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Abstract
Flash flood early warning requires accurate rainfall forecasts with a high spatial
and temporal resolution. As the first few hours ahead are already not suffi-
ciently well captured by the rainfall forecasts of numerical weather prediction
(NWP) models, radar rainfall nowcasting can provide an alternative. Because
this observation-based method quickly loses skill after the first 2 hr of the fore-
cast, it needs to be combined with NWP forecasts to extend the skillful lead time
of short-term rainfall forecasts, which should increase decision-making times.
We implemented an adaptive scale-dependent ensemble blending method in
the open-source pysteps library, based on the Short-Term Ensemble Prediction
System scheme. In this implementation, the extrapolation (ensemble) nowcast,
(ensemble) NWP, and noise components are combined with skill-dependent
weights that vary per spatial scale level. To constrain the (dis)appearance of
rain in the ensemble members to regions around the rainy areas, we have
developed a Lagrangian blended probability matching scheme and incremen-
tal masking strategy. We describe the implementation details and evaluate the
method using three heavy and extreme (July 2021) rainfall events in four Belgian
and Dutch catchments. We benchmark the results of the 48-member blended
forecasts against the Belgian NWP forecast, a 48-member nowcast, and a simple
48-member linear blending approach. Both on the radar domain and catchment
scale, the introduced blending approach predominantly performs similarly or
better than only nowcasting (in terms of event-averaged continuous ranked prob-
ability score and critical success index values) and adds value compared with
NWP for the first hours of the forecast, although the difference, particularly with
the linear blending method, reduces when we focus on catchment-average cumu-
lative rainfall sums instead of instantaneous rainfall rates. By properly combining
observations and NWP forecasts, blending methods such as these are a crucial
component of seamless prediction systems.
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1 INTRODUCTION

Intense precipitation events can lead to disruptive (pluvial)
floods. The persistent mesoscale low-pressure system in
northwestern and central Europe in July 2021, which
locally resulted in extreme rainfall amounts that led to
severe (flash) flooding, is an example of this. The floods
caused over 240 casualties, of which most were in Bel-
gium and Germany, and led to more than 25 billion USD in
economic and infrastructural damages (AON, 2021; Koks
et al., 2022; Kreienkamp et al., 2021). The disruptive effects
of (flash) flooding can be reduced when there is a timely
anticipation of the approaching flood, which is possible
when there is a well-established flood early warning sys-
tem in place (UNISDR, 2002; Pappenberger et al., 2015).
Such early warning systems are only beneficial if the
underlying rainfall forecasts are reliable and rapidly avail-
able. However, intense rainfall events that occur at small
spatio-temporal scales, are difficult to forecast. As this is
the spatial and temporal scale at which flash floods take
place, typically in small urban and mountainous catch-
ments, improving short-term rainfall forecasting is a cru-
cial step to ensure timely and adequate response to flood
risk through early warning systems (e.g. Cox et al., 2002;
Ferraris et al., 2002).

If a regional or national water management author-
ity has an early warning system in place, the under-
lying precipitation forecasts will generally be based
on short-range (12–72 hr) numerical weather prediction
(NWP) model forecasts. Although NWP models are con-
tinuously improving issuing timely and reliable rainfall
forecasts, along with the necessary assimilation steps in
NWP models, at the short time-scales of flash floods
remains challenging. Because NWP models are compu-
tationally expensive, they are either run on a too coarse
temporal resolution (e.g., hourly or coarser) or at a too
low update frequency (e.g., every 6 hr in the Netherlands
and Belgium, although this is not the case everywhere)
for usage in flash flood early warning systems. In addi-
tion, most operational NWP systems have a latency of
several hours between model initialization and delivery
at the end user. Consequently, the timing and location of
intense rainfall events are often missed (Lin et al., 2005;
Roberts and Lean, 2008; Berenguer et al., 2012; Pierce
et al., 2012).

One way to tackle this problem, at least for the first
hours into the future, is to use rainfall nowcasting tech-
niques, which (statistically and heuristically) extrapolate
real-time remotely sensed quantitative precipitation esti-
mates (QPEs) into the future. Rainfall nowcasting allows
us to take advantage of the high spatial and tempo-
ral resolutions of remotely sensed data (for instance,

1 km2 and 5 min for the QPE of current weather
radars, Serafin and Wilson, 2000; Overeem et al., 2009).
In addition, its initial conditions are always equal to
the most recent observations, which makes it useful
for flood forecasting purposes (Berenguer et al., 2005;
Pierce et al., 2005; Sharif et al., 2006; Vivoni et al., 2006;
Vivoni et al., 2007; Germann et al., 2009; Liguori and
Rico-Ramirez, 2012; Liguori and Rico-Ramirez, 2013;
Moreno et al., 2013; Poletti et al., 2019; Heuvelink
et al., 2020; Imhoff et al., 2022).

At present, a large number of nowcasting algorithms
are available, which can be categorized in field-based now-
casting methods that derive an advection field from the
gridded rainfall observations and can add stochastic pro-
cesses to simulate rainfall field evolutions (e.g., Seed, 2003;
Bowler et al., 2006; Berenguer et al., 2011; Seed et al., 2013;
Sokol et al., 2017; Ayzel et al., 2019), object-oriented
methods that track individual rainfall (storm) cells (e.g.,
Dixon and Wiener, 1993; Han et al., 2009), analogue-based
methods that look for a similar state in a historical
dataset (e.g., Atencia and Zawadzki, 2014; Atencia and
Zawadzki, 2015; Zou et al., 2020), and machine-learning
methods (e.g., Foresti et al., 2019; Ravuri et al., 2021).
More recently, the nowcasting field has been progressing
towards more community-driven, free and open-source
software, with pysteps as an example of this (Pulkki-
nen et al., 2019). Since its release, the pysteps commu-
nity has grown rapidly and the framework now includes
more nowcasting approaches, including those of Hering
et al. (2006), Nerini et al. (2017), and Pulkkinen et al. (2020,
2021).

One of pysteps’ main features is an efficient Python
implementation of the probabilistic field-based now-
casting scheme Short-Term Ensemble Prediction System
(STEPS) and its deterministic predecessor S-PROG (orig-
inally in C++; Bowler et al., 2006; Seed, 2003; Seed
et al., 2013). This method considers the dynamical scaling
of the rainfall predictability by decomposing rainfall fields
into a multiplicative cascade, representing different spa-
tial scales (see also: Lovejoy and Schertzer, 1995; Harris
et al., 1996; Marsan et al., 1996; Foufoula-Georgiou, 1998;
Seed et al., 1999). By applying different spatially and tem-
porally correlated stochastic perturbations for each spatial
scale to a deterministic extrapolation nowcast, STEPS gen-
erates an ensemble of rainfall forecasts. As a result, STEPS
allows large-scale features to evolve more slowly than
small-scale features, which ensures an appropriate repre-
sentation of uncertainty associated with the growth and
dissipation of rainfall.

Despite this representation of the uncertainty asso-
ciated with growth and decay of rainfall, pysteps, and
other nowcasting methods, quickly lose skill after the first
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IMHOFF et al. 3

2–3 hr. This maximum skilful lead time of the forecast
depends on the type and scale of the precipitation system,
with only 30 min for small-scale convective rainfall events,
2 hr for larger-scale, more persistent rainfall events, and
up to 6 hr for continental-scale persistent stratiform events
(Germann and Zawadzki, 2002; Lin et al., 2005; Germann
et al., 2006; Berenguer et al., 2011; Berenguer et al., 2012;
Liguori and Rico-Ramirez, 2012; Foresti et al., 2016;
Simonin et al., 2017; Mejsnar et al., 2018; Ayzel et al., 2019;
Imhoff et al., 2020).

To extend the skilful lead time to the time-scale of
flash floods and improve early warnings as a result,
we have to bridge the gap between nowcasting and
short-range NWP model forecasts. Alongside the recent
developments of improving NWP and nowcasting tech-
niques, it is necessary to combine the two products,
so-called blending, in order to obtain seamless pre-
dictions (Sun et al., 2014). There are a plethora of
blending techniques present (e.g. Golding, 1998; Bowler
et al., 2006; Atencia et al., 2010; Kober et al., 2012; Bai-
ley et al., 2014; Kober et al., 2014; Simonin et al., 2017;
Nerini et al., 2019; Yoon, 2019; Radhakrishnan and Chan-
drasekar, 2020; Vannitsem et al., 2021), but none are
available in a widely used open-source nowcasting frame-
work. The pysteps initiative has demonstrated that such
an open-source implementation can accelerate collabo-
rations and future developments, which would justify
a similar approach concerning blending of nowcasting
and NWP.

Therefore, we have implemented an adaptive,
scale-dependent blending in pysteps based on earlier work
in the STEPS scheme (Bowler et al., 2006; Seed et al., 2013).
In this blending implementation, the combination of the
extrapolation nowcast, NWP, and stochastic noise compo-
nents is performed at different spatial scales using varying
blending weights per cascade level. The main objective of
this article is to describe the implementation of the STEPS
ensemble blending approach in the pysteps framework.
In this description, we introduce some new functionali-
ties that are in line with existing pysteps functionalities
or allow for the operational usage of the system. We test
the method on three heavy rainfall events in 2021 that
led to discharge peaks, in the case of the July 2021 event
even to widespread disastrous flooding, in the Belgian
and Dutch catchments Vesdre, Demer, Geul, and Dom-
mel, with a focus on both the national (the entire radar
domain) and catchment scales. We benchmark the results
against the NWP rainfall forecasts as issued by the Royal
Meteorological Institute of Belgium (RMI; which covers
the entire study area and has a 5 min temporal resolu-
tion), radar-based ensemble nowcasts with pysteps, and a
simple linear blending between the former two.

2 SCALE-DEPENDENT
BLENDING FRAMEWORK

This section describes the implementation of the STEPS
blending approach in the existing pysteps framework. The
description is limited to the main procedures used to con-
struct a blended STEPS forecast in pysteps and to function-
alities that were added or adjusted in this study. The mod-
ular set-up of pysteps allows the user to choose whether to
include these functionalities. When these functionalities
are not included, the system uses the basic functionali-
ties and set-up that are described in Bowler et al. (2006)
and Pulkkinen et al. (2019). For more information regard-
ing specific STEPS or pysteps functionalities, we refer the
reader to Bowler et al. (2006), Seed et al. (2013), and Pulkki-
nen et al. (2019).

The largest uncertainty in nowcasting is due to the
unknown growth and decay of rainfall fields. This uncer-
tainty requires an ensemble approach, which is pro-
vided by STEPS. It uses the multifractal properties of
rainfall, characterized by power-law scaling behaviour
in the spatial structure and the predictability of differ-
ent scales. To exploit this property, it decomposes rain-
fall fields into a multiplicative cascade with, generally, a
fast Fourier transform (FFT), representing different spa-
tial scales and lifetimes, with smaller scale features having
shorter lifetimes than larger scale features do (Lovejoy and
Schertzer, 1995; Harris et al., 1996; Marsan et al., 1996;
Foufoula-Georgiou, 1998; Seed et al., 1999). STEPS tries
to take the uncertainty in the rainfall field evolution into
account by applying different spatially and temporally cor-
related stochastic perturbations to each spatial scale in the
cascades. This results in large-scale features to evolve more
slowly than small-scale features, and it results in the con-
struction of an ensemble of outcomes, which, together,
should ensure a more appropriate representation of the
uncertainty associated with the rainfall field evolution.
This is applied to the radar-based nowcasting part, for
instance in pysteps, but this principle is also used when
combining nowcasts and NWP in STEPS blending. Hence,
the blending takes place at every individual cascade level,
which requires both the radar data and the NWP fore-
casts to be decomposed into a multiplicative cascade. A
third component, containing the stochastic perturbations,
is added to account for the uncertainty in the rainfall field
evolution and to construct an ensemble of outcomes in the
blending procedure (Seed, 2003; Bowler et al., 2006).

Figure 1 gives an overview of the workflow to compute
a blended precipitation forecast in pysteps. In this figure,
we have indicated with stars which functionalities are new
or adjusted from their original implementations in Bowler
et al. (2006), Seed et al. (2013), and Pulkkinen et al. (2019),
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F I G U R E 1 Schematic overview of the workflow for computing blended precipitation forecasts using pysteps. For each chart element,
the bottom row in italics describes the pysteps module used to execute the task described. Blue colours represent the elements that are part of
the extrapolation cascade, red colours those of the noise cascade, and yellow those of the NWP model cascade. An overlap in colours
indicates that the process in the chart element is used for multiple cascades (for instance, “compute motion fields” is performed for both the
extrapolation and NWP model cascade). Finally, green colours indicate the merged cascades up to the final output. A star on top of the
element indicates that this module is new or adjusted from the original Short-Term Ensemble Prediction System or pysteps implementation.
AR(p): pth-order autoregressive process; NWP: numerical weather prediction.
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IMHOFF et al. 5

and we also specifically mention this in the subsequent
sections. In principle, this implementation combines, per
ensemble member, an extrapolation nowcast component
with either a deterministic or an ensemble NWP forecast
and a noise component. First, the extrapolation and NWP
components are decomposed in multiplicative spatial cas-
cades, of which each level captures the features at the
corresponding spatial scale (Section 2.1). As the rainfall
fields in these cascade levels evolve over time, a pth-order
autoregressive process per cascade level is used (described
in Section 2.2). The blending takes place level-by-level,
meaning that the weights of the different components
are specific to each cascade level (Section 2.3.2). The
scale-dependent blending weights are computed from the
recent skill of the forecasts components and converge to a
climatological value (see Section 2.3.1), meaning that the
blending weights vary both per spatial scale level and in
time (per issue time, but also over the forecast horizon).
After the blending of the components per cascade level
(Section 2.5), the cascade levels are recomposed to one
blended forecast member and some post-processing steps
take place (Section 2.6), resulting in a blended ensemble
forecast for that issue time.

2.1 Constructing the cascades for the
three components

Pysteps library contains an import module that allows
for importing radar composites from various meteorolog-
ical organizations. This functionality has been extended
with a separate import module for NWP forecasts. As
these forecasts are generally on a different (coarser) spatial
resolution and spatial projection than the radar data, a
reprojection has to take place prior to the blending pro-
cedure. Therefore, we have implemented a reprojection
module that reprojects the NWP forecasts on to the spatial
projection of the radar data with an affine transformation
and that, if necessary, downscales the forecast to the radar
grid by means of a nearest-neighbour approach (more
interpolation methods are available).

Once all data are imported, pysteps thresholds and
transforms the data. Pysteps contains multiple transforma-
tion methods, but we only focus on the dBR transform here
(Pulkkinen et al., 2019):

dBRi,𝑗(t) =

{
10 log10 Ri,𝑗(t) if R ≥ 0.1 mm ⋅ hr−1

− 15 otherwise
,

(1)
with Ri,𝑗 (mm⋅hr−1) the precipitation rate at grid cell i, 𝑗
and time t. dBRi,𝑗(t) is −15 for precipitation intensities
of less than 0.1 mm⋅hr−1 (this is adjustable) to ensure a

clear rain–no rain transition for the nowcasting step. The
transformation ensures that the precipitation data have
a near-Gaussian distribution, which is needed for the
stochastic processes that assume Gaussianity. Finally, the
transformed fields are used to determine the motion fields
of the radar observations and the NWP forecast(s) with
one of the optical flow methods in pysteps (see Pulkkinen
et al., 2019). These motion fields are stored and later on
used for the extrapolation of the cascades in Section 2.4.

A property of precipitation is that its lifetime exhibits
power-law scaling with respect to spatial scale (e.g. Venu-
gopal et al., 1999; Seed, 2003; Germann et al., 2006),
which was used in S-PROG (Seed, 2003) and later in
STEPS (Bowler et al., 2006; Seed et al., 2013) as the
main motivation to decompose precipitation fields into
a multiplicative cascade. The levels in this cascade rep-
resent different spatial scales, which are treated individ-
ually in the nowcasting scheme. An advantage of the
log-transformation in Equation (1) is that this decompo-
sition into a multiplicative cascade becomes an additive
cascade in the log-transformed space (Seed, 2003). With
an FFT, the precipitation field is decomposed in such
an additive cascade by applying Gaussian filtering with
weight functions and also by back-transforming this to the
grid space (Pulkkinen et al., 2018). This results in k cas-
cade levels representing different spatial scales, which are
normalized afterwards:

dBRi,𝑗(t) =
K∑

k=1
𝜎k(t)Yk,i,𝑗(t) + 𝜇k(t). (2)

Here, 𝜎k is the standard deviation and 𝜇k(t) the mean of
level k (out of K cascade levels). Yk,i,𝑗(t) represents the spa-
tial variability in the original precipitation field for grid cell
i, 𝑗 and is one of the (radar) extrapolation, NWP, or noise
components throughout the blending procedure. Yk,i,𝑗(t)
has zero mean and a standard deviation of 1.0. This decom-
position is performed for both the radar data and NWP
forecast(s). The noise component has the same dimensions
and K cascade levels as the radar and NWP components
and will be represented by spatially and temporally cor-
related stochastic perturbations during the forecast (see
Section 2.2).

Once the radar data have been decomposed, the
derived motion fields are used to advect the past radar
observations to the current time step in order to have all
radar observations in Lagrangian coordinates. The decom-
posed NWP forecast and motion fields can be stored and
reopened with pysteps (a new functionality that has been
added to pysteps in this study), which saves calculation
time when the NWP data have an update frequency that is
lower than the update frequency of the blended nowcasts
(for instance, a 6 hr versus a 5 min update frequency).
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6 IMHOFF et al.

After the aforementioned steps, three cascades are
present that represent the extrapolation, NWP, and noise
components and which will be combined with a set of
blending weights per cascade level k. We will elaborate on
this in Section 2.5.

2.2 Temporal evolution of the
extrapolation and noise cascades

To estimate the change of the precipitation fields in the
extrapolation and noise cascades over time, pysteps sim-
ulates the temporal evolution of these fields over time
with a pth-order (generally second-order) autoregressive
(AR(p)) process per cascade level. This AR(p) process
injects a stochastic perturbation term that represents the
uncertainty in growth and decay of the precipitation field
over time. In the original pysteps implementation, which
focuses on nowcasting only, this stochastic term is added
to the extrapolation component at every time step, avoid-
ing the need for a separate noise component (Pulkkinen
et al., 2019). The addition of an NWP component in the
blending approach (Bowler et al., 2006) means that the
weights of the noise terms are no longer determined by
the AR(p) parameters alone, and we can no longer simply
aggregate the noise into the extrapolation cascade step by
step. Instead, we need to model the temporal evolution of
the extrapolation and noise cascades as two separate pro-
cesses, where the extrapolation cascade regresses without
added noise, as

Y ext
k,i,𝑗(t + tl) =

pmax∑
p=1

𝜙k,pY ext
k,i,𝑗(t + tl − pΔt), (3)

and the noise cascade regresses with added noise, accord-
ing to

Y 𝜖

k,i,𝑗(t + tl) =
pmax∑
p=1

𝜙k,pY 𝜖

k,i,𝑗(t + tl − pΔt) + 𝜙k,0𝜖k,i,𝑗(t + tl).

(4)

In these equations, Y ext and Y 𝜖 represent the extrapolation
and noise cascades at cascade level k and lead time t + tl,
p is the AR order, Δt is the internal time step (generally
the time interval between two consecutive radar observa-
tions), 𝜙k,p are parameters that control the rate of temporal
evolution at cascade level k and for order number p (deter-
mined from the initial radar observations, see Pulkkinen
et al., 2019, for the derivation of these parameters), and
𝜖k,i,𝑗(t) represents the perturbation field at cascade level
k. This perturbation field is a correlated Gaussian ran-
dom field, constructed using FFT filtering, that ensures
the noise field has the desired correlation structure – (for

more information and the available filtering methods, see
Schertzer and Lovejoy, 1987; Pegram and Clothier, 2001;
Bowler et al., 2006; Pulkkinen et al., 2019).

2.3 Blending weights

2.3.1 Initial skill and skill per lead time

STEPS bases the blending weights on the real-time skill
(Pearson’s correlation) of the extrapolation and NWP com-
ponents with regard to the latest observation at the issue
time of the blended nowcast. As the forecast lead time
advances, the weights increase for the noise component
and they decrease for the extrapolation component. The
NWP skill regresses towards climatological values during
the forecast. This real-time skill-based blending proce-
dure avoids the need for a parametrization of the blending
process and weights determination and ensures that the
blending weights represent the real-time state of the com-
ponents that are combined (Bowler et al., 2006).

The AR(p) model (Section 2.2) determines the skill
decrease of the extrapolation component per cascade level
k as follows (Bowler et al., 2004):

𝜌

ext
k (t + tl) =

p∑
p=1

𝜙k,p𝜌
ext
k (t + tl − pΔt), (5)

with t the issue time of the forecast, tl the lead time, and
starting value

𝜌

ext
k (t) = 1. (6)

Approximating the evolution by an AR(2) process yields
(Hamilton, 1994)

𝜌

ext
k (t + Δt) =

𝜙k,1

1 − 𝜙k,2
. (7)

The NWP skill per lead time is based on the ini-
tial skill, Pearson correlation at cascade level k, 𝜌nwp

k (t),
and regresses toward a climatological value (Bowler
et al., 2004):

𝜌

nwp
k (t + Δt) = qnwp

k 𝜌

nwp
k (t) + (1 − qnwp

k )𝜌nwp
k , (8)

with
qnwp

k = e−tl∕L1,k (2 − e−tl∕L2,k ). (9)

In these equations, L1,k and L2,k are coefficients that rep-
resent the decorrelation times of the NWP forecast skill
estimates per cascade level. We have not adjusted these
coefficients here, but estimates can be found in Sup-
porting Information Table S1, which is based in Bowler
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IMHOFF et al. 7

et al. (2004). 𝜌nwp
k is the climatological skill value toward

which Equation (8) regresses.
Bowler and co-workers (Bowler et al., 2004; Bowler

et al., 2006) used fixed values of 𝜌nwp
k based on an anal-

ysis of NWP forecasts for the UK during April 2003. As
the NWP forecast skill varies over time as a function of
prevailing precipitation type (stratiform or convective, e.g.
Mittermaier et al., 2013; Prakash et al., 2016), these fixed
values are not always representative of the NWP skill over
the forecast horizon. Therefore, as a new component in
the blending procedure, we have implemented a module
in pysteps that computes the climatological skill based on
a multi-day moving window, which can be adjusted to the
(operational) needs of the user. At every issue time (for
instance, every 5 min), the current skill of the NWP fore-
cast, as derived with the most recent radar observation,
is stored in a new (operationally usable) storage module
in pysteps (note that a negative correlation is regarded as
zero) and at the end of the day a day-average skill is calcu-
lated. Subsequently, the climatological skill at a given issue
time is the daily average skill over the number of (past)
days in the moving window.

2.3.2 Weights determination

The three components are combined per spatial cascade
level, which is performed with a weighted sum of the three
components (in log space). These weights vary over time,
as a function of both the initial skill and skill per lead
time of the NWP and extrapolation components. STEPS
comes with two blending methods, introduced by Bowler
et al. (2006) and Seed et al. (2013), which we have both
added to pysteps to allow users to choose the ideal method
for their case. In the following, we describe the principle of
both blending methods and show the difference in result-
ing weights for a test case on June 29, 2021, 1330 UTC in
Figure 2. In Sections 3.3.4 and 4.3, we describe the evalu-
ation and effect of both methods on the resulting rainfall
forecast for this case.

The Bowler et al. method
The method introduced by Bowler et al. (2006) assumes
that the sum of the squared weights equals one (imply-
ing that the sum of the weights can exceed one) and that
the three cascades are uncorrelated. The weights depend
on the current and expected skill of the extrapolation and
NWP components (see Equations 5 and 8) and are calcu-
lated per lead time tl as

wext
k (t + tl) = 𝜌

ext
k (t + tl)

√√√√ 𝜆

ext
k (t + tl)

𝜆

ext
k (t + tl) + 𝜆

nwp
k (t + tl)

, (10)

wnwp
k (t + tl) = 𝜌

nwp
k (t + tl)

√√√√ 𝜆

nwp
k (t + tl)

𝜆

ext
k (t + tl) + 𝜆

nwp
k (t + tl)

,

(11)

w𝜖

k(t + tl) =
√

1 − [wext
k (t + tl)]2 − [wnwp

k (t + tl)]2, (12)

with wext
k (t + tl), wnwp

k (t + tl), and w𝜖

k(t + tl) the weights for
the extrapolation, NWP, and noise cascade respectively
at scale level k and time t + tl. 𝜆ext

k (t + tl) and 𝜆

nwp
k (t + tl)

are the ratios of the explained to the unexplained vari-
ance of the extrapolation and NWP components, and are
calculated as

𝜆

ext
k (t + tl) =

[𝜌ext
k (t + tl)]2

1 − [𝜌ext
k (t + tl)]2

, (13)

𝜆

nwp
k (t + tl) =

[𝜌nwp
k (t + tl)]2

1 − [𝜌nwp
k (t + tl)]2

. (14)

The Seed et al. method
A disadvantage of the method by Bowler et al. (2006) is
that it assumes all cascades are uncorrelated. To enable the
blending of more than two forecasts (e.g., multiple NWP
forecasts), Seed et al. (2013) introduced a covariance-based
method to determine the blending weights. We have
adapted the original formulation slightly to avoid zero
values in the denominator and used the normalized
covariance matrix, which consists of the cross-correlations
between the extrapolation and model cascades (Seed, per-
sonal communication, December 2021). Considering these
adjustments, the weights are determined as

w⃗k(t + tl) =
⎡⎢⎢⎢⎣
𝜌

1,1
k (t + tl) 𝜌

1,2
k (t + tl) · · ·

𝜌

1,2
k (t + tl) 𝜌

2,2
k (t + tl) · · ·

· · · · · · · · ·

⎤⎥⎥⎥⎦

−1

⋅

⎡⎢⎢⎢⎣
𝜌

1
k(t + tl)

𝜌

2
k(t + tl)
· · ·

⎤⎥⎥⎥⎦
,

(15)

with 𝜌

1,2
k (t + tl) the cross-correlation between models 1 and

2 (e.g., the extrapolation and NWP cascade) on scale level
k and for time t + tl. 𝜌

1,1
k (t + tl) is the cross-correlation

of model 1 with itself, which should equal 1.0. If more
than two models (i.e., more than just one extrapolation
and one NWP component) will be combined, the matrix
increases from 2 × 2 to nmodels × nmodels, as indicated with
the ellipses in Equation (15). 𝜌1

k(t + tl) is the skill of model
component 1 – for example, the extrapolation cascade 𝜌

ext
k

(t + tl) – on cascade level k and for time t + tl.
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8 IMHOFF et al.

(a) (b)

Lead time (hr)

F I G U R E 2 Resulting blending weights per cascade level for the test case of June 29, 2021, 1330 UTC, when using the approaches of (a)
Bowler et al. (2006) and (b) Seed et al. (2013). The blue lines correspond to the blending weights of the extrapolation component, the pink
lines to the numerical weather prediction (NWP) component, and the olive green lines to the noise component. The (approximate)
corresponding spatial scale per cascade level is indicated above every sub-panel. NWP: numerical weather prediction.

Subsequently, the noise weight is calculated as

w𝜖

k(t + tl) =

√√√√√√√√1 − w⃗k(t + tl) ⋅
⎡⎢⎢⎢⎣
𝜌

1
k(t + tl)

𝜌

2
k(t + tl)
· · ·

⎤⎥⎥⎥⎦
. (16)

To prevent taking the square root of a negative number, the
noise weight is set to 0.0 when

w⃗k(t + tl) ⋅
⎡⎢⎢⎢⎣
𝜌

1
k(t + tl)

𝜌

2
k(t + tl)
· · ·

⎤⎥⎥⎥⎦
> 1.0. (17)

In addition, the sum of the weights can exceed 1.0 – this
also holds for the Bowler et al., 2006, method – and the
weights per component can become smaller than zero.
This is normal behaviour for covariance-based weight
determination methods and is meant to adjust the forecast
to values outside the range of the model components when
all components conditionally under- or overestimate the
true value (Radchenko et al., 2021).

2.4 Advection of the extrapolation
and noise cascades

Before we can combine the different cascades, the extrapo-
lation and noise cascades have to be extrapolated from the
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IMHOFF et al. 9

issue time (the most recent observation) to time t + tl. Both
cascades are in Lagrangian space, because this allows for
the temporal evolution of the cascades through an AR(p)
process (Section 2.2). In pysteps, this extrapolation step
is one of the last steps in the forecasting framework, but
since the NWP forecast for time t + tl is not in Lagrangian
space, the extrapolation and noise cascade first have to
be advected prior to the blending step. This change pri-
marily affects the post-processing steps that have been
implemented in pysteps (Pulkkinen et al., 2019), which are
therefore adjusted in Section 2.6.

The advection of the extrapolation and noise cascades
takes place with the motion fields that have been derived
at the start of the framework (Section 2.1). It is possible
that the derived motion fields change over the course of the
forecast horizon. The NWP forecast can give useful infor-
mation about this and, therefore, the derived motion fields
are also combined (Section 2.4.1). Finally, parts of the noise
cascade can advect out of the domain in the downwind
direction, while no new noise is advected into the domain
from the upwind direction. To prevent this loss of noise,
the noise that advects out of the domain on one side or
multiple sides is allowed to move into the domain on the
opposite side(s) again (so-called mirroring). The extrapo-
lation cascade can eventually also be advected out of the
domain. This is a known limitation to nowcasting and con-
stitutes another motivation to include information from
other sources, such as NWP forecasts.

2.4.1 Combining the velocity fields

In this implementation, we combine the motion fields for
time t + tl using the second cascade level weights, as was
done in Bowler et al. (2006), in the following way:

v(t + tl) = wext*
2 (t + tl)vext(t + tl) + wnwp*

2 (t + tl)vnwp(t + tl),
(18)

with vext and vnwp the velocity fields for the extrapola-
tion and NWP cascades, and wext*

2 (t + tl) and wnwp*
2 (t + tl)

the weights for the extrapolation and NWP cascades (note
that more than two model cascades can be added to this
equation), normalized by the sum of the two to ensure a
total weight of 1.0. This approach is slightly different from
the method in Bowler et al. (2006), where wnwp*

2 (t + tl) =
1 − wext*

2 (t + tl), as that method does not ensure a total
weight of 1.0, which can lead to either too small weights
or negative wnwp*

2 weights when wext*
2 is larger than 1.0. To

take into account the uncertainty in the motion field devel-
opment, vext(t + tl) can be stochastically perturbed prior to
the blending step in Equation (18) (see Bowler et al., 2006;
Pulkkinen et al., 2019). Although the use of the second

cascade level to combine the velocity fields is the same as
in the original implementation by Bowler et al. (2006), it
is unclear if this leads to the best results. Further testing is
recommended for this.

2.5 Combining the cascades
and recomposing the forecast

After the temporal evolution and advection of the extrap-
olation and noise cascades (Sections 2.2 and 2.4), the
cascades can be blended with the NWP cascade(s):

Y blended
k,i,𝑗 (t + tl) = wext

k (t + tl)Y ext
k,i,𝑗(t + tl)

+ wnwp
k (t + tl)Y nwp

k,i,𝑗 (t + tl)

+ w𝜖

k(t + tl)Y 𝜖

k,i,𝑗(t + tl), (19)

where Y ext
k,i,𝑗(t + tl) and Y 𝜖

k,i,𝑗(t + tl) are extrapolated to time
t + tl (Section 2.4). Note that outside the radar domain only
the NWP and noise cascade(s) are combined using weights
that are determined based on the presence of only NWP
and noise components. New in this implementation is that
the aforementioned blending procedure can take place in
three ways:

1 There is only one deterministic NWP model.
Equation (19) is repeated for n requested (extrapola-
tion) ensemble members, which differ only due to the
different realizations of the noise cascade.

2 There are multiple NWP models or an ensemble NWP
forecast and all NWP members need to be combined
with extrapolation and noise cascades. This means that
each member of the blended nowcast contains informa-
tion from all NWP members; the procedure remains the
same as before, but, instead of one model cascade and
weight, multiple model cascades and weights are intro-
duced (see also Section 2.3.2). As the different model
realizations can be correlated, it is recommended to use
the Seed et al. (2013) weights method.

3 There are multiple NWP models or an ensemble
NWP forecast, but these members are not blended
together; rather, they are combined individually per
realization, with the extrapolation and noise cascades.
Equation (19) is applied for NWP model realization 1
and noise cascade realization 1, followed by model
and realization 2, 3, and so on. If the requested num-
ber of ensemble members is larger than the num-
ber of NWP model realizations, this process is sim-
ply repeated for the next set of noise cascade realiza-
tions in a round-robin fashion. In the latter case, it is
recommended to use a number of pysteps ensemble
members that is a multiple of the number of NWP
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10 IMHOFF et al.

ensemble members. An advantage of this method is
that it can bypass the correlation problem between indi-
vidual model realizations; and, with this approach, the
ensemble spread can become larger than for method 1,
which computes a (weighted) mean of the NWP mem-
bers, thereby effectively reducing the ensemble spread.

Once the cascades are blended, the result can be recom-
posed to one forecast field (Bowler et al., 2004; Bowler
et al., 2006):

dBRblended
i,𝑗 (t + tl) =

K∑
k=1

𝜎

blended
k (t + tl)Y blended

k,i,𝑗 (t + tl)

+ 𝜇

blended
k (t + tl), (20)

where 𝜎

blended
k (t + tl) and 𝜇

blended
k (t + tl) are the weighted

sums of the means and standard deviations of the extrap-
olation and NWP model cascades (Bowler et al., 2004):

𝜇

blended
k (t + tl) =

wext
k (t + tl)

wext
k (t + tl) + wnwp

k (t + tl)
𝜇

ext
k (t)

+
wnwp

k (t + tl)

wext
k (t + tl) + wnwp

k (t + tl)
𝜇

nwp
k (t), (21)

𝜎

blended
k (t + tl) =

wext
k (t + tl)

wext
k (t + tl) + wnwp

k (t + tl)
𝜎

ext
k (t)

+
wnwp

k (t + tl)

wext
k (t + tl) + wnwp

k (t + tl)
𝜎

nwp
k (t). (22)

2.6 Post-processing steps

As a last step, pysteps ensures that the forecast precip-
itation fields have the same statistical properties as the
most recent observation. Two post-processing methods are
used for this: (1) masking, which avoids the generation of
rainfall too far from the existing precipitation fields; and
(2) probability matching, which matches the statistics (the
total precipitation volumes) with the most recent observa-
tions within the mask. We have implemented two of the
pysteps masking methods in the blending framework: one
method that constrains the mask to the observed grid cells
that exceed a given threshold, and an incremental masking
method that relaxes the mask to a wider area around the
precipitation fields. Moreover, we have implemented both
probability matching methods from pysteps: the first one,
originally developed for S-PROG (Seed, 2003), matches the
mean precipitation amount of the masked forecast field
to the observed one, and the second method, by Foresti

et al. (2016), matches the cumulative distribution func-
tion (cdf) of the masked forecast field with the observed
field – (for more information, see Pulkkinen et al., 2019).

Different from the original pysteps implementation,
where the post-processing steps take place in Lagrangian
coordinates (thus, prior to the extrapolation step), the
post-processing steps have to take place after extrapolation
and blending of the cascades (and incorporate the NWP
model fields as well). This ensures that the cdf of the rain-
fall intensities in the blended forecast is not enhanced or
tuned down by a component with a low weight, or by rain-
fall from the extrapolation component that advects out of
the domain. Therefore, we have developed a Lagrangian
blended probability matching scheme and incremental
masking strategy, in which the mask consists of the com-
bined radar observation and NWP forecast fields and
which advects along with the forecast. In this procedure,
the most recent radar observation is extrapolated to time
t + tl with the velocity field from Equation (18). Subse-
quently, the extrapolated radar field is combined with the
NWP forecast field(s) using the blending weights from the
second cascade level, which is also used to combine the
velocity fields. These blending weights do not include the
noise weight, increasing both the nowcasting and NWP
component weights. The use of the second cascade level
weights is merely for consistency with the use of these
weights for blending the velocity fields, but is not, by
definition, the best choice. We will elaborate on the limi-
tations and possible future improvements of the proposed
Lagrangian blended probability matching scheme in the
Section 5. Finally, after the previous step, the blended field
is used as a reference for the rainfall intensity distribution
used in the post-processing steps.

3 EVALUATION OF THE
BLENDED RAINFALL FORECASTS

3.1 Study area and rainfall events

The study areas to test and evaluate the blended forecast
of Section 2 are Belgium and the south of the Nether-
lands (Figure 3). Besides a focus on domain-wide rain-
fall forecasting performance, we focus on four catch-
ments: (1) Vesdre (685 km2), which is a steep and quickly
responding catchment in the Belgian Ardennes; (2) Demer
(2,268 km2), which starts in the hilly parts of Belgian Lim-
burg and flattens out downstream in Flemish Brabant; (3)
Geul (323 km2), which has its origins in the foothills of the
Belgian Ardennes and flows into the hills of southern Lim-
burg in the Netherlands; and (4) Dommel (1,691 km2), a
relatively flat catchment that has its origin in the north of
Belgium and flows through the south of the Netherlands.
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IMHOFF et al. 11

F I G U R E 3 Map of the study area with the four catchments indicated in orange and the five radar locations as red triangles (‘J’ is
Jabbeke, ‘H’ is Helchteren, ‘A’ is Avesnois, ‘W’ is Wideumont, and ‘N’ is Neuheilenbach). The circles indicate a distance of 100 km from the
radar, and the grey shaded area indicates the maximum range of the radars based on a 250 km distance from the nearest radar.

We focus on three heavy rainfall events in 2021 with
different rainfall characteristics (see Table 1) that led to
flood peaks in some or all of the four catchments. The
event in January is a stratiform winter event, typical for
the temperate maritime climate in the study area, resulting
in moderate to high rainfall sums for winter (20–30 mm,
on average) in the four catchments. The event was caused
by a relatively stationary low-pressure system west of the
Netherlands that led to a continuation of frontal systems
(predominantly occlusion fronts) passing over Belgium
and the Netherlands, resulting in hours of rainfall with
only short dry time spans in between. The event in June
is a convective event, more typical for the summers in
the study area, with small and locally occurring intense
rainfall cells that locally led to more than 100 mm of
rainfall and (flash) flooding in the western part of the
Geul (catchment average of 28.8 mm) and eastern part
of Demer (catchment average of 54.5 mm). This event
was part of a low-pressure system above the north of
France, which caused a convergence line between Belgium

and the Netherlands that resulted in relatively station-
ary convective cells and high amounts of rainfall in a
short time span (most of the rainfall fell between 1500
and 2000 UTC, and locally often within 1 hr). Finally, the
July event, as already mentioned in Section 1, was a per-
sistent mesoscale system that contained both stratiform
and convective rainfall and resulted in almost continu-
ous rainfall for days. Over a large region, this system led
to extreme rainfall amounts and devastating floods, with
the Vesdre as one of the hotspots, and significant flood-
ing in the Geul and Demer (Koks et al., 2022; Kreienkamp
et al., 2021).

3.2 Rainfall products

3.2.1 Radar data

The RMI provides radar rainfall estimates from a com-
posite of five C-band weather radars (Figure 3). The
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12 IMHOFF et al.

T A B L E 1 Overview of the three events in this study.

Catchment-average rainfall sum (mm)Start time event
(UTC)

End time event
(UTC) Typea Vesdre Demer Geul Dommel

No. of runs
verifiedb

Jan 27, 2021, 2300 Jan 29, 2021, 0900 S 30.6 20.7 27.7 30.6 409

Jun 29, 2021, 1130 Jun 30, 2021, 1130 C 30.9 54.5 28.8 9.6 281

Jul 12, 2021, 2200 Jul 15, 2021, 2100 S/C 131.5 92.0 109.2 101.9 854
a C, convective; S, stratiform.
b The number of issue times (runs) that were part of the validation.

reflectivity measurements of the five radars are processed
in four steps:

1 Non-meteorological echoes are removed with Doppler
filtering, and clutter is identified and removed based
on the vertical profile of reflectivity, image texture, a
satellite cloud mask, and information from the dual
polarization of two of the radars (Helchteren and
Jabbeke).

2 Per radar, the reflectivity at the ground is estimated with
an averaged vertical profile of reflectivity to extrapo-
late non-convective rainfall to the ground level, and by
interpolating missing data and identifying the convec-
tive precipitation. This is followed by a conversion from
reflectivity into rain rate using the Marshall–Palmer
relationship (Marshall et al., 1955), where low inten-
sities (stratiform precipitation) and higher intensities
(convective precipitation) are treated differently – (as
done in Wagner et al., 2012):

Ri,𝑗(t) =
⎧⎪⎨⎪⎩

10
dBZi,𝑗 (t)−23

16 if dBZ ≤ 44

10
dBZi,𝑗 (t)−19

19 otherwise
. (23)

A maximum reflectivity of 55 dBZ (approximately
88 mm⋅hr−1) is used to deal with hail and a minimum
reflectivity of 7 dBZ is used as a rain–no rain threshold
to filter out artefacts.

3 The rainfall rates of every radar are adjusted with a
mean-field-bias factor that is based on the sums of the
radar rainfall and rain-gauge measurements (from 152
gauges) over the past hour.

4 The resulting rainfall rates of all radars are combined
with weights based on the distance of the grid cell
to the radars. This range-weighted combination takes
place with only the three closest radars during the
months with predominantly convective precipitation
(May through August). Finally, the composited rain
rates are mean-field-bias adjusted (the whole domain at
once), in a similar way as in step 3.

For more information about the product, we refer the
reader to Goudenhoofdt and Delobbe (2016).

3.2.2 NWP rainfall forecasts

The NWP rainfall forecasts are produced by the ALARO
configuration of the NWP system developed by ACCORD
(A Consortium for Convection-scale Modeling Research
and Development), formerly known as the ALADIN sys-
tem (Bubnová et al., 1995; Termonia et al., 2018). The
physics parametrizations of the ALARO model include
the multiscale precipitation and cloud scheme “Modu-
lar Multiscale Microphysics and Transport” (3MT; Gerard
et al., 2009). The ALARO model is run operationally in a
deterministic setup at 1.3 km resolution four times a day
on a 548 × 548 domain covering Belgium, the Netherlands,
and Luxembourg (Benelux), with a lead time of up to 48 hr.
The forecast is available approximately 4 hr after the anal-
ysis time, and this is at present the best (also in terms
of spatial and temporal resolution and update frequency)
available NWP product provided by RMI. As the ALARO
NWP model is maintained and co-developed at RMI, the
code was adapted to produce high-frequency precipitation
output at every time step, which was then accumulated
to obtain an exceptionally high operational temporal res-
olution of 5 min (internal calculation time step is 45 s).
This high-frequency precipitation output is produced over
a smaller subdomain that covers the Belgian radar com-
posite and the Benelux.

3.3 Experimental set-up

3.3.1 Verification metrics

This section describes the two verification metrics that
were used to evaluate the performance of the blended fore-
casting product. The continuous ranked probability score
(CRPS) takes the entire distribution of an ensemble fore-
cast into account for comparison with the observations. It
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IMHOFF et al. 13

uses the cdf of the probabilistic forecast, a curve, and the
cdf of the observation, which is a single step function. The
area between these two cdfs is a measure of the error of the
probabilistic forecast, which is formulated in the CRPS as
(given a lead time in the forecast)

CRPS = 1
Nf

Nf∑
n=1∫

+∞

−∞
(PFn (x) − POn(x))

2 dx. (24)

In this equation, PFn (x) and POn (x) are the forecast and
observed non-exceedance probability, for the nth forecast
(or the nth grid cell for spatial averaging) from a total of
Nf forecasts. x represents the forecast and observed rain-
fall amount, which can be approximated numerically as
an interval with variable step dx, depending on the rainfall
sum per ensemble member. The decomposition into this
stepwise function is explained in Hersbach (2000), which
is the approach we follow here. The CRPS reduces to the
mean absolute error for a deterministic forecast, which
makes it applicable to and comparable for both determin-
istic and probabilistic forecasts. Nevertheless, one should
acknowledge that issues such as the double penalty for
high-resolution deterministic forecasts (e.g. Mittermaier
and Csima, 2017) will cause CRPS to favour probabilistic
forecasts.

The critical success index (CSI; Schaefer, 1990) is a
threshold-based categorical score that is formulated as
(given a lead time in the forecast)

CSI = H
H +M + FP

, (25)

where H is the number of hits where both forecast and
observation exceed the threshold, M is the number of
misses where only the observation exceeds the threshold,
and FP is the number of false positives, where the fore-
cast exceeds the threshold but the observation does not. In
this study, the used thresholds to calculate the CSI were 1.0
and 5.0 mm⋅hr−1. For ensemble forecasts, the individual
contingency table members (H, M, and FP) are calculated
per ensemble member and, finally, the CSI is based on
the combined contingency table results of all members
together.

3.3.2 Evaluation of rainfall forecasts

To test the blending set-up as described in Section 2, we
constructed blended forecasts (from here onwards referred
to as STEPS blending) with 48 ensemble members and a
12 hr forecast horizon for every 5 min issue time during
the three events (Section 3.1). The choice for 48 ensem-
ble members originates from the operational ambition
of the RMI. We used a forecast horizon of 12 hr to be

able to distinguish the difference in predictability among
the methods tested (which will be described hereafter),
where we expect the radar-based nowcasting to have added
value for the first hours, NWP for the longer lead times,
and blending to have added value in the transition zone
between those two (Lin et al., 2005; Germann et al., 2006).
Note that the radar-based nowcasting will likely have no
information to advect into the domain after the first hours
of the forecast. The added stochastic perturbations to form
the nowcast ensemble will somewhat expand this window,
but eventually no rain will be forecast after a few hours of
lead time (depending on the location and advection veloc-
ity of the rainfall fields). The choice to also use a 12 hr
forecast horizon for the radar-based nowcasting is merely
to identify the point of no predictability compared with
the blended and NWP forecasts. In addition, as a logical
follow-up would be to apply this work to flood forecasting,
we have considered a sufficiently long forecast horizon to
capture the response times of the selected catchments.

For the proposed blending approach, the radar QPE
and NWP rainfall forecasts from Section 3.2 were used.
The pysteps configuration used is given in Table 2. We
benchmarked the results against (1) the deterministic
NWP forecasts (Section 3.2.2), (2) radar-based ensemble
nowcasts with 48 members, constructed with pysteps
(v1.6.2) using the methods and forecast settings from
Table 2 (except for the blending settings), and (3) a linear
blending method (48 members) that was also added to
pysteps as an additional blending functionality. The linear
blending method linearly reduces the blending weight for
the (48-member ensemble) extrapolation component from
one to zero between a given start and end time, whereas it
linearly increases the blending weight for the (determin-
istic) NWP component from zero to one. For this study,
the start and end times of the linear blending were fixed
at 1 hr and 3 hr respectively after the issue time, which is
around the average skilful lead time of 2 hr for nowcasting
for catchments in this region (Imhoff et al., 2020). The
radar QPE, which was also used to construct the (blended)
nowcasts, was considered the observation in this study,
and only data within the observed radar domain were used
for comparison. Only the QPE inside the radar domain
was used for comparison in the forecast validation. Note
that a comparison between an ensemble forecast (the
radar-based nowcasts and blended forecasts) and a deter-
ministic forecast (the NWP forecast) is, strictly speaking,
not fair. In this small test case to evaluate the proposed
system, using the operational products of RMI, we are
limited to this test set-up, but we recommend a more thor-
ough future analysis using ensemble NWP forecasts and a
larger sample of events.

In the evaluation of the STEPS blending approach and
the comparison with the three aforementioned models, we
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14 IMHOFF et al.

T A B L E 2 The pysteps configuration used in this study.

Configuration option Value Reference

Methods

Optical flow method Lucas–Kanade Lucas et al. (1981)

Advection method Semi-Lagrangian Germann and Zawadzki (2002)

Nowcasting method STEPS (Seed, 2003; Seed et al., 2013; Bowler
et al., 2006), Pulkkinen et al. (2019)

Perturbations Non-parametric Seed et al. (2013)

Mask method Incremental Pulkkinen et al. (2019)

Probability matching cdf Foresti et al. (2016)

Blending module settings

Climatological skill window length 3 days

Weights method BPS Bowler et al. (2006)

Forecast settings

Number of lead times 144 (12 hr)

Number of ensemble members 48

Precipitation threshold 0.1 mm⋅hr−1

Order of the AR(p) model 2

Number of cascade levels 8

Transformation R to dBR Equation (1)

Velocity perturbations Turned off

Abbreviations: BPS, Bowler–Pierce–Seed; cdf, cumulative distribution function; STEPS, short-term ensemble prediction system.

focused on two spatial scales: the radar-domain and the
catchment scales. On the radar-domain scale, which pro-
vides a measure of the forecast skill on a country level, the
forecasts of the four models were validated using the CRPS
and CSI. Per issue time, both metrics were calculated per
grid cell, and, subsequently, averaged over all grid cells in
the radar domain. On the catchment scale, the pointwise
precipitation intensities and precise grid point localization
becomes less relevant, but the accumulation over basins
and spatio-temporal consistency becomes more relevant.
On this scale, we validated the forecasts of the four mod-
els using the CRPS and CSI (for the results of the latter
analysis, see the Supporting Information) on both the
catchment-averaged rainfall (per lead time) and cumula-
tive rainfall sums (from issue time until lead time tl) for the
catchments Vesdre, Demer, Geul, and Dommel.

3.3.3 Evaluation of climatological moving
window size

The skill of the extrapolation and NWP components per
lead time determines the blending weights for that lead
time. The NWP skill regresses from the initial skill at the
issue time of the forecast to its climatological skill, which

is based on the past skill for a given moving window size
(Section 2.3.1). The choice for this moving window size
will depend on, for instance, the variety in weather pat-
terns and seasons, and its influence on the skill of the NWP
rainfall forecasts. A short moving window of only several
days may better represent the current NWP skill for some
regions and climatic zones, but may at the same time be
too short and contain an insufficient number of rainy sam-
ples for others. Throughout this study, we focused on a
3-day moving window size, but we also tested other mov-
ing window sizes (1, 7, 14, and 21 days). In Section 4.2,
we visualize the effects of these window sizes on the
resulting climatological skill on all eight spatial cascade
levels for the months January, June, and July 2021 (the
months containing the three events). In addition, we tested
these window sizes for one issue time (1330 UTC) dur-
ing the June event (Table 1), with a focus on the effects
concerning both the domain-wide rainfall forecast skill
and the catchment-averaged forecast skill. This particu-
lar test case for June is also used to illustrate the dif-
ferences in rainfall forecasts between the methods (see
Figures 4 and 5. This should give a first impression of the
sensitivity of the blending approach to the moving window
size choice.

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4461 by T
u D

elft, W
iley O

nline L
ibrary on [02/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



IMHOFF et al. 15

F I G U R E 4 Domain-wide forecast rainfall fields for the test case of June 29, 2021, 1330 UTC (an example for the other events is
illustrated in Supporting Information Figures S1 and S2). The top row illustrates the observed radar rainfall fields, and the rows below
illustrate the forecast rainfall fields with the four methods tested (radar-based ensemble nowcasting, deterministic numerical weather
prediction [NWP], linearly blended forecasts and Short-Term Ensemble Prediction System [STEPS]-blended forecasts) for five lead times.
From the ensemble forecasts, only the first member is shown (the probabilities of exceeding a given threshold from these ensembles are
illustrated in Supporting Information Figures S3–S5).

3.3.4 Evaluation of weights method

Throughout this study, the weights method by Bowler
et al. (2006) was used. We also compared the effect of both
the Bowler et al. (2006) and Seed et al. (2013) weights
derivation method on the resulting forecast skill for the
same issue time (1330 UTC) during the June event. The
resulting weights for this issue time on all eight cascade
levels are shown in Figure 2. In Section 4.3, we will discuss
the effects of this approach on the rainfall forecast skill,
both at the catchment and radar domain scales, for this
forecast.

4 RESULTS

4.1 Evaluation of rainfall forecasts

4.1.1 Example case of June 29, 2021

Before we discuss the statistics per event based on all fore-
casts, Figure 4 illustrates the rainfall forecasts of all meth-
ods tested for just one issue time, the test case of June 29,
2021, 1330 UTC. This day consisted of convective rain-
fall, with locally high-intensity rainfall, especially near the
Vesdre, Demer, and Geul catchments, which is generally
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16 IMHOFF et al.
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F I G U R E 5 Evaluation of the four forecasting methods for the test case of June 29, 2021, 1330 UTC. (a) The continuous ranked
probability score (CRPS) per lead time, averaged over all grid cells in the radar domain. The grey bars indicate the domain-averaged rainfall
rates (mm⋅hr−1) as observed during that lead time. (b) The forecast catchment-averaged cumulative rainfall sums per catchment (Vesdre,
Demer, and Geul) compared with the observations (the observed radar rainfall) in black. The thick coloured lines indicate the ensemble
median, or the deterministic forecast (for numerical weather prediction [NWP], light green). The shaded areas around the ensemble medians
indicate the interquartile range. STEPS: Short-Term Ensemble Prediction System.

challenging to forecast well with both nowcasting and
NWP (e.g. Roberts and Lean, 2008; Berenguer et al., 2012;
Ayzel et al., 2019). With the selection of this challenging
event, we hope to more clearly visualize the differences
between the introduced methods (for an example of the
other two events and for the resulting ensemble proba-
bilities, see Supporting Information Figures S1–S4). Up to
at least the first hour ahead, the (radar-based ensemble)
nowcast captures the location and intensity of the rain-
fall better than the NWP forecast does. For the longer lead
times, for instance 6 hr or more, the radar-based nowcast
loses skill, which is also in line with the maximum skilful
lead time of nowcasting (Lin et al., 2005; Ayzel et al., 2019;
Imhoff et al., 2020). The linear blending approach resem-
bles the radar-based nowcast during the first hour, after
which the NWP forecast slowly gets more weight until 3 hr
ahead, when the linear blending forecast is the same as the
deterministic NWP forecast. As a consequence, there are

no differences between the 48 ensemble members in the
linear blending approach beyond the 3 hr lead time.

As the radar-based nowcast fails to capture the local-
ization of rainfall and the rainfall tends to dissipate for
the indicated lead times of 6 and 12 hr, the linear blend-
ing approach seems beneficial here. The same holds for
the STEPS blending approach, which also adds perturba-
tions to the NWP forecast. This can increase the ensem-
ble spread throughout the forecast, especially compared
with the linear blending approach (for more information
about the ensemble spread, see Supporting Information
Figures S6–S8). From visual inspection, it is hard to say
which of the blending approaches performs better for this
event, although the linear blending approach seems to
benefit from the higher rainfall intensities in the NWP
forecast during the 6 and 12 hr lead times, due to the
larger weight that the NWP is given for this forecast com-
pared with the STEPS blending approach. However, as we
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IMHOFF et al. 17

are only focusing on one ensemble member, this is not
an entirely fair comparison. Therefore, in the subsequent
sections, we will take the full ensemble into account.

Figure 5a takes the entire ensemble into account by
showing the CRPS for the forecasts of Figure 4. Averaged
over the entire radar domain, the radar-based ensemble
nowcast results in a lower error than the NWP forecast for
the entire forecast horizon. This can be partly attributed
to the frequent zero-rainfall forecasts at the grid cell level
for the radar-based ensemble nowcast forecasts, which can
benefit statistics such as the CRPS when a larger fraction
of the radar domain has zero rainfall with a few scat-
tered high-intensity rainfall cells. At the catchment scale
(Figure 5b), this effect becomes clear with cumulative
rainfall sums that stagnate after a lead time of 6 hr and
an overall underestimation of the rainfall amount by the
radar-based ensemble nowcast for lead times of more than
2 hr (Vesdre and Geul) or for the entire forecast horizon
(Demer). The NWP forecast, however, tends to overesti-
mate the cumulative rainfall sums for the Vesdre and Geul,
especially for lead times beyond 6 hr. At the same time, it
underestimates the rainfall sum for the Demer, though less
than the nowcast. The Dommel is not shown for this issue
time because the observed rainfall was near zero and this
was forecast well by all methods.

In the linear blending forecast, the skill at the domain
scale is the same as the nowcast skill for the first hour
and the same as the NWP skill for 3 hr or more ahead
(Figure 5a). In between, there is a transition from the
skill of the nowcast to the skill of the NWP forecast,
which is in line with the fixed blending weights of the
linear blending approach (Section 3.3.2). At the catch-
ment scale (Figure 5b), the results are similar to the NWP
forecast.

The domain-averaged CRPS of the STEPS blending
forecast is lowest of all the methods tested for lead times
of 3 hr or more (Figure 5a). During the first 2–3 hr of
the forecast, the STEPS blending forecast has a somewhat
higher CRPS than the radar-based ensemble nowcast and
linear blending method, which may be caused by an exces-
sive (initial) weight for the NWP component during these
lead times. At the catchment scale (Figure 5b), the STEPS
blending approach outperforms the radar-based ensem-
ble nowcast for all three catchments. Whether the linear
blending or STEPS blending approach was a better choice
differs between the three catchments in this test case (and
also varies per issue time; e.g., see Supporting Information
Figure S9). For the Vesdre, STEPS blending clearly outper-
forms all other methods, whereas for the Demer the linear
blending approach (and the NWP forecast) is much closer
to the observations. This also holds, to a lesser extent, for
the Geul, although the observations fall at least within the
spread of the STEPS blending approach. In subsequent

Sections 4.1.2 and 4.1.3 we focus on the event-averaged
statistics for the four methods tested, based on all forecasts.

4.1.2 Evaluation for the three events on the
domain scale

Averaged over the entire radar domain and event dura-
tion, STEPS blending attains the lowest CRPS values over
the forecast horizon of 12 hr (the CRPS values are simi-
lar to the radar-based ensemble nowcast for the June and
July events; Figure 6a–c). Only during the January event
does the average CRPS of the radar-based ensemble now-
cast exceed the CRPS of the NWP forecast at a lead time
of approximately 6 hr. The linear blending forecasts have
CRPS values similar to the radar-based ensemble nowcasts
and STEPS blending for the first hour of the forecast, but
they increase to the CRPS of the NWP for longer lead times.

When focusing on rainfall intensity thresholds of 1.0
and 5.0 mm⋅hr−1, the CSI of the radar-based ensemble
nowcast, linear blending, and STEPS blending forecasts
are closer (Figure 6d–i) than for the CRPS (Figure 6a–c),
which is also a result of the sensitivity of the CRPS score to
the many zeroes in the radar domain and forecasts. Over-
all, the CSI of STEPS blending remains somewhat higher
for longer lead times than of the radar-based ensemble
nowcasts. It is expected that the CSI of the nowcasts
reduces to values lower than those of the NWP forecast for
longer lead times (Lin et al., 2005; Germann et al., 2006),
which happens for the 1.0 mm⋅hr−1 threshold between a
lead time of 2.5 and 6 hr and 2–2.5 hr for the 5.0 mm⋅hr−1

threshold. This is also the point where the linear blend-
ing approach starts to outperform the radar-based ensem-
ble nowcasts and sometimes also the STEPS blending
approach (e.g., Figure 6d). The CSI values for the STEPS
blending approach remain closer to those of the NWP fore-
cast than the CSI of the nowcasts after this transition point,
which indicates that both blending approaches (particu-
larly STEPS blending before this transition point) manage
to get the best out of both products, to a certain extent.
Hence, overall at the radar-domain scale, STEPS blending
outperforms the other methods or has at least a similar
performance, especially when considering the ensemble
verification metric CRPS.

4.1.3 Evaluation for the three events on the
catchment scale

When focusing on the four catchments instead of the
entire domain, the event-average CRPS values of the strat-
iform January event are approximately half of those for
the (more) convective June and July events, which can
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18 IMHOFF et al.
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F I G U R E 6 Event-averaged continuous ranked probability score (CRPS) and critical success index (CSI) per lead time for the four
methods over the full radar domain. (a–c) The domain-averaged CSI per event. (d–f) The CSI per event for a threshold of 1 mm⋅hr−1, and
(g–i) for a threshold of 5 mm⋅hr−1. NWP: numerical weather prediction; STEPS: Short-Term Ensemble Prediction System.

be attributed to both lower rainfall rates over the domain
and a higher predictability of the event (Figure 7). STEPS
blending generally attains lower CRPS values than the
other methods for the January and July events. For the
January event (Figure 7a–d), the radar-based ensemble
nowcasts outperform the NWP forecast for at least 3–5 hr
ahead. The linear blending approach blends the NWP too
early for the Vesdre, Geul, and Dommel in this event.
That the optimal blending time for the linear blend-
ing approach should be longer for stratiform (winter)
events is not surprising due to the higher predictabil-
ity of these events and resulting better skill of the now-
cast (Berenguer et al., 2012; Ayzel et al., 2019; Imhoff
et al., 2020). The results for the July event are quite simi-
lar, though with significantly higher CRPS values for the
NWP forecast in the Vesdre and Geul and, therefore, more
skilful nowcasts than NWP for the entire forecast hori-
zon (Figure 7i–l). Similar to Figure 6d–i, these differences

become smaller when we look at the CSI (Supporting
Information Figure S10), where both blended forecasts
manage to follow the best-performing method for that lead
time (nowcasting or NWP) and regularly have more skill
(up to 1 hr more than nowcasting alone) in the transition
region where NWP becomes more skilful than nowcast-
ing (which always happens, in contrast to the CRPS-based
analysis).

During the June event (Figure 7e–h), the NWP and
linear blending forecasts outperform the nowcasts and
STEPS blending for most lead times of more than 1–2 hr in
catchments Vesdre and Demer. The June event was con-
vective, and therefore more challenging to forecast. Espe-
cially for the Vesdre and Demer, which had high-intensity
convective rainfall locally, this is directly visible in the
higher CRPS values for all methods (Figure 7e–h). The
radar-based ensemble nowcasts already become less skil-
ful after 1–2 hr for these two catchments.
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IMHOFF et al. 19
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F I G U R E 7 Event-averaged continuous ranked probability score (CRPS) of the catchment-averaged rainfall forecast for the four
catchments and three events: (a)–(d) January; (e)–(h) June; (i)–(l) July. The radar-based ensemble nowcasting method is indicated in dark
green, numerical weather prediction (NWP) in light green, the linear blending method in light blue, and the Short-Term Ensemble Prediction
System (STEPS) blending method in dark blue.

The aforementioned view changes somewhat for the
forecasts of the catchment-average cumulative rainfall vol-
umes (Figure 8), which are relevant, for instance, for
(flash) flood forecasts. The radar-based nowcasts often pre-
dict zero rainfall after lead times of approximately 6 h or
more, which can be partially attributed to rainfall leav-
ing the domain, which increases the underestimation by
the nowcasts from that lead time onward (see also the
bias in Supporting Information Figure S13). The result is
that the CRPS for the cumulative rainfall sum significantly
increases after a lead time of 4–7 hr (Figure 8). The over-
all performance of STEPS blending compared with the
other methods remains similar to that in Figure 7, but
the differences between STEPS blending and linear blend-
ing (and to a lesser extent the NWP for longer lead times)
becomes smaller and is nearly absent for the January
event (Figure 8a–d). For the July event, this is also visi-
ble, although STEPS blending still outperforms all other

methods for the Vesdre and Geul. The CSIs for these
events for higher rainfall thresholds (Supporting Informa-
tion Figures S11 and S12) support the impression that, at
the catchment scale, for cumulative rainfall sums, but also
for higher rainfall intensities as indicated by the CSI, the
nowcast quickly loses skill and STEPS blending tends to
give too much weight to the nowcasts for too long, lead-
ing to a higher skill for NWP and linear blending for the
longer lead times. However, note that, for high rainfall
intensity thresholds, the NWP forecast has hardly any to no
skill, whereas the nowcasts and blended forecasts still pro-
vide some skill for the first hours of the forecast (Figures 6
and S7).

To conclude, STEPS blending and linear blending
match or even exceed the radar-based ensemble now-
casts’ performance for the four catchments. Overall,
STEPS blending outperforms the other methods for the
months January and July, although the difference reduces
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20 IMHOFF et al.
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F I G U R E 8 Event-averaged continuous ranked probability score (CRPS) of the cumulative catchment-averaged rainfall sum from the
issue time until the indicated lead time. Shown are the event-averaged CRPS values for the four catchments and three events (a)–(d) January;
(e)–(h) June; (i)–(l) July. The radar-based ensemble nowcasting method is indicated in dark green, numerical weather prediction (NWP)
in light green, the linear blending method in light blue, and the Short-Term Ensemble Prediction System (STEPS) blending method in dark
blue.

when we focus on the cumulative rainfall sums for
the catchments instead of instantaneous rainfall rates,
particularly with respect to the linear blending approach.

4.2 Evaluation of climatological
moving window size

The variability in the climatological skill depends strongly
on the size of the temporal moving window, and decreases
for increasing window sizes (Figure 9). This holds for
all spatial cascade levels, although from cascade level 2
onwards the skill becomes close to zero and varies less than
on levels 0 and 1. The 1-day window, and to a lesser extent
the 3-day window, follows the current skill of the NWP
forecast more closely, whereas larger window sizes give a
more average skill over a longer period. A window size of
a few days intuitively makes sense, since this is the typical

persistence time of weather patterns (Neal et al., 2016) that
affect the atmospheric predictability and NWP model skill
in the climate of the study area.

Compared with the fixed skill values per cascade level
in Bowler et al. (2006), the climatological skill values for
the Belgian NWP forecasts are generally lower, probably
caused by the higher spatial resolution and time step at
which evaluation took place, which is 5 min accumula-
tions in this study and 15 min accumulations in Bowler
et al. (2006). This illustrates that the fixed climatological
skill values from Bowler et al. (2006) are not representative
for the spatial and temporal resolution of the NWP product
used in this study.

Another reason for using a moving window approach
to estimate the climatological skill is the variability in the
NWP skill from day to day (or even per 5 min step; the grey
lines in Figure 9) and between seasons. For instance, at the
largest spatial scale (level 0), the 21-day window mean skill

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4461 by T
u D

elft, W
iley O

nline L
ibrary on [02/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



IMHOFF et al. 21

(a) (b)

Dec
-2

3

Ja
n-

02

Ja
n-

12

Ja
n-

22

Ju
n-

01

Ju
n-

11

Ju
n-

21

Ju
l-0

1

Ju
l-2

3

Ju
l-2

1

Ju
l-3

1

·day

F I G U R E 9 Climatological numerical weather prediction (NWP) skill (Pearson correlation) per cascade level as a function of moving
window size for (a) January and (b) June–July. The grey lines indicate the NWP skill of the most recently available NWP forecast for that time
step compared with the observed radar rainfall amount, the red lines indicate the climatological skill as provided by Bowler et al. (2006), and
the brown to blue coloured lines indicate the day-average climatological skill for a given moving window size (the longer window sizes start
at a later date as they need t previous days to calculate an average skill). The blue bars indicated in the bottom right panels of (a) and (b)
indicate the domain-average rainfall intensity per 5 min time step.
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F I G U R E 10 Effect of the climatological skill window sizes on the resulting blended rainfall forecasts for the test case of June 29, 2021,
1330 UTC. (a) The continuous ranked probability score (CRPS) per lead time, averaged over all grid cells in the radar domain. The grey bars
indicate the domain-averaged rainfall rates (mm⋅hr−1) as observed during that lead time. (b) The forecast catchment-averaged cumulative
rainfall sum per moving window size compared with the observation in black. The thick coloured lines indicate the ensemble median, and
the shaded areas around it indicate the interquartile range.

is 0.53 in January (winter period with predominantly strat-
iform precipitation) and 0.34 in June–July (summer period
with more convective precipitation). For the smaller mov-
ing window sizes, the difference is particularly observable
in the variance of the climatological skill value over time
(higher variance for June–July than for January).

Although the difference in climatological skill val-
ues is considerable for the moving window sizes tested
(Figure 9), the effect on the rainfall forecasts for the test
case of 2June 29, 2021, 1330 UTC is less pronounced
(Figure 10). On this day, the climatological skill values
were 0.50 (1-day window), 0.51 (3-day), 0.55 (7-day), 0.26
(14-day), and 0.27 (21-day), hence with a clear difference
between the 14- and 21-day windows and the other three
windows. At the radar-domain scale (Figure 10a), the dif-
ference in CRPS between the moving window sizes tested
gradually increases with lead time, which is expected as
the climatological skill value impacts the longer lead times
most. Differences in resulting domain-average CRPS are
almost absent for the first 4 hr of the forecast, but even-
tually become at most 0.09 mm⋅hr−1 between the rainfall
forecast with a 3-day and 14-day window. At the catchment

scale, differences are generally also minor, although the
21-day window underestimates the rainfall more than the
other window sizes tested (for this case) for longer lead
times, particularly for the Vesdre and Geul (Figure 10b).

Concluding, the moving window approach for the cli-
matological skill captures the temporal variability of the
NWP skill better than fixed values, although the choice for
the moving window size can have a considerable effect on
the resulting climatological skill. The effect on the rain-
fall forecast on both the radar domain and the catchment
scale is, however, limited. For the test case, the smaller (1-
and 3-day) window sizes result in somewhat lower fore-
cast errors, which is in favour of the 3-day window used in
this study. However, note that this is a result that is only
based on one example forecast. We go into more detail on
this topic in Section 5.

4.3 Evaluation of weights method

The two methods to determine the blending weights
(Bowler et al., 2006; Seed et al., 2013) result in fairly similar
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F I G U R E 11 Effect of the two weights methods on the resulting blended rainfall forecasts for the test case of June 29, 2021, 1330 UTC.
(a) The continuous ranked probability score (CRPS) per lead time, averaged over all grid cells in the radar domain. The method by Bowler
et al. (2006) is illustrated in light blue, and the method by Seed et al. (2013) is in dark blue. The grey bars indicate the domain-averaged
rainfall rates (mm⋅hr−1) as observed during that lead time. (b) The forecast catchment-averaged cumulative rainfall sum for both methods
compared with the observation in black. The thick coloured lines indicate the ensemble median, and the shaded areas around it indicate the
interquartile range.

weights for the test case of June 29, 2021, 1330 UTC
(Figure 11), except for the negative weights that occur dur-
ing the first hours with the Seed et al. (2013) method at
cascade level 1 and, to a lesser extent, at level 2. The rea-
sons for the smaller differences in the resulting weights
between the two methods are as follows: (1) the extrapo-
lation component weight that exceeds 1.0 during the first
and second hours of the forecast at cascade level 1 with the
Seed et al. (2013) method (Figure 2b), though this weight
is continuously decreasing for the Bowler et al. (2006)
method (Figure 2a); and (2) the NWP component weights
that exceed zero at cascade levels 2 and 3 with the Seed
et al. (2013) method, though these weights remain zero for
the Bowler et al. (2006) method.

Owing to particularly the negative NWP weights at
cascade level 1 for the Seed et al. (2013) method, the
CRPS of the forecast with the Seed et al. (2013) weights
is significantly higher than the CRPS for the Bowler

et al. (2006) method at the radar-domain scale for the first
3 hr of the forecast (Figure 11a). The maximum difference,
which occurs at a lead time of 95 min, is 1.7 mm⋅hr−1.
After more than 3 hr, the differences reduces and becomes
almost absent, which corresponds to the weights that
have become relatively similar from that point onward
(Figure 2). At the catchment scale, this difference is par-
ticularly pronounced for the Vesdre, because the rainfall
starts there at the issue time of the forecast. For the other
two catchments, rainfall commences later (at lead times
of 2–4 hr), and therefore the difference in weights during
the first 3 hr has a limited impact on the resulting forecast
rainfall sums. Hence, the choice for the weights method
can have impact on the forecast skill. For this example,
the results favour the Bowler et al. (2006) weights method,
provided that only one deterministic NWP model is com-
bined with the extrapolation and noise components. Note
that this does not have to hold for other forecasts, and it is
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24 IMHOFF et al.

therefore recommended to study the effect of the weights
method more extensively in future research.

5 DISCUSSION

In this study, we have described and evaluated the STEPS
blending principle in the open-source Python library pys-
teps. We have added a few new functionalities that are
indicated in Figure 1 and that are described in more
detail in the subsections of Section 2. The STEPS blend-
ing approach was shown to provide rainfall forecasts that
are generally as good as, and sometimes even outperform,
the radar-based ensemble nowcasts and NWP forecasts at
the radar-domain scale. These results are in line with the
results of other blending methods (Golding, 1998; Aten-
cia et al., 2010; Kober et al., 2012; Nerini et al., 2019;
Yoon, 2019; Radhakrishnan and Chandrasekar, 2020).
This analysis differs from most of the aforementioned
studies in that it also focuses on the rainfall forecasts
at the catchment scale, where, from a flood forecasting
perspective, both the rainfall location and volume over
time are most relevant. At this scale, the STEPS blend-
ing approach yields convincing results, although when
we focus on the cumulative rainfall sums for the entire
forecast horizon or at high rainfall thresholds (Supporting
Information Figures S11 and S12), the differences with the
other models reduce. This is particularly in favour of the
linear blending and NWP forecasts, as the STEPS blend-
ing approach tends to give more weight to the nowcast
component for longer lead times, which tends to underes-
timate more (see also Imhoff et al., 2020). Sections 5.1 and
5.3 go into more detail about possible causes and solutions
for this issue, but the climatological moving window size
introduced (Sections 3.3.3 and 4.2) can play a role here, too,
as this may not have been optimal for the individual events.
This impression does not directly follow from the results in
Figure 10, but this is only based on one issue time. A more
extensive analysis of the role, strengths, and weaknesses of
the climatological skill window is a recommendation for
future work.

Furthermore, we should note that the simple bench-
mark linear blending could be optimized by making the
blending start and end time variable and dependent on
the skill of the different components. This would require
incorporating some of the procedures introduced in STEPS
blending, to allow for a blending that varies in time, while
leaving out the spatial scale dependence. Doing so might
be a good trade-off between the blending method intro-
duced here and faster run times (by leaving out the cascade
decomposition), especially considering the already satis-
factory results for the linear blending method when we
focus on the CSI metric (Sections 4.1.2 and 4.1.3).

5.1 Bias towards the radar-based
products

The approach presented bases the skill, and therefore the
blending weights, on the highest resolution of the radar
and NWP data, which is a 5 -min temporal and 1 km spa-
tial resolution (after spatial downscaling and temporal
aggregation of the NWP forecasts). To better match the
catchment perspective, it may be of interest to base the skill
on hourly or multi-hour sums and on coarser spatial res-
olutions. NWP (rainfall) forecasts are known to perform
better on a coarser resolution in space and time, which is
generally done by upscaling in space and aggregating the
forecasts in time (e.g. Gangopadhyay et al., 2004; Mitter-
maier, 2006). An advantage of such an approach – that is,
determining the “current skill” on a coarser spatial and
temporal resolution – is that (minor) displacement errors
are less penalized and that rainfall sums over a longer
aggregation period become more relevant. As the focus
on cumulative sums and some higher rainfall thresholds
in this study has been advantageous for the NWP fore-
casts, compared with a focus on instantaneous rainfall
rates, this might lead to higher weights for the NWP com-
ponent(s). Moreover, current computation times (on four
CPU cores) were between 120 and 165 min, which will
strongly decrease at a coarser spatio-temporal resolution.

In addition, we regarded the radar QPE as the “true”
rainfall in this study, even though radar QPE products
come with considerable (systematic) biases and other
sources of error (Austin, 1987; Joss and Lee, 1995; Cre-
utin et al., 1997; Gabella et al., 2000; Sharif et al., 2002;
Uijlenhoet and Berne, 2008). The use of this product as
observation favours the radar-based nowcasting compo-
nent in the blending approach. Since the precise radar QPE
quality is (generally) unknown at the issue time of the
blended forecast, a Bayesian weight determination method
could be considered (see Section 5.3). However, it is rec-
ommended to use a bias-adjusted radar QPE product to
prevent the blending method being steered towards the
systematic bias in the unadjusted radar QPE – (for an
overview of adjustment methods, see Ochoa-Rodriguez
et al., 2019).

5.2 Forecast timeliness for early
warning

Core strengths of nowcasting are fast run times (in prin-
ciple, a new forecast can be available within minutes after
the last observation) and initial conditions that correspond
to the latest observations. Compared with NWP, which
had an update frequency of 6 hr in this study and is avail-
able approximately 4 hr after the analysis time, this can
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provide crucial information for emergency managers and
inhabitants during the first hours of an event. The nar-
row skilful forecast horizon of nowcasting limits its use to
only the first hours of an event. We have introduced the
blending procedure in this study to bridge the gap between
nowcasting and NWP, which should extend skilful lead
times and should still be available in a timely fashion.
The run times of the blending approach introduced are,
however, significantly longer than radar-based nowcasting
only (Section 5.1). This process can, in the current imple-
mentation, already be significantly accelerated by includ-
ing more CPU cores for parallelization, by decomposing
the NWP forecast outside the blending procedure and by
having the NWP forecast on the same grid as the radar
data (or the other way around). In addition, the transition
towards rapid-update-cycle NWP models (for instance,
Benjamin et al., 2016; Yussouf and Knopfmeier, 2019; Por-
son et al., 2020; Turner et al., 2022) increases the timeliness
and skill of NWP model runs, and we expect that this could
also enhance the blended forecast quality.

5.3 Future implementations
and outlook

In the implementation considered here, we have incorpo-
rated two blending methods; namely, the one by Bowler
et al. (2006) and the one by Seed et al. (2013). In essence,
the optimal weights are based on multiple (forecasting)
products and a “true” value that is unknown (for instance,
owing to the aforementioned biases in the radar QPE prod-
uct), which is a dilemma that is very similar to typical
data assimilation problems. A way to tackle this was pro-
posed by Nerini et al. (2019), who introduced an ensemble
Kalman filter-based Bayesian blended forecasting system,
which would be a logical next implementation in this
open-source blending approach.

Another advantage of the approach by Nerini
et al. (2019) is that it enables a resampling of the NWP and
nowcasted rainfall amounts per grid cell, which could be
beneficial for the Lagrangian blended probability match-
ing scheme that was introduced in this study (Section 2.6).
The current implementation advects the latest radar rain-
fall observations to lead time t + tl, without any further
perturbations and autoregression steps, combines this
with the NWP forecast and uses this as the “observation”,
at t + tl, to determine the statistics for the probability
matching steps. A disadvantage of this implementation is
that peak values can be dampened, especially when the
weights for the NWP and extrapolation components are
(nearly) equal. This means that the target distribution for
probability matching can become smoother than the orig-
inal radar and NWP fields, which occurred in the example

test case for June 29, 2021, 1330 UTC with increasing
lead time (see Supporting Information Figure S14). This
is something that can be prevented with the resampling
scheme in Nerini et al. (2019), which preserves the target
distribution. This approach will be implemented in the
pysteps blending scheme in the near future.

Moreover, both the blending weights and the (blended)
normalized multiplicative cascades are variance based.
Therefore, the estimation of the variance in the individual
blending components is an important aspect of the STEPS
blending procedure. To better cope with the non-normal
distribution of rainfall, a log-transform was used. This
transform cannot deal with zeroes, and therefore these
zeroes are masked. This leads to an unnatural (sharp)
transition between rain and no rain, which can influence
the estimation of the current and future variance, espe-
cially if the variance is estimated and blended in space
(not done in this implementation, but a possible future
implementation). This could be solved by implementing
a transformation that can deal with zeroes; for example,
the log-sine transformation. This is a recommendation for
future developments of the blending code.

Ultimately, this open-source blending implementation
(of both STEPS and linear blending) in pysteps should pave
the way to implement other and new blending methods,
and could be used as a benchmark for future algorithm
development. Besides the aforementioned future imple-
mentations, current plans in the pysteps blending mod-
ule are, among others, to include deep-learning methods,
as well as the blending method by Atencia et al. (2010)
in which the NWP forecast is first phase-corrected with
the latest (radar) observations for displacement errors,
before blending the individual components. This should
increase the NWP forecast skill during the blending proce-
dure and prevent blending of misplaced rainfall fields. The
scale-dependent blending method gives a first correction
for errors such as misplaced rainfall fields, which are com-
mon in NWP forecasts. Nevertheless, the implementation
of a phase correction could still help to process the NWP
forecast prior to the blending procedure and, in that way,
make better use of the information in the NWP forecast.
Hence, we see this is a meaningful next implementation
step in the pysteps blending module.

6 CONCLUSIONS

Although the first few hours ahead (in the order of 6 hr)
in rainfall forecasting are crucial – for example, for (flash)
flood warnings – this time-scale is generally not suffi-
ciently well captured by the rainfall forecasts of NWP
models. Radar rainfall nowcasting, an observation-based
rainfall forecasting technique that statistically extrapolates
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current observations into the future, provides opportuni-
ties at this time-scale, but has as a disadvantage that it
quickly loses skill after approximately the first 2 hr of the
forecast for individual radars. To extend the skilful lead
time of short-term rainfall forecasts and improve flash
flood early warning, we have to bridge the gap between
nowcasting and short-range NWP model forecasts. One
way to do so is by combining both products, so-called
blending. In this study, we have implemented an adap-
tive scale-dependent ensemble blending method in the
open-source Python library pysteps, based on earlier work
on the STEPS scheme. In this implementation, the extrap-
olation (ensemble) nowcast, (ensemble) NWP, and noise
components are combined using weights that vary per
spatial cascade level. We described the implementation
details and some new functionalities, and we evaluated
the method on three events in 2021 that led to high dis-
charge peaks in the Belgian and Dutch catchments Vesdre,
Demer, Geul, and Dommel (including the dramatic July
2021 case that caused more than 200 casualties and enor-
mous economic damage). To benchmark the results of
the 48-member blended forecasts tested, we compared the
results against the original deterministic NWP forecast,
a 48-member radar-based ensemble nowcast with pys-
teps, and a simple (48-member) ensemble linear blending
approach.

At the radar-domain scale, the STEPS blending
approach implemented performs on par with or better
than the other three methods tested, when focusing on
the CRPS method, and generally manages to provide a
smoother transition for the lead times (>2 hr) when the
nowcast quickly loses skill. To a lesser extent, this also
holds for higher intensity rainfall cells, where the dif-
ference between nowcasting, linear blending, and STEPS
blending is less pronounced and STEPS blending occa-
sionally tends to give too much weight to the nowcast.
At the catchment level, the linear and STEPS blending
approaches result in lower forecast errors than only now-
casting, particularly for lead times of approximately 4 hr or
longer (depending on the rainfall type). Both methods out-
perform the NWP forecasts for the first few hours of the
forecasts, followed by a similar skill for longer lead times.
Overall, STEPS blending generally performs similarly or
even better than the other methods for the two events
in January (stratiform) and July (stratiform–convective),
although the difference, particularly with the linear blend-
ing method, reduces when we focus on the cumulative
rainfall sums for the catchments instead of instantaneous
rainfall rates.

The scale-dependent blending weights in the STEPS
blending implementation are computed from the recent
skill (Pearson’s correlation) of the forecast components
and converge to a climatological value. In contrast to the

original STEPS blending approach, this implementation
bases the climatological skill value for the NWP compo-
nent(s) on the recent NWP skill with a multi-day moving
(averaging) window, instead of fixed values that do not
take into account the temporal variability in the NWP
forecast skill. Although a 3-day moving window was used
for the aforementioned evaluation, we also tested mov-
ing window sizes of 1, 7, 14 and 21 days. For the test case
considered, the moving window sizes tested give minimal
differences in the results, even though the skill values can
vary considerably between the moving window sizes.

In addition, we have implemented two methods, the
ones by Bowler et al., 2006 and Seed et al., 2013, to deter-
mine the blending weights from the estimated skill of the
components. As the Seed et al. (2013) weights can result
in negative weights or weights that exceed 1.0 for the indi-
vidual blending components, both the resulting weights
and forecasts can differ significantly from the Bowler
et al. (2006) approach. The results from the test case in
this study favour the Bowler et al. (2006) weights method,
but that is provided that only one deterministic NWP
model is combined with the extrapolation and noise com-
ponents. For multimodel ensembles, the Seed et al. (2013)
method is recommended, as it takes into account the
cross-correlation between the models, although negative
weights or individual weights exceeding 1.0 can still occur.
A further analysis of the strengths and weaknesses of both
methods, and possible improvements such as Bayesian
methods, is a recommendation for future research.

Concluding, we consider this open-source blending
approach in pysteps as a starting point for further imple-
mentations of other blending methods and future col-
laborations. In this way, we envision an acceleration of
developments in the realm of short-term rainfall forecast-
ing. The pysteps initiative has already demonstrated that
this is feasible in the nowcasting domain, a development
that we strongly support.
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