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ABSTRACT: Several problems associated with the presence of ©) wase R
lipids in wastewater treatment plants are usually overcome by e A ploge: ()

. g 8) AP
removing them ahead of the biological treatment. However, h —) —-— “E‘\] &)
because of their high energy content, waste lipids are interesting & oo° e v
yet challenging pollutants in anaerobic wastewater treatment and Q)
codigestion processes. The maximal amount of waste lipids that can l
be sustainably accommodated, and effectively converted to Wicrobiology =

methane in anaerobic reactors, is limited by several problems ﬁ ol |
including adsorption, sludge flotation, washout, and inhibition. B

These difficulties can be circumvented by appropriate feeding, m . R 3@
mixing, and solids separation strategies, provided by suitable reactor —

technology and operation. In recent years, membrane bioreactors

and flotation-based bioreactors have been developed to treat lipid-rich wastewater. In parallel, the increasing knowledge on the
diversity of complex microbial communities in anaerobic sludge, and on interspecies microbial interactions, contributed to extend
the knowledge and to understand more precisely the limits and constraints influencing the anaerobic biodegradation of lipids in
anaerobic reactors. This critical review discusses the most important principles underpinning the degradation process and recent key
discoveries and outlines the current knowledge coupling fundamental and applied aspects. A critical assessment of knowledge gaps in
the field is also presented by integrating sectorial perspectives of academic researchers and of prominent developers of anaerobic
technology.

KEYWORDS: FOG, LCFA, microbiology, bioreactor configuration, codigestion

1. INTRODUCTION High-rate anaerobic treatment (HRAT) technologies, mostly
based on well settling granular sludge, have been established for
the treatment of biodegradable industrial wastewaters, such as
those from food and drink processing and pulp and paper among
others, primarily applied directly on industry’ sites." However,
when dealing with lipid-rich wastewaters, this HRAT technology

is inappropriate, because the lipids and long chain fatty acids

the increasing knowledge on microbiology and ecophysiology, (LCFA) strongly adsorb to the sludge, leading to sludge
has promoted the development of AD technologies as a 4=7

Anaerobic digestion (AD) contributes to several sustainable
development goals by combining energy and resource recovery
from organic wastes and wastewaters with pollution control. The
generation of a gaseous renewable energy source, the recycling
of nutrients, and the low surplus sludge production, aligned with

flotation and washout and potential microbial inhibition.

sustainable treatment solution for a diverse range of wastes Therefore, the economically feasible utilization of lipids in
and wastewaters, with a significant number of worldwide full- HRAT, and the resulting resource recovery (i.e., biogas), has
scale implementations."” Considering the main components of been challenging.”’

organic matter in wastes/wastewaters, lipids present a high

COD/TOC (chemical oxygen demand/total organic carbon) Received: December 21, 2021
ratio and are, theoretically, ideal substrates for methane Revised:  February 22, 2022
production via AD, since their degradation produces more Accepted: February 23, 2022
biogas per weight of substrate, than others, i.e., 1.4 L of biogas Published: March 31, 2022

per gram of lipids compared to 0.9 and 0.8 L g™" for proteins and
carbohydrates, respectively.’

© 2022 American Chemical Society https://doi.org/10.1021/acs.est.1c08722
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The low-rate anaerobic treatment (LRAT) of solid wastes
such as agricultural residues and municipal sludge is also an
established practice, applying variations on the well-known
continuously stirred tank reactor (CSTR). The potential to
boost biogas production in these systems through the addition
of lipids (fat, oil, and grease (FOG) wastes) has been
demonstrated.” However, similarly to the HRAT, the addition
of lipids can cause problems in these codigestion processes,
requiring proper feeding and mixing strategies, coupled with
effective monitoring of the system performance, mandatory to
avoid microbial inhibition and to enhance biogas produc-
tion.' """

This critical review provides a synthesis of recent advance-
ments in the AD of lipids, both in anaerobic wastewater
treatment and codigestion processes, including examples of full-
scale applications. Critical aspects on the microbiology and
technology, linked to efficient lipids conversion, have been
identified, and support is given to the more widespread
utilization of lipids from wastes and wastewaters as a sustainable
resource for biogas production.

1.1. Occurrence and Composition of Waste Lipids.
Lipids are ubiquitous in nature and are found in most wastes/
wastewaters. The classification of “lipids” includes an extremely
diverse range of compounds, which can be divided into four
main groups of those most commonly found in wastewaters:
triacylglycerols including LCFAs, glycolipids, phospholipids,
and cholesterol.'> From these, the most abundant are LCFAs
and triacylglycerols, commonly referred to as fats and oils."
LCFAs have been characterized with a myriad of different chain
lengths, configurations, and degrees of (un)saturation. How-
ever, only 20 LCFAs appear widely in nature, and of these,
palmitic, oleic, and linoleic acids make up ~80% of common oils
and fats.”">'* Unsaturated LCFAs are components of vegetable
oils, while fats are normally composed of saturated fatty acids.
Generally, the lipids that are present in the wastewater from
industries, that use fats or oils as raw materials, are simple esters
of straight chains, even-numbered long chain fatty acids, and
linear polyols (triglycerides, phospholipids), as well as their
hydrolysis resulting products. Their typical fatty acids
composition was reviewed by Alves et al,’ being palmitic
(C16:0) and oleic (C18:1) acids the most abundant saturated
and unsaturated fatty acids, respectively.

Several food and other processing industries have wastewater
streams characterized by high FOG contents, namely, dairy,
slaughterhouses, edible oil production, fish canning factories,
bioethanol and diesel production, and wool scouring (Table 1).
The FOG content of these wastewaters is highly variable and
dependent on the production process. For example, dairy
processing industry wastewaters have high concentrations of
fats, along with carbohydrates and proteins, which come from
milk. Since the dairy industry produces many different kinds of
products, the characteristics of the wastewater vary significantly
according to the specific industry and the processing
methods'>™"” as can be observed in Table 1, varying from 0.3
to approximately 40 g FOG L™.'"7** For slaughterhouse
wastewater, the composition of the suspended fraction is
characterized by a complex mixture of fats, proteins, and fibers
and varies considerably on the type of animals slaughtered and
on the production process.””** Regarding the fish industry, the
FOG concentration is around 1-1.5 g FOG L717%% The
extraction and purification of palm oil generates different kinds
of wastewaters, commonly known as palm oil mill effluent
(POME), where the separator sludge and sterilizer effluent are
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Table 1. Typical FOG Concentrations in Wastewater of
Different Industrial Wastewaters

Industrial wastewater FOG concentration (g L™") ref
Dairy

Milk and cream bottling plant 0.3-0.5 18
Dairy industry overall 0.3—-40 19
1.7 21
Cheese production 0.8 20
Cheese whey production 9.4 38
Ice cream 0.88—5.12 39

Slaughterhouse
Cattle 35.8 41
0.2-0.3 22
1.3 25
Sheep and goat 0.1-0.4 42
Poultry 0.2—0.7 43
38.8 44

Food industry
Tank cleaning company 0.1-2.2 39
Fish 1 25
15 26

POME
POME 1.4-1S 27
8.8—11.4 (in COD) 28
22-27.2 29
Olive oil mill
Olive oil mill 0.3—100 31
17.2 32
Bioethanol

Corn-to-ethanol thin stillage 10.8—11.8 34
13 33

Wool scouring
Wool scouring 0.6—55 36
10.8 37

the two most important fractions of POME,*” which contribute
to the highly polluting characteristics of this wastewater. The
literature reports values from 1.4 to 27 g FOG L™ in this type of
wastewater.””~>” Olive oil mill wastewaters produced by the
traditional mill and press processes have a high organic fraction
made up of sugars, polyphenols, polyalcohols, proteins, and
lipids,”® with characteristic values of 0.3—100 g FOG L.
Bioethanol production from corn generates a lipid-rich stream
called thin stillage, a complex wastewater containing high
concentrations of carbohydrates, proteins, lipids, glycerol, and
lactic acid®>** with FOG values accounting from 11 to 13 g L™".
According to Becker et al,> the major constituents of wool
scouring effluent are fats and oils, and effluent characteristics
vary largely between processes and materials, with values
ranging from 0.6 to 55 g FOG L™'.°%7

Often, the lipids present in these industrial wastewaters are
removed by pretreatment systems, such as screening,
centrifugation, sedimentation, dissolved air flotation, floccu-
lation, or precipitation,*’ producing a more concentrated waste
stream commonly referred to as FOG waste. With this
procedure, a more diluted wastewater, with significantly less
FOG, is obtained that can be more easily treated in traditional
anaerobic and aerobic processes. The FOG waste is still
frequently disposed in landfills along with waste-activated
sludge. However, it is also codigested via LRAT with sewage
sludge, manure, or the organic fraction of municipal solid waste,
in order to increase the biogas production. The fraction of FOG

https://doi.org/10.1021/acs.est.1c08722
Environ. Sci. Technol. 2022, 56, 4749—4775
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Figure 1. Pathway of anaerobic triacylglycerol biodegradation.

D 1981, Hanaki et al.
LCFA inhibit essential reactions
in AD due to their toxic effect
towards anaerobic
microorganisms.

1994, Rinzema et al.
LCFA were considered to
be bactericidal to
methanogens.

1992, Angelidaki & Ahring 4
LCFA exerts a permanent and irreversible
toxic effect towards methanogens.

1980

1997, Hwu et al. 4

2002, Lalman & Bagley ( > 2002, Vellinga and Mulder (Paques)

LCFA chain length and the
degree of saturation affects
the level toxicity.

2001, Alves et al. (
The LCFA adsorbed to

biomass can be converted
to methane. The contact

with lipid-rich effluents
improve the tolerance of
the anaerobic sludge to
the oleate toxicity.

2002, Pereira et al.

) 2016, Cavaleiro et al.
Initial steps of
unsaturated LCFA
degradation proceed
uncoupled from
methanogenesis

A new type of reactor, the so-called BIOPAQ® -Anaerobic
Flotation Reactor or BIOPAQ®AFR, is especially designed to
treat wastewater streams containing fats and oil.

| > 2008, Veolia (Biothane) and Pentair
A low-energy AnMBR system called
Memthane was developed to treat
whey from a cottage cheese
producer.

) 2016, Silva et al.
Acetoclastic
methanogens M.
concilii and M. mazei
tolerate LCFA
concentrations similar
to those previously
described for

hydrogenotrophic

methanogens.

2007, Alves et al. (
New reactor was
designed —IASB.
This reactor
optimizes the LCFA
adsorption and
uses the flotation
to retain biomass.

) 2009, Cavaleiro et al.
A step feeding start-up
promoted the development of
a community able to mineralize
LCFA, in continuous, with OLR
up to 21 kg COD m3d-1.

2021

2013, Sousa et al. 4
4 LCFA (mainly unsaturated) have an

2018, Duarte et al.
Microaeration

1987, Koster & Cramer 1
Lipids inhibition more
correlated with LCFA
concentration than with the
amount of LCFA per unit of
biomass.

Usual operating parameters of EGSB
reactors results in poor treatment
of LCFA, as LCFA converting capacity
was lost in effluent. Recirculation of
the washed-out biomass resulted in
the highest reported specific
methane production rate of 600 mg
CH,-COD/gVsS.d, from LCFA.

Palmitate identified
as the main
intermediate in
oleate degradation.

effect on membrane integrity of
methanogens. M. formicicum was
more resilient to LCFA toxicity
than M. hungatei.

2005, Haridas et al. /{ ) 2005, Pereira et al.

A new reactor design, the
buoyant filter bioreactor (BFBR)
was developed and complete
COD conversion to methane was

Toxic effect of LCFA are related to
accumulation onto the sludge,
creating a physical barrier to the

stimulates the
development of
facultative bacteria that
are critical for achieving
LCFA conversion to
methane in continuous
bioreactors.

1988, Sayed et al. 4
Report on the extent and rate
of liquefaction of the adsorbed
insoluble substrate material.

reported in the treatment of a
dairy effluent for 400 days.

transfer of substrates/products.

2018, Ziels at al. (
DNA-SIP metagenomics show that in a pulse-fed
co-digester converting oleate into methane, 70%
of the 13C-enriched GBs were assigned to the
Syntrophomonas genus and concluded that
feeding frequency, impacted the genomic
composition of active syntrophic populations.

Figure 2. Timeline of key milestones in the microbiology and process research on AD of lipids. The orange markers represent the main reactors

developed for AD of lipid-rich wastewaters,” >0 76264778

removed in the pretreatment can account for up to 85% of the
total organic fraction with potential for biogas production,
highlighting their importance for industry as a potential
renewable energy source. This value has been reported by
NVP Energy Ltd., at the Arrabawn Dairies Group’s WWTP
(Ireland), with a dissolved air flotation pretreatment employed,
based on the wastewater generated from a milk processing
industry.

Municipal wastewater streams in industrialized countries are
generally characterized by a relatively low FOG content,
estimated between 50 and 150 mg L™".*" This relatively low
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number can be attributed to the common practice in these
countries to collect FOG at the source in commercial cooking
premises to prevent blockages in drains due to the solidification
of fats. Interception of FOG can be achieved via grease traps, and
plumbing devices at source points, before it enters the municipal
wastewater systems. The produced waste stream is referred to as
grease trap waste (GTW), and its composition is highly diverse,
mainly dependent on the source.”” These biosolids have started
to be utilized in codigestion systems to boost the biogas yield in
LRAT systems."**’

https://doi.org/10.1021/acs.est.1c08722
Environ. Sci. Technol. 2022, 56, 4749—-4775
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2. AD OF LIPIDS: A HISTORICAL PERSPECTIVE

During AD, triacylglycerols are hydrolyzed to glycerol and
LCFA (Figure 1) in a step catalyzed by extracellular lipases
produced by acidogenic bacteria.”’~>* The released LCFA are
further degraded to acetate (and propionate, in the case of odd-
numbered LCFA) and hydrogen via f-oxidation, which is the
rate-limiting step in the degradation of lipids."*****7>> These
compounds are then finally converted to methane and carbon
dioxide by methanogens.*®

Lipids hydrolysis is a surface-related process, and its rate may
vary depending on the fatty acid chain length, substrate physical
state (solid or liquid), and specific surface area.”’ When fat
concentration is very high, hydrolysis can become the rate-
limiting step in the whole anaerobic degradation process.”” For
example, in wastewater treatment systems, large insoluble
droplets can be formed with concomitant low surface area for
hydrolysis. However, when the lipid—water interface area is
large, because of the small particle size (e.g., lipids emulsions or
micelles), hydrolysis is not necessarily the rate-limiting step.”” In
this case, lipids conversion to glycerol and LCFA is regarded as a
fast process, and the overall degradation of lipids is limited by
LCFA degradation.*””>~’

Efficient methane production from FOG-containing waste-
water is not easily achieved with existing conventional HRAT,
mainly due to the formation of a thick layer of sludge enclosed by
a whitish greasy matter on the top of the water surface.”*”*
Consequently, an important fraction of the sludge is lost by
washout, and methane production decreases over time. Biogas
bubbles are frequently retained in the floating hydrophobic
layer, leading to foam formation, which may cause problems in
the biogas line. Moreover, lipids and LCFA have been reported
as toxic for the anaerobic microbial communities.”’ The
identification of these problems promoted the practice that,
for a long time, lipids and LCFA have been separated from the
wastewater before AD, with the consequent loss of their energy
potential. A significant amount of research has been performed
to understand the complex phenomena of lipids biodegradation
by anaerobic communities, aiming to overcome process
limitations and enhance methane production from these
compounds. The key milestones in the microbiology and
process research on AD of lipids are summarized in Figure 2.

In 1981, pioneering work by Hanaki et al.>’ showed that lag
phases preceding methane production were a consequence of
LCFA accumulation and inhibition, rather than an effect of
neutral lipids. In the early 1990s, LCFAs were considered to be
bactericidal, exerting a permanent and irreversible toxic effect,
particularly toward methanogens.”®" Both acetoclastic and
hydrogenotrophic methanogens were reported to be inhibited in
the presence of LCFA,”” but acetoclasts were reported as more
sensitive to LCFA than hydrogenotrophs.”*”*>**% In these
studies, acetoclastic methanogens were unable to adapt to
LCFA, after repeated exposure to toxic concentrations as well as
after extended exposure to subtoxic concentrations.””> More
recently, however, Silva et al.>* showed that pure cultures of
Methanothrix (Methanosaeta) concilii and Methanosarcina mazei
tolerated LCFA concentrations similar to those previously
reported for hydrogenotrophic methanogens,”® showing that
these acetoclastic methanogens are more robust than considered
previously, which may explain the observed prevalence of
microorganisms from Methanosarcina and Methanothrix genera
in anaerobic bioreactors treating LCFA-rich wastewater.
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It has also been shown, however, that the nature of the lipids
also influence the extent of toxicity. Unsaturated fatty acids,
containing one or more double bonds (e.g., oleate, C18:1), are
more toxic to microbial cells than saturated fatty acids, such as
stearate (C18:0) or palmitate (C16:0),”°*”” and the toxicity
also increases with the carbon chain length.*

In general, most studies have been performed within the
mesophilic range (30—37 °C), but the anaerobic digestion of
LCFA under thermophilic conditions (40—60 °C) has also been
studied.”**"*>77%!" Hwu et al.*** reported higher oleate
conversion rates in high temperature reactors (55 °C), but
oleate toxicity toward acetoclastic methanogens was also higher
than at 30 °C. Since the compositions of cell membranes of
thermophilic and mesophilic microorganisms are different,
responses to LCFA toxicity may vary.”> Moreover, lipids/
LCFA solubilization increases with temperature, thus enhancing
their bioavailability*® and possibly their toxicity. AD of lipids at
low temperatures (12—20 °C) remains seldom studied.
Recently, Singh et al.**~** showed the potential of mesophilic
sludge to produce methane from a synthetic dairy wastewater
containing LCFA (33% in COD) at low temperatures (10 and
20 °C) over a 150 day bioreactor trial. Petropoulos et al.*’
assessed the lipase activity in the treatment of municipal
wastewater at 4, 8, and 15 °C and concluded that, although
lipases were produced at these temperatures, their activities were
low and even became undetectable at 4 °C. Interestingly, these
authors found that the raw wastewater presented high levels of
lipase activity that was unaffected by temperature and as was
shown by Keating et al.*” no hydrolytic-based limitation was
expected. Therefore, lipid-rich wastewater digestion at low
temperatures should be investigated. Furthermore, comparing
rates of lipid and LCFA conversion to methane across
temperature ranges coupled with the identity of active microbial
community members would prove valuable.

The perceived toxicity of LCFA is also influenced by the
structure of the reactor’s inoculum; ie., granular sludge is
generally more resistant to LCFA than suspended or flocculent
sludge.”” The higher perceived toxicity observed for flocculent
sludge was ascribed to its higher surface area and therefore to a
higher adsorption capacity. In the granules, their three-
dimensional structure offers higher protection to the metha-
nogens, generally located in the inner layers. However, lipids
also have a negative effect on granulation and maintenance of
granular sludge integrity, which is critical for most HRAT
reactor types.” 055

LCFA adsorption was initially reported as the main cause of
cell damage and toxicity by limiting cell membrane transport and
decreasing its protective function.”””””" Even so, Koster and
Cramer®” suggested that microbial inhibition was more
correlated with the fatty acids concentration than with the
amount of LCFA per unit of biomass, and Hwu et al.”' proposed
that adsorption is an essential step preceding LCFA degradation.
Further developments showed that microbial inhibition caused
by LCFA is not permanent””°* and that biomass adaptation to
LCFA can occur,”” which was striking and opened new
perspectives for AD of lipids (Figure 2).

Considering the various observations made by the different
authors, we may postulate on two different mechanisms for
LCFA interference on the microbes, previously perceived as
“toxicity”, in which we can differentiate between bactericidal
toxicity and temporary inhibition. Bactericidal toxicity would
then refer to the impact of the long hydrophobic alkyl chain on
the archaeal membrane, leading to membrane leakages, lysis, and

https://doi.org/10.1021/acs.est.1c08722
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Table 2. Gibbs Free Energy Changes for Some of Acetogenic and Methanogenic Reactions Presumably Involved in Conversion of

Fatty Acids®
Reaction
Hydrogenation
oleate™ + H, — stearate” (1)

One f-oxidation cycle

stearate” + 2H,0 — palmitate” + acetate” + 2H, + H* (2)
Hydrogenation + one f-oxidation cycle
oleate™ + 2H,0 — palmitate” + acetate” + H, + H*  (3)

Complete f-oxidation
oleate™ + 16H,0 — Yacetate” + 15H, + 8H"

(4)

Methanogenic reactions
acetate” + H,0 — HCO;™ + CH,

()
(6)

4H, + HCO;™ + H" - CH, + 3H,0

AG” (K] reaction™") AG’ (K] reaction™")

=79 —=50
+51 -23
—28 =73
+326 —190
—136 _

“Adapted from Sousa et al. and Cavaleiro et al.®*'”). AG%: Gibbs free energy change at standard conditions (solute concentrations of 1 mol L™,
gas partial pressure of 10° Pa, 25 °C), and pH 7. AG’: Gibbs free energy change at nonstandard conditions (1 mmol L™' for reagent LCFA,
products stoichiometric accumulation, H, depletion to 1 Pa partial pressure, 25 °C, and pH 7).

decay of cells. This irreversible loss of the methanogenic activity
of the biomass can then only be restored by growth of new cells
as suggested by Rinzema et al.”> This concept of permanent
inhibition or bactericidal toxicity was questioned by Pereira et
al,*® who observed that the accumulation of LCFAs on the
methanogenic biomass prevented mass transfer from the liquid
broth to the microbial cells, but cells integrity and viability was
maintained. These authors showed that biomass-associated
LCFA up to S kg kg™' (expressed in COD per mass unit of
volatile solids (VS)) could be degraded to methane in batch,
eliminating the mass transfer limitations and restoring the
methanogenic activity. Therefore, the physical inhibitions
related to mass transfer limitations, imposed by the LCFA
layer adsorbed onto the sludge, were proposed as the main
causes for the transient inhibitory effects observed during AD of
lipids.”” By concluding that a temporary inhibition could be
overcome by incubating the LCFA-loaded biomass in batch
mode, thus promoting the degradation of the accumulated
substrate to methane,””°*’® a strategy based on reactor
operation in cycles of adsorption followed by degradation was
proposed as a first suggestion for the treatment of wastewater
with high LCFA content.”” Later, Cavaleiro et al.®” demon-
strated that by sequencing continuous feeding phases and batch
reaction phases in the start-up of an anaerobic reactor, a
microbial community able to efficiently mineralize LCFA was
established. In a subsequent continuous operation with high
organic loading rates (OLR), up to 21 kg m™ day ™' (expressed
in COD, 50% of the COD being LCFA), stable COD to
methane conversion of 80% was observed. More recently, it has
been shown that long-term sludge acclimatization to lipids or
LCFA-rich wastewater and limitation of excessive LCFA
accumulation are beneficial for the efficient degradation of
LCFA to methane.”* " Ideally, specific biomass-associated
substrate should be kept below 1 kgkg™" (expressed in COD per
mass unit of VS of inoculum),*” although well-adapted sludge
could still have a good performance with approximately three
times this value.”

In codigestion processes, microbial adaptation has been
recently shown to be important for the degradation of FOG.
Ziels et al.”” highlighted the enrichment of syntrophic LCFA-
degrading bacteria during the codigestion of FOG with
municipal wastewater sludge. Similar observations were
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reported in other studies of FOG codigestion.%_100 Moreover,
Ziels et al.'”" showed that, during the anaerobic digestion of
cattle manure, oleate pulse feeding (every 48 h) resulted in a
higher conversion rate and functional stability than when oleate
pulses were performed every 6 h. Syntrophic LCFA-degrading
bacteria were significantly enriched in both codigesters relative
to the control (without oleate), being more abundant in the
codigester that was 48 h pulse fed. In the same line of research,
Kougias et al.'”” showed that during the digestion of cattle
manure a thermophilic inoculum previously exposed to LCFA
was capable of degrading oleate pulses more efficiently than a
non-acclimatized inoculum due to the specialization of the
microbial consortium. More detailed information on the
microbiology and metabolic pathways involved in the AD of
lipids is presented in Section 3.

Over the years, several other strategies have been studied to
overcome LCFA/lipids toxicit'g, namely, bioaugmentation with
LCFA-degrading bacteria,”*'"® emulsification of LCFAs,'**
addition of adsorbents like bentonite,”" and LCFA precipitation
with calcium salts®® (Section $). Different bioreactor designs
have also been tested to overcome the problems of sludge
flotation and washout, which are detailed in Section 4.

3. METABOLIC PATHWAYS AND MICROBIOLOGY

To achieve an efficient anaerobic digestion of lipids, comparable
with easier degradable substrates, the kinetics, metabolic
pathways, and microorganisms involved need to be fully
understood. Targeted “omics” approaches and improved
analytical methodologies have recently offered new insights
into complex microbial communities in natural and engineered
environments and contributed to the understanding of microbial
diversity, function, and interactions in lipid degrading
communities. However, despite these recent advances, many
aspects remain poorly understood, including the initial steps of
unsaturated LCFA degradation and the interactions among the
microorganisms involved, as for example, the role of anaerobic
facultative microorganisms.

3.1. Metabolic Pathways: g-Oxidation of LCFA. Long
chain fatty acids are degraded via S-oxidation. Fatty acids are
actively transported inside bacterial cells'®® and activated to
acyl-CoA thioesters by acyl-CoA synthetase. After this step, the
fatty acyl-CoA undergoes f-oxidation. This oxidation pathway

https://doi.org/10.1021/acs.est.1c08722
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acts in a cyclic way, with each cycle resulting in the shortening of
the input acyl-CoA by two carbon atoms, thus producing acetyl-
CoA and hydrogen."”® More detail on the biochemical features
of LCFA biodegradation can be found in Sousa et al."’”

Due to thermodynamic constraints, acetogenic reactions are
only energetically feasible when the hydrogen concentration is
kept low (Table 2),"°%'%” which is generally accomplished
through syntrophic cooperation of acetogenic bacteria and
hydrogenotrophic methamogens108 (reactions 4, 5 ,and 6, Table
2). This obligate relationship is essential to achieve complete
LCFA conversion to methane. Alternatively to hydrogen
interspecies electron transfer, direct interspecies electron
transfer (DIET) may also occur. However, many claims for
DIET and electrotrophy have only been suggested without
adequate experimental validation.''® Although the reactions
efficiencies may be different for both situations, the overall
Gibbs free energy change is the same.'""

Unsaturated LCFA may directly undergo S-oxidation
may need a preliminary hydrogenation step before entering the
p-oxidation pathway.'*** However, stearate (C18:0) formation
from oleate (C18:1) (reaction 1 in Table 2) was only
occasionally observed, and significant accumulation of palmitate
(C16:0) has been frequently reported when continuous
anaerobic bioreactors are fed with oleate-rich waste-
waters. %7753 Brom a thermodynamic point of view,
hydrogenation of unsaturated LCFA is favorable at standard
temperature and pressure conditions, as shown by the negative
Gibbs free energy change, i.e,, AGY =—-79 kJ mol™ (Figure S1,
Table 2). However, one -oxidation cycle is not favorable (AG®’
+51 kJ mol™', Figure S1, Table 2), requiring syntrophic
cooperation with hydrogenotrophic microorganisms, which
scavenge hydrogen, maintaining low hydrogen partial pressure
(Py,). Considering nonstandard conditions (1 mmol L™ for
reagent LCFA, products stoichiometric accumulation, at 298 K
and pH 7), these reactions only became favorable for Py, lower
than 1072 atm (101.3 Pa) (Figure S2a).

Nevertheless, one f-oxidation cycle can be thermodynami-
cally feasible if it occurs after the chain saturation step, and the
combination of these two reactions yielding a AG" is —28 kJ
mol™" (Figure S1, Table 2). For the nonstandard conditions
previously defined, the Gibbs free energy change of oleate
(C18:1) to palmitate (C16:0) conversion, for example, is still
negative at high hydrogen partial pressure (Py, > 1 atm) (Figure
S2b). In contrast with this high Py, value, complete palmitate
degradation to acetate can only occur when Py, < 107 atm
(Figure S2b), thus pointing to the possibility of palmitate
accumulation in the medium. This analysis is further reinforced
by the smaller window of opportunity of palmitate to acetate
conversion (pink shadowed area in Figure S3), relative to oleate
to palmitate degradation (gray shaded area in Figure S3). These
windows define the conditions at which the LCFA degradation
processes and the methanogenic conversions (acetoclastic and
hydrogenotrophic) are energetically favorable.''* Acetate
concentration is not an important limitation for oleate to
palmitate conversion (Figure S3) nor for palmitate conversion
to acetate, which remains feasible at high acetate concentration,
even at 30 g L™ (0.5 mol L") of acetate, for example. In
summary, this analysis suggests that oleate to palmitate
conversion may be predominant in oleate-fed anaerobic
bioreactors and that palmitate degradation to acetate will only
occur when the hydrogen partial pressure is low or the electrons
are channelled via DIET.

7,112
or
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In fact, Cavaleiro et al.°® showed that in bioreactors in which
methanogenesis was inhibited, the degradation of different
unsaturated LCFA (namely, C18:2, C18:1, and C16:1) lead to
the accumulation of two carbons shorter saturated LCFA. From
these observations, it could be hypothesized that hydrogenation
of unsaturated LCFA (e.g, oleate) is followed by one f-
oxidation cycle (reactions 2 and 3, Table 2), after which two
carbons shorter saturated LCFA (e.g., palmitate in oleate-fed
bioreactors) would be expelled from the bacterial cells.
However, this hypothesis is unlikely, as no immediate energy
gain is derived from this uptake and excretion process. One
alternative hypothesis is that the chain saturation step and first -
oxidation cycle might occur membrane bound, possibly outside
the cell, in which the reducing equivalents generated from p-
oxidation are used to reduce the double carbon bond of the
unsaturated chain, producing palmitate. This, however, has
never been shown and remains speculative, since the LCFA
molecule needs to be activated prior to -oxidation. Therefore,
the reason why palmitate accumulates in oleate-based waste-
water treatment still represents a knowledge gap. Moreover, it is
still not clear whether conversion of oleate to palmitate
(involving the two possible steps of hydrogenation and f-
oxidation) is performed by only one or by more than one
microorganism.'”” The accumulated palmitate can be further
degraded by different or by the same microorganisms that
performed the oleate bioconversion, since bacteria that degrade
unsaturated fatty acids are also able to degrade saturated fatty
acids, whereas the opposite generally does not occur.'"
However, in anaerobic reactors with mixed communities, oleate
consumption is generally fast, while palmitate degradation is
slow, which underpins the hypothesis that two different
metabolic routes may be involved in the complete oleate
degradation to methane. Therefore, the build-up of palmitate
during oleate biodegradation must be deeply studied, since it is
directly linked with potential solutions to increase the
conversion rate of full-scale lipids AD systems. Palmitate was
also the main LCFA identified in floating fat balls that were
formed during the treatment of high lipid concentrations. These
aggregates were mainly composed by calcium LCFA salts and
were essentially unavailable to microbes.''>""”

3.2. Microbiology of Lipids and LCFA Anaerobic
Degradation. In the absence of external electron acceptors
(other than CO,), LCFA biodegradation is associated with a
syntrophic cooperation between LCFA-consuming bacteria and
methanogens, with the latter consuming the acetate and
hydrogen formed by the bacteria and producing methane
(reactions 4, S, and 6, Table 2). None of these groups can
degrade LCFA alone, so this obligate relationship between
syntrophic bacteria and methanogens (especially hydrogeno-
trophic methanogens) is essential to achieve LCFA degradation
to methane. In the absence of a hydrogen scavenger, hydrogen
partial pressure increases, and LCFA conversion becomes
thermodynamically unfeasible (reaction 4, Table 2).'"*'"”

Syntrophomonas sapovorans was the first LCFA-degrading
syntrophic bacterium isolated in coculture with Methanospir-
illum hungatei.'”* To date, 12 syntrophic strains able to convert
C4, and longer fatty acids have been described.'””'*" Five of
these microorganisms can grow with unsaturated LCFA,'7!2!
and only one, Thermosyntropha lipolytica, is also able to
hydrolyze lipids.'** In general, the syntrophic LCFA degraders
are also able to degrade short chain fatty acids (SCFA), while the
opposite is not true. Information on syntrophic species
degrading propionate and butyrate (the most important
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SCFA) are compiled by refs 123—125. Besides methanogens,
other microorganisms can act as syntrophic partners for LCFA-
degrading bacteria, e.g, hydrogen- and acetate-consuming
sulfate reducing bacteria (SRB). %% For example, Salvador et
al."*” reported a novel syntrophic relationship between an
oleate-degrading bacterium, closely related to Syntrophomonas
zehnderi and hydrogenotrophic sulfonate-reducing Desulfovibrio.
Recently, a new study suggested that the anaerobic degradation
of LCFAs could be enhanced by the presence of other electron
acceptors such as iron. Cavaleiro et al.'** investigated the effect
of different substoichiometric amounts of Fe(III) on the
anaerobic degradation of oleate in suspended and granular
sludge. In that study, faster LCFA biodegradation was observed
by suspended sludge in the presence of iron, but no noticeable
effect of iron was observed with granular sludge. Regarding the
microbial community composition, the results obtained suggest
the occurrence of a novel microbial interaction in LCFA
oxidation, involving microorganisms of the Syntrophomonas,
Geobacter, and Methanobacterium genera.

The microbiome of the anaerobic LCFA-degrading commun-
ities was initially studied using traditional molecular techniques
(e.g, cloning and sequencing), targeting the 16S rRNA gene,
focusing on phylogenetic and taxonomic characteriza-
tions.'">'*7"°" In general, the relative abundance of fatty
acid-degrading syntrophic bacteria in high-rate methanogenic
bioreactors is low (between 0.2% and 3%), despite their
importance in lipids/LCFA degradation.'””'** Besides the
genus Syntrophomonas from the phylum Firmicutes (known as
a syntrophic fatty acid degrading bacteria), also Clostridium
species were detected in several studies.””'**”'** Members of
phyla Bacteroidetes, Synergistetes, Spirochaetes, and Proteobacteria
were also detected, even though their direct involvement in
LCFA deégradation was never demonstrated (Table
3).130 132139157 These microbial groups were also detected by
Nakasaki et al.,”® which examined microbial community changes
during the degradation of oil, LCFA, and glycerol. Their results
showed that Leptospirales, Thermobaculaceae, Synergistaceae, and
Syntrophaceae were the most abundant bacteria in both oil and
LCFA experiments.”

In the last decades, the development of new methodologies
for the detection and identification of uncultivated micro-
organisms has contributed to increase the knowledge about
microbial diversity, their functions, and interactions in complex
communities. In Table 3, microorganisms found in lipid/LCFA-
rich environments are shown. Nevertheless, the role of most of
these microorganisms in LCFA conversion is unknown.

While it is clear that acclimatization of the microbial
community to LCFAs or lipids, both in wastewater and
codigestion processes, benefits degradation and decreases
inhibition through the development of sgecialized microbial
communities, as previously described,””””'" it is now
important for future studies to further link microbial
identification to function. Metagenomics, metatranscriptomics,
metaproteomics, and metametabolomics are different ap-
proaches to address that challenge.136 Treu et al."*® studied
the metatranscriptome of an anaerobic microbial community
during LCFA exposure. Besides confirming the importance of
Syntrophomonas species in fatty acids degradation, the authors
also noted the upregulation of genes involved in “peptidoglycan
biosynthesis” and in “lipopolysaccharides biosynthesis” by
bacteria belonging to order Clostridiales to Rykenellaceae families
and to Halothermothrix and Anaerobaculum genera. This may
indicate that, by modifying their cell walls and the compositions
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of the lipopolysaccharides, the bacteria promote a protective
mechanism to counteract the toxic/inhibitory effect of LCFA."®
Kougias et al.'”” studied the microbial community dynamics
during an inhibitory shock load induced by single pulses of
oleate, using high-throughput shotgun sequencing (metage-
nomics). They showed that only the microorganisms associated
with LCFA degradation could encode proteins related to
“chemotaxis” and “flagellar assembly”, which allow these
microbes to move toward LCFA. Recently, Ziels et al.”” used
DNA-SIP metagenomics and showed that in a pulse-fed
codigester converting oleate into methane, 70% of the 13C-
enriched genome bins were assigned to the Syntrophomonas
genus and concluded that feeding frequency impacted the
genomic composition of active syntrophic populations.

When studying the hypothesis that different microorganisms
may be involved in the accumulation and further degradation of
palmitate in oleate-fed bioreactors, Cavaleiro et al.%® concluded
that the initial steps of unsaturated LCFA degradation can
happen independently from methanogenic activity. Because
facultative anaerobic bacteria became abundant, these authors
suggested that these bacteria might have a role in these
biochemical reactions, thus opening new possibilities besides the
classical syntrophic degradation pathway®® (Figure 2). To
further investigate the role of facultative anaerobic bacteria,
Duarte et al.”’ studied oleate conversion in continuous
bioreactors, one operated with microaeration (—250 mV) and
other under strict anaerobic conditions (—350 mV). That
difference in the oxidation—reduction potential (ORP) was
correlated to a higher abundance of facultative anaerobic
bacteria, particularly Pseudomonas spp. Interestingly, microaera-
tion also promoted the transformation of oleate to palmitate,
avoiding the long-term methanogenic inhibition observed in the
strict anaerobic control experiment, possibly because palmitate
is less toxic to methanogens than oleate (Figure 2). In fact, the
theoretical ORP value of oleate to palmitate reaction is —270
mV (calculated at standard temperature and pressure con-
ditions, using AG” from Table 2, and according to Thauer et
al.'>®). This value is close to the ORP measured in the
microaerophilic reactor (—250 mV), where the oleate to
palmitate reaction was favored. However, ORP in bioreactors
(under nonstandard conditions) will vary with the soluble
concentration of compounds, which for LCFA is generally
difficult to determine with accuracy. Moreover, the presence of
other soluble species, such as sulfur compounds or oxygen, will
also influence the ORP conditions. In anaerobic bioreactors
treating oleate-based wastewater, the presence of facultative
anaerobic bacteria was also shown to be important because they
accelerate oleate conversion to methane by protecting strict
anaerobes from oxygen toxicity and also by acting as alternative
hydrogen/formate and acetate scavengers for LCFA-degrading
anaerobes.'*® From an applied point of view this is very
important, since at industrial scale, the feeding tanks/pipelines
are not kept under strict anaerobic conditions, and small
amounts of oxygen can be introduced to the system. The
potential role of facultative bacteria in the conversion of
unsaturated to saturated LCFA is still to be disclosed, and
further studies are needed to better understand the interactions
between facultative anaerobic bacteria and other microorgan-
isms within methanogenic communities in continuous bio-
reactors. The addition of vestigial levels of oxygen and the fine
regulation of redox potential are new perspectives to investigate
in this field.””
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o z The microbial communities developed during the codigestion

of lipids also have been the focus of recent studies. Hao et al.">’
reported that in the codigestion of waste-activated sludge and
FOG an important increment of methane production was
observed, probably due to the abundance of Geobacter species,
A indicating the role of direct interspecies electron transfer in FOG
) 3 and activated sludge codigestion. In another study, Salama et
E g al.'>® assessed the effect of calcium on FOG degradation. The
g ?% addition of calcium promoted an increase in methane
E L2 production and a shift in the microbial community, increasing
= -y the growth of bacteria from the Clostridium, Syntrophomonas,
< 3 § § g and Sedimentibacter genera. The genus Methanosaeta increased
S E § after the addition of 0.5% calcium, which is one of the factors
55§83 responsible for high methane production, avoiding the
§ § ES inhibitory growth and toxic effects of high concentrations of
FOG. In the study of Usman et al,'>* Syntrophomonas and
Fermentimonas were abundant. Methanosaeta were dominant in
the beginning, owing to the increased presence of LCFA, but
afterward were replaced by Methanosarcina genus, likely because
of the increase in acetate concentration due to the LCFA
conversion. Kurade et al.”® compared acclimatized (fed batch
.E‘ over 160 days, 10 batch cycles) to nonacclimatized sludge and
g showed an increased LCFA degradation efficiency in the former
g of up to 64%, albeit LCFA degradation was still not complete
é 2 ’g within 30 days, and 56% oleate rﬁgained unconverted in the
g E § g . acclimatized reactor. Amha et al. ™ thoroughly evaluated the
& f&; g s 3 E microbial community under thermophilic conditions treating a
I é g E :§ waste with up to 60% FOG. These authors highlighted that
s5%, S 5\ S e Né syntrophic bacteria were enriched and promoted the successful
S §EE 88 iy 88 codigestion process with FOG. Moreover, their approach of
8 § §~ FE R R ~§ % 3 jointly utilizing sequencing technology with qPCR analysis (and
§ ;S)\ i §~ E“*Eﬁ § E E E E §\§ quantification) on specific groups (e.g., methanogens, syntro-
phic bacteria) was shown to be robust and beneficial for future
studies in the field.
g &
2 g 4. BIOREACTOR CONFIGURATIONS IN HIGH-RATE
§ & WASTEWATER TREATMENT
[ ©
.é‘ g g Since the 1970s, the field of anaerobic digestion has been
S < g commercially active treating waste/wastewaters from various
= Z g industries with different bioreactor configurations. To ensure
:é g the uptake of AD by industry, the costs need to be competitive,
- = both capital and operational per m® of waste treated. This can be
achieved if the rate of degradation is increased, along with the
. biogas yield per m?® especially in respect to wastewater
2 treatment.
= For several biodegradable industrial wastewaters, HRAT has
° enabled high rates of degradation and biogas yields. The
2 v superior performance of these systems is based on the retention
é z of slow-growing microorganisms inside the bioreactor, requiring
g g a successful decoupling of solids retention time (SRT) and
° éo hydraulic retention time (HRT). The three most common
*_E 2 mechanisms to achieve this are physical separation (e.g., by
it e settling and/or filtration), attachment to fixed or nonfixed inert
§ g supports, and autoimmobilization or granulation.”'*” Among
= g Ey these mechanisms, microbial granulation dominated the
g £ § implementation of anaerobic technology in the last decades,
g © p following the development of the upflow anaerobic sludge
g 2 blanket (UASB), the expanded granular sludge bed (EGSB),
© %‘J and the internal circulation (IC) reactors.” However, the
:: 8 improved performances of these HRAT designs did not translate
'.._g ’ge across to the treatment of lipid-rich wastewaters. In these
= M systems, the COD removal efficiencies are generally high, but
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the substrate conversion to methane tends to be incomplete,’
mainly due to lipids/LCFA adsorption onto the sludge.

4.1. High-Rate Anaerobic Technologies (HRAT) for
Lipid-Rich Wastewater Treatment. Operational parameters
of diverse first-generation reactors treating lipid-rich wastewater
are summarized in Table 4. The anaerobic contact process
(ACP) is one of the original developments of HRAT and is
constituted by a continuous stirred anaerobic digester and an
external clarifier, where the anaerobic sludge is settled and
returned back to the reactor.'” In this type of system, the
successful operation relies on the operation of the clarifier, and
problems with sludge settleability can be partially addressed
through the degasification of the reactor effluent, where the
biogas is released from the sludge often allowing it to settle again.
Sludge separation through flotation and not through settling is
an alternative way.

The anaerobic filter (AF), upflow or downflow, is another
type of HRAT, in which the reactor has support media (e.g.,
PVC or ceramic rings) for biomass attachment. AFs have
relatively simple constructions, since there are no moving parts;
however, a large reactor volume is required. Moreover, AF
generally suffers from severe clogging issues due to suspended
solids entrapment and biomass growth in the filter, resulting in
the occurrence of channeling and short circuiting. Moreover, a
high concentration of lipids in the wastewater will aggravate the
clogging process,'°'*> and lipids may act as a soap, decreasing
the biomass adhesion to the support.”

In the UASB reactor, developed by Lettinga et a
formation of highly settleable sludge aggregates (granules)
takes place, combined with gas separation and sludge settling."
However, several reports describe difficulties when applying
granular sludge reactors to lipid containing wastewaters. The
granules are structurally unstable when lipids or LCFA adsorb to
their surface, suffering breakage, loss of density, and thus process
inhibition. Sayed et al.** studied the UASB reactor performance
in the treatment of a slaughterhouse wastewater containing 50%
of insoluble suspended COD and 5% of grease in the total solids.
The process could not handle OLRs exceeding 3.5gL™" d™! (in
COD) at an HRT of 8 h (Table 4). At the same time, there was a
deterioration of the COD removal of the system under high
loading conditions. Further to this, other studies found that the
operation of UASB or other granular systems is limited by
components, such as milk fat and proteins, presenting low rates
of anaerobic degradation and microbial inhibition prob-
lems.**'°%'” Hawkes et al.** reported the performance of a
pilot-scale UASB reactor treating ice cream wastewater at an
OLR of 2.19 g L™ d™! (in COD)), giving a poor performance
with less than 50% COD removal efficiency (Table 4).
Jeganathan et al.*' studied the treatment of a complex oily
wastewater from a slaughterhouse in two different UASB
reactors and verified that, at an OLR of 3 g L' d™' (in COD),
FOG and COD removal efliciencies were higher than 80%
(Table 4). However, the reactors performances deteriorated
sharply at higher loading rates, and the presence of FOG caused
a severe sludge flotation resulting in process failure. Fat, protein,
and cellulose components of the POME wastewater were also
reported to have an adverse impact on UASB reactors
performances and caused deterioration of microbial activity
and biomass washout.'*®

In the EGSB reactor design, problems have also been noted
when treating lipid-rich wastewaters. In the study of Nufiez and
Martinez,”” an EGSB was used for the treatment of slaughter-
house wastewater obtaining a COD removal efficiency of 65%—

165
1,
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80%, applying an OLR (in COD) up to 15 g L' d™" with a fat
influent concentration of 0.15 g L™". In this study, 85% of the fats
present in the wastewater were removed, and no accumulation
of fats on the sludge was observed. Zhang et al.'** treated POME
wastewater in a laboratory-scale EGSB reactor at OLR (in
COD) from 1.45 to 17.5 ¢ L™ d”' and an HRT of 2—3 days,
obtaining 90%—95% of COD removal efficiency. In this study,
scum formation and sludge flotation were reported due to the
presence of FOG in the raw POME and its adsorption to the
granules. Pereira et al.*" studied LCFA inhibition in a lab-scale
EGSB treating oleate at an OLR (in COD) of 8 gL™' d™', witha
COD removal efficiency around 80% and a biogas containing
55% methane.

From these studies, it becomes clear that these HRAT
reactors do not successfully deal with the commonly reported
problems related to lipid-rich wastewater, namely, the loss of
granular structure or unsuccessful granulation, sludge flotation,
and washout. Therefore, different solutions were evaluated to
overcome these problems. For example, the two-phase reactor
concept™'® was applied to improve process stability and
efficiency due to physical separation of the rate-limiting
methanogenic phase. However, considering that saturated
LCFA biodegradation requires syntrophic cooperation with
methanogens, phase separation may not be advantageous.
Inverse fluidized reactors were also used for the treatment of a
dairy wastewater by Arnaiz et al.'”’ with good COD removal
efficiencies, but methane yields were not reported. Haridas et
al.”? developed a new reactor design, the buoyant filter
bioreactor (BFBR), for the treatment of fat-rich wastewater. In
this system, buoyant polystyrene beads form a granular filter bed
that allows the decoupling of the SRT from the HRT. An almost
complete COD conversion to methane was reported during the
treatment of a dairy effluent for 400 days. When the OLR was
increased, scum accumulation was observed, followed by further
solubilization and degradation to methane.

4.2, Second Generation Reactors for AD of Lipids. In
the last decades, novel reactor designs based on alternative
sludge retention strategies have been developed up to
technology readiness levels (TRL) of 8—9, which are able to
deal with the main problems associated to AD of lipids. The core
developments include sludge flotation as a strategy to prevent
the washout of biomass.

Nowadays, there are several commercially available bio-
reactors suitable to treat lipid-rich wastewaters: Evoqua’s ADI-
BVF, Paques B.V.’s anaerobic flotation reactor (AFR), trading as
BIOPAQAFR,BIOPAQ_AFR, and both Biothane-Veolia’s
Memthane (anaerobic membrane bioreactor, AnMBR) and
recently Sparthane (anaerobic sequencing batch reactor,
AnSBR). All these bioreactors use flocculent sludge. In Table
S, a summary of reported operational conditions of second-
generation reactors treating lipid-rich wastewater is presented.

The ADI-BVF system provides low-rate treatment for
complex wastewaters, operating at lower volumetric loading
rates and higher HRT than HRAT. The large volume of the
reactor, the low-rate operation mode, and the sludge recycle
system avoids biomass washout and guarantees very long SRT.
The tank has a simple design and operation; however, due to its
size, it represents a large capital investment.

The BIOPAQ AFR reactor by Paques B.V.”" is especially
designed to treat wastewater streams containing fats and oil, for
example, from the dairy, poultry, and food industries. It utilizes
the flotation properties of the FOG—sludge mixtures, assisting it
with white-water microbubbles, derived from a small part of the

https://doi.org/10.1021/acs.est.1c08722
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system’s produced biogas that is compressed and solubilized in
the feedwater to be released in the lower part of the internally
mounted anaerobic floatation unit. The effluent is withdrawn
from the suspended solids free zone below the flotation layer.
The flotation unit, integrated with the reactor system, retains the
sludge up to concentrations of 15—30 kg per m® of reactor
volume.> Therefore, it saves the biomass and the substrate
solids from washout and also increases the biological activity
through increasing contact with the substrate and allowing the
sludge to degrade absorbed lipids. Ultimately, through an
engineered robust retention system for the sludge, the BIOPAQ
AFR reactor overcomes one of the common bottlenecks related
to sludge washout during the anaerobic treatment of lipid-rich
wastewater. A recent improvement is based on pressurizing the
effluent flow of the bioreactor (including the biomass), instead
of the effluent of the flotation unit only, which enhances the
efficiency of the flotation process. Furthermore, less pressure is
required for biomass floatation, and increased solids loading
rates on the flotation unit can be applied, resulting in an even
more compact system. In pilot and full-scale treatments of the
complex wastewater, it was observed that during the first half-
day after a nonfeeding period (e.g, a weekend) filamentous
sludge developed. However, within a day after restarting feeding,
the sludge becomes more compact again (Paques personal
communication*’). While this issue is easily addressed, the rapid
change in biomass morphology is unclear. Since the
phenomenon of developing filamentous biomass after a restart
seems a generic observation in other type of plants as well
(Paques personal communication®’), the microbiological
knowledge regarding floc formation and composition, its
thickening, and exopolysaccharides formation should be further
explored. In the AFR system itself, this filamentous biomass is
retained, as sludge floatation is very efficient by directly
pressurizing the biomass as explained above.

Full-scale studies performed with this reactor design showed
that extremely high concentrations of fats could disturb the
system, but the inhibition was reversible.’” Therefore, managing
the waste streams (for example, the high concentrated FOG
streams, like ice cream, in a small buffer tank and the low to
medium concentrated stream in a large buffer tank) is necessary.
Both streams can be pumped in the reactor in a controlled way,
avoiding extreme peaks of fat.’” Despite the possible require-
ment for separate buffers, the reactor has a strong buffering
capacity against spike loading of lipids. It is hypothesized that
this buffering capacity is due to the adsorption of the lipids to the
sludge and the degradation of the excess lipids at a later time.
The reactor has a high COD removal efficiency of 90%—95%,
applying an HRT of 1-8 days, dependent on substrate and
volumes (Table S). It has the ability to treat wastewater with
COD concentrations of S—70 g L™, with a maximum of 50% of
the COD being lipids.”” Microbiologically, the flocculent
biomass has proven ideal for this reactor system, with high
methanogenic activities recorded, despite the complex sub-
strates treated. The AFR system is applied for full-scale
treatment of various fat or oil containing wastewaters as dairy
wasters, meat processing wastewater, tank cleaning wastewater,
and fish processing wastewater. The system is very robust, and
the sludge is well retained, even if there is an upset in load. The
sludge has, in the case of a higher fat concentration in the
reactor, a tendency to float which is an advantage in this system
as it is designed to retain by means of flotation. Therefore the
system shows high flexibility for changes in loading rates and
types of waste.””
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Other commercially available technologies to treat lipid-rich
wastewaters include the anaerobic membrane system offered by
Biothane-Veolia B.V., the Memthane. Saddoud and Sayadi**
who studied the application of an AnMBR for the treatment of
slaughterhouse wastewater, with an operational OLR (in COD)
from 4.34 to 15.8 g L™" d™', achieved a COD removal efficiency
up to 94%. Dereli et al.>* studied the performance of a lab scale
AnMBR treating lipid-rich corn to ethanol thin stillage at
different SRT', achieving removal efficiencies up to 99% with an
OLR (in COD) up to 8 g L' d™". These results were obtained
applying SRTs of 20 and 30 days, where LCFA precipitations
with cations or adsorption onto biomass of LCFA were the
dominant mechanism for LCFA removal. Results showed that
high amounts of COD originating from lipids accumulated as
very large LCFA precipitates (denominated fat balls) at short
SRTs, meaning that COD bioconversion was, in fact, less.
Ramos et al.'”" studied the performance of a pilot AnMBR
treating lipid-rich wastewater from a snacks factory, where
satisfactory results were obtained with an OLR below 2 gL ™' d™!
(in COD) with acclimated sludge, without inhibitory effects.
Szabo-Corbacho et al.”' studied the performance of an AnMBR
treating synthetic dairy wastewater, at two different SRTs (20
and 40 days), with a working OLR of 4.7 g L' d™! (in COD),
obtaining efficiencies of more than 99% organic matter removal
and a very low LCFA accumulation inside the system. Biothane
commissioned nine full-scale AnMBRs (Memthane systems),
using tubular inside-out polymeric membranes in cross-flow
skids." Other companies, for example, Kubota,'’* are
implementing submerged AnMBRs in which the membranes
are mounted inside the bioreactor or in a separate membrane
tank. While membrane-based bioreactors offer a solution for
lipid-rich wastewaters, their economic viability due to high
operation costs related to membrane filtration proves difficult
for standard treatment of wastewater, unless there is down-
stream water reuse, where high effluent quality is demanded, and
other membrane systems (i.e., reverse osmosis) are in operation.
Therefore, further novel systems have been developed and
tested at pilot scale. Sparthane, a sequencing batch reactor
(AnSBR) also by Biothane, takes another approach to address
the problem of lipid degradation through a patented batch
sequence of a stirred reactor, batch degassing tank, and
semicontinuous settling tank.'”” Similar in setup to the ACP,
it can, however, accept high-loading rates from 8 to 10 g Li4d
(of total COD), under mesophilic conditions. Preacidification is
core to the process, ensuring a balanced liquid matrix of
compounds that are degradable by the flocculent microbial
community, avoiding denaturation of proteins and temporary
inhibition of lipid degradation. Stringent monitoring positively
influences the separation and clarification steps, limiting the
growth of filamentous bacteria, to ensure sludge settleability and
thus easy clarification, solving previously documented issues
with the contact reactor process.' The batch sequencing is
further supported by the microbial findings of Cavaleiro et al.®”
and Ziels et al,,'”" suggesting that this approach increased the
ability to rapidly degrade lipids. Ziels et al."*" further supported
this work with quantification of the syntrophic communities and
their resulting increase from batch feedings, albeit in a
codigestion system. Overall, as the system is expanded with
full-scale reference sites presently, it offers a full degradation of
complex lipid-rich wastewaters in a strategic yet operationally
candid manner.

Another technology especially designed for the treatment of
wastewater with high lipids contents, not yet commercially

https://doi.org/10.1021/acs.est.1c08722
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available, is the Inverted Anaerobic Sludge Bed (IASB)
reactor.”””® Similar to the BIOPAQ AFR, the IASB reactor
uses the sludge flotation properties, resulting from lipids/LCFA
adsorption, to retain the sludge and the LCFA in the system.
Adsorption is promoted by mixing the feed with the recycled
sludge, and this mixture is fed from the top. The recycle line and
a gas lift effect assist in the internal mixture of the reactor
content. Sludge separation is performed at the bottom. A pilot-
scale TASB reactor (1.2 m*) was operated for the treatment of a
slaughterhouse wastewater, at an OLR (in COD) from 0.5 to 16
gL' d™!, with 63% as fat."”* COD removal efficiencies higher
than 80% were achieved, and excessive LCFA accumulation was
prevented, showing its capacity for the treatment of complex
wastewater with high quality fluctuations.

The commercial need for the treatment of complex lipid-rich
wastewaters has driven the field toward market ready systems
and technologies, as listed and detailed above. The possibility of
directly treating lipid-rich wastewater anaerobically has been
accomplished, and the high return in biogas coupled with the
savings in pretreatments for FOG separation contributes to
counterbalance any extra operating and capital expenses. With
the implementation of these second-generation AD reactors, the
main issues of the first-generation are solved, ie, LCFA
inhibition, sludge washout, low removal efficiency, allowing to
treat high OLR (up to 16 g L™" d~! in COD) with high removal
efficiencies, and keeping a more stable reactor performance.

5. ALTERNATIVE STRATEGIES FOR IMPROVING AD OF
LIPIDS

Besides the development of novel reactor configurations, other
strategies have been studied to improve AD of LCFA/lipids. For
example, addition of calcium ions'” or inert materials, for
example, activated carbon, bentonite, or other clays,81 was
tested, considering that these materials can reduce LCFA/lipids
bioavailability through mechanisms of precipitation or adsorp-
tions, thus decreasing their potential toxicity. These strategies
intended to reduce LCFA bioavailability and thus decrease their
toxicity. The mitigation of LCFA inhibition by the addition of
cations and natural adsorbents has been recently reviewed by
Elsamadony et al.'’® For example, recently, Salama et al."*®
tested the application of calcium (0.1—1%) in order to overcome
the inhibition caused by 2% of FOG in bioreactors. The addition
of 0.5% calcium was best, promoting a 6-fold increase in the
biomethane production and a reduction in the outlet COD from
131 to 14—64 g L™'. Mixing the calcium with FOG before
feeding the reactor was advantageous, since it reduced the
growth-inhibitory effects of FOG at the process start up.

The use of conductive materials (e.g., ferric oxyhydroxide,
magnetite, and granular activated carbon) recently has improved
the methane production rate from dairy wastewaters.'””"”® Also,
biomethane potential assays using oleate and granular activated
carbon (GAC) (0—33 g L™!) were performed by Tan et al.'””
The authors suggested that GAC addition promotes the faster
consumption of both volatile fatty acid and LCFA, particularly
palmitate. During oleate degradation, the presence of GAC
decreased the lag phase for methane production. These authors
postulate that since the electron transfer via direct interspecies
electron transfer (DIET) is higher than via hydrogen, the
potential shift from indirect hydrogen transfer to the DIET
pathway, induced by the presence of GAC, may result in a more
efficient conversion of LCFA to methane.'”” Despite of the use
of conductive materials to promote DIET in processes of AD of
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lipids recently being studied, their application in both HRAT or
LRAT systems needs to be further explored.

Additionally, the implementation of microaeration also has
been shown as a promising strategy to enhance the digestion of
lipids/LCFA-rich wastewaters, since it promotes oleate
conversion to palmitate (which is less toxic to the micro-
organisms than oleate), avoiding a severe inhibition of
methanogens.”’

Biogas upgrading from anaerobic digestion of waste frying oils
(WFO) was obtained in a biogas-lift bioreactor in which gas and
liquid recirculations were applied. In this reactor, 1.4 times more
biogas, with higher methane content (79%), was obtained when
compared with the control reactor without gas recirculation
(67%). This improvement resulted from the enrichment of
hydrogenotrophic methanogens. Biogas recirculation thus
appears as a promisin% strategy to enhance biomethane
production from lipids."®

Despite of all the achievements, the basic issue of LCFA
inhibition and palmitate accumulation are still not clearly
understood, and their comprehension might boost process
performance. This could allow true high-rate (<24 h) digestion,
larger energy gains (even at low, psychrophilic, temperatures),
and ultimately lead to further implementation of resource
recovery from lipids in wastewater.

6. CODIGESTION OF FOG IN LOW-RATE ANAEROBIC
TREATMENT OF SOLID WASTES

The use of anaerobic digestion to treat solid wastes, including
sewage sludge or agricultural residues (e.g., manure), has been
widely implemented as an efficient method to reduce the carbon
footprint of solid waste over the past two decades.'®’
Codigestion of these core, abundant wastes, with various
cosubstrates, such as food waste (including household organic
waste) and FOG-based waste, is regularly performed whenever
possible, since this increases the overall biogas and methane
yield of the AD plants.'*'** Specifically, the addition of FOG-
rich waste has been shown to be beneficial for biogas production
rates. For instance, Angelidaki and Ahring3'2 showed that the
codigestion of FOG (oil mill effluent) with manure (50:50 and
75:25, FOG/manure in VS) allowed conversion of 85% of the
lipids, and the methane production increased when the reactor
feed was changed from manure alone to manure and FOG, from
1.2 to approximately 2.5 L d~! (50:50, FOG/manure) and to 3.1
Ld™" (75:25, FOG/manure). More recently, a work from Wu et
al.'** demonstrated that the addition of grease trap waste could
increase methane yield up to 68% compared to monodigestion
of food waste. The scaling of the process to full-scale codigestion
systems has been compiled and examined by Salama et al,,'®
detailing the potential biogas production worldwide in full-scale
WWTPs conducting codigestion of FOG-rich wastes.

Despite the benefit of increased methane production
potential, some problems are associated with the presence of
FOG, namely, microbial inhibition (observable as a reduction in
biogas production) or physical issues such as digester foaming,
which is frequently reported during the codigestion of FOG
wastes and has the potential to clog the gas collection and
handling systems.w While clearly beneficial, the practice of
adding FOG to both municipal and agricultural waste in
anaerobic digesters is limited by the accumulation of LCFA and
the potential inhibition of the overall AD process.”"*”'® In
these cases, theoretical methane production is not easily
achieved. The threshold that maximizes the methane
productivity, avoiding inhibition, is a critical point to be

https://doi.org/10.1021/acs.est.1c08722
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addressed. For example, Usman et al.">* advised to operate in
codigestion processes of sludge and FOG on the concentration
range of 0.1—1.5% (v/v), increasing the methane production
steadily, while Neves et al.'®® showed that intermittent pulses of
oily waste improved the methane production during the
codigestion of food waste and cow manure (10%, v/v), up to
an influent oil concentration (in COD) of 12 g L™*
(corresponding to an oil/manure ratio of 5%, v/v). The same
codigestion system could endure recurrent pulses of oil at a
COD concentration of 15 g L™, but a pulse of 18 g L™ (in
COD) resulted in a persistent system failure. Threshold values
(expressed in COD per mass unit of total solids) of 180—220
and 120—150 g kg™! were also established for total LCFA and
palmitate, respectively, that should not be surpassed in order to
prevent reactor failure in the codigestion of cow manure with
food waste and oil."®” In this work, C16:0 was also the major
detected LCFA adsorbed/accumulated onto the solid matrix.

Methane yield obtained in several studies is summarized in
Figure 3, according to the FOG loading rate applied and
respective sludge acclimation time. In most of the cases, a linear
tendency between the methane yield and the FOG loading rate
can be observed, until a FOG loading rate (in VS) of
approximately 2 g L™ d™". The study of Luostarinen et al.'*®
was an exception. This work showed that the methane yield
remained approximately constant despite the increase of the
FOG loading rate, probably due to the acclimation effect. In
most studies, an increase over 2 g L™' d™! (in VS) promoted a
decrease in the methane yield.

FOG or LCFA generally do not exceed 50% of the organic
load (in COD) applied to low-rate digesters, although in the
work of Ziels et al."®" oleate reached 64% of the applied OLR.
Further to the amount of FOG, the rate and type of feeding—
pulse or continuous—has been outlined as key factors.”*””'%!
The feeding of reactors via continuous or pulse feeding of FOG
has been tested at several locations, and results indicated that
process performance improved while the microbial community
was more stable when pulse feeding was applied.”*””'*""'?° This
is consistent with previous research performed on solid wastes’
ADs, as for example the work of De Vrieze et al,"”” which
showed that pulse feeding and/or variations in the substrate
composition promoted higher functional stability of the
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anaerobic microbial communities during sewage sludge
digestion.

While significant progress has been made in the field of solid
wastes codigestion with FOG, mainly on cosubstrates ratios
evaluations, and more recently linking microbial community to
process changes, future investigations are still needed,
specifically to identify the effects of the high variability
associated with lipid-rich substrates in industrial systems and
study the ability of these systems to accept high levels of lipids in
a resilient manner. Such studies would add to the knowledge,
robustness, and therefore confidence on the application of high
levels of lipids at industrial full-scale systems, allowing a more
ubiquitous use of lipids as substrate for biogas production.
Besides biogas, other intermediates of AD of lipids, for example,
medium chain fatty acids, are interesting target products to
address in the future.

6.1. Pretreatment Strategies. Several pretreatment
strategies have been tested to enhance the hydrolysis of lipid-
rich wastes and improve their bioavailability and further
anaerobic biodegradation. Detailed information on this topic
can be found in the review of Salama et al.'® Physical
pretreatments include grinding and/or maceration, high-
pressure homogenization, application of high temperature,
microwaves, or ultrasounds.'®® These techniques destroy
aggregated particles, decrease the particles” sizes, and disrupt
the cells’ structure. For example, microwave (MW) pretreat-
ment of a mixture of thickened waste-activated sludge and FOG
improved its solubilization up to 68% prior to the AD process
and increased the methane yields up to 137% relative to the
control.'”® Besides promoting lipids hydrolysis, the MW energy
can also be used to break LCFA into shorter chain fatty acids,
thus reducing LCFA inhibition. Similar results were also
reported for the application of MW-enhanced advanced
oxidation treatment of FOG.'?%>*° Regarding ultrasonication,
contradictory results have been presented by different authors.
For example, Moisan’®" reported enhanced solubilization of
LCFA, and consequent methane production, by applying
ultrasonication on FOG, but Li et al.>* reported that this
pretreatment did not improve methane production in the
codigestion of waste-activated sludge and FOG. Even more,
longer lag phases were recorded in the codigestion of the
pretreated samples. These negative effects of the pretreatment
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may be associated with the release of LCFA during the
hydrolysis of lipids that may inhibit the microbial communities.
Similar effects were also reported by Cirne et al.”’* and Cavaleiro
et al,”*" highlighting that even when the hydrolysis of FOG is
improved by the pretreatment complete conversion of the
substrates to methane can still be controlled by LCFA
accumulation/biodegradation.

Chemical pretreatments change the molecular structure of the
substrate, _generally through the addition of acids or
bases.”>>~*°” Thermochemical (saponification)”?>*°***%2%? or
enzymatic hydrolysis®”*'°~*'* have also been tested, as well as
bioaugmentation with lipase-producing microorganisms.****"?
Enzymatic hydrolysis of FOG was accelerated by ultra-
sonication.”'* Several patents and commercial products using
microorganisms and/or enzyme Eools for the biological
treatment of FOG are available.”’> Commercial lipases are
usually of microbial origin, namely, from bacteria, yeasts, and
filamentous fungi. The use of viable microorganisms is more
attractive than the addition of enzyme preparations, due to the
high cost of the enzymes.”'**"”

In general, the costs of the pretreatments should be balanced
by the benefits and must be in line with the funding available for
each treatment system. In several situations, despite the
potential benefits of the pretreatments, the net energy values
are negative, mostly due to the high electrical ener
consumption necessary to perform the p1‘et1‘eatments.183’l ¢
Therefore, further developments are still needed to turn these
processes economically feasible.

7. CONCLUSIONS AND FUTURE PERSPECTIVES

AD of lipids is a complex process that proceeds close to the
thermodynamic minimum of life, being highly dependent on
specific and complex microbial interactions. Significant progress
has been made in the past two decades regarding fundamental
knowledge in microbiology, biochemical pathways, and new
reactor configurations, which have been translated into the
market. The main challenges of the field have been tackled,
allowing researchers to overcome the classical problems of
microbial inhibition and sludge flotation and washout at higher
loads. Therefore, AD of lipids is now a mature technology, which
offers excellent opportunities for successful lipid valorization
over long-term operation of stable full-scale systems.

Nevertheless, some issues are still challenging and constrain a
wider implementation of AD of lipids:

(i) The equilibrium between LCFA accumulation and
biodegradation to methane is still not mastered.
Extremely high concentrations of fat lead to LCFA
accumulation that hinder the bioconversion. Therefore,
managing waste streams is currently necessary. This is a
main critical point observed in pilot/full-scale operation
of AD systems that may be tackled through the
development of novel strategies that accelerate LCFA
biodegradation and further conversion to methane (e.g.,
microaeration or addition of conductive materials).

(ii) The effect of lipids/LCFA on the structure and integrity
of sludge is only poorly perceived yet, which most likely
have a direct impact on process performance. In-depth
studies on flocs formation, spatial organization within
microbial aggregates, and exopolysaccharides formation
are essential.

(iii) The reasons for success or failure of the biological
processes are still to be unveiled, and this also applies to

AD of lipids in codigestion processes. Additionally, it
would be important to define early warning parameters to
prevent reactor failure.

These issues call for further research, development, and
innovation, targeting high-rate methane production from lipids
and promoting AD of lipids as a hub in the bioenergy market.
The production of medium chain fatty acids and/or other
valuable compounds also represents an interesting alternative to
biogas, which is highly relevant in the quest for a carbon-neutral
world.

New strategies such as microaeration or addition of
conductive materials are promising to boost methane
production from lipids. Regarding microaeration in AD of
lipids, fine-tuning the redox potential conditions can promote
the partial detoxification of LCFA, likely triggering a more active
methanogenic community thriving on lipids. Yet, the mecha-
nisms involved and the interactions between facultative
anaerobes and methanogens are new research topics in the
field that still require additional studies, for example, by using
pure cultures or synthetic microbial consortia. Concerning the
application of conductive materials, those may act upon
interspecies electron transfer or/and methanogenic activity
which, otherwise, will rate limit the process. A deeper
comprehension of the pathways and functional regulations in
the mixed microbial communities performing AD of lipids in the
presence of conductive materials is essential for an effective
management of this approach.

Coupling the current methods used in the field with
multiomics and advanced visualization, isotope probing, and
detailed reactor data will increase the knowledge of AD of lipids.
However, it is worth noting that reference genomic databases for
the field need to be expanded, as only limited data are currently
available. Thus, further holistic metagenome and metatran-
scriptome studies need to be performed.

The above mentioned research directions, together with novel
strategies to improve the efficiency and interaction of the
microorganism involved in the degradation of lipids, as well as
the close collaboration between industry and academia, will
most likely bring the AD of lipids to a higher maturity level.
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