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The Impact of Metrics on the Choice of Prognostic Methodologies
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Metrics play an important part in the development and application of prognostic method-
ologies as they provide the capability to characterize and assess the quality of remaining useful
life predictions. Although there is a wide range of both, prognostic metrics and prognostic
methodologies available, the choice of those often is a demanding and time consuming task.
Additionally, they are often treated as two separate problems to solve, while the choice of
metrics has an impact on the choice of prognostic methodology and vice versa. In this paper, we
therefore present a framework with the capability to automatically choose prognostic settings
given specific system data to account for five different prognostic metrics. We then apply
this framework to an aircraft data set to characterize the impact of metrics on the choice
of prognostic methodologies. The results show that the choice of optimization metric has a
big impact on the output of the generic prognostic framework and on the overall prognostic
performance.

I. Introduction
The development and application of data-driven prognostic approaches has seen a growth in past years. Within the
framework of Condition-Based Maintenance (CBM) prognostics enable assessment of equipment health and prediction
of the remaining useful life (RUL) [1]. This not only improves system reliability, safety, and availability, but also
reduces the life-cycle operational costs of components [2], [3]. However, applying prognostics within a CBM framework
for applications such as aircraft maintenance, also brings with it some challenges [4]. One of those challenges is the
selection of appropriate prognostic algorithms. This can be time consuming and requires a lot of expert knowledge.
Another challenge is the assessment of the performance of the prognostic models, which is crucial considering that the
output of the models is used for decision making in a CBM framework. Often those challenges are addressed separately.
However, it can be difficult to tune prognostic algorithms without understanding which metrics are needed to assess the
algorithm. Similarly, it can be tricky to understand the full impact of choosing prognostic metrics without taking into
account the prognostic algorithm.

In many cases the development of a prognostic framework starts with a specific data set to which feature engineering
methods and prognostic algorithms are tailored, ultimately resulting in increasingly better remaining useful life estimates.
This process not only requires a lot of expertise and technical knowledge, but also in some cases translates to years of
research conducted. To address this issue we have developed a framework to support the identification of applicable
prognostic methods and the automatic configuration of the method settings, given a specific data set. Prior studies of
such frameworks have yielded promising results. An autonomous diagnostics and prognostics framework is suggested
by [5] that consisting of several steps, including the data pre-processing, clustering to distinguish operating conditions
and the diagnostics and prognostics. Several parameters, including the number of observations for initialisation and
optimization of cluster adaption rates, have to be set manually and it can be tricky to tune the algorithm in an optimal
way. To account for this, [6] provide a generic prognostic framework that can be instantiated to various applications.
However, no specific machine learning algorithms are used in this framework and it is more of a guideline as to how
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to build a generic prognostic framework. The authors in [7] suggest a prognostics method based on an ensemble of
genetic algorithms that includes most of the steps, from feature engineering until the RUL estimation. One limitation of
their proposed method is that the optimization and selection of methodologies is based on a commonly used metric in
prognostics, the mean-squared error (MSE), but it is not further evaluated for robustness across multiple error metrics.

After finding a suitable prognostic algorithm for the system data, the next step is to use the prognostic output as an input
for the decision making step in CBM. Using prognostics in such a context requires a proper assessment of the quality
of predictions. A metric, such as the MSE, can arguably not characterize the quality of RUL predictions sufficiently
for this purpose [8]. Instead, the design of prognostic metrics has to be linked to the application and decision making
process [9]. In addition, as highlighted in Figure 1 metrics are needed to define requirements and thoroughly evaluate
prognostic performance [10].

Fig. 1 Prognostic metrics are needed to define requirements and evaluate performance [10]

An effort to standardize prognostic metrics has been made by Saxena et al. in [11], [12]. The metrics commonly used in
prognostics are highlighted and several ways to classify them are presented as well as ways in which to interpret and use
the metrics. Goebel et al. state in [13] that a meaningful prediction has three attributes, namely correctness (measured
by accuracy and prediction), timeliness, and confidence. Performance evaluation of prognostic methodologies should
enhance all three of those aspects. However, the vast majority of literature published in the field of prognostics uses only
one metric, which is often one linked to correctness of the method. To address this gap, we present a generic prognostic
framework (GPF) with the capability of automatically choosing prognostic settings by optimizing the prognostic
performance in terms of specified prognostic metrics. This framework is applied to an aircraft data set and a sensitivity
analysis is conducted to understand the impact of the choice of metrics on the prognostic settings themselves. Or put
differently, the question we ask is: How can various prognostic metrics be integrated in a prognostic framework to guide
the choice of suitable prognostic methodologies based on a thorough assessment of the quality of the predictions?

II. Methodology
A generic prognostic framework is suggested, which contains representative techniques for the sequential steps of a
data-driven prognostics approach and, given a data set, selects the best techniques to be used for each case. This means
that in addition to incorporating different methodologies, the framework includes a selection step in which the best set
of techniques is chosen. Note that the essence of the work as presented in this paper lies in assessing and optimizing
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the set of prognostic techniques. The way we measure and evaluate the chosen techniques defines the prognostic
settings and in further consequence the quality of the predictions. In order to evaluate the prognostic performances, we
therefore use different prognostic metrics to account for different aspects of prediction evaluation. Those metrics inte-
grated in the GPF give us insight into the quality of predictions and thereby help to choose appropriate prognostic methods.

The generic prognostic framework consists of two phases (Figure 2). In phase one, which is highlighted in green, a
Genetic algorithm is applied to find the optimal prognostic settings. This is done using each of the five selected metrics,
which are explained in more detail in Section II.A. In phase two, highlighted in red and further explained in Section II.B,
for each of the four possible prognostic settings, a prognostic model is trained, which then has the capability to output
RUL estimates.

Fig. 2 The generic prognostic framework flow.

A. Generic Prognostic Framework
Prognostics involves several steps, including data pre-processing and feature engineering methodologies. All of those
contribute to the quality of predictions. The generic prognostic framework therefore consists of three blocks, as displayed
in Figure 3, which are simultaneously optimized using a genetic algorithm. The framework is a modified version of the
generic prognostic framework presented in [14]. In the following subsections II.A.1, II.A.2 and II.A.3 we describe the
three basic modules of the GPF shown in Figure 3 and then in subsection II.A focus on the optimization metrics used in
the framework.

1. Data Rebalancing
Imbalanced data sets can have an impact on the quality of predictions, especially when system failures are rare as in the
case studies presented in this work. Since we are estimating RUL and therefore have to solve a regression problem, it is
not so straightforward to implement data re-balancing methods as for classification problems. However, such methods
have been explored in literature and in our framework we use the techniques described by [15]. Among those, we use

• Random Over-Sampling (RO),
• Introduction of Gaussian Noise (GN) and
• Weighted relevance-based combination strategy (WERCS).

While we do not go into details about these methods and refer interested readers to [15], we introduce the underlying
basic concepts as follows. The main idea behind re-balancing methods for continuous target variables is the construction
of bins based on a relevance function. The relevance function maps the values of the target variable into a range of
importance, where 1 corresponds to maximal importance and 0 to minimum relevance. With this, the bins classify the
data in normal (𝐵𝐼𝑁𝑁 ) and relevant samples (𝐵𝐼𝑁𝑅). In our setup, we use a sigmoid relevance function as defined in
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Fig. 3 The elements of the Generic Prognostic Framework.

[16] with a relevance threshold, 𝑡𝑟 of 0.4. Furthermore, we set all values with a RUL of less then the threshold 𝑐𝑙 = 10
to be of importance.

2. Feature Engineering
Feature engineering in general describes the manipulation and transformation of features, i.e. in our case sensor data,
before applying a prognostic algorithm to it. The most commonly used feature engineering techniques in prognostics
are feature extraction and feature selection.

Feature extraction is performed to obtain useful information from raw signals [17]. Since the scope of this analysis
are RUL estimation models for mechanical or electrical systems with run-to-failure data, it is assumed that underlying
signals come in the form of time-series data. The simplest way to handle time series data is by calculating characteristic
features as descriptive statistics from the data themselves. Of the existing methodologies, we chose to use Principal
Component Analysis (PCA). PCA is a widely used technique making use of the singular value decomposition of the
data to project it to a lower dimensional space.

Feature selection is identifying features that help finding faults in the monitored systems [18]. According to [19], feature
selection techniques can be classified into four categories: Filter approach, in which features are selected without the
use of a learning algorithm, wrapper approaches, in which learning algorithms are used to evaluate accuracy produced
by the selected features, embedded approaches, where features are selected during training and which are specific to
machine learning algorithms and hybrid approaches, which are a combination of filter and wrapper approaches. In the
GPF, we include a filter and an embedded approach. The filter approach is a correlation based approach, which chooses
the best features based on univariate statistical tests. The embedded approach is based on the random forest importance,
i.e. it chooses the most important features identified by a random forest estimator.

3. Prognostic Algorithms
In order to get a first prognostic assessment through the framework, the prognostic algorithms included are a Random
Forest Regression (RF) and a Support Vector Regression (SVM). The two selected algorithms are well-established
and offer potential advantages in terms of interpretability and explainability, which is necessary to understand systems
retrospectively and prospectively [20].
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4. Optimization Metrics
The GPF selects an optimal methodology with the optimal hyper parameter settings for each step in the prognostic
framework. Here, ’optimal’ refers to the best in terms of a specified metric. In other words, we treat the problem
of finding the prognostic settings as an optimization problem: The objective function is to minimize the accuracy
(given by the specified metric) of the prognostic algorithm together with data re-balancing and feature engineering
techniques on the pre-processed data set. To solve the optimization problem, we use a genetic algorithm (GA). These
algorithms are based on the concepts of natural selection and genetics [21]. Due to their flexibility, GAs are able to solve
global optimization problems and optimize several criteria at the same time, like in our case the simultaneous selection
of data re-balancing, feature engineering and prognostic algorithm techniques [22]. This is what makes them good
candidates for our optimization problem. The GA in our case takes as an input the system data and the selected metric
and outputs the optimal combination of data re-balancing technique, feature engineering methodology and prognostics
algorithm. Note that, in case it identifies that applying no re-balancing or no feature engineering technique results in
better prognostic outputs, the GPF returns ’None’ for the according block.

To assess the importance of metrics in the context of prognostics, five different metrics are therefore implemented and
tested in the framework, namely the mean squared error (MSE), mean absolute error (MAE), prognostic horizon (PH),
the alpha-lambda metric and the predicted distributions. The metrics account for the three attributes of meaningful
predictions, i.e. correctness (MSE and MAE), timeliness (PH) and confidence (alpha-lambda metric and distribution of
predictions) [23].

The MSE at time 𝑡 it is given as

𝑀𝑆𝐸 (𝑡) = 1
𝑡

𝑡∑︁
𝑖=1

(𝑅𝑈𝐿𝑖 − ˆ𝑅𝑈𝐿𝑖)2, (1)

where 𝑅𝑈𝐿𝑖 is the true RUL value and ˆ𝑅𝑈𝐿𝑖 the predicted RUL value at timestep 𝑖.

Similarly, the MAE at time 𝑡 is given as

𝑀𝐴𝐸 (𝑡) = 1
𝑡

𝑡∑︁
𝑖=1

|𝑅𝑈𝐿𝑖 − ˆ𝑅𝑈𝐿𝑖 |, (2)

with 𝑅𝑈𝐿𝑖 and ˆ𝑅𝑈𝐿𝑖 as defined above.

The prognostic horizon (PH) is defined as

𝑃𝐻 (𝑡, 𝛼) = 𝑅𝑈𝐿𝑡𝑟𝑢𝑒 (𝑡𝑖𝛼 ), (3)

with 𝑅𝑈𝐿𝑖 the true RUL at time index 𝑡𝑖𝛼 and 𝑖𝛼 := 𝑚𝑖𝑛{ 𝑗 ∈ 𝑝 |𝛼− ≤ ˆ𝑅𝑈𝐿 ( 𝑗) ≤ 𝛼+}, where
• 𝑝 is the set of all time indices where predictions are made,
• ˆ𝑅𝑈𝐿 𝑗 is the prediction at time index 𝑗

• and the alpha bounds are defined as 𝛼− := 𝑅𝑈𝐿𝑖 − 𝛼 and 𝛼+ := 𝑅𝑈𝐿𝑖 + 𝛼.
The prognostic horizon is therefore the smallest RUL in which the predicted RUL is still within the specified 𝛼 bounds
and in our case study we set 𝛼 = 40 flight cycles, which is the time needed to schedule maintenance for an aircraft in
case it is needed.

And finally in order to define the distribution of predictions, we first need the definition of the 𝛼 − 𝜆 metric which is in
[24] defined as

𝛼 − 𝜆 :=

{
1, 𝑖 𝑓 (1 − 𝛼)𝜆∗ ≤ 𝜆𝑝 ≤ (1 + 𝛼)𝜆∗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(4)

with 𝜆∗ the ground truth, 𝜆𝑝 the prediction and 𝛼 an arbitrary chosen accuracy. The 𝛼 − 𝜆 metric therefore measures if
the prediction accuracy of the RUL model is within 𝛼% error at a specific time instance during the life of the system. It
can be evaluated and averaged over the whole trajectory with 𝑁 time steps.
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Table 1 The hyper parameters and combination of settings explored during the grid search for each of the four
prognostic algorithms.

Prognostic algorithm Hyper parameter Description Possible settings

rf
n estimators number of trees {200, 800, 1400}
max features maximum number of

features to consider
when looking for the
best split

{’auto’, ’sqrt’, ’log2’}

min samples leaf minimum number of
samples required to be
at a leaf node

{1, 2, 4}

SVM
C learning rate {0.001, 0.01, 0.1, 10}
gamma kernel coefficient {0.001, 0.01, 0.1, 1}

The authors also use the probabilistic version of the 𝛼 − 𝜆 metric, for which we fit a Gaussian distribution N(𝜇, 𝜎), to
each prediction and calculate the probability of the given prediction being inside the 𝛼 boundaries. If F(𝑥, 𝜇, 𝜎) is the
according cumulative distribution function, the probabilistic 𝛼 − 𝜆 for a single prediction is given as

P𝛼−𝜆 = F((1 + 𝛼)𝜆∗, 𝜇, 𝜎) − F((1 − 𝛼)𝜆∗, 𝜇, 𝜎). (5)

The final metric is derived by averaging the probabilistic 𝛼 − 𝜆 over the entire trajectory. The authors specify 20% to be
a commonly chosen value for 𝛼, which is therefore also what we use in this study.

B. Training Phase
Once the Genetic Algorithm outputs are created, the training phase starts. In the training phase the prognostic models
are trained using the identified prognostic settings. A grid search is used to find the optimal hyper parameter settings
for the identified prognostic technique, which can either be random forest regression (rf) or support vector machine
(SVM). The according hyper parameters and their possible settings explored during the grid search are given in Table 1.
The so found settings are the ones then used as the settings for the prognostic algorithms which are than trained on the
underlying prognostic data set. The output of this step is a trained prognostic model, which takes as an input system data
and outputs the remaining useful life (RUL).

III. Results
The aim of the conducted case study is to understand the impact of prognostic metrics on the methodology selection in
the different steps of the prognostic framework. This leads to the further question of how prognostic metrics can guide
the choice of suitable prognostic methodologies. The five prognostic metrics introduced in section II are in turn used as
optimization metric to find a set of methodologies to train the prognostic model.

For this purpose, the framework is applied to the C-MAPSS (Commercial Modular Aero-Propulsion System Simulation)
data set, containing simulated run-to-failure data for turbofan engines [25] [26]. Using this tool, 4 data sets were created.
The data sets differ mainly in the number of fault modes and operational conditions simulated in the experiments. An
overview is given in Table 2. The relative number of train and test units is the ratio between the number of train/ test
units and the total data set size and gives an indication over the bias in the data set towards healthy behaviour. Each
engine is considered to be from a fleet of engines of the same type and each time series, also often referred to as
trajectory, is from a single unit. The engines are operated until failure, i.e., the time series capture the operations of
each unit until it fails. Each row in the data set contains measurements during one time cycle of 21 sensors for a certain unit.

In the following, we present the results of applying the generic prognostic framework on each of the four C-MAPSS data
sets with the different optimization metrics. We run the genetic algorithm for 10 generations with population sizes
of 30 and 50 individuals to capture the effects of the optimization process. First, we present the output of the genetic
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Table 2 Characteristics of the four turbofan engine data sets [27]

Data
set

#Fault
modes

#Conditions #Train units #Test units relative
#Train units

relative
#Test units

#1 1 1 100 100 0.485% 0.485%
#2 1 6 260 259 0.484% 0.762%
#3 2 1 100 100 0.405% 0.603%
#4 2 6 249 248 0.407% 0.602%

algorithm, i.e. the choices of methodologies for each of the four data sets. Table 3 contains the choice of methodologies
for the data rebalancing, feature engineering and prognostic algorithm when using the MSE, the MAE, the alpha-lambda
score, the prognostic horizon or the prediction distributions respectively for runs on data set FD001.

Table 3 The resulting best prognostic settings found for different optimization metrics when running the GPF
for data set FD001.

Optimization Metric
Population size of 30/ 50

Choice of Method for
Rebalancing Feature engineering Prognostic Algorithm

MSE RO None RF
MAE None None SVM
alpha-lambda RO correlation SVM
PH RO correlation SVM
Prediction Distributions RO correlation SVM

Similarly, the results for the runs on data set FD002 result in the choice of methodologies shown in Table 4 and the
results for those on data set FD003 in Table 5. In Table 6 the resulting choices of methodologies of applying the generic
prognsotic framework to data set FD004 are presented for the different optimization metrics. The according results in
terms of metrics are given in Tables 7, 8, 9 and 10.

Table 4 The resulting best prognostic settings found for different optimization metrics on data set FD002.

Optimization Metric
Population size of 30/ 50

Choice of Method for
Rebalancing Feature engineering Prognostic Algorithm

MSE GN None RF
MAE GN None RF
alpha-lambda RO PCA SVM
PH WERCS PCA RF
Prediction Distributions RO PCA SVM

It can be observed that the choices of methodologies for each of the five optimization metrics are consistent when
running the GA with a population size of 30 or 50. This stability of the results over different population sizes is an
indication of the stability of the generic prognostic framework regarding the choices of methodologies.

An interesting question to ask now is: How is the choice of optimization metric reflected in the stability of the genetic
algorithm? There are two main points that can be observed from the above Tables 3, 4, 5 and 6 to help answer the above
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Table 5 The resulting best prognostic settings found for different optimization metrics when running the GPF
for data set FD003.

Population size of 30 Population size of 50
Choice of Method for Choice of Method forOptimization Metric

Rebalancing Feature
engineering

Prognostic
Algorithm

Rebalancing Feature
engineering

Prognostic
Algorithm

MSE None importance SVM GN importance SVM
MAE None importance SVM GN importance SVM
Alpha_lambda None PCA RF None PCA RF
PH None PCA RF None PCA RF
Prediction Distributions GN PCA RF GN PCA RF

Table 6 The resulting best prognostic settings found for different optimization metrics when running the GPF
for data set FD004.

Population size of 30 Population size of 50
Choice of Method for Choice of Method forOptimization Metric

Rebalancing Feature
engineering

Prognostic
Algorithm

Rebalancing Feature
engineering

Prognostic
Algorithm

MSE None None RF None None RF
MAE None None RF None None RF
alpha-lambda RO PCA SVM RO PCA SVM
PH GN PCA SVM None PCA SVM
Prediction Distributions RO PCA SVM RO PCA SVM

Table 7 The resulting metrics found for different optimization metrics when running the Genetic Algorithm for
data set FD001.

Population size Optimization Metric Metrics after training algorithm on full dataset

MSE MAE Alpha_lambda PH Prediction
Distributions

30/50

MSE 1657.17 30.74 0.5244 141.77 0.3423
MAE 1775.05 31.02 0.5312 130.62 0.3388
alpha-lambda 2734.27 39.87 0.4126 95.64 0.2516
PH 2734.27 39.87 0.4126 95.64 0.2516
Prediction
Distributions

2734.27 39.87 0.4126 95.64 0.2516

question:

First, choosing the 𝛼 − 𝜆 metric as optimization metric produces in most cases the same results as optimizing towards
the prediction distributions. In fact, they result in the same settings for the methodology choices except for the runs on
data set FD003, where the combination of No rebalancing, PCA and RF and GN, PCA and RF result in almost the same
score in terms of 𝛼 − 𝜆 metric (0.3112 and 0.3173 respectively) and in the same score in terms of prediction distribution
(0.1895), as can be seen in Table 9.

Second, often the 𝛼 − 𝜆 metric, the prediction distributions and in quite some cases also the PH produce similar outputs
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Table 8 The resulting metrics found for different optimization metrics when running the Genetic Algorithm for
data set FD002.

Population size Optimization metric Metrics after training algorithm on full dataset

MSE MAE Alpha_lambda PH Prediction
Distributions

30/50

MSE 1877.88 33.65 0.4633 118.75 0.3010
MAE 1877.88 33.65 0.4633 118.75 0.3010
alpha-lambda 18875.29 122.11 0.0135 168.93 0.02401
PH 4281.47 50.42 0.3316 93.79 0.1845
Prediction
Distributions

18875.29 122.11 0.0135 168.93 0.02401

Table 9 The resulting metrics found for different optimization metrics when running the Genetic Algorithm for
data set FD003.

Metrics after training algorithm on full dataset
Population size of Optimization Metric

MSE MAE Alpha_lambda PH Prediction
Distributions

MSE 4284.62 45.83 0.4632 151.28 0.2974
MAE 4284.62 45.83 0.4632 151.28 0.2974
alpha-lambda 7207.84 64.13 0.3173 101.46 0.18957
PH 7207.84 64.13 0.3173 101.46 0.18957

30

Prediction
Distributions

7266.72 64.45 0.3112 103.22 0.1895

MSE 4670.12 47.35 0.4695 138.33 0.2961
MAE 4670.12 47.35 0.4695 138.33 0.2961
alpha-lambda 7207.84 64.13 0.3173 101.46 0.18957
PH 7207.84 64.13 0.3173 101.46 0.18957

50

Prediction
Distributions

7266.72 64.45 0.3112 103.22 0.1895

of the framework especially in terms of prognostic algorithm and the same is true for MSE and MAE. Of course this has
to do with how the metrics are defined and their similarities or differences within the definitions, but still, it reflects back
to different outcomes for different prediction evaluation criteria, e.g. optimizing for correctness results in different
prognostic settings than optimizing for timeliness. It also shows a stability of the framework even with respect to similar
metrics. This brings us to another important observation, more focused on the results presented in Table 7-10, i.e. on
the measurable quality of the predictions for the different metric scenarios.

In many cases in order to optimize the prognostic output with respect to one metric, it is done to the price of bringing
another metric up quite high. This can be even more clearly seen in Figure 4. Since the definition of the metrics targets
different objectives, the choice of optimizing a metric is always a trade off. Those objectives are the prediction attributes
highlighted in section II.A.4 and pointed out by [28]. Therefore, this is not only an indication of the impact of the choice
of metrics on the selection of optimal prognostic methodologies, but also shows the impact of optimizing towards
different prediction attributes on the choice of prognostic methodologies. Figure 4 shows that the effect is especially big
in data sets FD002 and FD004. In Table 8, we see indeed that a very low lambda alpha score and Prediction distribution
(of 0.0135 and 0.02401), in other words high confidence, can be achieved, but only with a high MSE and MAE (of
18875.29 and 122.11), i.e. lower prediction correctness. Vice versa the same is true when lowering the MSE and MAE
(1877.88 and 33.65), i.e. increasing the correctness, which at the same time increases the lambda alpha score and
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Table 10 The resulting metrics found for different optimization metrics when running the Genetic Algorithm
for data set FD004.

Metrics after training algorithm on full dataset
Population size Optimization Metric

MSE MAE Alpha_lambda PH Prediction
Distributions

MSE 4559.05 50.12 0.4076 168.32 0.2487
MAE 4559.05 50.12 0.4076 168.32 0.2487
alpha-lambda 28449.29 143.02 0.02176 175.27 0.02758
PH 8999.52 69.04 0.3041 136.75 0.1451

30

Prediction
Distributions

28449.29 143.02 0.02176 175.27 0.02758

MSE 4559.05 50.12 0.4076 168.32 0.2487
MAE 4559.05 50.12 0.4076 168.32 0.2487
alpha-lambda 28449.29 143.02 0.02176 175.27 0.02758
PH 4281.47 50.42 0.3316 93.79 0.1845

30

Prediction
Distributions

28449.29 143.02 0.02176 175.27 0.02758

prediction distribution (to 0.4633 and 0.3010), i.e. lowers the confidence. We see a similar behaviour for FD004 in
Table 10. In some cases, however, the GPF fails to find the optimal solution in terms of the selected optimization metric,
e.g. for data set FD001 as shown in Table 7, the combination of RO, No feature engineering and RF produces a in terms
of MAE better solution than the by the GPF for this case returned option of using only SVM. This can be due to the
fact that the optimal solution was simply not part of all the possible solutions explored by the Genetic Algorithm. The
differences, in terms of MAE and MSE, are minor though (MAE of 30.74 and 31.02 respectively), especially when
compared against the solutions found when using PH, the 𝛼 − 𝜆 metric or prediction distributions as optimization
metrics (resulting in an MAE of 39.87).

Another interesting way to evaluate predictions is by plotting the true RUL and the predicted values. In Figures 5, 6, 7
and 8 the resulting plots are shown for six selected trajectories from the test data sets of FD001, FD002, FD003 and
FD004 respectively when running the framework with a population size of 50.

For FD001 the predictions closer to the RUL for the selected IDs at least are the once produced with the optimization
metric set to MSE or MAE, the predictions produced by optimizing towards the PH and Prediction Distribution, i.e.
timeliness and confidence, always perform worse and seem to be more unstable. For this dataset it would perhaps
make sense to choose the MSE or MAE as optimization metric when applying the framework. Especially since doing
otherwise results in a MSE of almost double the optimized as can be seen in Table 7 and 4.

The opposite is the case on data set FD003, where the Prediction Distribution and PH predictions both for most
trajectories outperform the once produced by the MSE and MAE. In data set FD002 and FD004 no such trend is really
visible and the overall performance of the predictions is worse. This is to be expected though, as they are the data sets
on which it is harder to produce RUL estimates as shown in Table 2. In both, FD002 and FD004, using the prediction
distributions to optimize the prognostic settings results in poorly performing prognostic models. For the other metrics
the trend is not so clearly visible. While the MSE and MAE produce the same resulting outputs on those datasets, see
Table 4 and 6, the prognostic horizon outperforms them on some trajectories (id 5 and 18), while on others it performs
worse (id 24 and 92).

Throughout all the four data sets the following findings are made:
• In most cases, a population size of 30 individuals produces the in terms of optimization metric optimal solution

when using the generic prognostic framework and usually it is consistent with the solution found for a population
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Fig. 4 The resulting scores of each metric depending on the chosen optimization metric in the Genetic Algorithm
when running with a population size of 50.

size of 50 individuals.
• Within different population sizes, however, different optimization metrics lead to different prognostic settings with

patterns according to the evaluation criteria the metric focuses on.
• The choice of the optimal metric is dependent on underlying data set and objective of prognostics, e.g. in what

context they are used.
• A single metric does often not suffice in making informed and appropriate choices of prognostic methodologies
• Optimizing towards different prediction attributes, i.e. correctness, timeliness or confidence, results in different

choices of prognostic methodologies and is often a trade-off.

IV. Conclusion
The objective of our study is to understand the impact metrics have on prognostics. To account not only for different
prognostic algorithms, but also for other steps involved in prognostics, such as data rebalancing and feature engineering,
we use a generic prognostic framework which chooses the optimal settings for the three steps data rebalancing, feature
engineering and prognostic algorithm, optimal with respect to a selected metric. The optimization metric is varied to
reflect a selection of metrics, which account for all the aspects of prediction evaluation, including correctness (MSE and
MAE), timeliness (PH) and confidence ( 𝛼 − 𝜆 score and prediction distributions). The results show that the choice of
optimization metric has a big impact on the output of the generic prognostic framework. This means that depending on
the objective and motivation of using prognostics, a suitable metric should be carefully chosen. It could make sense to
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Fig. 5 Predictions for different settings of optimization metrics on example trajectories for a population size of
50 on data set FD001.

Fig. 6 Predictions for different settings of optimization metrics on example trajectories for a population size of
50 on data set FD002.

use a combination of metrics to reflect multiple prediction evaluation aspects. Especially the Prognostic horizon can
play an important role for airlines which want to schedule maintenance timely and are dependent on predictions arriving
early enough to schedule a corrective action. Therefore this should be taking in consideration when developing and
evaluating prognostic methodologies. Further research can be done on combining multiple metrics and producing an
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Fig. 7 Predictions for different settings of optimization metrics on example trajectories for a population size of
50 on data set FD003.

Fig. 8 Predictions for different settings of optimization metrics on example trajectories for a population size of
50 on data set FD004.

aggregated metric taking into account uncertainties in predictions to evaluate prognostics. Another idea could be to
use multiple metrics simultaneously to arrive at more robust prognostic results. All in all, this study highlights the
importance of choosing proper prognostic metrics and their impact on the prognostic outputs.
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