
Master’s Thesis

Detecting phenological transition dates of vegetation
based on multiple deep learning models

Zhaoyang Cheng
zyclark.cheng@gmail.com

Thesis committee:

Prof. dr. ir. M.J.T. Reinders
Dr. J.C. van Gemert

Dr. S. Picek
Dr. S. Khademi

August 2018

1

Abstract

Vegetation phenology is the interaction between vegeta-
tion activities and ecosystem. Accurate monitoring of veg-
etation phenology is required to build models and enhance
the understanding of the relationship between creatures and
climate-environment. PhenoCam is a ground-level, web-
cam based images database recording the growing of var-
ious vegetations, PhenoCam and multiple modeling meth-
ods have been utilized to study vegetation phenology since
2000s. In this paper, it first time the deep learning models
are applied to detect the phenological transition dates of
vegetation. Four different deep learning models: Convolu-
tion Neural Network (CNN), Siamese Network, 3-D Fully
Convolution Neural Network (FCN) and Regression Net-
work are used to study the vegetation phenology, based on
these approaches, the transition dates of vegetation activ-
ities within annual time can be determined from webcam-
based images, some of these deep learning methods are
more accurate than traditional modeling method in detect-
ing the transition dates.

1. Introduction
The vegetation dynamics in ecosystems largely reflect

the response of the biosphere to dynamics of the climate
[1][2][3]. Analysis on vegetation dynamics have provided
important record of how vegetations have responded to cli-
mate change, however, observation by human on long-term
vegetation dynamics is laborious and time-consuming. Ac-
curate and automatic monitoring of vegetation dynamics is
therefore an important work for researchers to investigate.
PhenoCam is a database consisting of inter-annual digital
images of various vegetations throughout North America.
Because of the consistent record of phenology of differ-
ent vegetations, PhenoCam has played an important role in
building model to monitor vegetation dynamics at regional
scales. In the study of building models based on PhenoCam,
a key challenge is determining how the phenology derived
from webcam based images relate to biological events that
a human observer would recognize. In the last decade, a
number of different methods have been developed to deter-
mine the timing of vegetation’s greenup and senescence(i.e.
the start and end of growing season of vegetation) which are
called transition dates of vegetations, most methods extract
the vegetation index (VI) that calculates a specific feature
of vegetation, e.g. green chromatic coordinate (GCC) and
red chromatic coordinate (RCC), and build sigmoid-based
model to fit the vegetation index, the curve of fitted model
can largely reflect the growing of vegetation. Instead of
choosing a specfic vegetation index, utilizing deep learning
to automatically extract the most distinguishable features is
more convenient and accurate.

In this thesis, my research topic is how to apply deep learn-
ing methods to detect transition dates of vegetation based
on images of vegetations. The research data includes the
data of four sites: (1) Queens; (2) Bartlettir; (3) Umichbio-
logical; (4) Harvard, in PhenoCam database.

1.1. Monitoring phenology using PhenoCam

Vegetations have many key phenological phases, e.g., the
date when leaves start becoming green, the date when flow-
ers come out, etc.. In this thesis, four basic phenological ac-
tivities are investigated: (1) the dates when the majority of
trees started leafing out, its phenological meaning is the on-
set of photosynthetic [4]; (2) the dates when green leaf area
is maximum, it phenological meaning relate to the end of
spring; (3) the dates when the canopy first started to change
color in the fall, which means the onset of senescence; (4)
the dates when the majority of trees had lost all leaves, its
phenological meaning corresponds to the start of dormancy.
Field based ecological studies have demonstrated that veg-
etation phenology tends to follow relatively well-defined
temporal patterns [5]. The dates when leaves green up tend
to be followed by a period of rapid growth, followed by
a relatively stable period of maximum leaf area, after the
brightest color phase in fall, leaf area decreases dramati-
cally. The vegetation index(VI) used to quantify phenolog-

Figure 1. A synoptic figure [5] of how transition dates are calcu-
lated by the extremas in the rate of change of curvature, the solid
line is an idealized curve of VI with respect to day of year, the
dashed line is the rate of change of VI curve.

ical status of the vegetation over time is usually green chro-
matic coordinate(GCC), researchers can fit logistic function
to VI from PhenoCam and find key transition points (usu-
ally the extremas) which are identified as transition dates,
however, the simple logistic function is not accurate enough
in detecting the transition dates because of the complex-
ity of temporal and spatial information of PhenoCam data.
They therefore propose some modified sigmoid methods
based on empirical equations.

2. Related Work
In this section, I first introduce some sigmoid-based

models that have been successfully applied in detecting

1

the transtion dates of vegetation, then I introduce previous
works that study phenology through deep learning.

GCC =
Green

Green+Red+Blue
(1)

The vegetaion index used in forest phenology is green
chromatic coordinate(GCC), equation 1 is a non-linear
transformation of the camera’s measured green digital
numbers to values representing the proportion of the
greenness measured, GCC measures the changing levels
of green pigmentation in vegetation. An advantage of
using GCC is to reduce the influence of differences in
scene illumination between images, literature [6] found
that weather-induced changes in scene illumination are
largely suppressed when using GCC, it is especially helpful
when applying GCC index to PhenoCam data because
illumination is often different in morning and afternoon,
illumination also changes quickly with different weather
conditions in PhenCam datasets.

2.1. Simple sigmoid-based method

fs(t) =
c

1 + exp(a+ bt)
+ d (2)

Equantion 2 is the Simple Sigmoid moedl, which is widely
used in phenology community [5][6][7]. fs(t) represents
the model value of vegetation index, parameter a decides
the time of decrease or increase, parameter b controls the
rate of increase or decrease, parameter c is the amplitude
of increase or decrease in vegetation index, parameter d de-
fines the dormant season baseline value of vegetaion index.

2.2. Generalized sigmoid-based method

The Simple Sigmoid model does not work accurately
enough in fitting the decreasing greenness in summer time,
so Elmore et al. [8] propose a Double Sigmoid model,

fpv(t) = m1 + (m2 −m7 ∗ t) ∗ V (3)
V = 1

1+exp((m3−t)/m4)
− 1

1+exp((m5−t)/m6)
(4)

in equation 3, fpv(t) is photosynthetic vegetation fraction
(FPV) stacked by day of year, fpv(t) is related to the pat-
tern of leaf development and growing season stability. m1

is the average FPV measured in winter, m2 is the difference
between FPV measured in summer, m3 and m4 control the
shape of growth curve in summer time, m5 and m6 con-
trol the shape of growth curve in winter time, the parameter
m7 tunes the seasonal vegetation index, hereby makes this
model more accurate. Recently a more flexible model is
presented by [9], they introduce two additional parameters
vi, qi in equation 6 , which allow more flexible rates of in-
crease near the lower and upper asymptotes of the sigmoid-
based function. This Generalized Sigmoid model can not

only control the baseline value of vegetation index via a1,
but fit the greenness decrease in summer time which is a
common phenomena in many sites via a2 and b2.

f(t) = a1 ∗ t+ b1 + (a2 ∗ t2 + b2 ∗ t+ c) ∗ V (5)
V = 1

[1+q1exp(−h1(t−n1))]v1
− 1

[1+q2exp(−h2(t−n2))]v2
(6)

2.3. Local extremas and transition dates

For each sigmoid-based method, the local extrema in
the rate of change of curvature is estimated as phenologi-
cal transition date,

k =
f ′′(t)

(1 + (f ′(t))2)
3
2

(7)

equation 7 [10] can be used to calculate the rate of change of
curvature k. In Simple and Double sigmoid model, points
where the k is largest and smallest in the seasonal transi-
tion phase are identified as transition dates, for example, in
Figure 1, point 1 and 2 are estimated as the transition dates
for event 1 (majority of trees leafing out) and event 2 (green
leaves area reaches maximum) respectively, point 3 and 4
are identified as event 3 (leaves start changing color in fall)
and event 4 (majority of trees lose leaves) respectively.
For Generalized Sigmoid model, the third extreme in the
curvature change rate is used to detect the transition date of
event 2. the transition date of event 1 is identified as the
date corresponding to 10% amplitude between the dormant
season and the values of vegetation index at event 2, the
detection approach is similar in fall.

2.4. Deep learning and phenology

There is no previous work that applies deep learning to
datasets from PhenoCam, while research usually apply deep
learning model to plants classification by convolution neu-
ral network (CNN) and long short term memory network
(LSTM)[11], there are also applications: classification of
vegetation growing stages by CNN [12], corp yield estima-
tion by CNN [13]. In these studies, every training image has
a corresponding label, and test images are assigned labels at
prediction stage, which is same with classification tasks that
have been solved by CNN in other fields.
In the detection of transition date problem, transition date
is only one day of year, thus, the visually annotated label of
transition date is also one day of year, which means many
samples do not have labels, it is difficult to perform classi-
fication with CNN, literature [14] inspires me to solve the
transition detection problem by video shot boundary detec-
tion methods.
Considering the scale of PhenoCam database, deep learn-
ing has potential to solve phenological problems with Phe-
noCam, however, shortage of label and the format of label
could be problems if I want to apply deep learning to Phe-
noCam dataset, as unsupervised learning is unsuitable in

2

solving phenological problems at present. To tackle above
problems, I present several deep learning models in follow-
ing sections.

3. Methods

Looking through the aforementioned sigmoid-based al-
gorithms in a deep learning worker’s perspective, I find
that they all belong to unsupervised learning style, to ac-
quire more accurate estimation of transition dates, I bring
the human-annotated label in and build different neural net-
work models to detect transition date in a supervised learn-
ing way, morever, once the trained model is built, it can be
applied to data in coming years.
To define the phenological problem with deep learning
methodologies , training data, label and test data should be
defined at the beginning, I therefore regard data in year 2008
and 2009 as training data, and data in year 2010 as test data.
The label is the day of year that transition event happens.
The data is continuous time-series images. I propose four
different methods to solve this problem in different perspec-
tives, the 3-D fully convolution neural network and regres-
sion network exploit the temporal information of data, while
convolution neural network and siamese network focus on
using spatial information of images.

3.1. Classification by convolution neural network

In conventional classification task, the sample size of
each class is basically same, and every traning sample has
a corresponding label, however, in PhenoCam dataset, la-
beled samples is too few to allow us perform a balanced
classification, I therefore utilize data augmentation to make
the class size roughly balanced.

3.1.1 Data augmentation

I find the transition date is the most representive day during
the transition period, but the transition period usually lasts
few days, so at first stage I decide to ’expand’ the transition
dates label in a small scale, in other words, I assign same la-
bel to the former and later E days of labeled transition date,
these days are also regarded as transition dates. By visually
inspect, the candidates ofE are [3, 4, 5, 6, 7], how to choose
the best ’expanded index’ E is another task to do, a naive
classification model consisting of convolutional layers and
fully connected layers is used to find the best E, the ex-
panded four events are regarded as four classes, for the rest
of images, they are 5-th class, let us call it the noise class
hereafter, however, even having expanded the labeled four
event classes, the images in noise class is still much more
than those in other four classes, to make class size balanced,
I use data augmentation to increase the number of images
of four event classes, the first measure I take is horizontal

flipping of image, horizontal flipping reserves the character-
istics of vegetation images and increase the number of im-
ages of four classes by the factor of two. I also notice that
image’s brightness changes over time in each day due to
different illumination and weather condition, for example,
the images taken in the morning and images taken in the af-
ternoon may look different because of different brightness,
to suppress the weather-induced change of illumination, I
use gamma correction[15] to generate one darker and one
brighter image from every original image,

Iout = Iγin (8)

in equation 8,Iin and Iout is the image before and after
gamma correction, γ is the parameter to control the bright-
ness of image, by setting γ 1.1 and 0.9, a darker and a
brighter image is generated based on original image. I
therefore have a new dataset three times the size of previ-
ous dataset. When using image fliping and gamma correc-
tion together, the new dataset is six times the size of original
dataset.
The data augmentation is also applied to the noise class, by
sampling images from the noise class, there are five class
with balanced size. I use data in 2008 as training data, data
in year 2009 as validation data and data in 2010 as test data
to select the best ‘expand index’ N , in my experiments, N
is chosen as 5, which means the labeled transition dates are
not 1 day but 11 days.
After augmentation, the only problem is how to design the
architecture of deep learning model, for this common classi-
fication task, a convolutional neural network (CNN) is used,
CNN has achieved great success since the AlexNet in Ima-
geNet Challenge 2012, more and more nets with improved
architecture are developed [16][17][18], they are widely ap-
plied in classification, object detection, semantic segmenta-
tion, etc.. CNN-based solutions usually have much higher
accuracy , they are replacing traditional machine learning
algorithms in many fields. In my scenario, for each site
there are about 600 images per class (300 for site Bartlet-
tir), advance network, e.g. ResNet [18] or VGG [17] is not
used here otherwise serious overfitting will occur and the
accuracy would not be high.
The architecture is shown in Table 1. When designing the
architecture of network, I follow the principle of design-
ing VGG net[17], with a given receptive field(the effective
area size of input image on which output depends), multi-
ple stacked smaller size kernel is better than the one with a
larger size kernel because more non-linear layers increase
the depth of the network which enables it to learn more
complex features, and at a lower cost. At the beginning of
designing the network, I use seven convolution layers, when
number of convolution layers is reduced to four, the model
still yields good result, I therefore only use model with four
convolution layers. The number of parameters of the net is

3

Layer Input size Kernel size
data N 256 256 3 3 3 3 8
layer 1 N 256 256 8 8 3 3 8
pool 1 N 128 128 8
layer 2 N 128 128 8 8 3 3 16
pool 2 N 64 64 16
layer 3 N 64 64 16 16 3 3 16
pool 3 N 32 32 16
layer 4 N 32 32 16 16 3 3 32
pool 4 N 16 16 32
flaten layer N 16×16×32
fc layer1 N 50
fc layer2 N 5
softmax layer N 5

Table 1. Architecture of our classification net, fc layer means fully
connected layer, we use max pooling [16] to retain the important
image information and reduce the number of parameters of model.

more than the number of samples, to suppress overfitting, I
use dropout [19] in fully connnected layer. At the softmax
layer, each test image is assigned to a class, to find the tran-
sition date, I find all the dates of test images in one class,
after discarding the earliest date and latest date, the aver-
aged date is the predicted transition date for test dataset.

3.2. 3-D fully convolution neural network

In CNN-based classification method, the temporal infor-
mation of PhenoCam dataset is ignored. Inspired by the
methods used in video shot boundary detection [14], I treat
the images dataset as a continuous video, such that the tran-
sition date can be found in the same way that shot boundary
in video is found. 3-D means dimension width, height, and
time, 3-D convolution neural network (CNN) takes video
snippets as input, and the convolution kernel is a 3-D cube
rather than a 2-D window. To reduce number of parameters,
I use fully convolution network (FCN) [20], in other words,
there is no fully connected layers in FCN. Figure 2 shows

Figure 2. Illustration of 3-D FCN for shot boundary detection.
each frame prediction is based on the context of N frames, in my
setting, N is 10, the frame 6 of input 10 frames is predicted as shot
boundary or not.

how the input frames relate to the prediction by 3-D FCN
when batch size is 1. If the frame 6 of input 10 frames is

a shot boundary, the input snippet will be annotated as 1,
otherwise this snippet is labeled as 0.

Layer Input size Kernel size stride
data N 10 64 64 3 3 5 5 3 16 1 1 2 2 1
layer 1 N 8 30 30 16 3 3 3 16 24 1 1 2 2 1
layer 2 N 6 14 14 24 3 3 3 24 32 1 1 2 2 1
layer 3 N 4 6 6 32 1 6 6 32 16 1 1 1 1 1
layer 4 N 4 1 1 16 4 1 1 16 2 1 1 1 1 1
layer 5 N 1 1 1 2
flatten layer N 2

Table 2. Architecture of 3-D FCN. ‘Valid’ padding [21] and 3-D
convolution are used in the model, N is the batch size

The architecture of my FCN is presented in table 2. In deep
learning, data is divided into many batches having same
length which is called batch size, every batch is fed to neu-
ral network and neural network minimizes the loss based on
batch. N denotes the batch size in table 2, the 3-D FCN is
trained to predict if frame 6 of 10 frames is a shot bound-
ary or not, if I change the parameter setting of 3-D FCN, it
can also accept input of other length, e.g. input having 20
frames, FCN will predict if frame 6 to 16 are shot bound-
aries.
At the prediction stage, a snippet can only be predicted as
shot boundary or not, I use the central frame to represent
the snippet and find the corresponding day of year of that
frame, as a result, there are a set of dates, I use the k-means
clustering [22] to group these dates into four classes. After
discarding the earliest and latest date in each class, the av-
eraged date of rest date is the predicted transition date for
each class.

3.3. Siamese Network

In the CNN-based classification, I have spent much
time in preprocessing and data augmentation to make the
class size balanced, is it possible to use limited unbalanced
class to learn the representation of dataset and estimate
the transition dates? The answer is using siamese network
[23][24][25], aforetioned CNN needs to ensure which
class each sample belongs to, however, when number of
samples is few or there are too many classes, conventional
CNN-based classification does not work well because it
can not learn a good representation from few samples.
Siamese network learns a similarity metric between during
training, and compare or match training samples to test
samples based on this learned similarity metric. Siamese
network is suitable for scenarios when there are too many
classes or too few samples per class. In a siamese network
there are two identical sister networks, each taking one of
a pair of images, the last layers of two neural networks are
fed to contrastive loss function, which is the most special
componet of the siamese network, instead of classifying

4

Figure 3. Architecture of siamese network [26], two sister net-
works share the same weights.

input to exact class, contrastive loss function enables
siamese network to measure how different a pair of images
are.

D =
√
(f(I1)− f(I2))2 (9)

Loss = 1
2yD

2 + 1
2 (1− y)(max{0,m−D})

2 (10)

In Equation 9, f is the function performed by sister net-
work, D is the euclidean distance between the two outputs
of a pair of inputs. Equation 10 is originally invented by
Yann leCun et al. in [25], y = 1 if a pair of inputs are
from same class, otherwise y = 0. When y = 1, the
two inputs are similar, if their euclidean distance is large,
then the contrastive loss will also be large; when y = 0,
Loss = 1

2 (max{0,m−D})
2, this is a hinge loss function

[27], m is the margin value, if the euclidean distance of out-
puts from a actually dissimilar pair is beyond this margin,
the hinge loss is zero and does not contribute to the con-
trastive loss, because I only want to optimize the network
based on the pairs that are actually dissimilar but the net-
work thinks they are fairly similar.
A CNN plays the role as sister network , which outputs a
vector of shape [N 256] where N is the batch size, this vec-
tor is fed to contrastive loss function to calculate the simi-
larity of the input pair.
In siamese network there are only the similarity between
samples, to predict the transition date, I borrow the idea of
image retrieval [28]. Let us call the images from training
dataset taken in transition date the transition images here-
after, I feed all test images and transition images to the
trained model and get output features of them respectively,
then average the output features of transition images to get
the transition vector. By calculating the euclidean distance

vector between transition vector and output features of test
images, I can therefore find the most similar n test images
to the transition images, the n is set as 10. After discard-
ing the earliest and latest date of n test images, the averaged
date of rest date is the predicted transition date.

3.4. Regression

Besides neural networks mentioned above, I also build a
regression network that direcly uses the day of year of the
input image as label. The regression network is built by re-
moving the softmax layer from CNN and setting the number
of class as one, the rest part of regression network is same
with prementioned CNN. The output of regression network
is not the class number anymore, but a scalar S, the label I
feed to regression network is the corresponding day of year
(called D hereafter) of the input image, the regression net-
work is optimized by minimizing the difference between D
and S.

Lσ(a) =

{
1
2a

2 if|a| < σ

σ(|a| − 1
2σ) otherwise

(11)

Regression problem usually utilizes huber loss function
which is defined in equation 11 [29]. σ is a parameter to be
set in huber loss, a is difference between output and ground
truth, this function is quadratic for small values of a, and
linear for large values, compared with least square loss, hu-
ber loss lower the penalty for outliers, make our regression
network more robust to outliers. The prediction stage of re-
gression network is similar to that of siamese network, each
test image get an ouput from trained model in the format
of day of year. I find those test images whose outputs are
identical or close to transition dates on training dataset, the
day of year of those test images are the predicted transition
dates of test dataset.

4. Experiments
The objective of my experiments is to find a more ac-

curate algorithm to detect the key phenological transition
dates, therefore, I use the human-annotated transition date
as baseline, and calculate the gap of days between the tran-
sition date detected by algorithms and transition date an-
notated by human. To evaluate the performance of these
algorithms, the smaller the gap is, the better the algorithm
is.

4.1. Data used

The images in PhenCam dataset usually not only contain
the vegetation but lane or telephone pole, etc., to acquire
the region of interest (ROI), images on every site have
corresponding mask images, Figure4 and Figure 5 is an
example image and corresponding mask image.
Our research data comes from four sites in PheneCam: (1)

5

Harvard; (2) Bartlettir; (3) Queens; 4) Umichbiological.
The images of the above sites have two advantages over
images from other sites, first: their images have higher
resolution; second, in the images from above four sites,
the percentage of forest area of the whole image is higher
than those from other sites. These two advantages make it
possible to extract more representative information from
images. For different methods, the format of input data is
different, I will introduce them in experiments settings.

I study the phenology of above sites on year 2008, 2009

Figure 4. An example image of umich-
biological site in 2010, PhenoCam.

Figure 5. The mask image of site
umichbiological, black area is Region
of Interest(ROI).

and 2010. For site Harvard, Queens and Umichbiological,
images are taken every 30 minutes every day in year 2008,
2009 and 2010, images are taken every one hour at site
Bartlettir in year 2008, 2009 and 2010, to keep the high
quality of images, I only collect images during 10am to
15pm, so there are 10 images every day for site Harvard,
Queens and Umichbiological, 5 images for site Bartlettir.
There are 4 events: (1) majority of trees starts leafing out;
(2) leaf area reaches maximum; (3) leaves start to change
color in fall; (4) majority of trees lost their leaves. I use the
label presented by literature [9]. For every event in each
year, six human observers look through data in the year and
use a common protocal to annotate the day when the event
happens in that year as label. When using labels, to reduce
inter-observer variability in visually assessed dates, the
earliest and latest annotations of each event are discarded.
Data in 2008 and 2009 is used as training data and valida-
tion data respectively, data in 2010 is regarded as test data.
The models are evaluated on each site data separately.

4.2. Experiments settings

To evaluate the Generalized Sigmoid model, I use
the generalized sigmoid function written in matlab[30]
by Steve Klosterman to fit the GCC index of year
2010 provided by PhenoCam, the code is available
at https://github.com/klostest/PhenoCamAnalysis, the code
also contains the function calculating the local extrmas,
thus, the returned value is the transition date in format day
of year.
The architecture of CNN is shown in Section 3, the input to
CNN-based classification model is a batch of RGB images
with shape [N 256 256 3], I set N as 64. After the data
augmentation, there are about 600 images per class for site
Queens, Harvard and Umichbiological respectively, 300 im-
ages per class for site Bartlettir. I choose entropy loss func-
tion and Adam Optimizer to minimize the loss which are
common setting in CNN classification tasks. The condition
to stop the training process is when the gap of days between
validation data and human-annotated data has reached the
minimum.
The input to 3-D FCN is a video snippet, different from
other model having image size of [256 256 3], the image
size in 3-D FCN is [64 64 3] as 3-D convolution needs
more computation, a large image size would make train-
ing extremely slow. To cover as much temporal informa-
tion as possible, I divide the whole dataset into multiple
snippets of 10 frames, with an overlap of 5 frames for
non-transition frame and overlap of 1 frame for transition
frame, there are about 3000 frames for site Queens, Har-
vard and Umichbiological respectively, 1500 frames for site
Bartlettir, thus, there are about 1500 snippets and 40 snip-
pets of them are annotated as transition, for site Queens,
Harvard and Umichbiological respectively, 700 snippets for
site Bartlettir, and 20 snippets of them are annotated as tran-
sition, to make the training data more balanced, I randomly
discard half of those non-transition snippets, the rest snip-
pets are fed to 3-D FCN.
The input to siamese network is a pair of images with shape
[2*N 256 256 3] where N is batch size. The expanded
labels are also used for siamese network which means in
training data the former and later 5 days are also regarded
as transition date. There is no need to feed images of noise
class to siamese network because the network can learn
the dissimilarity between four classes representating four
events. After excluding the noise class there are about 400
images for site Queens, Umichbiological and Harvard and
200 images totally for site Bartlettir, these images are ran-
domly paired and the label of pair depends on two images
have same class or not, I set the number of pairs is 3000,
these pairs are fed to siamese network batch by batch, the
batch size N is 64.
The setting for regression network is almost same with that
of CNN, the difference is there is no sofmax layer and the

6

number of class is set 1, thus the regression network can be
trained to predict the day of year of test images.

4.3. Evaluations

Let us denote GS as generalized sigmoid algorithm, CN
as CNN-based classification, SN as siamese network and
RN as regression network in the following table.

Method event 1 event 2 event 3 event 4
GS 2 17 8 22
CN 2 16 2 1
SN 3 20 11 9
RN 11 26 15 19
3D FCN 25 39 60 52

Table 3. Harvard Site 2010: Absolute difference to human-
recognized label.

Method event 1 event 2 event 3 event 4
GS 24 7 2 23
CN 5 5 2 4
SN 7 10 4 8
RN 5 14 13 20
3D FCN 45 42 23 70

Table 4. Umichbiological Site 2010: Absolute difference to
human-recognized label.

Method event 1 event 2 event 3 event 4
GS 1 11 8 18
CN 0 8 3 5
SN 4 10 4 8
RN 3 12 17 27
3D FCN 41 52 12 24

Table 5. Queens Site 2010: Absolute difference to human-
recognized label.

Method event 1 event 2 event 3 event 4
GS 1 15 11 23
CN 3 11 6 14
SN 2 9 5 10
RN 10 19 16 24
3D FCN 10 37 66 29

Table 6. Bartlettir Site 2010: Absolute difference to human-
recognized label.

Tabel 3, 4, 5 and 6 are the evaulations of four sites. For
site harvard, umichbiological and queens, the performance
of CNN-based classification is best, it gives the predicted

days of event 1 (majority of trees starts leafing out), event
3 (trees first start to change color in the fall), event 4 (ma-
jority of trees had lost all leaves) that are close to human
recognized, for event 2 (green leaf area is maximum), pre-
dicted days of all methods have relatively large gap with
human annotated results, I conclude that once the green leaf
area reaches maximum the area has a decreasing period and
reaches maximum again in summer, which makes model
hard to learn this process, I also find that observations of six
human observers have relatively large variance in recogniz-
ing this event. Siamese network is more accurate than other
models in detecting the transition dates on site Bartlettir,
this is fair because data of site bartlettir only have half the
size of other three sites, performance of siamese network
decrease more slightly than that of CNN-based classifica-
tion model when sample size is reduced. The performance
of Regression model is not as accurate as that of classifi-
cation model and siamese net, the 3-D FCN works poor.
I think the poor performance of regression model and 3-D
FCN is because temporal information has a strong pattern
only during growing seasons (April-June, Sep to Nov). The
temporal clues out of vegetation’s growing season are weak,
which makes it hard for regression and 3-D FCN to learn
the temporal pattern, another possible resaon is, in com-
mon video dataset, the shot boundaries between frames are
highly distinguishable, however, in vegetation dataset, the
change of frames is slow and not obvious over time, which
means it is hard to capture the temporal pattern.
To summarise the performance of different models on de-
tecting the transition dates of vegetations, CNN-based clas-
sification model works best, siamese network and general-
ized sigmoid model have roughly same performance, they
are both good, performance of regression model is not bad
but 3-D FCN works poor.

5. Discussion
In this thesis, I introduce few deep learning approaches

and how they can be applied in detecting the phenological
transition dates, I also compare these deep learning meth-
ods with traditional sigmoid-based methods, and find CNN-
based classification can yield more accurate results.
There are also many limitations in my work, models ex-
ploiting the temporal information is of poor performance,
the particularity of vegetation dataset and the inappropri-
ate setting of model are both responsible for the poor re-
sult. Actually there is another model which has great po-
tential to achieve success in this task, convolution neural
network plus recurrent neural network (RNN), however, it
takes much more time to fine-tune the CNN+RNN model,
and considering models relying on temporal information
have relatively poor performance in experiments, I there-
fore stop spending time fine tuning the CNN+RNN model,
which could be a good approach to perform transition dates

7

detection in future work. I also have to admit, it usually
takes much time to train and fine tune the models to earn
better performance.
The scale of dataset in my experiments is not enough to train
the best model, the evaluation of performance will become
more convicible if data drom more sites and more years is
involved in. Integrating data from many sites and many
years could be another good way to train the model.

References
[1] Ranga B Myneni, CD Keeling, Compton J Tucker, Ghassem

Asrar, and Ramakrishna R Nemani. Increased plant growth
in the northern high latitudes from 1981 to 1991. Nature,
386(6626):698, 1997.

[2] Michael A White, Peter E Thornton, and Steven W Running.
A continental phenology model for monitoring vegetation re-
sponses to interannual climatic variability. Global biogeo-
chemical cycles, 11(2):217–234, 1997.

[3] Mark D Schwartz. Advancing to full bloom: planning phe-
nological research for the 21st century. International Journal
of Biometeorology, 42(3):113–118, 1999.

[4] Christian Körner and David Basler. Phenology under global
warming. Science, 327(5972):1461–1462, 2010.

[5] Xiaoyang Zhang, Mark A Friedl, Crystal B Schaaf, Alan H
Strahler, John CF Hodges, Feng Gao, Bradley C Reed,
and Alfredo Huete. Monitoring vegetation phenology us-
ing modis. Remote sensing of environment, 84(3):471–475,
2003.

[6] Oliver Sonnentag, Koen Hufkens, Cory Teshera-Sterne,
Adam M Young, Mark Friedl, Bobby H Braswell, Thomas
Milliman, John OKeefe, and Andrew D Richardson. Dig-
ital repeat photography for phenological research in forest
ecosystems. Agricultural and Forest Meteorology, 152:159–
177, 2012.

[7] Liang Liang, Mark D Schwartz, and Songlin Fei. Validating
satellite phenology through intensive ground observation and
landscape scaling in a mixed seasonal forest. Remote Sensing
of Environment, 115(1):143–157, 2011.

[8] Andrew J Elmore, Steven M Guinn, Burke J Minsley, and
Andrew D Richardson. Landscape controls on the timing of
spring, autumn, and growing season length in mid-atlantic
forests. Global Change Biology, 18(2):656–674, 2012.

[9] Stephen Klosterman, Koen Hufkens, JM Gray, E Melaas,
O Sonnentag, I Lavine, L Mitchell, R Norman, MA Friedl,
and Andrew Richardson. Evaluating remote sensing of de-
ciduous forest phenology at multiple spatial scales using
phenocam imagery. 2014.

[10] Morris Kline. Calculus: an intuitive and physical approach.
Courier Corporation, 1998.

[11] Sarah Taghavi Namin, Mohammad Esmaeilzadeh, Moham-
mad Najafi, Tim B Brown, and Justin O Borevitz. Deep phe-
notyping: deep learning for temporal phenotype/genotype
classification. Plant methods, 14(1):66, 2018.

[12] Hulya Yalcin. Plant phenology recognition using deep learn-
ing: Deep-pheno. In Agro-Geoinformatics, 2017 6th Inter-
national Conference on, pages 1–5. IEEE, 2017.

[13] Kentaro Kuwata and Ryosuke Shibasaki. Estimating crop
yields with deep learning and remotely sensed data. In Geo-
science and Remote Sensing Symposium (IGARSS), 2015
IEEE International, pages 858–861. IEEE, 2015.

[14] Michael Gygli. Ridiculously fast shot boundary detection
with fully convolutional neural networks. arXiv preprint
arXiv:1705.08214, 2017.

8

[15] Charles Poynton. Digital video and HD: Algorithms and In-
terfaces. Elsevier, 2012.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012.

[17] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[19] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958, 2014.

[20] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 3431–3440, 2015.

[21] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
a system for large-scale machine learning. In OSDI, vol-
ume 16, pages 265–283, 2016.

[22] Kiri Wagstaff, Claire Cardie, Seth Rogers, Stefan Schrödl,
et al. Constrained k-means clustering with background
knowledge. In ICML, volume 1, pages 577–584, 2001.

[23] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard
Säckinger, and Roopak Shah. Signature verification using a”
siamese” time delay neural network. In Advances in neural
information processing systems, pages 737–744, 1994.

[24] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning
a similarity metric discriminatively, with application to face
verification. In Computer Vision and Pattern Recognition,
2005. CVPR 2005. IEEE Computer Society Conference on,
volume 1, pages 539–546. IEEE, 2005.

[25] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimension-
ality reduction by learning an invariant mapping. In null,
pages 1735–1742. IEEE, 2006.

[26] illustration of siamese network. https://hackernoon.
com.

[27] Kilian Q Weinberger, John Blitzer, and Lawrence K Saul.
Distance metric learning for large margin nearest neighbor
classification. In Advances in neural information processing
systems, pages 1473–1480, 2006.

[28] Ritendra Datta, Dhiraj Joshi, Jia Li, and James Z Wang. Im-
age retrieval: Ideas, influences, and trends of the new age.
ACM Computing Surveys (Csur), 40(2):5, 2008.

[29] Peter J Huber et al. Robust estimation of a location param-
eter. The annals of mathematical statistics, 35(1):73–101,
1964.

[30] Users Guide Matlab. The mathworks. Inc., Natick, MA,
1992, 1760.

9

https://hackernoon.com
https://hackernoon.com

Appendix

Zhaoyang Cheng

August 2018

Contents
1 Label by human 2

2 Deep learning and neural network 5

3 Convolutional Neural Network 5
3.1 CNN Predecessors Inspired by Neuroscience 5
3.2 Convolution layer . 6
3.3 Padding . 7
3.4 Activation function . 7
3.5 Pooling layer . 8
3.6 Fully connected layer . 9
3.7 Feature map . 10

4 Literature review on video classification 10
4.1 Recurrent neural network . 10
4.2 Long short term memory network . 11

4.2.1 Vanishing gradients problem . 12
4.2.2 Architecture of LSTM . 13

4.3 CNN-based video classification . 15
4.4 CNN-RNN based video classification 16

1

1 Label by human
I use the label annotated by Steve Klosterman [1], they evaluate five kinds of tran-

sition dates of year data, while we choose four from them since transition date 4 and 5
are too close, which makes it hard for us to expand the label in classification method.
The four transition dates in their paper are:

1. when the majority of trees started leafing out
2. when the canopy reached full maturity
3. when the canopy first started to change color in the fall
4. when the majority of trees had lost all leaves.

Following are the transition dates denoted by six observers using a common proto-
col, in the table we call them event 1 2 3 and 4. NA means not a number, if there is
a NA in a row, we discard NA and average the rest of the row as averaged transition
date, if not, we remove the biggest and smallest date of the row and averge the rest.

event year observer 1 observer 2 observer 3 observer 4 observer 5 observer 6
1 2008 127 128 126 127 NA 129
2 2008 138 148 174 165 NA 155
3 2008 250 241 216 186 252 250
4 2008 305 303 305 303 282 292
1 2009 122 125 121 122 121 126
2 2009 140 146 170 163 140 146
3 2009 250 250 202 218 232 257
4 2009 304 303 305 305 286 305
1 2010 114 117 112 114 115 116
2 2010 125 141 169 180 131 141
3 2010 258 234 202 233 248 256
4 2010 301 301 310 302 290 302

Table 1: Transition dates of Bartlettir site from 2008 to 2010

2

event year observer 1 observer 2 observer 3 observer 4 observer 5 observer 6
1 2008 115 118 117 136 NA 117
2 2008 144 145 166 181 NA 153
3 2008 266 NA 232 239 280 274
4 2008 321 315 353 320 296 317
1 2009 117 121 107 121 120 120
2 2009 136 144 167 182 141 157
3 2009 267 266 251 248 271 271
4 2009 319 314 333 319 298 314
1 2010 113 115 112 113 115 113
2 2010 132 137 156 179 128 146
3 2010 269 NA NA 259 269 277
4 2010 315 313 329 315 292 314

Table 2: Transition dates of Harvard site from 2008 to 2010

event year observer 1 observer 2 observer 3 observer 4 observer 5 observer 6
1 2008 120 120 120 110 110 115
2 2008 NA NA 163 NA NA 159
3 2008 266 270 272 259 269 269
4 2008 312 304 349 313 290 305
1 2009 120 122 121 120 122 123
2 2009 135 142 123 179 133 151
3 2009 265 267 253 260 264 268
4 2009 305 303 336 309 284 306
1 2010 105 112 107 109 110 109
2 2010 123 140 150 183 126 136
3 2010 255 263 256 252 261 261
4 2010 300 299 336 313 274 300

Table 3: Transition dates of Queens site from 2008 to 2010

3

event year observer 1 observer 2 observer 3 observer 4 observer 5 observer 6
1 2008 125 126 119 130 135 120
2 2008 150 155 160 156 163 148
3 2008 283 266 NA NA NA 282
4 2008 311 309 314 NA NA 313
1 2009 135 139 110 15 130 NA
2 2009 154 157 161 74 159 NA
3 2009 278 281 271 175 285 NA
4 2009 306 306 319 236 300 NA
1 2010 125 140 93 8 121 119
2 2010 143 157 155 78 144 156]
3 2010 273 279 256 182 271 271
4 2010 299 306 315 230 284 300

Table 4: Transition dates of Umicnbiological site from 2008 to 2010

4

2 Deep learning and neural network
Artificial Neural Network (Artificial Neural Network, ANN) is a simulation and ap-

proximation of biological neural networks. Adaptive nonlinearity of a large number of
neurons connected by dynamic network system. In 1943, psychologist McCulloch and
logician Pitts proposed the first mathematical model of neurons-MP model [2]. The
MP model is groundbreaking research for later work. In the late 1950s and 60s, Rosen-
blatt added learning function on the MP model, proposed a single layer perceptron
model, it is the first time the neural network is put into practice [3][4]. But the single
layer perceptron network model cannot deal with linear indivisible problems. Until
1986, Rumelhart And Hinton et al. proposed a training method based on error inverse
propagation algorithm. Multi-layer feedforward network -backpropagation network(BP
Network) which solved some problem that single layer perceptron cannot solve. Due
to the various learning models have been proposed, such as support vectors machine
[5], And when adding the number of layers of the neural network, the traditional BP
network will encounter problems such as local optimization, over-fitting and gradient
diffusion. These have led to the study of deep models being shelved.
In 2006, Hinton et al. published a paper [6]. The main points are as follows: 1 The arti-
ficial neural network with multiple hidden layers has excellent different feature learning
ability; 2 can be "layer-by-layer pre-training" (layer-wise pre-training) to effectively
overcome difficulties of deep neural networks in training, which led to research on deep
learning, also initiated the another upsurge of artificial neural network. Bengio [7] sys-
tematically introduced the network structure and learning algorithm. Currently, CNN
[8] is the first candidate to solve images and videos related problem.

3 Convolutional Neural Network
In my scientific paper, different deep learning models are based on the same struc-

ture: convolution neural network (CNN), I therefore give many details of CNN in
following sections.

3.1 CNN Predecessors Inspired by Neuroscience

In 1962, biologists Hubel and Wiesel found a series of cells with complex structure
in visual cortex of cat brain, those cells are sensitive to local region of visual input space
which are called receptive field [9]. Receptive field covers the entire visual domain and
works locally in the input space, thus receptive field is able to better dig out the strong
relationship between natural images. Huber and Wiesel divide these cells into sim-
ple type and complex type, simple cells have local receptive fields, and complex cells,
which were invariant to shifted or distorted inputs, arranged in a hierarchical fashion.
These works provided the early inspiration to later automated vision systems. In 1980,
Fukushima proposed a neurocognitive machine(Neocognitron) [10] with a similar struc-
ture to the hierarchical model of Huble and Wiesel. Neocognitron consists of simeple
layer(S-layer) and complex layer(C-layer), cascaded together in a hierarchical manner,

5

with this architecture, the network proved successful at recognizing simple input pat-
terns irrespective of a shift in the position or considerable distortion in the shape of the
input pattern. Significantly, the neocognitron laid the groundwork for the development
of CNNs. Later, based on Fukushima’s work, LeCun et al. use back propogation to
train a CNN(LeNet-5) which is the classical CNN architecture, it has good performance
in many pattern recognition fields [8].

3.2 Convolution layer

The main difference between fully connected neural network and convolution neural
network is that in CNN a hidden layer neuron is only connected to a subset of neurons
in the previous layer by convolution operation, this sparse connectivity makes CNN
capable to learn features implicitly and save huge computaion.
The basic structure of CNN consists of input layer, convolution layer, pooling layer and
fully connected layer. Generally there are many Convolution layers and each of them
is followed by a pooling layer. Convolution layer consists of multiple feature maps,
each feature map consists of multiple neurons, neurons that lie in the same feature map
shares the weight (parameter sharing), thereby reducing the complexity of network by
keeping the number of parameters low [11]. The spatial extend of sparse connectivity
between the neurons of two convolution layers is called receptive field. The hyperpa-
rameters that control the size of the output volume are the depth(number of filters
at a layer), stride(for filter movement) and padding(to control spatial size of output).
In order to better understand convolution between feature maps, Figure 1 shows the
2-D CNN schematic diagram of convolution operation between feature maps. each of

Figure 1: example of 2-D convolution

the neurons connect with local region of former feature map through convolution ker-
nels(filters), the convolution kernel is a learnable weighted matrix, the local weighted
sum of convolution operation is passed to a non-linear function(activation function),

6

which results in the corresponding ouput of neurons.
Convolution layer of CNN extracts the different features of the input through convo-
lution operations, the first convolution layer extracts low-level features such as edges,
lines, corners, higher-level convolution layer extracts the more advanced features.

3.3 Padding

In convolution operation, the feature map after convolution usually lose the pixels at
the border of feature map, padding technique is used to compensate the lose of pixels.
There are two kinds of padding, the first one is ‘same’ padding, ’same’ padding pads
pixels to the border of images and assign value (usually zero) to those pixels, for the
sake of keeping size of image before and after convolution same. Taking a row with
length 7 for example, assuming stride is 1, then we add two more pixels to the left and
right of this row, yielding another row still with length of 7.

heightnew = ceil(
heightold
stride

) (1)

Equation 1 is the calculation of height of image through convolution with ‘same’
padding. Stride is the step size the convolution kernel moves every time, ceil is function
returing the smallest integer that equal or bigger than the input.
Second kind of padding is ’valid’ padding, actually, valid padding does not do any
padding, convolution stops when kernel meets the pixel that can not be a center pixel
of convolution.

heightnew = ceil(
heightold − sizekernel + 1

stride
) (2)

Equation 2 is the calculation of height of image through convolution with ‘valid’ padding.

3.4 Activation function

In traditional CNN, the activation function uses a saturating nonlinearity such as
sigmoid function, tanh function, etc. Different from saturated nonlinearity function,
unsaturated nonlinear function (non-saturating Nonlinearity) can solve the gradient
explosion/gradient vanishing problem, it also speeds up the convergence [12]. Jarrett
et al. [13] explored different rectified nonlinear functions in CNN found that they
can significantly improve the performance of CNN, this conclusion was also verified in
[14]. In the current CNN structure ,commonly used activation functions in CNN are
unsaturated nonlinear functions such as rectified linear unit(ReLU) function. Figure 2
shows the curve of Tanh and RelU function, different from Tanh, the output of ReLU
will not saturate as the input increases.

f(x) = max(0, x) (3)

Chen [15] analyzed 3 factors affecting CNN’s performance. Factors: number of layers,
number of feature maps, and network architecture. In his report Chinese handwriting
recognition experiments use CNN with 9 structures, some conclusions on test results
from CNN with a relatively small convolution kernel : 1) increasing the depth of the

7

Figure 2: ReLU function and Tanh function

network can improve accuracy Rate; 2) increasing the number of feature maps can
also improve accuracy; 3) Adding a convolution layer can increase higher accuracy
by adding a fully connected layer. Literatur [16] pointed out that the deep network
structure has two Advantages: 1) can promote the reuse of features; 2) can obtain more
abstract features in high-level representaions, due to that highly abstract concepts can
be constructed based on the lower abstract concepts, so the deep structure can get more
abstract representations, such as pooling operations in CNN can create this abstraction,
highly abstract concept is invariant to the lost local change of inputs.

3.5 Pooling layer

The pooling layer follows after the convolution layer, it also consists of multiple
feature maps, each of its feature map uniquely corresponds to a feature map of the
previous convolution layer. Poolint layer is designed to retain space invariant features
by reducing the resolution of the feature maps. The pooling layer acts as a secondary
extraction of features, every neuron of pooling layer conducts pooling operation on
local region of corresponding previous convolution layer The commonly used pooling
method is max pooling, taking the largest value in local region, mean pooling, averaging
all values in the local region, stachastic pooling [17][18]. Literature [19] gives detailed
theoretical analysis of max pooling and mean pooling, there are some conclusions: 1)
max pooling is especially suitable for separate very sparse features; 2) using all points
in the local area to perform pooling operations may not be optimal, such as averaging
pooling, using all points in the local region.

8

3.6 Fully connected layer

In the CNN, one or more fully connected layers(FC layer) are added after multiple
convolution layers and pooling layers. Each neuron in the FC layer is fully connected
with all the neurons in the previous layer . Fully connected layer can integrate category-
specific local information in convolution layer or pooling [20]. In order to improve CNN
Network performance, the activation function of each neuron in the fully connected
layer is usually the ReLU function.
The output value of the last layer of the fully connected layer is passed to the output
layer which is also called softmax layer, bacause output layer uses softmax logistic
regression for classification. For a specific classification Task, it is very important to
choose a suitable loss function. Literature [21] introduced several commonly used loss
functions of CNN and analyzed their respective characteristics.
When a large feedforward neural network is trained on a small amount of dataset, due
to high capacity of neural network, it usually does not perform well on the held-out test
data. To avoid overfitting, commonly used regularization method in the fully connected
layer is dropout or dropconnect technique,

f(x) = max(0, x) (4)

In the Figure 3, (i) shows a standard neural network. Applying Dropout is shown in (ii)

Figure 3: Dropout and DropConnect[22]

is equivalent to sampling a neural network. The activations of some of the neurons are
set to zero during forward and backward prapogation of training. While DropConnect
randomly set the link weights to zero, this is marked red in (iii) in the Figure.
Due to the randomness of dropout technique, its corresponding network structure is
not the same, but all of these structures share weights, one Neuron’s existence does
not depend on other specific neurons, so this technique reduce the adaptive complexity
of inter-neuronal and make network learns more robust features. Currently, for CNN,

9

most of the research uses ReLU+dropout technique and has achieved very good results
[23][24][25].

3.7 Feature map

The number of feature maps is an important parameter of CNN, usually it is set
according to the actual application, if the number of feature maps is too small, some
features that are conducive to network learning may be ignored; but if the number of
feature maps is too large, the number of training parameters and network training time
will also increase. Literature [26] proposed a theoretical method used to determine
the optimal number of feature maps. The literature found, compared to the CNN
structure having same number of feature maps per layer , the pyramid architecture
(the number of feature maps of this structure is increased by a factor of multiple) can
exploit computation resources more efficiently. At present, the setting of the number
of feature maps based on the experiment and observation.

4 Literature review on video classification
As the images and videos are increasing on the Internet with unprecedented speed,

efficient videos classification algorithm helping people find satisfactory content is in
demand. Video classification algorithms are supposed to understand the content of
videos or video clips and classify them automatically to one or more labels.
The huge volume of video data has motivated approaches to automatically categorizing
video contents according to prominent classes such as human activities. There is a
large body of literature focusing on computing effective local feature descriptors (e.g.,
HoG [27], HoF, etc.) from spatio-temporal volumes to account for temporal clues in
videos. These features are then quantized into bag-of-words which are further fed
into classifiers like support vector machine (SVM) [28]. In contrast with hand-crafted
features which is time-consuming and requires domain knowledge, the representation of
features extracted by deep neural network becomes prevalent. There are two categories
of deep learning models for video classification: convolution neural network based video
classification and convolution neural network plus recurrent neural network (RNN)
video classification.
Why RNN palys an important role in video classification? Let me explain what is RNN
first.

4.1 Recurrent neural network

Recurrent neural network is an important class of artificial neural network, which
has achieved great success on many tasks in computer vision (CV) and natural language
processing (NLP). This review will summarize the application of recurrent neural net-
work on video classification.
Let us start with the difference between feed forward network and recurrent neural net-
work. In feed forward neural network, inputs are fed to network and transformed to an

10

output, the output at this moment does not depend on the outputs of previous inputs,
for example, in handwritten digits classification task, that the first digit is predicted as
one will not has influence on the 100th digit being predicted as three. But the situation
is different in recurrent neural network, the decision of recurrent neural network at this
moment depends on the decision the network made at previous moments, as a result,
the output of this moment is a weighted combination of previous output and current
input, which also means recurrent neural network has a memory capturing what has
been calculated so far, in theory recurrent neural network can take input of arbitrarily
long, in practice we limit the network only to look at few previous moments. Figure

Figure 4: A recurrent neural network and the unfolding in time of the computation
involved in its forward computation [29]

4 shows a recurrent neural network being unfolded into a full network which has the
same length as the sequence, xt is the input at time step t, usually an one-hot vector
corresponding to an element in a sequence, st is the hidden state at time step t, which
is calculated based in the previous hidden state and current input:

st = f(U ∗ xt +W ∗ st−1) (5)

f is activation function such as tanh or ReLu [14], ot is output at time step t:

ot = V ∗ st (6)

Unlike feed forward neural network which has different parameters in every layer, recur-
rent neural network share parameters (U, V, W in the diagram), across all time steps,
which proves RNN is doing same task on different element in a sequence.
I have introduced the basic idea of recurrent neural network, the most popular ver-
sion of recurrent neural network is Long Short Term Memory recurrent neural network
(LSTM) [30].

4.2 Long short term memory network

When handling time-series data, sometimes we only take recent information into
consideration, however, there are many occasions where we need to look for further
information, the problem of standard recurrent neural network is that it is very hard
for it to keep track of information of many steps ago, why? intuitively information
declines through propagation, theoretically there is a vanishing gradients problem.

11

4.2.1 Vanishing gradients problem

The vanishing gradients problem is originally discovered by Sepp Hochreiter [31]
and analyzed by Yoshua Bengio [32][33]. when training a feed froward neural network,
the error is calculated on the output layer and propagated back to hidden layers, then
the weights between units are updated based on the gradients of error, such that the
error is minimized, we usually call this process Back Propagation. In recurrent neural
network, propagation has two directions, through layers and through time, for example
in Figure 4, the error term of individual neuron at layer l and time t δlt flows in two
directions, one is to last layer resulting δl−1t ,determined by weight U ,another direction
is along time series to time t1, resulting δl1 , determined by weight W. {U, V, W}, is
weight of input-to-hidden,hidden-to-output,hidden-to-hidden respectively.
For notation, ot = V st, ŷt is input to other layers at time t, f is an activation function.

ŷt = softmax(V st) (7)

we will focus on the back propagation through time and leave aside the back propagation
through layers which is similar to that in feed forward neural network.
At time t, for one neuron, error is et = −ytlog(ŷt),then sum up errors of all time step,
define our loss as :

E =
∑
t

−ytlog(ŷt) (8)

log function is monotonically increasing. In back propagation through layers, we
calculate gradient of error with respect to weight V(hidden-to-output), now in this
through time version, we want to calculate gradient of error with respect to weight
W(hiddent−1 − to− hiddent), similar to the way errors are cumulated in a time series,
we also sum up gradients of error along time series, which is

∂E/∂W =
∑
t

∂et/∂W (9)

with chain rule, we compute et first, that is

∂et/∂W =
∂et
∂ŷt

∂ŷt
∂St

∂St

∂W
(10)

here, ŷt = softmax(V St),St = tanh(WSt−1 + Uxt), however, we can not treat St−1 as
a constant, have to get more time information.

∂et/∂W =
t∑

k=0

∂et
∂ŷt

∂ŷt
∂St

∂St

∂Sk

∂Sk

∂W
(11)

To investigate the vanishing gradient problem, let’s Look at this equation, we should

make ∂St

∂Sk
more fundemental, ∂St

∂St−1
...∂Sk+1

∂Sk
, ∂St

∂Sk
=

t∏
j=k+1

∂Sj

Sj−1

∂et/∂W =
∑t

k=0
∂et
∂ŷt

∂ŷt
∂St

(
t∏

j=k+1

∂Sj

∂Sj−1
)∂Sk

∂W
(12)

∂Sj

∂Sj−1
=

∂Sj

∂netj

∂netj
∂sj−1

= f ′(netj) ·W (13)

12

where nett is a weighted input from a hidden layer t-1 to another hidden layer t, f ′(netj)
is a jacobian matrix, which means

f ′(netj) = diag[f ′(netj)] (14)

Let us denote η = |f ′(netj)| · |W | Bengio et al. [33] has proven that η < 1, which means
by a series of multiplication the gradient will approach zero.

4.2.2 Architecture of LSTM

Having figured out why gradients vanish, researchers find that the solution lies
in how to control the long dependencies of information, in LSTM, they use gating
mechanism to protect and control the dependencies which is called cell state ct at time
t in LSTM. In Figure 5, LSTM network at time step t has three input parts: input xt
of net, output ht−1 from net at last time , cell state ct−1 at last time , and two output
parts: output ht from net at time t and current cell state ct.

Figure 5: cell state [34]

First they use forget gate to control how much information of last cell state ct−1 is
remained in current cell state ct.

ft = σ(
[
Wf

] [ht−1
xt

]
) = σ(

[
Wfh Wfx

] [ht−1
xt

]
) = σ(Wfhht−1 +Wfxxt) (15)

Then input gate is used to control how much information of xt and ht−1 is stored in
ct,

it = σ(Wi · [ht−1, xt] + bi) = σ(Wih · ht−1 +Wic · ct + bi) (16)

Let us use c̃t denotes the memory candidate waiting to be added to ct,

c̃t = tanh(Wc · [ht−1, xt] + bc) (17)

When information in last cell state ct−1 and candidate cell state c̃t pass their gate,
forget gate ft and input gate it respectively, part of their information is abandoned and
the rest is maintained, then they are passed to update cell state ct.

ct = ft · ct−1 + it · c̃t (18)

13

Figure 6: cell state [34]

Figure 7: cell state [34]

The output gate determines the output of LSTM.

ot = σ(Wo · [ht−1, xt] + bo) (19)

ht = ot · tanh(ct) (20)

So far, the basic structure of LSTM has been introduced, unlike the traditional
recurrent unit which overwrites its content at each time-step, a LSTM unit is able to
decide whether to keep the existing memory via the introduced gates. Intuitively, if
the LSTM unit detects an important feature from an input sequence at early stage, it
easily carries this information (the existence of the feature) over a long distance, hence,
capturing potential long-distance dependencies [35].

Having introduced RNN, I will introduce the CNN-based video classification and
CNN-RNN based video classification.

14

Figure 8: cell state [34]

Figure 9: cell state [34]

4.3 CNN-based video classification

The success of CNN on image classification has simulated the utilization of deep
features for video classification. The general idea is to treat video clips as a set of
frames, for each frame, feature representation is extracted from an advanced CNN, e.g.
AlexNet [23], VGGNet [36] or GoogleNet [37]. Frame-level features are averaged into
video-level representations as input of classifier such as SVM. More recently, Karpathy
et al.[38] extended the CNN to work on the temporal dimension by stacking frames over
time, Simonyan et al.[39] propose a two-stream CNN approach, which uses two CNNs
on static frames and optical flows respectively to capture the spatial and the motion
information.
These methods, however, only consider static or short-term clues in videos, which is
not sufficient for video classification, as many complex contents can be better identified

15

Figure 10: cell state [34]

Figure 11: cell state [34]

by considering the long-term clues.

4.4 CNN-RNN based video classification

To address the aforementioned limitations, Wu et al. [40] combine CNN and RNN
(LSTM) which leverages more temporal information as a hybrid network for video
classification. many approaches fuse multiple features in a very “naive” manner by
either concatenating the features before classification or averaging the predictions of
classifiers trained using different features separately. In this work they integrate the
spatial and the short-term motion features in a deep neural network with carefully de-
signed regularizations to explore feature correlations. This hybrid network can perform
video classification within the same network and further combining its outputs with
the predictions of the LSTM can lead to very competitive classification performance.

16

Figure 12: An overview of the proposed hybrid deep learning framework [40] for video
classification. Given an input video, two types of features are extracted using the CNN
from spatial frames and short-term stacked motion optical flows respectively. The
features are separately fed into two sets of LSTM networks for long-term temporal
modeling (Left and Right). In addition, they also employ a regularized feature fusion
network to perform video-level feature fusion and classification (Middle). The outputs
of the sequence-based LSTM and the video-level feature fusion network are combined
to generate the final prediction.

In Experiments, they use two popular datasets:
UCF-101 dataset[41], UCF-101 dataset is a action recognition benchmark, which con-
sists of 13,320 video clips of 101 human actions (27 hours in total). The 101 classes are
divided into five groups: Body-Motion, Human-Human Interactions, Human-Object
Interactions, Playing Musical Instruments and Sports.
Columbia Consumer videos(CCV) dataset[42],The CCV dataset consists of 9,317
YouTube videos annotated with 20 classes, which are mainly events like “basketball”,
“birthday party” and “parade”.
Their first experiment proves the effectiveness of LSTM. The second experiment com-
pare their hybrid network with conventional "features+classifier" pattern, which shows
with or without the regularized fusion network, the CNN+LSTM network will always
perform better then aforementioned method. The last experiment aims at compar-
ing their model to those state-of-the-art models, which also ends with hybrid network
having highest accuracies on UCF-101 and CCV dataset.

References
[1] Stephen Klosterman, Koen Hufkens, JM Gray, E Melaas, O Sonnentag, I Lavine,

L Mitchell, R Norman, MA Friedl, and Andrew Richardson. Evaluating remote
sensing of deciduous forest phenology at multiple spatial scales using phenocam
imagery. 2014.

17

[2] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[3] Frank Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6):386, 1958.

[4] Frank Rosenblatt. Principles of neurodynamics. 1962.

[5] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[6] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of
data with neural networks. science, 313(5786):504–507, 2006.

[7] Yoshua Bengio et al. Learning deep architectures for ai. Foundations and trends R©
in Machine Learning, 2(1):1–127, 2009.

[8] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[9] David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex. The Journal of physiology,
160(1):106–154, 1962.

[10] Kunihiko Fukushima. Neocognitron–a self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. NHK, (15):p106–
115, 1981.

[11] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan R Salakhutdinov. Improving neural networks by preventing co-adaptation of
feature detectors. arXiv preprint arXiv:1207.0580, 2012.

[12] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified
activations in convolutional network. arXiv preprint arXiv:1505.00853, 2015.

[13] Kevin Jarrett, Koray Kavukcuoglu, Yann LeCun, et al. What is the best multi-
stage architecture for object recognition? In Computer Vision, 2009 IEEE 12th
International Conference on, pages 2146–2153. IEEE, 2009.

[14] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltz-
mann machines. In Proceedings of the 27th international conference on machine
learning (ICML-10), pages 807–814, 2010.

[15] Xu Chen. Convolution neural networks for chinese handwriting recognition.

[16] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A
review and new perspectives. IEEE transactions on pattern analysis and machine
intelligence, 35(8):1798–1828, 2013.

18

[17] Y-Lan Boureau, Nicolas Le Roux, Francis Bach, Jean Ponce, and Yann LeCun.
Ask the locals: multi-way local pooling for image recognition. In Computer Vision
(ICCV), 2011 IEEE International Conference on, pages 2651–2658. IEEE, 2011.

[18] Matthew D Zeiler and Rob Fergus. Stochastic pooling for regularization of deep
convolutional neural networks. arXiv preprint arXiv:1301.3557, 2013.

[19] Y-Lan Boureau, Jean Ponce, and Yann LeCun. A theoretical analysis of feature
pooling in visual recognition. In Proceedings of the 27th international conference
on machine learning (ICML-10), pages 111–118, 2010.

[20] Tara N Sainath, Abdel-rahman Mohamed, Brian Kingsbury, and Bhuvana Ram-
abhadran. Deep convolutional neural networks for lvcsr. In Acoustics, speech and
signal processing (ICASSP), 2013 IEEE international conference on, pages 8614–
8618. IEEE, 2013.

[21] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing
Shuai, Ting Liu, Xingxing Wang, Li Wang, Gang Wang, et al. Recent advances in
convolutional neural networks. arXiv preprint arXiv:1512.07108, 2015.

[22] Neena Aloysius and M Geetha. A review on deep convolutional neural networks.
In Communication and Signal Processing (ICCSP), 2017 International Conference
on, pages 0588–0592. IEEE, 2017.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information pro-
cessing systems, pages 1097–1105, 2012.

[24] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[25] Tara N Sainath, Brian Kingsbury, George Saon, Hagen Soltau, Abdel-rahman
Mohamed, George Dahl, and Bhuvana Ramabhadran. Deep convolutional neural
networks for large-scale speech tasks. Neural Networks, 64:39–48, 2015.

[26] Joseph Lin Chu and Adam Krzyżak. Analysis of feature maps selection in super-
vised learning using convolutional neural networks. In Canadian Conference on
Artificial Intelligence, pages 59–70. Springer, 2014.

[27] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human de-
tection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 1, pages 886–893. IEEE, 2005.

[28] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard
Scholkopf. Support vector machines. IEEE Intelligent Systems and their appli-
cations, 13(4):18–28, 1998.

19

[29] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learn-
ing, volume 1. MIT press Cambridge, 2016.

[30] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Con-
tinual prediction with lstm. 1999.

[31] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al. Gra-
dient flow in recurrent nets: the difficulty of learning long-term dependencies, 2001.

[32] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term depen-
dencies with gradient descent is difficult. IEEE transactions on neural networks,
5(2):157–166, 1994.

[33] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of train-
ing recurrent neural networks. In International Conference on Machine Learning,
pages 1310–1318, 2013.

[34] colah. understanding lstm, 2017.

[35] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Em-
pirical evaluation of gated recurrent neural networks on sequence modeling. arXiv
preprint arXiv:1412.3555, 2014.

[36] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[37] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, et al. Going
deeper with convolutions. Cvpr, 2015.

[38] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. Large-scale video classification with convolutional neural
networks. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pages 1725–1732, 2014.

[39] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for
action recognition in videos. In Advances in neural information processing systems,
pages 568–576, 2014.

[40] Zuxuan Wu, Xi Wang, Yu-Gang Jiang, Hao Ye, and Xiangyang Xue. Modeling
spatial-temporal clues in a hybrid deep learning framework for video classification.
In Proceedings of the 23rd ACM international conference on Multimedia, pages
461–470. ACM, 2015.

[41] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of
101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402,
2012.

20

[42] David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of
human segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics. In Computer Vision, 2001. ICCV
2001. Proceedings. Eighth IEEE International Conference on, volume 2, pages 416–
423. IEEE, 2001.

21

	Label by human
	Deep learning and neural network
	Convolutional Neural Network
	CNN Predecessors Inspired by Neuroscience
	Convolution layer
	Padding
	Activation function
	Pooling layer
	Fully connected layer
	Feature map

	Literature review on video classification
	Recurrent neural network
	Long short term memory network
	Vanishing gradients problem
	Architecture of LSTM

	CNN-based video classification
	CNN-RNN based video classification

