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SKINNING OF A MUSCULOSKELETAL MODEL AND A 

FEASIBILITY STUDY TO APPLY PIXEL LOSS REFINEMENT TO 

OPTIMIZE JOINT ANGLES 

Akshath Ram Veeravalli Hari

Abstract - In biomechanics, human movement studies are carried out to assess the subject’s 

kinematic and kinetic variables for a healthy gait. Currently, marker-based systems are the 

standardized method to extract the kinematic variables of subjects. The marker-based systems pose 

some serious challenges like cost and portability, and the calibration and synchronization of multiple 

cameras and sensors are among the other practical challenges. The AI technique often referred as 

markerless pose estimation methods can overcome these challenges and aid biomechanists and 

clinicians. Thus, there is a need to develop new deep-learning models that can regress the 

musculoskeletal model directly from images and videos.  However, the deep-learning models are 

dependent on the quality and quantity of training data. In the current scenario, training data for 

markerless pose estimation are dependent on the redundant marker-based systems and the 

challenges persist. To aid this, it is necessary to create a statistical human model or a skinned human 

animated motion from a biomechanical model to build more training data. From the skinned virtual 

data consisting of realistic movements, deep-learning models can be trained. Therefore, the aim of 

the research was to build a pipeline to develop a human-animated model from a musculoskeletal 

model i.e., the OpenSim model. Two different motions such as walking and running are illustrated 

as qualitative results. The gait pattern for walking and running motions are realistic from both the 

frontal and sagittal planes. Furthermore, the deep learning model (D3KE) built by Marian et. al was 

also evaluated on the animated human motions eg. walking motion from the above pipeline to 

validate the model. The performance of D3KE is evaluated from different planes of camera views 

and also a comparison between the upper and lower extremities. The evaluation and comparison are 

based on two metrics MAEangles   (Mean Absolute Error of angles, in radians) and MPBLPE (Mean 

Per Bony Landmark Position Error, in cm). The MAEangles and MPBLPE are better when observed 

from the frontal plane rather than from the sagittal plane as the plane of view. Also, the joint angles 

in the upper extremity show better results compared to the lower extremity. Although, the predictions 

of the joint angles are way off from the ground truth. This opens the way to perform a feasibility 

study to optimize joint angles by a pixel loss refinement technique. The findings and remarks on the 

pixel-loss refinement is tabulated as results.

 

I. INTRODUCTION 

Biomechanics is a field of research that has evolved over the years to analyze human movement 

in the fields of medicine, sports, virtual reality, and product development such as shoes and 

prostheses. In sports, the kinematic and kinetic of an athlete, such as joint angles and their 

derivatives, torque in the joints, can be evaluated to increase performance by improving 

technique, as well as to prevent injury (Taborri et al., 2020). In a medical and clinical setting, 

the biomechanical model aids physicians in assessing the gait pattern variations after a stroke 

or physical abnormalities (Nadeau et al., 2013). Dynamic simulations of movement make it 

possible to examine athletic performance, research neuromuscular synchronization, and 

calculate the internal loading of the musculoskeletal system. Simulations can be utilized to 

determine the causes of pathological movement and create a rationale based on science for 



treatment planning. OpenSim is one such open-source physics-based computational tool for 

musculoskeletal modelling, simulation and analysing the kinematic and dynamic models (Delp 

et al., 2007a) for various human movements. 

 

Human Motion Capture is the process of capturing the global position of the human movement 

kinematics such as the movement of the head, arms, torso, and legs. Over the years, motion 

capture technologies have progressed from manually annotating photos to wearable suits like 

marker-based optical trackers and inertial sensor-based devices (Colyer et al., 2018). The 

derived positional data of markers can be transferred into a musculoskeletal model in Opensim 

for further gait analysis and studies. The derived positional data of markers are transformed 

into generalized coordinates i.e., the joint angles using an inverse kinematics problem in 

OpenSim (Delp et al., 2007a).  

 

Therefore, there is a need to look at the available human motion capture systems generally used 

in biomechanics. The current motion capture systems possess numerous advantages and 

disadvantages which are listed in the subsequent paragraphs. Optoelectronic Measurement 

Systems (OMS), Electromagnetic systems (EMS) and Ultrasonic Localisation systems are 

some of the marker-based systems available in the market today. These systems capture the 

human kinematics (3D locations of bony landmarks) using reflective markers and specialized 

camera systems. Apart from the marker-based systems other wearables such as IMUs are 

implemented for human motion capture (Colyer et al., 2018; van der Kruk & Reijne, 2018). 

Though optoelectronic systems are regarded as the gold standard motion capture technique in 

human motion analysis, there are some drawbacks are using a marker-based system. In the 

discipline of sports biomechanics and rehabilitation, these markers are intrusive, hindering the 

natural movement of the subject. Also, the effect of skin artifacts is an important factor in 

marker-based systems. Skin artifacts are caused by non-rigid skin tissues that stretch during 

highly dynamic human motions (Maletsky et al., 2007; Stancic et al., 2013; Windolf et al., 

2008). 

 

Some of the major challenges and limitations of marker-based methods are the high cost and 

limited portability of the marker systems. These systems requires a lot of pre-processing and 

post-processing time and also the capture space is limited. To overcome these challenges, the 

next step in human motion capture would be to incorporate artificial intelligence techniques 

such as machine learning and deep learning to study the locomotory system function, gait 

analysis, joint and bone mechanics (Mouloodi et al., 2021). Pose2Sim (Pagnon et al., 2021, 

2022), is a method to reconstruct the musculoskeletal model from multiple camera images or 

videos. OpenCap (Uhlrich et al., n.d.), is another method to estimate the musculoskeletal 

OpenSim model from multiple mobile cameras without any use of specialized hardware. The 

above two methods are multi-step processes that incorporate state-of-the-art markerless motion 

capture systems or pose estimation methods such as OpenPose (Cao et al., 2018) or AlphaPose 

(Fang et al., 2016). The first step involves the extraction of key points and the second step is 

the inverse kinematics method similar to marker-based systems. These key points do not 

perfectly correspond to the musculoskeletal model’s joint locations. The key points are pixel 

points over the skin and clothing of the subject. Also, more than one camera is involved in 



Pose2Sim (Pagnon et al.) and OpenCap (Uhlrich et al.) methods which require the calibration 

of cameras. The methods described above employ a multistep approach from an image to 3D 

key points and finally the musculoskeletal model. These key points do not perfectly correspond 

to the musculoskeletal model’s joint locations. The key points are pixel points over the skin 

and clothing of the subject. Therefore, there is a need to develop new deep-learning models 

that can regress the musculoskeletal model directly from images and videos. 

 

Marian et al., 2022 developed a single-step method called D3KE to estimate musculoskeletal 

kinematics from videos. The results demonstrate that the suggested end-to-end training is 

reliable and significantly beats a custom baseline method in terms of joint angle inaccuracy. 

The method also shows that it requires only one-camera and can run in real-time. The deep 

learning and machine learning algorithms are data-driven which requires tons of data to train 

on. Thus, this gives birth to the first aim of this paper where there is a need to develop a 

statistical human model or skinned human animated motions from a biomechanical model to 

build more synthetic training data. A database of synthetic data can be utilized to train deep-

learning models. The aim of the study is to construct a pipeline to skin the musculoskeletal 

OpenSim model and create a statistical human animated model for various types of human 

movements which can be useful to build diverse datasets/databases.

 

These datasets are then useful to train deep-learning algorithms. However, the deep learning 

paradigm suffers from a major drawback called generalization. In fact, it becomes cumbersome 

to train a deep-learning algorithm for every gait movement and scenario. Therefore, the next 

aim of the study is to investigate the feasibility of a refinement step to optimize the 

biomechanical variables i.e., joint angles based on pixel loss as a post-processing step. 

 

II. METHODS 

 

This section consists of two sub-sections namely the skinning of the musculoskeletal model 

pipeline and the performance of D3KE on the synthetic data produced in the former step. Also, 

the feasibility study of the pixel loss refinement technique is explained as a follow-up topic on 

the later sub-section. 

 

A. SKINNING OF MUSCULOSKELETAL MODEL PIPELINE 

  

The process of "skinning" a musculoskeletal model, often referred to as "surface meshing" or 

"wrapping," entails fastening a mesh representation (usually a skin mesh) to the model's 

underpinning in order to visualize the model's motion with the skin (Murai et. Al, 2016). This 

method is frequently used in animation and biomechanics to produce lifelike representations 

of musculoskeletal activity.  

 

The workflow employed to skin the musculoskeletal model incorporates three stages: 

Musculoskeletal model setup, extracting transformation of bodies, and the Human animation 

model setup. The workflow is summarized in Figure 1. 



. 

Figure 1. The proposed pipeline to skin the biomechanical model involves three stages: 

Musculoskeletal model setup, Extracting Transformation of bodies, and the Human animation model 

setup. 

 

a. Musculoskeletal Model Setup 

 

The first step in the pipeline is to define and set up a musculoskeletal model. The Full-Body 

Musculoskeletal Model developed by Rajagopal et al., 2016, is utilized further in this study.  

These bodies are illustrated in Figure 2 which make up the 3D skeletal model of a human.  

 

The musculoskeletal model consists of 22 bodies namely a pelvis, a right and left femur, a tibia, 

talus, patella, calcaneus, and toes which represent the lower body, and a combined head and 

torso and right and left humerus, ulna, radius and hand to represent the upper body. From Figure 

2, the bodies of interest are colored in blue and the bodies removed further in this study are the 

right and left patella, calcaneus, and radius which is colored in red.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The Full-Body Musculoskeletal Model. Blue-coloured are the bodies of interest and the red-

coloured bodies are ignored further in this study. 

 

 



The model has 20 degrees of freedom (dof) in the lower body in which 14 dof for the two legs 

and six for the pelvis which includes three translational with respect to the origin. The upper 

body consists of 14 dof with the torso/lumbar joint having three dof. The joint kinematics or 

the degrees of freedom are presented in a motion file (.mot) as joint angles for each time frame. 

The joint kinematics along with a scaled musculoskeletal model can be used to study specific 

gait movements or patterns.

 

b. Extracting Transformation of Bodies 

 

In the next step, we extract the transformations using the OpenSim python API. The 

transformation matrix stores the information on the rotation and translation of the bodies with 

respect to the world coordinates or the origin. The transformations of the bodies are extracted 

for every time frame of motion. The transformation matrix can be represented as 

 

Tbody =  [
𝑅𝑏𝑜𝑑𝑦 𝑡𝑏𝑜𝑑𝑦

0 1
]  ( 1 ) 

where, Rbody is a 3x3 matrix containing the 3D rotations with three column vectors for rotation 

about the x, y and z-axis. The tbody contains the translational elements tx, ty and tz. From Figure. 

3, the transformations of bodies are visualized where the global x-axis pointing out of the  

screen, the y-axis is the vertical axis and the z-axis is the horizontal axis. In Figure. 3, the local 

axis of each body is illustrated which has a rotation and translation from the global axis or the 

origin. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Visualizing the extracted transformations of skeletal bodies from OpenSim

Now, there is a need to correct the rotational offset of the transformation matrix to copy the 

matrix from OpenSim to the animation software called Blender. The correction of the rotational 

offset is to align the body axis in OpenSim with the rig axis in blender which is discussed in 

the next section. 



From Figure 3, the lower body including the bodies pelvis, torso, right and left femur, tibia, 

talus and foot is rotated about 90o using the Tait-Bryan angles order of axis rotation (XYZ) 

(Allgeuer & Behnke, 2018). 

 

Figure 4. Visualizing the corrected transformations of skeletal bodies from OpenSim 

The same XYZ axis rotation is employed to correct the rotations of the right humerus and ulna 

which is rotated about 90o about the x and y-axis. The left humerus and ulna are rotated -90o 

about the x-axis and 90o about the y-axis. The right hand is rotated about 90o about the z-axis 

and the left is rotated about 180o about the x-axis and 90o about the z-axis. These Tait-Bryan 

angles are then converted to a rotation matrix denoted by R’ The new rotation matrix is given 

by  

𝑅𝑛𝑒𝑤 =  𝑅𝑏𝑜𝑑𝑦 ∗  𝑅′  ( 2 ) 

The new rotation matrix, Rnew is replaced in equation 1 and is given as follows, 

Tbody =  [
𝑅𝑛𝑒𝑤 𝑡𝑏𝑜𝑑𝑦

0 1
] ( 3 ) 

The process of correcting the transforms is repeated for every frame or time step in the motion 

file. Therefore, the corrected transforms are ready to be served as an input in the next step 

where the musculoskeletal model is skinned. 

c. Human Animation Model Setup 

 

In the final step, the extracted transforms from opensim are copied to the virtual avatar to 

animate realistic human movements. In this step, the Blender computer graphics software is 

chosen for the current application due to its open-source nature. The two main ingredients of 

the human animation model are the mesh and the rig. The mesh chosen in this project is the 

SMPL-X (Pavlakos et al., 2019) human model which is built up of vertices derived from 3D 

scans of human subjects. The SMPL (Skinned Multi-Person Linear) is a popular deformable 

3D human body model used in computer graphics, computer vision, and biomechanics. It uses 

a shape blend model and a linear blend skinning (LBS) model to describe the human body. The 



model is made up of a neutral body shape template mesh and a number of blend shapes (also 

known as morph targets) that represent various body types and poses. 

 

The SMPL model uses weights to regulate how bones and joints affect each vertex of the 

template mesh. They show the degree to which each joint influences a particular mesh vertex 

when the skeleton is positioned. Controlling the deformation and movement of the skin requires 

these weights. Usually, a weight matrix is used to illustrate the weight distribution. Each vertex 

on the template mesh is represented by a row in the weight matrix, and each bone or joint on 

the skeleton is represented by a column. The weight (effect) of each bone or joint on the 

corresponding vertex is represented by the value in each cell of the matrix. The SMPL model's 

weight assignment procedure entails solving a regression problem to identify the ideal weights 

for every vertex. A sizable dataset of 3D scans of human bodies and the related skeletal 

positions is used to carry out the operation. Through a technique known as optimization, the 

SMPL model is trained on this dataset by adjusting the weights to reduce the disparity between 

the deformed mesh and the original 3D scans for various positions and forms. The weights are 

employed in real-time applications to distort the template mesh in accordance with the pose of 

the skeleton after they have been learned and allocated to each vertex. A realistic and natural 

deformation of the skin is produced when the skeleton is posed because each bone or joint's 

influence on the mesh's vertices is estimated based on the precomputed weights. 

 

For simulations and animations of the human body to be precise and realistic, the weight 

distribution of the SMPL model is essential. In many computer graphics and computer vision 

applications that incorporate human body motion and deformation, it enables the model to 

adapt to different positions and body forms. The mesh is also equipped with clothing for the 

model to look realistic. To enable the movement and deformation of the mesh, a rig must be 

implemented over the mesh. The rig also known as the armature mimics the individual bodies 

of the musculoskeletal model (see Figure. 2 and Figure. 5) over which the mesh is placed for 

the so-called baseline T-Pose.  

 
Figure 5. Rig and Mesh structure where the Rig (black octahedral) mimics the bodies of the 

musculoskeletal model 

 

Apart from the 16 bodies of the musculoskeletal model, an additional 2 bodies as the rig is 

incorporated to control the upper torso and the head (see Figure. 6). The default SMPL mesh 



and rig does not have control points for the head and upper torso. The additional bodies are 

added to make the virtual avatar have realistic upper body movements. 

 

 
Figure. 6 Illustrating the new control points for the head and upper torso 

 

The mesh is controlled by the rig with each rig having control over certain vertices of the mesh. 

The process of coupling the mesh and the rig is called parenting and the vertices of the mesh 

are allocated weights that are distributed over a certain region for each rig in the form of a 

heatmap as discussed earlier. For example, the weight distribution for the right and left femur 

is shown in Figure. 7. 

 

 
Figure 7. The weight distribution of the right and left femur on the SMPL-X mesh 

 

Now, applying the corrected transformations of the bodies from the previous step to the rig in 

blender, will change the pose of the human animation model. The human movement animation 

is possible by applying the transformations for each time step and keyframing.  Keyframing is 

an animation technique to store the value of an attribute, in this case, the transformation matrix 

at each instant of time. The pipeline can be evaluated by animating various kinds of human 

movement such as walking and running. The walking and running motion from the study of 

Rajagopal et. al research is used to evaluate the synthetic/animated movement of the person. 

The results of the skinning of the musculoskeletal model is evaluated qualitatively by observing 

the gait pattern. Also, overlaying the mesh on top of the skeletal system will give an overview 

of how well the skeletal system is inside the mesh without any bones sticking out. 

 

B. PERFORMANCE OF D3KE AND FEASIBILITY STUDY OF PIXEL LOSS 

REFINEMENT 

head 

Upper torso 



 

In this sub-section, the performance of D3KE on the synthetic videos produced in the previous 

section is evaluated. Deep neural networks must have the ability to generalize in order to be 

used in clinical applications. The network should be able to make accurate predictions on an 

unknown portion of data in addition to during training. This is crucial for applications in the 

therapeutic field because kinematic estimation must not be influenced by factors like a subject's 

body type, sex, or ethnicity. It is essential to use a sizable dataset and set aside a portion of it 

for testing.  

 

The D3KE (Marian et al.,2022) is a deep neural network that takes a single-view video as input 

and directly estimates the joint kinematics i.e., the joint angles. The network predicts the 

musculoskeletal model parameters per frame by inferring the joint angles using a convolutional 

neural network. The global position of the full body is fixed and not predicted in this method. 

Also, the body scales are pre-determined which are the assumptions in this method. The 

predicted joint angles are smoothened by leveraging a sequence network by refining the joint 

angles. The D3KE workflow is illustrated in Figure 8. 

 

Figure 8. Workflow of D3KE 

 

The performance of the above model is evaluated on unseen data which is a walking motion of 

the synthetic human. During normal walking or running, gait cycles are highly repetitive and 

cyclic. This repetition allows researchers and clinicians to capture the fundamental patterns of 

motion, muscle activation, and joint forces within a single cycle. If the gait pattern is consistent 

across cycles, analysing one cycle could provide a representative understanding of the entire 

gait pattern. In clinical settings, where the goal is to diagnose movement abnormalities or assess 

rehabilitation progress, a single gait cycle might be enough to detect significant deviations from 

a normal pattern. Clinicians often focus on identifying clear deviations or asymmetries that are 

readily apparent within a single cycle. Therefore, only one gait cycle of the walking motion is 

chosen for this study which is illustrated in Figure 9. separate experiments where the D3KE 

model takes a single-view video as input from the frontal and the sagittal plane. The metrics 

chosen to test the model are MAEangles Mean Average Error of Angles (in radians). The 

MAEangles are the average of joint angles estimated over all the frames in the gait cycle. Also, 

the mean per bony landmarks position error (MPBLPE) is used to evaluate the global position 

of the body. The MPBLPE is the average Euclidean distance of the markers present in the 



kinematic model over all the frames. Also, the performance of D3KE to predict the joint 

kinematics in the upper and lower extremity is compared. 

 

Figure 9. Gait Cycle for evaluating the performance of D3KE 

 

 

The deep learning models in general outperform the datasets they were trained and the 

performance of the deep learning model is less during the prediction of unseen examples. 

Therefore, the deep learning model, in our case the D3KE can be employed to derive a good 

initial estimate of joint kinematics namely the joint angles but the error between the ground 

truth and the predicted model can be further minimized by employing a refinement technique.  

The refinement step optimizes the biomechanical variables i.e., joint angles based on pixel loss 

or image matching between the ground truth image and the predicted image. The predicted 

image is rendered by skinning the predicted musculoskeletal model and joint kinematics. 

 

First, from the ground truth image a mask of the human is extracted by removing the background 

from the image and converted to a grayscale image. The grayscale image has intensities ranging 

from 0 to 255 where 0 is a black pixel and 255 is a white pixel, refer Figure 10. The varying 

intensities of the pixel over a wider resolution give the grayscale image output. The next step is to 

formulate an objective function. The objective function renders a new image by using the initial 

estimate of the joint angles. By exploiting the use of skinning of the musculoskeletal model, we ca 

employ the pixel loss refinement. Finally, the difference between the pixel intensities of the actual 

image and the predicted image is returned as the pixel loss from the objective function, see Figure 

11.  

 

A non-linear least square fit function is set up to minimize the pixel loss by optimizing the joint 

angles. The pixel loss can be given as  

 

Pixel Loss = | �̂�(𝑞) − 𝑌 |  (4) 

where �̂�(𝑞) is the model image or the predicted image intensity values that changes with the 

joint angles q and Y is the ground truth image intensities. The images are represented based on 

the intensity values. The brightness or darkness of each pixel can be interpreted as the intensity 

value in a grayscale image. Imagine it as a scale with pure black on one end and pure white on 

the other, with many tones of gray in between, refer Figure 10. The brightness level of each 



pixel in the image is determined by the intensity value that is allocated to it. Areas with higher 

intensity values are brighter, whereas those with lower intensity values are darker. The visual 

details and contrast in the image are produced by these intensity values. 

 

 
Figure 10. Grayscale image represented as intensities 

 

The least-square problem is set up in python using the scipy library which takes in the objective 

function and bounds for the joint angles which are optimized. The optimization of joint angles 

takes place until the maximum iterations are reached. From figure 11, after each iteration or 

function evaluation, a new joint angle is produced which again loops back into the objective 

function to find the new model image �̂�(𝑞). The optimization result produces the optimized 

joint angles based on the pixel loss objective function. 

 

Figure 11. Least Square Fitting Optimization Hypothesis based on pixel loss where the video is 

chopped into frames. The initial joint angles are estimated from D3KE with the actual human 

animated video as input. These joint angles control the kinematics of the musculoskeletal model and a 

predicted virtual human model using the skinning technique is produced. A human mask separates the 

virtual human from the background from both the predicted and actual image. The difference between 

the two images is called the pixel loss. 

 

The feasibility of the hypothesis i.e., see Figure 11 is evaluated by designing different objective 

functions. The absolute mean of the image difference where the objective function outputs a 

scalar.  The absolute mean of the image difference is a measure of the average absolute change 

in intensity between corresponding pixels of two images. It's often used to quantify the overall 



dissimilarity or variation between two images. The formula for calculating the absolute mean 

of the image difference is as follows: 

 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑀𝑒𝑎𝑛 𝑜𝑓 𝐼𝑚𝑎𝑔𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  
1

𝑁
∑ |�̂�(𝑥, 𝑦) − 𝑌(𝑥, 𝑦)|    (5) 

Where, 

N is the total number of corresponding pixels in the images, 

Σ represents the sum over all corresponding pixels, 

Ŷ(x, y) and Y(x, y) are the intensity values of the corresponding pixels at coordinates (x, y) in 

the predicted and actual image respectively. 

 

When comparing two images, it's important to understand how they differ in terms of pixel 

intensities. The absolute mean of the image difference provides a straightforward way to 

measure this dissimilarity. For each pair of corresponding pixels in the images, the absolute 

difference between their intensities is calculated. The absolute value is used to ensure that both 

positive and negative differences contribute equally to the measure. 

 

Next, row and column-wise mean of the image difference where the objective function is a 

vector. For each row r in the image, calculate the average absolute difference between the 

corresponding pixel values in �̂� and Y along that row. Then, calculate the mean of these row-

wise absolute differences. The vector contains elements corresponding to the number of rows. 

 

𝑅𝑜𝑤 − 𝑊𝑖𝑠𝑒 𝑀𝑒𝑎𝑛 =  
1

𝑁ᵣ
∑ |�̂�(𝑅, 𝑦) − 𝑌(𝑅, 𝑦)|     (6) 

where, 

 

Nᵣ is the number of pixels in row R, 

y ranges over the column pixels in row R, 

�̂� (R,y) and Y(R,y) are the intensity values of corresponding pixels in the two images. 

Finally, a bounding box and sliding window approach were also implemented. 

 

𝐶𝑜𝑙𝑢𝑚𝑛 − 𝑊𝑖𝑠𝑒 𝑀𝑒𝑎𝑛 =  
1

𝑁𝑐
∑ |�̂�(𝑥, 𝐶) − 𝑌(𝑥, 𝐶)|     (6) 

where, 

 

Nc is the number of pixels in column C, 

y ranges over the column pixels in column C, 

�̂� (x,C) and Y(x,C) are the intensity values of corresponding pixels in the two images. 

 

By calculating these row-wise and column-wise means of the absolute differences, you can get  

insights into how much the images differ along different directions. 

 

Finally, a bounding box and sliding window approach were also implemented. To capture mean 

intensities using a sliding window approach in an image, you'll move a window across the 



image and calculate the mean intensity of the pixels within the window at each position. Here's 

how you can describe the formula for calculating mean intensities using a sliding window: 

 

Given an image with width (W) and height (H), and a sliding window with width (Ww) and 

height (Wh), and step sizes (Sw) for horizontal movement and (Sh) for vertical movement, the 

formula for calculating the mean intensity within the sliding window at each position (i, j) can 

be expressed as: 

 

Mean Intensity at Position (i, j) = 
1

𝑁
∑ ∑ 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗)𝑦=𝑗−1𝑥=𝑖−1     (7) 

 

where, 

 

i ranges from 0 to (H - Wh) / Sh 

j ranges from 0 to (W - Ww) / Sw 

N is the total number of pixels within the sliding window (N = Ww * Wh) 

(x, y) represents the pixel coordinates within the sliding window at position (i, j) 

I(x, y) = �̂�(x,y) - Y(x,y)  is the intensity value of the pixel of the image differences at 

coordinates (x, y) 

 

In simpler terms, for each position of the sliding window, you sum up the intensity values of 

all pixels within the window and then divide by the total number of pixels in the window to get 

the mean intensity. This sliding window approach allows you to calculate mean intensities at 

different positions across the image, helping you analyze variations in intensity and detect 

regions of interest based on their average brightness. 

 

 

III. RESULTS 

 

A. Results of Musculoskeletal Model Skinning 

 

The musculoskeletal model skinning is evaluated qualitatively to visualize the proper 

transfer of transformations from OpenSim to the Human Animation model. The pipeline is 

evaluated for various kinds of human movements such as walking and running. 

 

 



 
(a)                (b)          (c) 

Figure 11. The skin over the musculoskeletal model for the walking motion during mid-stance phase 

(a) Frontal View, (b) Isometric View and (c) Sagittal View  

 

First, the human walking motion is illustrated in Figure 11. The motion file corresponding to 

the walking motion is adapted from Rajagopal et al., 2016. Figure 11 depicts the human 

walking during the mid-stance phase of a normal gait cycle. The human animation model 

during the heel-strike phase is also illustrated in Figure 12. The overlay of the mesh on the 

skeletal system gives the readers an overview of the quality of the skinning method. Only the 

bones or bodies which controlled the mesh for various kinematic movements are incorporated 

in the overlay. For example, the feet, hands and radius bones or bodies are not utilized in this 

method to skin the musculoskeletal model because the other bodies were able to solve the 

purpose.  

 

Further, the running motion is chosen where the flexion and extension of the arms, elbow, hip 

and knee are more when compared to the walking motion. The musculoskeletal skinning is 

illustrated in Figure 13.  

 

 

 

 
(a)          (b)          (c) 

Figure 12. The skin over the musculoskeletal model for the walking motion during the heel-strike 

phase (a) Frontal View, (b) Isometric View and (c) Sagittal View 

 



The below illustrations are for running motion during the mid-stance phase according to the 

normal human gait cycle. 

 

 

 
(a)          (b)          (c) 

Figure 13. The skin over the musculoskeletal model for the running motion during mid-stance phase 

(a) Frontal View, (b) Isometric View and (c) Sagittal View 

 

Also, the skinning of the skeletal model is qualitatively evaluated for the toe-off phase of the 

running motion. Figure 14 illustrates the toe-off phase during running human motion. 

 

Final visualizations of the joint kinematics of the musculoskeletal model along with the human 

animation model from three views are illustrated. In all the illustrations the OpenSim skeletal 

model is superimposed with the corresponding skin to visually evaluate the method of skinning 

the musculoskeletal model. 

 
(a)          (b)          (c) 

Figure 14. The skin over the musculoskeletal model for the running motion during the toe-off phase 

(a) Frontal View, (b) Isometric View and (c) Sagittal View 

 

 

 

 

 



B. Results of D3KE performance and the feasibility of pixel loss refinement 

 

The D3KE is tested on the virtual data. First the MAEangles and MPBLPE from two plane of 

view namely the sagittal and the frontal plane is given in Table 1. 

 

 

Plane 
of 

Camera 
View 

MAEangles 
(in 

degrees) 

MPBLPE 
(in cm) 

 
MAEangles 

(in 
degrees) 

MPBLPE 
(in cm) 

Sagittal  17.18 15.89 3.58 3.77 

Frontal 16.15 13.15 3.54 3.69 

 

Table 1. MAEangles and MPBLPE from the sagittal and frontal plane of the synthetic video. 

 

The inference of how well the upper and lower extremities performed is given in Table 2. 

 

Plane 
of 

Camera 
View 

Upper 
Extremity 
MAEangles 

(in degrees) 

Lower 
Extremity 
MAEangles 

(in radians) 

Sagittal  8.59 28.24 

Frontal 6.87 24.57 

 

Table 2. MAEangles of the upper and lower extremities from sagittal and frontal plane of the synthetic 

video. 

 

The inference of feasibility study of the pixel loss refinement designed based on different 

objective functions is tabulated and the possible explanations are given in Table 3. The 

objective function was iterated with different settings but the joint angles were not optimized. 

The parameter vector had several variables to optimize and the optimization problem becomes 

huge in terms of computation. This was the main possible reason for the failure of the method. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Feasibility study of pixel loss refinement based on different objective function design. 

 

IV. DISCUSSIONS 

 

The aim of the study was to develop a pipeline to animate the musculoskeletal models by 

skinning the models with statistical human shapes. These virtual models can be a tool to create 

virtual datasets to train machine learning algorithms in the future. The statistical human shape 

employed is the SMPL-X model (Pavlakos et al., 2019). The method was evaluated 

qualitatively for walking and running motions. The human-animated model only requires the 

transformations of the musculoskeletal bodies to animate or transfer the joint kinematics to the 

underlying statistical mesh. The proper skinning of the biomechanical model is visualized in 

Figures 9-12. The main advantage of this method is the auto-scaling of the underlying mesh. 

The mesh and the rig needed to be parented manually which is a major drawback. Any change 

of mesh involves the process of rigging i.e., establishing the weights of the mesh vertices to 

the corresponding rig body. The feet and hands can be utilized further in the study to 

incorporate wrist and angle motions which are eliminated in this study. Fingers can also be 

animated using this method by treating each bones in the hands and feet indivually to run the 

underlying mesh/skin. 

Objective 
Funtions 

Findings and Remarks 

  

Absolute 
mean of 

the image 
difference  

This method is computationally costly and takes a lot of iteration 
to arrive at the solution. This is because the image is a matrix of 
256x256 or any other resolution. In every iteration, thousands of 
gradient vector needs to be calculated making the problem 
complex and computationally costly. 

 
Row and 
column 

wise 
mean of 

the image 
difference  

This is an objective function with output as a vector. The jacobian 
matrix explodes with many pixels in the image. 

 
Bounding 
Box and 
sliding 

window – 
Mean of 

each 
window  

The problem persists and a solution is not obtained even with 
image compression 



 

Unrealistic deformation during elbow flexion can be noticed in the elbows by comparing the 

walking and running motion from Figure 9-12. The deformation is evident in Figures 11(c) and 

12(c) while viewed from the sagittal plane. The unrealistic deformation can be due to the 

improper weights in the elbow region of the mesh. As the mesh weights are constant during 

the time sequence, the deformations of the mesh are not dependent on the transformations of 

the bodies. Linear blend skinning is a technique by which the soft tissue dynamics of the skin 

can be incorporated into a mesh. Instead of the SMPL-X model, the SCAPE mesh model would 

provide improved results by eliminating the hyperflexion of the elbows (Anguelov et al., n.d.; 

Schleicher et al., 2021). Also, an auto-rigging approach can be employed in the future to avoid 

errors during manual rigging. A method that allows learning the auto-rigging of statistical 

human shapes will be a big leap in computer graphics animation. MoSh (Mathew et al., 2014) 

is a method that regresses human body shape and motion from sparse markers. This eliminated 

the step to extract transformations from the OpenSim model and can directly regress the shape 

and motion. The BMI of the person can also be incorporated providing meaningful results.  

 

The method of skinning can be quantitatively evaluated in the future by acquiring 3D body 

scans of the participant and the corresponding motion of the person. The skinning and human 

animation can be inferred from the motion data compared across the 3D scan via a pixel loss 

metric. The human-animated model along with other environmental factors such as lighting, 

camera viewpoints and background information can build a rich and diverse dataset for 

machine learning and deep learning models. 

 

The performance study of D3KE illustrates that deep learning models do not always generalise 

to the data it is trained on.The MAEangle from the sagittal plane is 0.3 radians which is higher 

when compared to the frontal plane. Also, the global position is better inferred from the frontal 

plane from the MPBLPE metric. Though, the D3KE underperforms and do not generalise well. 

This is due to the difference in training and the tested video data. From Table 2, the upper 

extremity is predicted better compared to the lower extremity where the MAEangle  is less than 

8o. The performance can be improved by training the model with rich and diverse dataset 

created by skinning the musculoskeletal models. 

 

Since pixel loss optimization lacks the constraints and structure needed to precisely anticipate 

joint angles from picture or video frames, it is not commonly becomes cumbersome for joint 



angle estimation. The goal of pixel loss optimization, which approaches joint angle estimation 

as a pixel-wise regression issue, is to reduce the pixel-level discrepancies between the predicted 

and ground truth joint angle images. However, it ignores the biomechanical limitations and 

connections that control the angles and motion of human joints. Joint angles require a more 

organized approach that takes into account the kinematic and anatomical characteristics of the 

human body because they are not clearly visible in pixel intensity values. With the increase in 

number of parameters needed to be optimized, the pixel loss refinement suffers badly from 

approaching a solution. Images' pixel intensity values can be influenced by a number of things, 

including the lighting, the subject's attire, the camera angle, and occlusions. Due of the 

ambiguity and noise this brings into the pixel-wise differences, it is difficult to determine joint 

angles with accuracy using only pixel loss optimization. To accurately depict the dynamic 

character of human motion, joint angle estimation frequently needs temporal information. Pixel 

loss optimization has limited performance in capturing joint angle changes over time because 

it does not readily include temporal dependencies. Joint angle estimation produces a high-

dimensional output space by estimating multiple angles at various joints. Pixel loss 

optimization performs poorly and adds to the computational complexity when dealing with 

high-dimensional output spaces. The lack of interpretability in pixel loss optimization makes 

it challenging to comprehend how the model arrived at its conclusions. In biomechanics 

applications, where comprehension of the underlying biomechanical principles is crucial for 

analysis and decision-making, this can be a serious restriction. Pixel-wise differences 

optimization is computationally expensive and may not be suitable for real-time applications 

due to the high resource requirements. 

 

V. CONCLUSION 

• A pipeline to skin the musculoskeletal model is developed and evaluated qualitatively 

for different human movements such as walking and running. Qualitative results shows 

that realistic movements were achieved and further suggestions to evaluate the method 

quantitatively is discussed.  

• With the synthetic data created by skinning the musculoskeletal model, the performance 

of D3KE was evaluated based on different planes of camera views. The D3KE model 

performed better on seen samples but had huge deviations in predicting the joint angles 

when tested in the virtual data. Also, the influence of the upper and lower extremity on 



the performance was compared. The upper extremity was estimated better than the 

lower extremity. 

• Finally, the findings and remarks of the pixel loss refinement feasibility study have 

been discussed in this paper. The pixel loss refinement suffers to find a solution due to 

the computational complexity of the problem. 
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