, 4, . . . . In each stage,
only circuits (and their outcomes) with base circuit depth smaller than the current 𝐿 are used in the
minimization. The starting point of the optimization is the best-fit of the previous stage. As mentioned,
the first stage uses linear GST’s fit as a starting point. Repeating each circuit enough times ensures finite
sample fluctuations to be small, so that starting points lie in the correct basin of the next stage’s objective
function, thus avoiding local minima.

In every stage except the final one, the 𝜒2 statistic is being optimized instead of loglikelihood. It is
used in the pre-final stages because, in comparison with the loglikelihood, it can be computed faster
and is more well-behaved as an objective function. In addition, if the number of circuit repetitions
is high enough, minimising 𝜒2 is more robust as a starting point for the final log(ℒ) maximization
in contrast to performing only log(ℒ) maximizations. The weighted-sum-of-squares function of 𝜒2

quantifies goodness-of-fit and is calculated as the sum of contributions from each circuit 𝑠:

𝜒2 =
∑
𝑠

𝜒2
𝑠 =

∑
𝑠

∑
𝛽𝑠

𝑁𝑠

(𝑝𝑠,𝛽𝑠 − 𝑓𝑠,𝛽𝑠 )2

𝑝𝑠,𝛽𝑠
=

∑
𝑠,𝛽𝑠

𝑁𝑠

(𝑝𝑠,𝛽𝑠 − 𝑓𝑠,𝛽𝑠 )2

𝑝𝑠,𝛽𝑠
. (4.18)

𝜒2 is a local quadratic approximation to the negative loglikelihood. Unfortunately, minimum-𝜒2

estimation can be significantly biased by overestimating the probability of rare events. In certain
GST-experiments, it can overestimate SPAM error by 100%. Luckily, optimizing the loglikelihood in the
last stage resolves this issue.

Currently, the Levenberg-Marquardt optimization method (LM) described in Chapter 3 is used in
all the stages, including the final step of loglikelihood minimisation [29]. Recall that LM is used for
minimising least-squares (LS) objective functions, of the form 𝑓 (𝑥) = 1/2∑𝑚

𝑗=1 𝑟
2
𝑗
(𝑥) (Eq.(3.1)). However,

the objective functions in this GST algorithm, the loglikelihood (Eq.(4.17)) and the 𝜒2 proxy (Eq.(4.18)),
are not of this form. This problem can be resolved by simply taking squares of the non-LS objective
functions, unfortunately resulting in less nice to deal with Jacobians and Hessians. It was found that
with the loglikelihood, indeed the square root is taken [31]. Furthermore, Nielsen et al found that this
approach of "forcing" the problem into a least-squares form outperformed other optimization methods,
such as conjugate gradient descent. As for the 𝜒2 proxy, the square root is taken as well and LM’s
performance was found to be acceptable. Note that 𝜒2 can be made LS easily by setting the probabilities
in the denominator to a constant, for instance the probabilities of the previous iteration. At present, it is
not certain that the LM method is the best one for GST optimization, and further research into the topic
would be interesting.

A final adjustment is sometimes made to increase the reliability of optimization. Both log(ℒ)
(Eq.(4.17)) and 𝜒2 (Eq.(4.18)) have poles when probabilities are zero. 𝜒2 is regularized by limiting the
least-squares weights to a maximum cutoff 1/𝑝min. This does not affect the final fit since 𝜒2 is a proxy
(for the negative log(ℒ)). For log(ℒ), when 𝑝𝑠,𝛽𝑠 < 𝑝min, it is replaced by its second-order Taylor series:

log (𝐿) ≈
∑
𝑠,𝛽𝑠

𝑁𝑠 𝑓𝑠,𝛽𝑠

[
log

(
𝑝min

)
+ 1
𝑝min
(𝑝𝑠,𝛽𝑠 − 𝑝min) −

1
𝑝2

min

(𝑝𝑠,𝛽𝑠 − 𝑝min)2

2

]
. (4.19)

Here 𝑝min is much less than the smallest possible non-zero frequency, for example 𝑝min = 10−4 if each
circuit is repeated 1000 times. This adaptation distorts the objective’s value only for particularly bad fits
when a probability is much different than its observed frequency.

Before it is explained how GST’s results can be analysed, the protocol is summarized. The experiment
begins with knowing which circuits need to be run, the experiment design. Every circuit is composed
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of a preparation fiducial, then a germ, followed by a measurement fiducial. First, the sets of fiducials
and germs are selected. The circuit list is formed by all possible combinations of fiducials and germs. In
every circuit, the germ is repeated for a different amount of times, determined by the germ-power. The
circuits’ outcomes are collected and the best-fit gate set is found by the Levenberg-Marquardt method in
maximum likelihood estimation. The optimization consists of multiple stages. The 𝜒2 squared statistic
is optimized for increasing data sets, functioning as a proxy for the loglikelihood, which is optimized in
the final stage.

4.4. Analysing GST estimates
In this section, it is discussed how gate set tomography’s results can be interpreted. It is assumed that the
GST optimization did not get stuck at a local maximum, but was successful in finding a global optimum.
Quantification of goodness of fit will be presented. Then, gauge optimization will be considered briefly,
as most metrics used in quantum computation are gauge-dependent.

4.4.1. Assumptions of the model
In the next section, it is explained how goodness of fit for GST models is quantified. If GST’s gate set
model fails to fit the data, "this is strong evidence that some assumption of the model was violated" [8]. Nielsen
et al use "non-Markovianity" synonymously with "model-violation", to mean "the observed behaviour was
influenced by some internal or external contex variable that was not included in the model". It should be noted,
however, that non-Markovianity in this sense is not necessarily caused by non-Markovian dynamics, as
in the sense of the negation of definition 2.6. The assumptions of the model are stated for overview. The
model could be violated because any of them is not satisfied:

1. The sets of preparation fiducials and measurement fiducials are informationally complete.
2. GST’s optimization resulted in a global optimum, it did not get stuck in a local maximum.
3. The system’s dynamics is Markovian (Def.2.6) (if the CPTP constraint is implemented).
4. The germ set is amplificationally complete.

The last assumption of AC germs is not necessary to conduct gate set tomography correctly. However,
generally it is implemented, since it results in a gate set sensitive to all possible errors. As assumption
3 is the most difficult one to satisfy, a lot of model violation "indicates high confidence in the conclusion
"the Markovian model (assumption 3) was violated"" [8]. Unfortunately, GST does not tell the cause of
model-violation, it only tells that the model has been violated.

4.4.2. Goodness of fit
Now, the validity of the GST estimate will be assessed, i.e. it will be quantified how well the GST model
matches the data. A measure of non-Markovianity will be introduced.

Firstly, we consider the amount of independent degrees of freedom in the GST-experiment. Suppose
a GST experiment contains 𝑁exp distinct circuits, and its produced dataset is described by 𝑁o free
parameters, 𝑁o being the number of independent circuit outcomes that can be observed. If there is just
one native measurement (𝑁M = 1) that has 𝑁E(1) outcomes, then:

𝑁o = 𝑁exp(𝑁 (1)E − 1). (4.20)

In the case of a single qubit supporting one native 2-outcome measurement (𝑁 (1)E = 2), as in this thesis,
each circuit’s data has 2 − 1 = 1 independent degree of freedom. Simply put, if a circuit was run 1000
times, and 600 times the outcome was 0, then it can be deduced that 1 was 400 times the outcome (
𝑁experiments = 𝑁

(1)
E,1 + 𝑁

(1)
E,2). Fitting the maximal model with 𝑁o parameters to the data, so where each

independent outcome is assigned one probability, delivers logℒmax.
If the data were produced by a Markovian gate set, then the maximal model and the GST model

should fit the data equally well if extra free parameters in the maximal model are accounted for. From
Wilks’ theorem [8], it is known that if the gate set model is valid, the loglikelihood ratio statistic between
the GST estimate and the maximal model is a 𝜒2

𝑘
random variable:

2(logℒmax − logℒ) ∼ 𝜒2
𝑘
, (4.21)



4.4. Analysing GST estimates 31

where 𝑘 = 𝑁o − 𝑁nongauge
p is the amount of parameters that the maximal model has more than the gate

set model has non-gauge parameters. The mean and standard deviation of the 𝜒2
𝑘

distribution are
respectively 𝑘 and

√
2𝑘. The observed model violation is quantified by the number of standard deviations

by which the loglikelihood ratio surpasses the expected value, mean, of 𝜒2
𝑘
:

𝑁𝜎 B
2(logℒmax − logℒ) − 𝑘

√
2𝑘

. (4.22)

If 𝑁𝜎 ≤ 1, then the GST model fits the data extremely well. Note that in this case, 𝑁𝜎 can become
negative as well. If 𝑁𝜎 >> 1, there is reason to assume that the Markovian model was violated. So, a high
𝑁𝜎 does not follow necessarily from non-Markovian behaviour, but is a strong indicator of its occurrence
during the experiment. Furthermore, 𝑁𝜎 generally increases linearly with the number of times each
circuit is repeated (a measure of sensitivity), meaning more sensitive experiments have increased 𝑁𝜎’s
per definition.

Lastly, it is interesting to consider each circuit’s contribution to the loglikelihood. When, for example,
one suspects one particular gate to be (mostly) responsible for model-violation. For each circuit 𝑠 in a
Markovian model, 2(logℒmax, s − logℒs) ∼ 𝜒2

𝑘
, where 𝑘 is approximately the number of independent

outcomes of a single circuit, so 𝑘 ≈ 1 in a 1-qubit 2-outcomes experiment. Using a temperature scale,
each circuit’s model violation can then be indicated in a grid similar to figure 4.5.5.

4.4.3. Gauge optimization
Finally, to conclude this chapter, something on gauges and gauge optimization is said. Recall that
a gate set’s representation is not unique, as gauge transformations do not change circuit outcomes
(Ch.2.3.3). However, most metrics in quantum computing, like the diamond norm, require a concrete
representation of the gate set, so one in specific gauge. Thus, when GST presents its estimates, a gauge
in which to represent them needs to be chosen. GST does this in gauge optimization, by selecting the
gauge in which its results are closest to ideal, "to make the gates look as good as possible" [8]. pyGSTi offers
a lot of methods for gauge optimization, for example the Nelder-Mead and the conjugate gradient
method, which are all derivative free. The methods simply go over possible gauges to find the one that
minimizes the Frobenius distance between the estimated and ideal gate set:

Definition 4.5. The weighted sum of squared Frobenius distances between gate sets �̂� and 𝒢 is defined
as

𝑓 (�̂� ,𝒢) =
𝑁𝜌∑
𝑖=1

𝛼𝑖
����̂�(𝑖) − 𝜌(𝑖)

���2 + 𝑁G∑
𝑖=1

𝛽𝑖
����̂�𝑖 − 𝐺𝑖 ���2 + 𝑁𝑀∑

𝑚=1

𝑁
(𝑚)
E∑
𝑖=1

𝛾𝑚,𝑖

����𝐸𝑖 (𝑚) − 𝐸(𝑚)𝑖

����2.

Here, the weights 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑚,𝑖 ∈ R and |·| is the Frobenius norm, ∥𝑋∥𝐹 ≡
√

Tr(𝑋𝑋†).

Gauge freedom is an interesting topic an sich, and will unfortunately not be treated further in this
thesis. As per usual, the reader is referred to Nielsen et al [8] for more details.



5
The NV Center in Diamond

The quest for systems that might be used as hardware in quantum information processing (QIP) has
led researchers to consider diamond as a candidate due to its favourable properties, like high Debye
temperature and stable ’colour centers’ [32]. Nitrogen defects are one of the more than 100 of these
colour centers in diamond. The nitrogen-vacancy (NV-) center was in 1997 the first single colour center to
be detected. The use of the NV- center as a solid state spin qubit for QIP [33] is one of the reasons why its
discovery is considered a breakthrough. This and other implementations, like the use of NV- centers in
quantum optical networks, have resulted in the NV- center and its applications being widely researched.
Moreover, the electronic spin and nuclear spins of the NV- center have been demonstrated suitable
for implementation in quantum registers, systems consisting of multiple qubits, at room temperature
[33]. In this thesis however, all experimental methods have been performed at 3.8 Kelvin. The NV
center is found in both the neutral charge (NV0) and the negatively-charged (NV-) state. Their electronic
band structure was proposed in 1977 by Loubser and Van Wyk through their research of the electron
paramagnetic resonance (EPR) signal of the NV- center. Five electrons are responsible for the filling of
the molecular orbitals of NV0. Two of these are from the nitrogen atom and the other three are inherent
to the carbon atoms adjacent to the vacancy. NV0 is able to transition into NV- only via capturing the
additional electron from a nearby donor [33], a local charge trap. Since the NV0 center has not been able
to demonstrate the suitable properties of the NV- center, most research, as well as this thesis, utilises the
latter state (hereafter denoted NV).

In this chapter, first the physical and electronic structure of the NV center will be described. Then,
the coupling between its electron, which will be the qubit considered in this thesis, and the nitrogen
nucleus, will be discussed.

Figure 5.1: (a) The cubic unit cell of a diamond lattice with an NV center. The nitrogen atom (green) and a vacancy (white) have
replaced two 12C atoms (grey). The 13C isotope (yellow) replaces 1.1% of the 12C atoms. (b) The molecular orbitals (𝑎′1, 𝑎1, 𝑒𝑥 and
𝑒𝑦 ) of the NV- center showed in the ground-state filling, occupied by six electrons (the arrows). Figures are taken from Bradley

[34].
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5.1. The physical structure and electronic structure of the NV center
The physical and electronic structure of the NV center has been determined by various experiments
as well as through the performance of ab initio calculations. For a detailed description of this ongoing
research process of the NV center I refer to Doherty et al [33].

At the basis of the crystal structure of the NV center lies the standard diamond structure; two
interpenetrating face centered cubic lattices. However, in the NV center, two carbon atoms have been
substituted by a nitrogen-vacancy pair in the [111] direction. That is, one carbon atom is removed, and
one has been replaced by a nitrogen atom. The NV lattice structure is depicted in Fig.5.1(a).

There are four possible ways in which the six electrons of the NV can occupy the molecular orbitals
(Fig.5.2). Two of these are triplet states (3A2, 3E,) and the other two are singlet states (1E, 1A1). Recall
that a triplet state has spin quantum number 𝑆 = 1, meaning there are three (hence triplet) possible spin
component values (𝑚𝑠 = −1, 0, 1). The singlet states have overall spin quantum number 𝑆 = 0, resulting
in only one spin value of 𝑚𝑠 = 0. The four ways of distributing the six electrons differ in the amount of
electrons they have on each molecular orbital (MO). The NV has four MO’s, of which three (𝑎1, 𝑒𝑥 and
𝑒𝑦) are deep within the diamond band gap, so far from both the conduction band and the valence band.
The last one (𝑎′1) is completely inside the valence band. This can be seen in Fig.5.1(b).

Figure 5.2: The electronic structure of the NV- center. The triplet ground and excited states 3A2 and 3E, as well as the
intermediate singlet states 1A1 and 1E are depicted. The electron occupation of the MO’s is indicated between brackets. The

corresponding energies of the transitions between the levels are shown. Figure is taken from Doherty et al [33].

Figure 5.3: The spin-triplet ground state 3A2 is separated into the 𝑚𝑠 = 0 level and degenerate 𝑚𝑠 = ±1 levels with a
zero-field-splitting of 2.88 GHz (no magnetic field present). Applying a magnetic field splits the 𝑚𝑠 = ±1 states (Zeeman

splitting). A qubit is then defined in the 𝑚𝑠 = {0,−1} = {|0⟩ , |1⟩} basis. Figure adapted from Bradley [34].

The electronic state that will be considered in this thesis, is the triplet 3A2 ground state. Here, four
electrons occupy the two molecular orbitals (MO’s) 𝑎1 and 𝑎′1. Each one of the two remaining electrons
occupies one of the two remaining MO’s (Fig.5.1(b)), which are degenerate (with the same energy).
These two unpaired electrons on the same energy levels result in a spin-triplet (𝑆 = 1) state. The 𝑚𝑠 = ±1
are degenerate and are separated by a zero-field-splitting (in the absence of a magnetic field) of 2.88
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GHz. Applying a magnetic field lifts the degeneracy between the 𝑚𝑠 = ±1 states, i.e. splits them into
distinguishable states (Zeeman splitting). Now an electron-spin qubit can be defined, which is mostly,
also in this thesis, done in the 𝑚𝑠 = {0,−1} = {|0⟩ , |1⟩} basis (Fig.5.3).

5.2. The nitrogen nucleus
Needless to say, the electron considered in the NV center is not an isolated system, but interacts in
varying degrees with the surrounding subsystems. The physical system having most influence on the
qubit is the 14N nucleus [35], which will be described in this section.

Like the electron spin, the nitrogen nuclear spin 𝑚𝐼 is a spin triplet with possible values 𝑚𝐼 = −1, 0, 1
[36]. Quadrupole interaction lifts the degeneracy of 𝑚𝐼 = 0 and 𝑚𝐼 = ±1 in the 𝑚𝑠 = 0 state by a value
𝑃 ≈ 4.9 MHz. Furthermore, the hyperfine interaction in the 𝑚𝑠 = ±1 states splits the 𝑚𝐼 = ±1 states,
such that the 𝑚𝐼 = 0 and 𝑚𝐼 = ±1 states now differ 𝑃 ± 𝐴| | with 𝐴| | ≈ 2.2 MHz. This is shown in figure
5.4a. In figure 5.4b the NV electron-qubit transition between the two states of the qubit can be seen (so
𝑚𝑠 = 0↔ 𝑚𝑠 = −1). The red, green and blue lines correspond to the three nuclear spin states. Using
radio frequency (RF) pulses, the nitrogen nucleus can be initialised, via nuclear spin polarization, into
one of the three spin states, such that it is not an incoherent mixture of the three spin states anymore.
Consequently, the fluorescence of the electron qubit transition shows only one dip, instead of three like
in figure 5.4b. For more details on the polarization of the nitrogen nucleus I refer to Steiner [36].

(a) The energy levels of the NV electron qubit (defined between 𝑚𝑠 = −1
and 𝑚𝑠 = 0). Due to the nitrogen nuclear spin 𝑚𝐼 coupling to the electron,
the decay/excitation of the qubit depends on the spin state of the nitrogen.
The nitrogen spin is also a spin triplet (𝑚𝐼 = −1, 0, 1). The red, green and

blue vertical lines indicate the possible transitions of the qubit, now
dependent on 𝑚𝐼 . 𝑃 and 𝐴| | indicate by which frequencies the 𝑚𝐼 states

differ from each other.

(b) A closeup of the 𝑚𝑠 = 0↔ 𝑚𝑠 = −1 qubit transition. The intensity of
the transition depends on the spin state of the nitrogen nucleus.

Figure 5.4: The NV electron couples to the nitrogen nucleus. Figures are taken from Steiner [36].

The NV center’s dynamics is best summarized by its Hamiltonian, which can be found in the
appendix (App.A.3).
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Method

In this chapter, it will be described which gate sets were used for conducting gate set tomography, and
how GST was actually implemented. GST was applied on three different gate sets, whose gates all act
on one qubit, the electron of the NV center. First, the gate sets will be described. The circuits were
run experimentally or by an NV simulator. Secondly, the experimental conditions that could be varied
to research their effects on the outcomes of GST will be presented. These include different ways of
initialising the nitrogen nucleus of the NV center, as well as the presence of an XY-4 echo (Ch.2.2.3).
Lastly, it will be explained how GST was performed using pyGSTi.

6.1. The three researched gate sets
In this thesis, three different gate sets were investigated using gate set tomography. In this section they
will be presented and explained. Every gate set’s preparation and measurement fiducials (which are the
same sets here), as well as their germs, are given in Table 6.1a, 6.1b and 6.1c. Note that all three gate sets
have the same set of fiducial sequences. As stated in Ch.4.3.1, for a set of fiducials to be informationally
complete (IC) in the 1-qubit Hilbert-Schmidt space (of dimension four), at least four different fiducials
are necessary. However, one would like for the fiducials to be "as linearly independent" as possible.
The fiducial sets of Blume-Kohout et al [29] were used, but without the ∅ (no gate applied; an ideal
identity gate without duration, informally). It was not possible to implement the ∅-gate in our sequences,
probably due to a reading error in the parser used to import the lists of circuits. Blume-Kohout et al
chose this set, if ∅ is included, for their fiducials, as it ideally prepares the six stabilizer states, i.e. the
eigenstates of the Pauli 𝑋,𝑌 and 𝑍 operators.

Furthermore, germ selection (Ch.4.3.1) was conducted, which resulted in the amplificationally
complete (AC) germ set of Gate Set A. For Gate Set B, the germ set found by Blume-Kohout et al [29] was
used, an AC germ set as well. The germ set in Gate Set C is not AC, but its results will be examined
anyway.

6.1.1. The NV centers
It was possible to run the circuits either experimentally or to simulate them using an NV simulator.
Circuits corresponding to Gate Set A and C were run both ways, whereas Gate Set B’s circuits were
only simulated. The NV center at the Taminiau Lab at QuTech was used in the experiments. The
NV simulator was controlled by a postdoc at this research group. The simulator is currently under
development and during this thesis it was not possible to get the process matrices of the gates (the
superoperators in Ch.2.2.2) out directly. So, the simulations were similar to the experiments in the sense
that both do not have access to the true gates. In the future, if the process maps can be accessed directly,
it can be assessed how well GST works, by comparing its estimates to the direct gates.

The electron spin of the NV is manipulated by microwave (MW) driving pulses (i.e. the gates) at the
associated transition frequency between the initial and the desired state [34]. The qubit is measured
via single-shot read-out using lasers. Different optical transitions are associated to different spin states.
A laser pulse is applied that is resonant with the 𝑚𝑠 = 0 (|0⟩) state, such that only if the electron is in
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this state, the electron is excited and photons are detected. For more details on the read-out and the
experimental setup I refer to Bradley [34].

6.1.2. Experimental conditions
There were two experimental conditions that could be varied to research their effects on the results of
gate set tomography. First, the circuits could be run with an XY-4 echo after every applied gate (Germ
Sets A and C). Furthermore, the nitrogen nucleus could be initialised in different ways. For the actual
experiments, the nitrogen could be either not initialised (mixed state), or initialised into either one state
(𝑚𝐼 = 0 state) or into one of its three spin states (𝑚𝐼 = −1, 0, 1 states). In the simulations, the nitrogen
could be initiliased into the 𝑚𝐼 = 0 state with a fidelity of 𝑝 = 0, 𝑝 = 0.95 or 𝑝 = 1. Initialisation fidelity
𝑝 = 0 means that the nitrogen is in a completely mixed state. The nitrogen spin states are described in
chapter 5.2. An overview of every gate set’s experimental conditions can be found in Table 6.2a, 6.2b.

Using the germs and fiducials, an experiment design (Ch.4.3.1) composed of all circuits to be run,
was created for each gate set. The maximum base circuit depth was 𝐿 = 16. The qubit was measured in
the 𝑍-basis. Every circuit was run 1000 times, and the amount of times a 0 and 1 (corresponding to
respectively |0⟩ and |1⟩ in Fig.2.1) were measured, was recorded (in an .npy-file). With these lists of
outcomes, the gate sets could be estimated using pyGSTi.

Table 6.1: The gate sets researched in this thesis. The preparation and measurement fiducials (fiducials for short) are the same for
each gate set.

(a) Gate set A, estimating three gates: 𝐼, 𝑋𝜋/2 and 𝑌𝜋/2.

Fiducials Germs
1 𝑋𝜋/2 𝐼

2 𝑌𝜋/2 𝑋𝜋/2

3 𝑋𝜋/2𝑋𝜋/2 𝑌𝜋/2

4 𝑋𝜋/2𝑋𝜋/2𝑋𝜋/2 𝐼𝐼𝐼𝐼𝐼𝑋𝜋/2

5 𝑌𝜋/2𝑌𝜋/2𝑌𝜋/2 𝑋𝜋/2𝑌𝜋/2

6 𝐼𝐼𝐼𝐼𝑋𝜋/2𝑌𝜋/2

7 𝐼𝐼𝐼𝐼𝑌𝜋/2𝑋𝜋/2

8 𝐼𝐼𝑌𝜋/2𝑋𝜋/2𝑋𝜋/2𝑋𝜋/2

9 𝑋𝜋/2𝑋𝜋/2𝑌𝜋/2𝑌𝜋/2𝑋𝜋/2𝑌𝜋/2

10 𝐼𝐼𝑋𝜋/2𝑋𝜋/2𝑋𝜋/2𝑌𝜋/2

(b) Gate set B, estimating three gates: 𝐼, 𝑋𝜋/2 and 𝑌𝜋/2.

Fiducials Germs
1 𝑋𝜋/2 𝐼

2 𝑌𝜋/2 𝑋𝜋/2

3 𝑋𝜋/2𝑋𝜋/2 𝑌𝜋/2

4 𝑋𝜋/2𝑋𝜋/2𝑋𝜋/2 𝑋𝜋/2𝑌𝜋/2

5 𝑌𝜋/2𝑌𝜋/2𝑌𝜋/2 𝑋𝜋/2𝑌𝜋/2𝐼
6 𝑋𝜋/2𝐼𝑌𝜋/2

7 𝑋𝜋/2𝐼𝐼
8 𝑌𝜋/2𝐼𝐼
9 𝑋𝜋/2𝑋𝜋/2𝐼𝑌𝜋/2

10 𝑋𝜋/2𝑌𝜋/2𝑌𝜋/2𝐼
11 𝑋𝜋/2𝑋𝜋/2𝑌𝜋/2𝑋𝜋/2𝑌𝜋/2𝑌𝜋/2

(c) Gate set C, estimating five gates: 𝐼, 𝑋𝜋/2, 𝑌𝜋/2, 𝑋𝜋 and 𝑌𝜋 .

Fiducials Germs
1 𝐼 𝐼

2 𝑋𝜋/2 𝑋𝜋/2

3 𝑌𝜋/2 𝑌𝜋/2

4 𝑋𝜋/2𝑋𝜋/2 𝑋𝜋

5 𝑋𝜋/2𝑋𝜋/2𝑋𝜋/2 𝑌𝜋

6 𝑌𝜋/2𝑌𝜋/2𝑌𝜋/2

6.2. Running pyGSTi
A parser made it very easy to perform gate set tomography. Besides the list of circuits and their outcomes
mentioned above, one additional thing was needed. A target model had to be made for every gate set.
This model ran the same circuits as the corresponding gate set using ideal gates. This made it possible
to compare, using various metrics, the ideal (target) model and the estimated one, computed by pyGSTi.

On top of specifying the circuits, their outcomes and the target model, the constraints on the
estimated model had to be chosen. In this thesis, every model was run both TP and CPTP constrained
(Ch.2.3.1). The reasoning behind this choice is well-explained by Nielsen et al [8]: "If a significantly better
non-CP fit is found, then the two estimates should be examined carefully: either the CPTP fit got trapped in a local
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maximum, or significant non-Markovian dynamics occurred during the experiment.". By running the model
with both constraints, it could be assessed whether one of these events had occurred. The second option
is caused by the fact that CPTP constraint models capture Markovian dynamics only, whereas TP also
captures more general evolutions (Ch.2.3.2). So, in the presence of significant non-Markovian dynamics,
the non-CP model would produce less model violation, i.e. a better fit.

Table 6.2: Tables elaborating on the gate sets researched in this thesis. In Table 6.2a, for every gate set can be seen whether an
XY-4 was used during the circuits and whether the circuits were run experimentally (or exp. for short), were simulated (sim. for
short), or both. In Table 6.2b, the different ways of initialising the nitrogen nucleus can be seen for the experimental circuits and

simulated circuits, respectively.

(a)

Gate Amount of Exp. or Presence
set estimated gates sim. XY-4 echo
A 3 Both Present
B 3 Simulated Absent

only
C 5 Both Absent

(b)

Experiments Simulations
Initialisation mixed, -
states 𝑚𝐼 = −1, 0, 1
Initialisation - 𝑝 = 0 (mixed),
fidelity 0.95, 1
into 𝑚𝐼 = 0 state



7
Results

In this chapter, the analyses provided by conducting gate set tomography (GST) on the three different
gate sets (Table 6.1a, 6.1b, 6.1c) will be presented and interpreted. Firstly, since Gate Set C does not have
an amplificationally complete (AC) germ set, the validity of its results will be investigated. As stated in
the methods section, some circuits (Gate Set A and C) have been run experimentally and via using a
simulator, whereas one circuit set (Gate Set B) has only been simulated. It will be analysed how well
the simulated experiments are able to imitate real experiments, as this is essentially what simulations
ought to do. The simulations will be included in the analyses if they are considered valid in this sense.
Then, the effect of different initialisation procedures of the nitrogen nucleus will be analysed. Lastly, the
consequences of the presence of an XY-4 echo (Ch.2.2.3) will be investigated. Three concepts will aid
analysis of the results: the diamond norm (Eq.(2.3)), the level of model violation 𝑁𝜎 (Eq.(4.22)), and
error generators (Ch.2.3.2).

The diamond distances (Eq.(2.3)) between the ideal gates and i) the gates produced by the TP
models and ii) the gates estimated by CPTP models, turned out (mostly) higher for the TP models.
The TP optimization is performing worse probably due to its larger parameter space (this claim could
be checked by running GST on a fully parameterized model; one with the maximal parameter space
(Ch.2.3.1). So, from the diamond distances it cannot be concluded that any of the CPTP fits got stuck in
a local maximum. As the only purpose of the TP diamond distances was to assess whether this had
happened, they have served their purpose and will not be analysed further. The TP diamond distances
for all the gate sets can be found in the appendix (App.A.5).

7.1. Gate set C: an amplificationally incomplete germ set
In this section, it will be explored whether conducting GST, whilst not using an AC set of germs,
influences the results significantly. To this end, Gate Set C (Table 6.1c), whose circuits were run without
an XY-4 echo (Ch.2.2.3), will be considered.

The diamond distances between the five ideal gates (Eq.(2.7)) to the gates estimated by i) running
GST on experimentally acquired data and by ii) running GST on simulated data can be seen in tables
7.1a and 7.1b, in which both models are CPTP constrained. Furthermore, the diamond distances
between i) and ii) have been calculated (Tab.7.2). Here, the mixed state (experiments) was compared
to initialisation fidelity 𝑝 = 0 (the completely mixed state) in the simulations. Initialisation in the
experiments was compared to initialisation fidelity 𝑝 = 0.95 in the simulations, as the probability of
successful initialisation, in reality, lies around 0.90 − 0.95 [35]. If the nitrogen is not initialised, the
estimates for both models are far from ideal, and moreover: far from each other. To make this claim
more concrete, consider the largest diamond distance (𝑋𝜋/2 gate in Tab.7.2). If one of 𝑋𝜋/2

experimental and

𝑋
𝜋/2
simulated gates was applied, then the maximum probability of reporting correctly which one of the two

was applied is 0.58 (0.315419/4 + 0.5; formula below Def.2.3). If the gates were the same, this would be
0.5. Thus, the diamond distances indicate that the simulation and the experiments produce differing
gate estimations if the nitrogen is not initialised.

Now consider the case where the nitrogen has been initialised. Then, the diamond distances from
the ideal gates to the i) experimental gates and ii) simulated are low. Moreover, the estimates are not far
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from each other. However, the decision is made to not investigate this gate set further. There are two
main reasons for this decision. Firstly, it is preferred that the simulation is able to mimic reality well for
all different initialisation procedures of the nitrogen (and not only when it has been initialised with a
high fidelity); right now, it has not proved itself to work reliably. Secondly, eventually the gate error
generators will be analysed. The results of such analyses are well grounded if the germ set is sensitive
to all possible errors, which is not the case with this non-AC gate set.

Table 7.1: 1/2-diamond distances (·102) from the experimental and simulated models to the ideal gates (CPTP Germ Set C,
without echo). The model is indicated in the secondary captions. The five estimated gates are 𝐼, 𝑋𝜋/2, 𝑌𝜋/2, 𝑋𝜋 and 𝑌𝜋. The

experimental circuits were run either initialising the nitrogen nucleus into the 𝑚𝐼 = 0 state, or not (mixed state). In the
simulations, the nitrogen nucleus was initialised into the 𝑚𝐼 = 0 state with different fidelities (𝑝 = 0, 0.95, 1).

(a) Experimental model.

mixed state 𝑚𝐼 = 0
𝐼 17.979 0.5164
𝑋𝜋/2 26.1779 2.3881
𝑌𝜋/2 27.3567 2.0028
𝑋𝜋 12.3189 3.7754
𝑌𝜋 10.0384 4.0837

(b) Simulated model.

𝑝 = 0 𝑝 = 0.95 𝑝 = 1
𝐼 5.221 0.2979 0.2343
𝑋𝜋/2 26.55 0.6722 0.5211
𝑌𝜋/2 23.8462 0.4865 0.4788
𝑋𝜋 10.1032 0.8147 0.6741
𝑌𝜋 2.3561 0.7201 0.6529

Table 7.2: 1/2-diamond distances (·102) from the simulated models to the experimental models (Germ Set C, CPTP constrained).
The five estimated gates are 𝐼, 𝑋𝜋/2, 𝑌𝜋/2, 𝑋𝜋 and 𝑌𝜋. The experiments were conducted by initialising the nitrogen nucleus to

either the mixed state or the 𝑚𝐼 = 0 state. The mixed state is compared with initialisation fidelity 𝑝 = 0 (mixed state) in the
simulation and the 𝑚𝐼 = 0 state is compared with the simulation’s initialisation fidelity set to 𝑝 = 0.95.

mixed state 𝑚𝐼 = 0 state
𝐼 18.4688 0.5278
𝑋𝜋/2 31.5419 2.841
𝑌𝜋/2 19.9483 2.2073
𝑋𝜋 21.3397 3.4841
𝑌𝜋 9.5017 3.5489

7.2. Gate sets A and B: effect of nitrogen initialisation and XY-4 Echo
In this section, it will be studied how the nitrogen nucleus initialisation and XY-4 echo (Ch.2.2.3)
affect the results of gate set tomography. First, it will be established that simulations of gate sets with
amplificationally complete germ sets are valid, i.e. produce results significantly close to experimentally
produced ones. For this, Gate Set A, with an AC germ set, will be considered, as it was run both
experimentally and on an NV-simulator. To evaluate the effect of the nitrogen nucleus initialisation, the
(simulated only) Gate Set B will be considered, as it was run without XY-4 echo. Then, to research the
consequences of the XY-4 echo on GST’s results, the (simulated) Gate Sets A and B will be compared to
each other.

7.2.1. Gate set A: validity of simulations
To verify the validity of simulated data when regarding a gate set with an amplificationally complete
germ set, Gate Set A (Table 6.1a, with XY-4 echo) will be considered. From the significantly low diamond
distances in tables 7.3a and 7.3b, it is concluded that both the experiments and the simulations produce
good estimations. To assess how well they match, the diamond distances between the experimental
and the simulated gates is calculated (Tab.7.4). The mixed state experiments are compared to nitrogen
nucleus initialisation fidelity 0 in the simulations. Initialisation fidelity 𝑝 = 0.95 (into 𝑚𝐼 = 0) is
compared to all three initialisation states in the experiments (𝑚𝐼 = 0,−1,+1), to probe whether the
simulator is perhaps better at simulating another state than the one it is supposed to. In terms of
produced estimations, i.e. from the diamond distances for the mixed state and initialisation into 𝑚𝐼 = 0,
it is concluded that the simulations are able to mimic reality well enough. The largest diamond distance
is 0.0345 (𝑌𝜋/2 gate), which translates to a probability of 0.51 of distinguishing the simulated and
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experimental gate correctly. Furthermore, it is concluded the simulator is not significantly better at
simulating another initialisation state (𝑚𝐼 = +1,−1) than the one it is supposed to (𝑚𝐼 = 0). The greatest
difference in diamond distances is for the 𝑌𝜋/2 gate: 1.5% (𝑚𝐼 = 0 vs 𝑚𝐼 = +1).

The 𝑁𝜎 in the simulations is very low (Table 7.5a), most likely because the NV simulator is not able
to reenact all true dynamics: an 𝑁𝜎 << 1 is rarely seen, except in artificially simulated data [8]. The
𝑁𝜎 of the experiments (Table 7.5b) indicates a good fit as well (pyGSTi rates it 4 out of 5). In terms of
model violation, the difference in 𝑁𝜎’s of the simulations and experiments is not considered significant.
However, it does indicate that the simulator assumes too ideal dynamics, hence the practically absent
model violation. It is advised to tweak the NV simulator’s dynamics so that it matches reality better.

Recall the amplificationally incomplete Gate set C (Tab.6.1c), discussed in the previous section.
Whereas Gate set A’s simulations are reliable even if the nitrogen is not initialised, that was not the case
with Gate set C. Unfortunately, it cannot be known whether Gate set C’s shortcoming is caused by its
non-AC germ set, of by the fact that its circuits did not use the XY-4 echo. During this work, it was not
possible to run additional (AC) circuits experimentally without an XY-4 echo. Henceforth, it is assumed
that the simulations produce reliable results if the germ set is AC, even if no echo is employed. However,
it is advised to investigate this statement more carefully: it needs to be examined whether extrapolation
of this conclusion to circuits without XY-4 echo is truly justified.

To summarize, it is concluded that the NV-simulator produces acceptable results. Its estimates
are significantly close to estimates produced by the experiments. The discrepancy in the amounts of
model violation of simulations versus experiments is not considered to impact further comparisons
significantly. However, in the future, the validity of the NV-simulator should certainly be investigated
more closely by comparing simulations and experiments without an XY-4 echo.

Table 7.3: 1/2-diamond distances (·102) from Gate set A’s (with echo) simulated and experimental CPTP models to the three gate
ideal model. The model is indicated in the secondary captions. The three estimated gates are 𝐼, 𝑋𝜋/2 and 𝑌𝜋/2. The simulations
were done for different fidelities of initialising the nitrogen nucleus into the 𝑚𝐼 = 0 state (𝑝 = 0 (mixed), 0.95, 1), corresponding to
different columns. In the experiments, the nitrogen was either not initialised (mixed state), or initialised into one of its three spin

states (𝑚𝐼 = 0,−1,+1).

(a) Simulated.

𝑝 = 0 𝑝 = 0.95 𝑝 = 1
𝐼 0.3562 0.4482 0.457
𝑋𝜋/2 0.3314 0.1237 0.1337
𝑌𝜋/2 0.1948 0.2574 0.2729

(b) Experimental.

mixed 𝑚𝐼 = 0 𝑚𝐼 = −1 𝑚𝐼 = +1
𝐼 0.2541 0.2703 0.6535 0.5565
𝑋𝜋/2 0.2236 2.8794 3.4729 1.8653
𝑌𝜋/2 0.3151 4.0757 5.1134 2.5685

Table 7.4: 1/2-diamond distances (·102) from the simulated models to the experimental models (Germ Set A, both with echo,
CPTP). The three estimated gates are 𝐼, 𝑋𝜋/2 and 𝑌𝜋/2. The experiments were conducted by initialising the nitrogen nucleus to
one of four states: the mixed state (not initialised), the 𝑚𝐼 = 0 state, the 𝑚𝐼 = −1 state and the 𝑚𝐼 = +1 state. The mixed state is
compared with initialisation fidelity 𝑝 = 0 in the simulation. The three remaining states (𝑚𝐼 = 0, 𝑚1 and 𝑝1 state) are compared

with the simulation’s initialisation fidelity set to 𝑝 = 0.95.

mixed state 𝑚𝐼 = 0 𝑚𝐼 = −1 𝑚𝐼 = +1
𝐼 0.5603 0.6468 0.9579 0.8825
𝑋𝜋/2 0.4136 2.8389 3.4315 1.8434
𝑌𝜋/2 0.3233 3.845 4.8816 2.3502

Table 7.5: The 𝑁𝜎 for all models of Gate Set A (3 gates, with echo). Its circuits were simulated, as well as actually run
("experimental"). In the simulations, the nitrogen was initialised into the 𝑚𝐼 = 0 state with different fidelities: 𝑝 = 0, 0.95, 1. In the

experiments, the nitrogen was initialised into one of three states (the 𝑚𝐼 = 0, 𝑚1 and 𝑝1 state), or not. For all models, gate set
tomography was performed TP constrained and CPTP constrained.

(a) Simulated.

𝑝 = 0 𝑝 = 0.95 𝑝 = 1
TP -12.7442 -17.2156 -17.822
CPTP -12.6776 -17.0892 -17.5733

(b) Experimental.

mixed 𝑚𝐼 = 0 𝑚𝐼 = −1 𝑚𝐼 = +1
TP 16.8616 9.48565 13.6271 9.9985
CPTP 17.3721 9.96056 14.3721 10.2937
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7.2.2. Gate set B: effect of nitrogen initialisation without XY-4 echo
Now that the NV-simulator has been deemed to produce acceptable results, the effect of the nitrogen
initialisation can be studied using Gate Set B, which was simulated only (without XY-4 echo).

In Table 7.6, the values of 𝑁𝜎 can be seen. They do not differ significantly for the TP vs CPTP models.
However, for 𝑝 = 0, the 𝑁𝜎 indicates high levels of model violation. In that case, the nitrogen is in a
mixture of its three spin-states (Ch.5.2). From Wolf et al [37], it is known that non-Markovian dynamics
can arise from an environment which is in a mixture of states (like the nitrogen nucleus). Furthermore,
models with an initialised nitrogen (𝑝 = 0.95 and 𝑝 = 1) do not have such high 𝑁𝜎’s. So, it is safe to
assume that a mixed nitrogen nucleus causes significant model violation. As one of GST’s assumptions,
namely of Markovian dynamics, is likely not satisfied for 𝑝 = 0, it does not necessarily produce reliable
results. This is seen in Tab.7.7: the estimated gates are far from ideal. For future studies, it is advised to
include the nitrogen nucleus as a qutrit in the model, to assess whether the amount of model violation
decreases (as non-Markovian dynamics should decrease).

For 𝑝 = 0.95 and 𝑝 = 1, the diamond distances indicate that the estimates are close to ideal (Table
7.7). The low values of 𝑁𝜎 indicate low model violation. So, these cases will now be researched further
using gate error generators (Ch.2.3.2). The pie charts in figures 7.1a and 7.1b show what percentage of
the error generator is captured by each subspace. The Hamiltonian subspace (H) is pink, the stochastic
subspace (S) is green. The (yellow) active and correlation subspaces are combined (A/C). Comparing
the error generator sub space percentages of 𝑝 = 0.95 and 𝑝 = 1 is justified, because their error generators
are of the same order of magnitude (their diamond distances are very close). If the nitrogen nucleus
is initialised with a fidelity of 100%, all stochastic and A/C errors disappear. This is expected, as the
dynamics of the electron coupled to the nitrogen is of stochastic form, i.e. a convex combination of
Hamiltonians (the electron’s and nitrogen’s). Thus, if the nitrogen is initialised completely (𝑝 = 1), the
stochastic errors disappear. The A/C errors are not physically valid on their own, but always come in
combination with stochastic errors. So, they vanish together with the stochastic errors. What is left, are
Hamiltonian errors (unitary errors), most likely caused by a non-ideal experimental setup (the applied
microwaves are not at perfect resonance, for example).

In short, if no echo is used, the produced estimates in the case of a mixed nitrogen nucleus (𝑝 = 0)
are not good, probably due to non-Markovian dynamics occurring. If the nitrogen is initialised with a
fidelity of at least 𝑝 = 0.95, the amount of model violation is low and the produced estimates are close
to ideal. Furthermore, initialising the nitrogen completely (𝑝 = 1) removes all stochastic errors in the
estimates. This is expected, as the electron’s coupling to the nitrogen is of stochastic form.

Table 7.6: The values of 𝑁𝜎 for the simulated Gate Set B model (without echo).

𝑝 = 0 𝑝 = 0.95 𝑝 = 1
TP 793.29 -10.9863 -20.1789
CPTP 716.795 -10.713 -19.9957

Table 7.7: 1/2-diamond distances (·102) from the CPTP simulated model to the three gate ideal model, using the outcomes of GST
on Germ Set B (without echo). The three estimated gates are 𝐼, 𝑋𝜋/2 and 𝑌𝜋/2. The nitrogen nucleus was initialised into the

𝑚𝐼 = 0 state with three different fidelities: 𝑝 = 0, 0.95 and 𝑝 = 1.

𝑝 = 0 𝑝 = 0.95 𝑝 = 1
𝐼 97.6537 0.2323 0.2249
𝑋𝜋/2 24.0437 0.1837 0.1091
𝑌𝜋/2 22.7691 0.0951 0.0363

7.2.3. Gate set A versus B: effect of XY-4 echo
In one of the previous sections, it was established that, when an amplificationally complete germ
set is used in gate set tomography, the NV-simulator produces realistic results. So, comparing two
(only) simulated data sets is justified, which is what will be done in this section to study the XY-4 echo
(Ch.2.2.3). The (simulated, CPTP) Gate Set A (Table 6.1a), whose circuits were run with an XY-4 echo,
will be compared to Gate Set B (Table 6.1b), whose circuits were run without the echo. These gate sets
are not equal: they have different sets of germs. However, it is assumed that this will not influence
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(a) Nitrogen nucleus initialisation fidelity 𝑝 = 0.95. (b) Nitrogen nucleus initialisation fidelity 𝑝 = 1.

Figure 7.1: Pie charts indicating what percentage of the error generator is captured by the three subspaces (pink: Hamiltonian
errors "H", yellow: active/correlation errors "A/C", green: stochastic errors "S"). The gates 𝐼, 𝑋𝜋/2 and 𝑌𝜋/2 are CPTP model fits

of Gate Set B (simulated, no echo). The nitrogen nucleus initialisation fidelity is indicated in the secondary captions.

pyGSTi’s gate set tomography results significantly, as both germ sets are amplificationally complete and
thus should capture all possible errors.

First, the nitrogen nucleus initialisation fidelity 𝑝 = 0 will be considered. Recall the 𝑁𝜎 for the
simulated CPTP model’s of Gate Set A (Table 7.5a) and Gate Set B (Table 7.6). When an XY-4 echo is
used, the 𝑁𝜎 turns out much lower than when no echo is used: −12.6776 versus 716.795. In the previous
section, it was concluded that the non-initialised nitrogen nucleus is most likely the cause of the high
model violation. Hence, it is likely that the presence of non-Markovian dynamics is insignificant if an
echo is used. Thus, even when the nitrogen nucleus is not initialised, the echo most likely prevents
non-Markovian dynamics. The discrepancy between the two gate sets in this case is seen in their large
diamond distances (Tab.7.8).

Now, consider the 𝑝 = 0.95 and 𝑝 = 1 cases. Here, with and without echo, there is no significant
model violation (Tab.7.5a and 7.6), as both 𝑁𝜎’s being ≤ 1 "indicates an extremely good fit that appears
completely trustworthy" [8]. The 𝑁𝜎’s also do not differ significantly. The difference between the diamond
distances produced by the two gate sets (tables 7.3a 7.7) is non-significant: it is maximally 0.0023, i.e.
0.2% (for the 𝐼 gate, 𝑝 = 1). Concluding, the quality of the estimated gates does not depend very much
on whether an XY-4 echo is used or not, if the nitrogen nucleus is initialized with at least a fidelity of
𝑝 = 0.95. However, it is interesting to see whether the types of errors causing the estimations to deviate
from ideal depend on the XY-4 echo. So, now the error generators of the 𝑝 = 0.95 and 𝑝 = 1 cases will be
researched. The error generators of both models are of the same order of magnitude (as their diamond
distances are also of the same size).

If the nitrogen nucleus is initialized with 𝑝 = 1, then for both models, the error generator lies for
100% in the Hamiltonian subspace for all estimated gates. However, if the initialization fidelity is
𝑝 = 0.95, then the contribution of each subspace differs in the two models. How the error generator is
distributed over the three subspaces in the case of an XY-echo is visualised in Fig.7.2. Comparing this to
Fig.7.1a, it can be seen that the XY-4 echo gets rid of (almost) all stochastic and active/correlation errors.
Apparently, the echo prevents the electron from coupling to the nitrogen nucleus at all. This claim is
supported by the fact that even if the nitrogen is not initialised at all (𝑝 = 0), the error generators of the
estimated gates (with XY-4 echo) are totally captured by the Hamiltonian sub space (99.9%, 99.9%, 99.5%
for the 𝐼 , 𝑋𝜋/2 , 𝑌𝜋/2 gates, respectively).

To conclude this chapter, it was found likely that the XY-4 echo prevents non-Markovian dynamics
from taking place, even if the nitrogen nucleus is in a completely mixed state. Furthermore, it was found
that the XY-4 echo eliminates stochastic errors for all researched initialisation fidelities, even for 𝑝 = 0.
So, the XY-4 echo is extremely good at preventing the electron from coupling to the nitrogen, as hoped.

Table 7.8: 1/2-diamond distances (·102) between Gate Set A (with echo) to Gate Set B (without echo), both CPTP and simulated.
The three estimated gates are 𝐼, 𝑋𝜋/2 and 𝑌𝜋/2. Note that Gate Set A and B have the same fiducials, but different germs. The
simulations were done for different initialisation fidelities of the nitrogen nucleus (𝑝 = 0, 0.95, 1), corresponding to different

columns.

𝑝 = 0 𝑝 = 0.95 𝑝 = 1
𝐼 97.6831 0.3689 0.3061
𝑋𝜋/2 23.7244 0.159 0.1187
𝑌𝜋/2 22.6081 0.2712 0.2859



7.2. Gate sets A and B: effect of nitrogen initialisation and XY-4 Echo 43

Figure 7.2: Pie charts indicating what percentage of the error generator is captured by the three subspaces (pink: Hamiltonian
errors "H", yellow: active/correlation errors "A/C", green: stochastic errors "S"). The gates 𝐼, 𝑋𝜋/2 and 𝑌𝜋/2 are CPTP model fits

of Gate Set A (simulated, with echo). The nitrogen nucleus is initialised with a fidelity of 𝑝 = 0.95.
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Discussion and Outlook

8.1. XY-4 echo
Gate sets A (Tab.6.1a) and C (Tab.6.1c), found in Chapter 6.1, both employ the XY-4 echo (Ch.2.2.3).
However, the XY-4 echo was not included in the circuits’ sequences. In GST’s perspective, to some extent
this can be considered cheating. After all, one of GST’s unique characteristics is that it does not assume
any applied gate to be perfectly ideal. Now however, by not including the XY-4 echo, we pretended as if
it was perfect (an exact identity gate, but of longer duration). So, Gate set A’s results were analysed
again, but now including the XY-4 echo in the circuit sequences. This posed a couple of problems.

First, it was not possible to compare the initial data set (so with implicit echo) to a model with explicit
echo, because of the way a GST experiment is designed. Recall that GST repeats germs according to
their approximate germ depth (Ch.4.3.1). The echo was made explicit in the target model by including
the XY-4 echo after every gate in the circuit. This however, changed the depths of the target model’s
germ and fiducial sets, which resulted in a different experiment design, i.e. the target model circuits
differed from the input (run) circuits. As pyGSTi does not consider how a circuit looks, but considers its
position in the circuit list, the target model and the experimental model circuits did not match anymore.
Solving this problem, i.e. forcing pyGSTi to look at the components of a circuit instead of its position
on the list can be considered a topic for future development. It would make communication between
researchers, with for example the same circuits, but in a different order, easier.

New circuit lists had to be made and run on the simulator. Recall the XY-4 sequence, 𝑋𝜋𝑌𝜋𝑋𝜋𝑌𝜋,
and that the time between the gate and the first 𝑋𝜋 is 𝜏/2, whereas the time between the gates in the
sequence is 𝜏 (Ch.2.2.3). Thus, we tried to implement an additional gate in the target model, 𝐺𝜏, whose
target gate is the identity 𝐼 gate. It could be added to the circuits to represent the 𝜏/2 and 𝜏 "waiting"
times. However, this proved to be more difficult than it sounds, as pyGSTi did not want to accept two
gates that both have the identity gate as target. So, instead of modelling the echo with this 𝐺𝜏 gate,
after every 𝑋𝜋/2 and 𝑌𝜋/2 gate the XY-4 sequence (𝐼𝑋𝜋𝐼𝐼𝑌𝜋𝐼𝐼𝑋𝜋𝐼𝐼𝑌𝜋𝐼) was applied. Moreover, the
original identity gate was swapped for the XY-4 sequence itself (so 𝐼 −→ 𝐼𝑋𝜋𝐼𝐼𝑌𝜋𝐼𝐼𝑋𝜋𝐼𝐼𝑌𝜋𝐼). Now,
circuits employing this representation of the echo were run and analysed. Whereas previously the
longest germ had depth 6, now it had depth 78 (13 × 6, 12 being the XY-4 sequence’s depth). For all the
germs to be repeated at least once in the circuits, the analysis had to be conducted until at least 𝐿 = 124.
Unfortunately, it was decided that the benefits of such an analysis did not outweigh the downside, the
extremely long running-time.

In the future, gate set tomography on the XY-4 echo can be conducted, modelling it as an identity
gate: 𝑋𝜋𝑌𝜋𝑋𝜋𝑌𝜋 −→ 𝐼′. As mentioned in Ch.2.2.3, sometimes imperfections in dynamical decoupling
sequences can destroy the qubit’s state instead of protecting it. GST could be useful to research this
topic. However, now the individual 𝑋𝜋 and 𝑌𝜋 gates will not be estimated; only the whole echo. This is
caused by the fact that, in this formulation of the echo, the gates are not generated by a time-independent
Lindbladian 𝐿 anymore (Ch.2.15), because of the different waiting times between the gates. The single
gates do not satisfy the assumption of Markovian dynamics (Def.2.6) anymore, and are therefore not
captured by the model well (unlike the whole 𝐼′ echo). An advantage of this approach is that the running
time of pyGSTiwill not increase significantly.

44
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8.2. Error bars
Another thing the attentive reader might have noticed, is the lack of error bars in this thesis. The
quantities used for analysing GST’s results, like diamond distance and percentages of the error generator
subspaces, are not produced with "traditional" error bars. These quantities are gauge-dependent, and
the gates used to compute them simply do not come with conventional uncertainties. The topic of error
bars in gate set tomography is, according to its developers, definitely not a closed chapter yet, and in
need of further research and development. How far it is now can be found in, like always, Nielsen et al
[8].

8.3. Outlook
In the results chapter (Ch.7), a few suggestions for further research on gate set tomography on the NV
center were given. Here, the suggestions, as well as a few additions are presented.

First, the parser for conducting pyGSTi used in this thesis needs to be adjusted, such that the null
sequence (no gates: ∅) can be added to the sets of germs and fiducials. Secondly, the adequacy of
the NV-simulator has to be researched if no XY-4 is used, by conducting GST on an experimental
and simulated data set without XY-4 echo. In this thesis, two gate sets with differing germ sets were
compared to investigate the effect of the XY-4 echo. However, needless to say, the comparison would be
more well grounded if the gate sets had the same germ set. Hence, it is advised to carry out such an
analysis in the future. When it becomes possible to get the process maps of the gates directly out of the
NV center simulator, the "direct" gates and the gates estimated by GST can be compared to investigate
GST’s performance. Moreover, currently, it is not known whether the Levenberg-Marquardt method
is the best method for gate set tomography optimization. Further research into this topic could be
considered.

As mentioned in the results section, it would be interesting to conduct gate set tomography on the
NV center, where the electron functions as qubit and the nitrogen nucleus is modelled as a qutrit. This
way, it truly can be probed whether the electron coupling to the nitrogen nucleus was mostly responsible
for non-Markovian dynamics. Ideally, the estimated gates would be tensor products of the individual
systems’ gates. Adding too many qubits to the system quickly becomes unmanageable for pyGSTi. So,
instead of adding qubits/qutrits from the same NV center, it would be interesting to perform GST on
qubits from different NV centers. This could aid the development of quantum networks composed of
multiple NV centers. Continuing this line of thinking, the effects of echo’s acting on multiple qubits
could be investigated then as well.
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Conclusion

In this thesis, gate set tomography has been conducted on the nitrogen vacancy center in diamond,
whose electron served as a qubit. The effects of the surrounding nitrogen nucleus on GST’s results have
been researched. How the presence of a dynamical decoupling XY-4 sequence affects GST has been
investigated as well. To this end, GST has been conducted on three different gate sets. Some circuits
were only simulated by the NV center simulator, and some have been run experimentally as well. The
nitrogen nucleus (𝑆 = 1) has three spin states: 𝑚𝐼 = −1, 0,+1. In the experiments, it was initialised into
one of these, or not at all (mixed state initialisation). In the simulations, the nitrogen could be initialised
into the 𝑚𝐼 = 0 state with different fidelities: 𝑝 = 0, 0.95 and 𝑝 = 1, 𝑝 = 0 meaning the nitrogen is in a
completely mixed state.

The gate set with a non-amplificationally complete germ set was run experimentally and on the
simulator, both times without echo. It was found that the experiments and the simulator did not agree
very well if the nitrogen was not initialised (mixed state and 𝑝 = 0, respectively). Initialisation (into
𝑚𝐼 = 0) in the experiments was compared to initialisation fidelity 𝑝 = 0.95 in the simulations. In this
case, the results did agree.

A gate set with an amplificationally complete germ set was also simulated and conducted experi-
mentally, but now with an XY-4 echo. It was found that the simulated and experimental results agreed
for all different initialisation fidelities of the nitrogen nucleus. To verify the simulator’s results without
an XY-4 echo further research is needed: from the first gate set (without an AC germ set), it cannot be
concluded that the simulation does not work for 𝑝 = 0, as this shortcoming may be caused by its non-AC
germ set. Despite of this, the simulator’s results were assumed suitable for further analysis.

A simulated (only) gate set’s results, without XY-4 echo, were analysed to investigate the effects
of different nitrogen nucleus initialisation fidelities. If the nitrogen was not initialised (𝑝 = 0), it was
found very likely that significant non-Markovian dynamics took place, violating the GST model. If the
nitrogen was initialised (𝑝 = 0.95, 1), no significant model violation was detected. Furthermore, the full
initialisation (𝑝 = 1) removed all stochastic type errors of the gates’ error generators. This was excepted,
as the coupling of the electron to the nitrogen is of this form.

Lastly, two simulated gate sets, one without and one with an XY-4 echo, were compared. For 𝑝 = 0,
it was discovered that the amount of model violation decreased enormously if an XY-4 echo was used.
Thus, it is likely that the echo combats non-Markovian dynamics very well. For 𝑝 = 0.95 and 𝑝 = 1, the
estimates of the two gate sets did not differ significantly. However, for 𝑝 = 0.95, the error generators of
the gate set with echo were captured for 100% by the Hamiltonian subspace, whereas without echo
some errors laid in the stochastic sub space. Moreover, even for 𝑝 = 0, the errors were 100% Hamiltonian
errors in the presence of an echo. So, it was concluded that the echo prevents the electron from coupling
to the nitrogen nucleus extremely well.
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A
Appendix A

A.1. Quantum mechanics
A.1.1. Bloch sphere
Suppose a qubit in the following superposition:

��𝜓〉
= 𝛼 |0⟩ + 𝛽 |1⟩, 𝛼, 𝛽 ∈ C. Using their polar form,

we rewrite 𝛼 = 𝛼0𝑒
𝑖𝜙0 , 𝛽 = 𝛽1𝑒

𝑖𝜙1 . Multiplying the equation by a global phase factor 𝑒−𝑖𝜙0 results in
an identical state, from an observational point of view (as for any measurement operator 𝑀𝑚 , for
probabilities for outcome 𝑚 we have:

〈
𝜓
��𝑒−𝑖𝜙0𝑀†𝑚𝑀𝑚𝑒

𝑖𝜙0
��𝜓〉

=
〈
𝜓
��𝑀†𝑚𝑀𝑚

��𝜓〉
):

𝑒−𝑖𝜙0
��𝜓〉

= 𝑒−𝑖𝜙0𝛼0𝑒
𝑖𝜙0 |0⟩ + 𝑒−𝑖𝜙0𝛽1𝑒

𝑖𝜙1 |1⟩ (A.1)��𝜓〉
= 𝛼0 |0⟩ + 𝛽1𝑒

𝑖𝜙 |1⟩ , (A.2)

where 𝜙 = 𝜙1 − 𝜙0. Now, the laws of probability tell us that |𝛼0 |2 +
��𝛽1

��2 = 1, so we use: 𝛼0 = cos𝜃, 𝛽1 =

sin𝜃. 𝜃 and 𝜙 define a point on a three-dimensional sphere with unit radius, the Bloch sphere (Fig.2.1).
Furthermore, we know that

��𝜓(𝜃 = 0, 𝜙)
〉
= |0⟩ and

��𝜓(𝜃 = 𝜋, 𝜙)
〉
= |1⟩, i.e.:��𝜓〉

= cos 𝜃
2 |0⟩ + 𝑒

𝑖𝜙 sin 𝜃
2 |1⟩ , (A.3)

where 𝜃 ∈ [0,𝜋] and 𝜙 ∈ [0, 2𝜋].

A.1.2. Spin operators
The spin- 1

2 operators (the Pauli matrices) are given by, where 𝑖 is the imaginary unit:

𝑆𝑥 =
1
2

(
0 1
1 0

)
, 𝑆𝑦 =

1
2𝑖

(
0 1
−1 0

)
, 𝑆𝑧 =

1
2

(
1 0
0 −1

)
, (A.4)

The spin-1 operators (𝑆 = 1) are:

𝑆𝑥 =
1√
2
©«
0 1 0
1 0 1
0 1 0

ª®¬ , 𝑆𝑦 = 1√
2𝑖

©«
0 1 0
−1 0 1
0 −1 0

ª®¬ , 𝑆𝑧 = ©«
1 0 0
0 0 0
0 0 −1

ª®¬ . (A.5)

A.2. Mathematics
Definition A.1. If 𝑟 is a function from R𝑛 to R𝑚 , then its Jacobian is the 𝑚 × 𝑛 matrix of first partial
derivatives, where ∇𝑟 𝑗(𝑥), 𝑗 = 1, . . . , 𝑚 is the gradient of 𝑟 𝑗 :

𝐽(𝑥) =
[ 𝜕𝑟 𝑗
𝜕𝑥𝑖

]
𝑗=1,...,𝑚
𝑖=1,...,𝑛

=


∇𝑟1(𝑥)𝑇

...

∇𝑟𝑚(𝑥)𝑇

 =


𝜕𝑟1
𝜕𝑥1

. . . 𝜕𝑟1
𝜕𝑥𝑛

...
. . .

...
𝜕𝑟𝑚
𝜕𝑥1

. . . 𝜕𝑟𝑚
𝜕𝑥𝑛

 (A.6)
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A.3. The NV Hamiltonian
The NV electron spin’s dynamics are influenced by the subsystems surrounding it. That is, the electron
spin couples to the other spins, which can be seen in figure A.1. Here, the electron spin couples
(purple line) to the host 14N spin. It also couples to the 13C spins surrounding the NV (red lines).
Furthermore, the nuclear spins couple to each other (green and yellow lines). All these interactions are
best summarized by the system’s Hamiltonian.

The overall Hamiltonian is given by the sum of the Hamiltonian of each subsystem and the
Hamiltonians of the interactions between the subsystems [38]:

𝐻 = 𝐻𝑒 + 𝐻𝑁 + 𝐻𝑐 + 𝐻𝑒𝑁 + 𝐻𝑒𝑐 + 𝐻𝑐𝑐 + 𝐻𝑁𝑐 (A.7)

Here, 𝐻𝑒 is the NV electron spin ground state Hamiltonian, 𝐻𝑁 is the Hamiltonian of the 14N nuclear
spin, 𝐻𝑐 is the 13C spins’ Hamiltonian, 𝐻𝑒𝑁 is the interaction between the electron spin and the 14N
nuclear spin, 𝐻𝑒𝑐 is the interaction between the electron spin and the 13C nuclear spins, 𝐻𝑐𝑐 is the
coupling between the 13C spins and finally, 𝐻𝑁𝑐 is the coupling between the 14N and 13C spins. In
describing each term of the Hamiltonian (Eq.(A.7)), we will follow Abobeih [38].

Figure A.1: This figure shows how electron and nuclei of the NV center interact with eacher via coupling. The electron qubit
couples to the nitrogen nucleus (purple line) and the surrounding carbon atoms (red lines). The nitrogen nucleus couples to the
carbon atoms as well (green lines). Lastly, the carbons couple to each other, where the strength of the interaction depends on their
distance and angle with respect to the applied magnetic field. This interaction and its strength is indicated by the yellow lines.

Figure is taken from Abobeih [38].

Electron spin
The spin triplet NV electron spin ground state has the following Hamiltonian:

𝐻𝑒 = ΔZFS𝑆
2
𝑧 + 𝛾𝑒 (B · S) (A.8)

Here, ΔZFS ≈ 2.88 GHz is the zero field splitting, 𝛾𝑒 ≈ 2.8 MHz/G is the electron gyromagnetic ratio.
B = (𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧) is the magnetic field and S = (𝑆𝑥 , 𝑆𝑦 , 𝑆𝑧) are the electron spin-1 operators (Eq.(A.5)).

Nitrogen spin
The Hamiltonian of the 14N nuclear spin and its coupling to the electron spin is given by:

𝐻𝑁 = −𝑄𝑁 𝐼
2
𝑁,𝑧 + 𝛾𝑛 (B · IN) (A.9)

𝐻𝑒𝑁 = S ·AN · IN ≈ 𝐴| | �̂�𝑧 𝐼𝑁,𝑧 (A.10)

Here,𝑄𝑁 ≈ 4.98 MHz is the quadrupole splitting separating the nitrogen-spin𝑚𝐼 = 0 and𝑚𝐼 = ±1 states,
discussed in Ch.5.2. 𝛾𝑛 = 0.3077 kHz/G is the nitrogen-spin gyromagnetic ratio. IN = (𝐼𝑁,𝑥 , 𝐼𝑁,𝑦 , 𝐼𝑁,𝑧)
are the spin-1 operators of the 14N nuclear spin and AN is the hyperfine tensor for the electron-14N
interaction. An approximation in 𝐻𝑒𝑁 is made, as due to the large zero-field splitting of the electron
spin, the hyperfine interaction perpendicular to the NV axis (so the 𝑥− and 𝑦−axes) can be neglected:
the secular approximation [36].
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Carbon-13 spins
The 13C spins and their interaction with the electron are written as:

𝐻𝑐 =
∑
𝑖

𝛾𝑐B · I𝑖 (A.11)

𝐻𝑒𝑐 =
∑
𝑖

S ·A𝑖 · I𝑖 (A.12)

Here, 𝛾𝑐 = 1.0705 kHz/G is the carbon-spin gyromagnetic ratio, I𝑖 = (𝐼𝑖 ,𝑥 , 𝐼𝑖 ,𝑦 , 𝐼𝑖 ,𝑧) are the spin- 1
2

operators (Eq.(A.4)) for the 13C spins and A𝑖 are the hyperfine tensors for the electron-13C interaction.

Nuclear-nuclear interactions
Lastly, the nuclear spins couple to each other:

𝐻𝑐𝑐 =
∑
𝑖 , 𝑗

I𝑖 · Cij · I𝑗 (A.13)

𝐻𝑁𝑐 =
∑
𝑗

I𝑁 · CN,j · I𝑗 (A.14)

Ci,j and CN,j are the tensors for 13C-13C and 14N- 13C nuclear-nuclear interaction.

A.4. Gate set tomography
Definition A.2. An𝑚 × 𝑛 matrix 𝐴 of rank 𝑟 > 0 can be written as the product 𝐴 = 𝐵𝐶, where 𝐵 is𝑚 × 𝑟
and 𝐶 is 𝑟 × 𝑛 and both have rank 𝑟. The pseudo-inverse of 𝐴 is given by 𝐴† = 𝐶𝑇(𝐶𝐶𝑇)−1(𝐵𝑇𝐵)−1𝐵𝑇

[39].

Definition A.3. Let 1̃ be an 𝑁 𝑓 1 × 𝑁 𝑓 2 matrix. If 𝜎 ∈ R, 𝜎 ≥ 0 and u and v are nonzero 𝑁 𝑓 1- and
𝑁 𝑓 2-vectors, respectively, such that:

1̃v = 𝜎u and 1̃Tu = 𝜎v, (A.15)

then 𝜎 is called a singular value of 1̃.

A.4.1. Multiple germ powers
Here, an example motivating the repetition of germs for multiple germ powers 𝑝 is given. Suppose 𝑔 to
be a single unitary 𝑥−rotation by 𝜋/2, 𝐺𝑥 , but with an over-rotation by angle 𝜖, so that it actually rotates
by 𝜃 = 𝜋/2 + 𝜖. If we measure ⟨⟨𝐸𝑖 |𝜏(𝑂)|𝜌′𝑗⟩⟩ with 𝜏(𝑂) = 𝐺

𝑝
𝑥 for 𝑖 = 1 . . . 𝑁 𝑓 1, 𝑗 = 1 . . . 𝑁 𝑓 2 and every

circuit is measured 𝑁 times, then:

𝑝𝜃 mod 2𝜋 = 𝑝𝜋/2 + 𝑝𝜖 ± 𝛼√
𝑁

(A.16)

𝜃 mod 2𝜋/𝑝 = 𝜋/2 + 𝜖 ± 𝛼

𝑝
√
𝑁
, (A.17)

for some constant 𝛼. As 𝑝 increases, it becomes harder to differentiate between angles differing by 2𝜋/𝑝
(”branches”), as this factor becomes smaller. So, to make differentiation between branches possible, the
germ is repeated for different powers 𝑝.

A.4.2. Choosing the maximum germ depth
The choice of the maximum 𝐿 depends on three factors. Firstly, increasing 𝐿 yields more precision
as errors are amplified more. However, larger 𝐿 presents more circuits to run and analyse and thus
enlarges the experiment. Lastly, 𝐿 should not be increased beyond the point where decoherence and
stochastic errors dominate. Suppose each gate has rate of decoherence 𝜂, then circuits of depth >> 1/𝜂
(𝐿 > 𝑂(1)/𝜂) produce the same equilibrium state and tell us nothing interesting. This maximum circuit
depth is called 𝐿𝜂. However, if the rate of stochastic errors varies from gate to gate, then it might be
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valuable to let 𝐿 be germ-dependent, motivated by prior knowledge of the physical system’s stochastic
noise behaviour. A maximum 𝐿 is thus chosen from the set of ”maximum depths” {𝐿𝑖 = 2𝑖−1}𝑁1

𝑖=1 such
that 𝐿max = max𝑖𝐿𝑖 = 𝐿𝑁1 ≥ 𝐿𝜂. Logarithmically-spaced 𝐿 are used so that a single set 𝐿𝑖 can be used
for all germs. If instead a set of logarithmically-spaced powers was used, there may be wasted circuits
(with depth greater than 𝐿max) or short germs that are not repeated the maximum amount of times.

A.4.3. General loglikelihood function
In the case of non-TP gate sets, the likelihood (Eq.(4.17)) is modified. Suppose 𝐾 Poisson-distributed
event probabilities {𝑛 𝑗} (random variables) with their own rate parameter 𝜆 𝑗 :

Pr(𝑛 𝑗) =
𝑒−𝜆𝑗𝜆

𝑛 𝑗

𝑗

𝑛 𝑗 !
. (A.18)

The random variable 𝑋 B
∑
𝑗 𝑛 𝑗 is Poisson distributed with rate parameter 𝜆 B

∑
𝑗 𝜆 𝑗 :

Pr(𝑋 = 𝑁) = 𝑒−𝜆𝜆𝑁

𝑁 ! . (A.19)

The 𝑛 𝑗 are independent, so the probability that a specific set {𝑛 𝑗}𝐾𝑗=1 is observed is given by the product
of 𝑛 𝑗 ’s:

Pr({𝑛 𝑗}) =
∏
𝑗

Pr(𝑛 𝑗) = 𝑒−𝜆
∏
𝑗

𝜆
𝑛 𝑗

𝑗

𝑛 𝑗 !
. (A.20)

From conditional probability follows:

Pr({𝑛 𝑗}|𝑋 = 𝑁0) =
Pr({𝑛 𝑗} ∩ {𝑋 = 𝑁0})

Pr(𝑋 = 𝑁0)
. (A.21)

Calculating the numerator now:

Pr({𝑛 𝑗} ∩ {𝑋 = 𝑁0}) =
{

Pr({𝑛 𝑗})
∑
𝑗 𝑛 𝑗 = 𝑁0

0
∑
𝑗 𝑛 𝑗 ≠ 𝑁0

(A.22)

The conditional probability becomes:

Pr({𝑛 𝑗}|𝑋 = 𝑁0) = ©«𝑒−𝜆
∏
𝑗

𝜆
𝑛 𝑗

𝑗

𝑛 𝑗 !
ª®¬
(

𝑁0!
𝑒−𝜆𝜆𝑁0

)
=

𝑁0!
𝑛1! . . . 𝑛𝐾 !

©«
∏

𝑗 𝜆
𝑛 𝑗

𝑗

𝜆𝑁0

ª®¬
=

𝑁0!
𝑛1! . . . 𝑛𝐾 !

∏
𝑗

(
𝜆 𝑗
𝜆

)𝑛 𝑗
=

𝑁0!
𝑛1! . . . 𝑛𝐾 !

∏
𝑗

(
𝜆 𝑗∑
𝑘 𝜆𝑘

)𝑛 𝑗
This is a multinomial distribution over 𝑁0 trials, with event probabilities 𝑝 𝑗 =

𝜆𝑗∑
𝑘 𝜆𝑘

. If the gate set is not
TP, the total number of counts is not necessarily equal to the observed number of counts. If it is assumed
that the predicted number of counts is Poisson-distributed, the above equations exactly describe a GST
experiment, with {𝑛 𝑗} = {𝑝𝑠,𝛽𝑠 }𝛽𝑠 . The rate of observing outcome 𝛽𝑠 is then 𝜆𝑠,𝛽𝑠 B 𝑁𝑠𝑝𝑠,𝛽𝑠 . So:

ℒ𝑠 =
∏
𝛽𝑠

𝜆
𝑁𝑠,𝛽𝑠

𝑠,𝛽𝑠
𝑒−𝜆𝑠,𝛽𝑠

𝑁𝑠,𝛽𝑠 !

logℒ𝑠 =
∑
𝛽𝑠

𝑁𝑠,𝛽𝑠 log
(
𝑁𝑠𝑝𝑠,𝛽𝑠

)
− 𝑁𝑠𝑝𝑠,𝛽𝑠 − log

(
𝑁𝑠,𝛽𝑠 !

)
(A.23)
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The total loglikelihood becomes, again omitting the factor independent of 𝑝𝑠,𝛽𝑠 , like in the main body:

logℒ =
∑
𝑠

logℒ′𝑠 =
∑
𝑠,𝛽𝑠𝑁𝑠

𝑁𝑠,𝛽𝑠 log
(
𝑝𝑠,𝛽𝑠

)
− 𝑁𝑠𝑝𝑠,𝛽𝑠 (A.24)

A.5. Results

Table A.1: 1/2-diamond distances (·102) from the Gate set A (with echo) simulated and experimental TP models to the three gate
ideal model. The model is indicated in the secondary captions. The three estimated gates are 𝐼, 𝑋𝜋/2 and 𝑌𝜋/2. The simulations

were done for different initialisation fidelities of the nitrogen nucleus (𝑝 = 0, 0.95, 1) into the 𝑚𝐼 = 0 state, corresponding to
different columns.

(a) Simulated.

𝑝 = 0 𝑝 = 0.95 𝑝 = 1
𝐼 0.37 0.4531 0.4673
𝑋𝜋/2 1.6837 1.4739 1.4829
𝑌𝜋/2 1.5012 1.6575 1.6793

(b) Experimental.

mixed 𝑚𝐼 = 0 𝑚𝐼 = −1 𝑚𝐼 = +1
𝐼 0.3524 0.3385 0.6942 0.5585
𝑋𝜋/2 1.6737 4.1737 4.7231 3.2938
𝑌𝜋/2 1.8772 5.5405 6.6652 3.8105

Table A.2: 1/2-diamond distances (·102) from the TP simulated model to the three gate ideal model, using the outcomes of GST
on Germ Set B (without echo). The three estimated gates are 𝐼, 𝑋𝜋/2 and 𝑌𝜋/2. The nitrogen nucleus was initialised into the

𝑚𝐼 = 0 state with three different fidelities: 𝑝 = 0, 0.95 and 𝑝 = 1.

𝑝 = 0 𝑝 = 0.95 𝑝 = 1
𝐼 102.5643 0.2473 0.2355
𝑋𝜋/2 20.5605 1.4232 1.5492
𝑌𝜋/2 19.5706 1.3681 1.4606

Table A.3: 1/2-diamond distances (·102) from the experimental and simulated models to the ideal gates (TP Germ Set C, without
echo). The model constraint is indicated in the secondary captions. The five estimated gates are 𝐼, 𝑋𝜋/2, 𝑌𝜋/2, 𝑋𝜋 and 𝑌𝜋. The
circuits were run either initialising the nitrogen nucleus into the 𝑚𝐼 = 0 state, or not (mixed). In the simulations, the nitrogen was

initialised into the 𝑚𝐼 = 0 state with different fidelities (𝑝 = 0, 0.95, 1).

(a) Experimental model.

mixed state 𝑚𝐼 = 0 state
𝐼 99.0067 0.5766
𝑋𝜋/2 31.2822 6.63
𝑌𝜋/2 31.5554 6.8583
𝑋𝜋 19.9804 10.8493
𝑌𝜋 23.8169 10.6076

(b) Simulated model.

𝑝 = 0 𝑝 = 0.95 𝑝 = 1
𝐼 94.8903 0.3406 0.227
𝑋𝜋/2 28.0941 1.0362 1.1058
𝑌𝜋/2 43.4257 0.5381 1.0332
𝑋𝜋 21.7444 2.4342 1.4528
𝑌𝜋 19.2569 1.0878 1.4545
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