

Delft University of Technology

When to Let the Developer Guide: Trade-offs Between Open and Guided Test
Amplification

Brandt, C.E.; Wang, D.; Zaidman, A.E.

DOI
10.1109/SCAM59687.2023.00032
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the 23rd IEEE International Working Conference on Source Code Analysis and Manipulation
(SCAM)

Citation (APA)
Brandt, C. E., Wang, D., & Zaidman, A. E. (2023). When to Let the Developer Guide: Trade-offs Between
Open and Guided Test Amplification. In L. Moonen, C. Newman, & A. Gorla (Eds.), Proceedings of the 23rd
IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM) (pp. 231-241).
(Proceedings - 2023 IEEE 23rd International Working Conference on Source Code Analysis and
Manipulation, SCAM 2023). IEEE Computer Society - Conference Publishing Services.
https://doi.org/10.1109/SCAM59687.2023.00032
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/SCAM59687.2023.00032
https://doi.org/10.1109/SCAM59687.2023.00032

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

When to Let the Developer Guide: Trade-offs
Between Open and Guided Test Amplification

Carolin Brandt, Danyao Wang, Andy Zaidman
Delft University of Technology

c.e.brandt@tudelft.nl, wangdanyaoa@gmail.com, a.e.zaidman@tudelft.nl

Abstract—Test amplification generates new tests by mutating
existing, developer-written tests and keeping those tests that
improve the coverage of the test suite. Current amplification
tools focus on starting from a specific test and propose coverage
improvements all over a software project, requiring considerable
effort from the software engineer to understand and evaluate
the different tests when deciding whether to include a test in
the maintained test suite. In this paper, we propose a novel
approach that lets the developer take charge and guide the test
amplification process towards a specific branch they would like
to test in a control flow graph visualization. We evaluate whether
simple modifications to the automatic process that incorporate the
guidance make the test amplification more effective at covering
targeted branches. In a user study and semi-structured interviews
we compare our user-guided test amplification approach to
the state-of-the-art open test amplification approach. While our
participants prefer the guided approach, we uncover several
trade-offs that influence which approach is the better choice,
largely depending on the use case of the developer.

Index Terms—Software Testing, Test Amplification, Automated
Test Code Modification, User-centric Design, Human-Automation
Interaction

I. INTRODUCTION

Software testing is one of the central activities in the soft-

ware development lifecycle [1]. One part of this are developer

tests, i.e., small automated programs that software developers

write to check that their code behaves as they intend and

prevent it from breaking in the future [2]. While developer

testing is widely seen as valuable, it is also a tedious and

time-consuming activity [3]. One automated approach to relief

developers of this manual effort is test amplification. Test am-

plification mutates existing, developer-written tests to explore

new behavior of the code under test [4]. Previous studies have

shown that it can provide valuable tests to developers [5]–

[7], but at the cost of long runtimes [5], [7] and effort for

the developers to understand the behavior and impact of the

amplified tests [7]–[9]. Let us illustrate this with an example:

Masha, a software developer, is working on a

new feature of their software project, that requires

small changes in their existing code. Before sub-

mitting a patch, she needs tests that cover all her

new code, so she decides to use test amplification to

generate them automatically. She picks an existing

test from the class she worked on and asks the tool

to create new tests based on it. After a while the

This research was partially funded by the Dutch science foundation NWO
through the Vici “TestShift” grant (No. VI.C.182.032)

tool reports back and proposes several tests to her.

Unfortunately, the class did not have a high test

coverage, so she has to sift through quite a few

tests spending time to understand what code they

cover and realize it is not the code she is concerned

with. Even for the tests that target her code, she has

to switch between several methods under test and

every time recall what behavior this method should

have, so she can judge whether the generated test is

correct.

Our hypothesis is that these understandability issues are in

part rooted in the disconnect between the present point of

interest of a developer in the code base, and the dispersed

coverage contributions amplified tests are providing, i.e., they

need to rebuild the task context [10]. To bridge this disconnect,

we propose to involve the software developer more tightly in

the test amplification process. Ideally, they can convey what

piece of code they are interested in to test and then the test

amplification presents only those tests that are relevant for the

focus of the developer.

In this paper, we propose a novel approach of user-guided

test amplification. Starting from a method in their code base,

the developer can initiate the test amplification and choose in

a visualized control-flow graph which branch of the method

should be tested. The test amplification is then directed to

call this method specifically, and generates a variety of tests

for it. It measures the tests’ branch coverage and presents all

tests that cover the intended branch to the developer, using the

same control-flow graph visualization to help the developer

understand how the test executes the method under test.

We conduct a technical case study and a user study to

understand the impact and potential use of user-guided test

amplification.1 In both studies we compare it to the existing

test amplification approach [6], [7], which we will call open
test amplification for a clearer distinction. With our technical

case study on 31 classes from two open source projects, we

investigate whether our simple changes in the guided ampli-

fication process are indeed effective at producing a higher

ratio of tests for the targeted branch, and whether to guidance

enables us to cover more branches overall in a project. Our

findings from this study answer our first research question:

1We follow the empirical standard for engineering research:
https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=
EngineeringResearch

231

2023 IEEE 23rd International Working Conference on Source Code Analysis and Manipulation (SCAM)

DOI 10.1109/SCAM59687.2023.00032

20
23

 IE
EE

 2
3r

d
In

te
rn

at
io

na
l W

or
ki

ng
 C

on
fe

re
nc

e
on

 S
ou

rc
e

C
od

e
A

na
ly

si
s a

nd
 M

an
ip

ul
at

io
n

(S
C

A
M

) |
 9

79
-8

-3
50

3-
05

06
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

SC
A

M
59

68
7.

20
23

.0
00

32

979-8-3503-0506-7/23/$31.00 ©2023 IEEE

Authorized licensed use limited to: TU Delft Library. Downloaded on January 05,2024 at 09:12:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Interaction with Brandt and Zaidman’s test exploration IDE plugin for open test amplification [7].

RQ1: How effective does guided test amplification generate

tests for targeted branches (compared to open test amplifi-

cation)?

In our user study, 12 developers apply both approaches to

two classes and we interview them about their experiences.

From this, we learn how they perceive each technique and

their considerations when comparing them to each other. Our

observations address our second research question:

RQ2: How do developers perceive guided test amplification

(compared to open test amplification)?

Our two evaluation studies show that user-guided test am-

plification does deliver on the intended goals of making the

test amplification process more effective and the coverage of

the amplified tests easier to understand. However, the studies

also show that the user-guided version of test amplification is

not always better. From the participant’s explanations during

the interviews we learned that user-guided test amplification

is closer to the real-life process of developing and testing new

code where the developer focuses on a specific feature, writing

code and tests for it. On the other hand, open test amplification

is more suited when focusing on improving the test suite

for an already existing code base, as it connects new tests

clearer to the already existing tests. This is one example of

the trade-offs between open and user-guided test amplification

that our studies make apparent. We discuss all trade-offs we

encountered to help the reader understand the strengths and

weaknesses of both approaches, and to help developers choose

which approach fits best to their goals and workflow.

II. TEST AMPLIFICATION

In this section, we introduce the concept of (open) test

amplification, which is realized in the state-of-the-art test

amplification tool for Java called DSpot [6].

The aim of test amplification is to generate new tests by

leveraging the knowledge in existing, human-written tests [4].

These new tests improve the existing test suite with respect

to a defined engineering goal, e.g., structural coverage or

mutation score. Our work is based on Brandt and Zaidman’s

proposal of developer-centric test amplification, which focuses

on generating short and easy-to-understand tests to be included

into the developer’s maintained code base [7].

A central part of Brandt and Zaidman’s proposal is to

combine the automatic test amplification with a test explo-
ration tool that guides the developer’s interaction with the

test amplification. Fig. 1 illustrates the workflow with their

prototype in form of an IDE plugin. The developer starts by

selecting an original test to be the basis for the amplification 1©
and requesting the plugin to amplify that test 2©. When the

amplification finishes, it notifies the developer 3© that they

can start exploring the generated tests. The exploration tool

presents to the developer the additional coverage that an

amplified test provides 4©, the code of the test 5©, and action

buttons to easily add the test into the test suite or browse

through the list of amplified tests 6©.

The automated process behind test amplification (see the

upper half of Fig. 3) starts from an original test which

comes from the existing, manually written test suite of a

software project. We mutate the input phase of the test with

several amplification operators: changing literal values slightly

or replacing them with random values, as well as adding,

duplicating or removing method calls to the objects under

test. The old assertions are replaced by new ones which use

232

Authorized licensed use limited to: TU Delft Library. Downloaded on January 05,2024 at 09:12:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Interaction with user-guided test amplification.

the current behavior of the system as the oracle. Then, we

execute all new tests and measure their instruction coverage.

The tool selects all tests that cover new instructions compared

to the existing test suite and presents them to the developer.

 Mutate�
Input

 Select Tests that
Improve Coverage

Amplified
Tests

Call Targeted�
Method

In the Targeted Branch

Open Test Amplification

Modifications�
for Guided Test�
Amplification

Generate�
Assertions

Original
Test

Fig. 3: The automated process behind open test amplification

and modifications to it for guided test amplification.

The interaction and the underlying amplification process

starts from a developer-selected original test, randomly mu-

tates it and keeps all new tests that cover new instructions

anywhere in the project under test. We coin it open test
amplification as it openly looks for any new tests that could

be valuable for a project.

Previous studies on open test amplification showed that

with this approach, it is difficult for the users to connect

the test to the code under test it covers [7], [9]. Also, not

all uncovered code is equally important to be tested in the

opinion of the developers [7]. The original proposers of the

approach had to take several design decisions that limit the

power of the amplification, in order to make it fast enough to

be interactively used [7]. To address these shortcomings, we

propose to let the developer take the lead and guide the test

amplification towards the code they find relevant to be tested.

III. USER-GUIDED TEST AMPLIFICATION

To speed up the process of finding new tests and make

it easier for the developer to understand the context of the

generated tests, we propose to let the developer direct the test

amplification to the specific code they want to test. We call

this approach user-guided test amplification and build it upon

the developer-centric implementation of DSpot [6], [7].

The developer starts by selecting a method in the code under

test which they would like to test (see 1© in Fig. 2). Then, the

test exploration tool presents them with a control flow graph

of that method, similar to the graph shown at 2©. The graph

shows the execution structure of the method through boxes

for each statement and condition, connected with arrows. The

arrows annotated with “True” or “False” represent branches

in the control flow of the method, letting the developer see

the different scenarios that might need testing. We compute

the existing test coverage for the method and highlight the

branches that are already covered in green, and those that are

not covered in red. The developer can select the branch that

they would like to cover and start the test amplification. The

tool automatically looks for the corresponding test class and

picks the first—often most simple—test as the original test for

the amplification. If no corresponing test class or test can be

found, the tool prompts the user to create a test and invoke

the amplification again. When inspecting the result, the test

exploration tool reuses the same control flow graph to show

the developer the additional coverage that the amplified test

provides 3©. The developer can then decide whether to add the

test to the test suite or to continue exploring the other tests or

invoke the tool again for other branches.

We add two simple modifications to the underlying auto-

mated test amplification process to incorporate the guidance

provided by the developer. The lower half of Fig. 3 illustrates

the modifications we make to the open test amplification pro-

cess. As the first modification to the input of the original test,

we call the method selected by the developer with randomly

generated values for the parameters. When an object is needed,

DSpot looks for a public constructor and uses it with random

233

Authorized licensed use limited to: TU Delft Library. Downloaded on January 05,2024 at 09:12:39 UTC from IEEE Xplore. Restrictions apply.

values to initialize the object. Then we continue by randomly

mutating the test input as with open test amplification. All

produced tests that cover the branch selected by the developer

are selected as results to be presented to the developer.

We intentionally make simple modifications and largely rely

on the amplification operators available in the base tool DSpot,

e.g., the random generation of parameter values for object

initialization. Our aim is to see whether such simple changes

can already be effective to improve test amplification before

considering more complex and runtime-impacting alternatives.

IV. EVALUATION

To evaluate our proposed user-guided test amplification, we

conduct two comparative studies: a technical case study and a

user study. Our first goal is to judge the effectiveness of our

technical changes to the test amplification process: does the

guidance lead to a larger proportion of the generated tests

covering the targeted branch compared to using open test

amplification (RQ1)? The second goal is to elicit the opinions

of developers on interacting with user-guided and open test

amplification (RQ2).

RQ1: How effective does guided test amplification gen-

erate tests for targeted branches (compared to open

test amplification)?

RQ2: How do developers perceive guided test amplifica-

tion (compared to open test amplification)?

To answer RQ1 we conduct a technical case study, where

we apply both approaches to generate tests for 100 branches

sampled from 31 classes of two open source projects. We

analyze the ratio of amplified tests fulfilling our coverage goals

to determine which approach is more effective. To answer

RQ2 we perform a user study with 12 developers that apply

both open and guided test amplification to test two classes.

Then we interview each participant to elicit their impression

of each approach and how they compare to each other.

A. Design Technical Case Study

In our technical case study, we sample code branches from

two open source projects and apply both guided and open test

amplification to try to cover them. We measure how many

branches can be covered at all by each approach, and what

percentage of the amplified tests generated in one run cover

the targeted branch.

We select two open source projects as study objects:

Javapoet 2, a library to generate java source files, and Stream-

lib 3, a library for summarizing data in streams. An important

selection criterion was the traceability from code to tests: in

both projects we can identify the matching test class for a

class, because they adhere to consistent naming conventions.

To select the targeted methods under test, we pick all classes

with a clearly identified test class and from these classes

select all public, non-static and non-abstract methods, which

2https://github.com/square/javapoet
3https://github.com/addthis/stream-lib

are the methods that can be called by DSpot’s amplification

operators. Taking all branches from the selected methods under

test (160 from Javapoet, 264 from Stream-lib), we randomly

sampled 100 branches per project. From their matching test

class, we take the first test as the original test method for the

amplification.
We run both guided and open test amplification for each of

the sampled branches, limiting the number of produced tests

to 200 per run. Next, we collect all resulting tests as well as

their coverage information. Per project, we calculated the ratio

of covered branches over the sampled branches (Equation (1)).

ratio covered branches =
branches covered

branches sampled
(1)

We calculate for each approach per project the average ratio

of successful tests (Equation (2)) over all runs. The ratio of

successful tests looks at how many of the returned amplified

tests do indeed cover the targeted branch.

ratio successful tests =
tests covering branch

tests returned
(2)

B. Results Technical Case Study
Table I shows the calculated effectiveness of guided and

open test amplification in comparison. We see that the guided

test amplification can cover more branches in both projects, but

the difference is small, and neither approach can cover more

than 41% of the sampled branches. This shows that guiding the

test amplification by explicitly calling the method that contains

the targeted branch is only marginally helpful in covering a

larger variety of branches of a project.

TABLE I: Ratio of covered branches (see Equation (1))).

Javapoet Stream-lib

Open Test Amplification 23% 35%
Guided Test Amplification 32% 41%

To understand why many branches could not be covered

by either test amplification approach, we manually inspected

the branches that could not be covered. A core reason for

not covering a branch was that the objects under test or the

target method parameters are not initialized with the right

values. In some cases, this came from the amplification tool

not supporting the parameter’s type, e.g., for a class without

a public constructor. Then, the tool sets the parameters to

null or empty values, which lead to exceptions when trying to

generate assertions. We saw that Javapoet’s classes have more

methods whose parameter types are classes without public

constructors, while Stream-lib mostly works with simple data

types for the parameters. As the amplification tool’s imple-

mentation does not support initializing classes without public

constructors, this could explain why the amplification is more

effective on Stream-lib than on Javapoet. Similarly, generating

tests for faults or locations that require complex input objects

is challenging for search-based tools like EvoSuite [11].
We investigated whether the choice of the original test im-

pacts the ability to cover a certain branch. For this, we sampled

234

Authorized licensed use limited to: TU Delft Library. Downloaded on January 05,2024 at 09:12:39 UTC from IEEE Xplore. Restrictions apply.

ten branches that were not covered by the amplification and

also not the existing test suites. Then, we amplified all tests in

the corresponding test class, but still could not generate tests

that cover the sampled branches. This shows that selecting

different initial tests likely does not impact how effective the

test amplification is at covering the sampled branches. The

earlier mentioned likely cause for not covering the branches,

not being able to generate the right initialization for the objects

under test, seems to not be solved by selecting different initial

tests.

Table II shows how many of the tests generated in one run of

guided and open test amplification cover the targeted branch.

While the ratio of tests that successfully cover the targeted

branch with open test amplification is only 24% for Javapoet

and 45% for Stream-lib, for guided test amplification this ratio

is 70% for both projects. These results show that the guided

test amplification is substantially more likely to produce tests

that cover the targeted branch. This indicates, that the simple

guidance we implemented into the guided test amplification—

calling the method containing the targeted branch—is indeed

effective at guiding the test amplification towards our target.

Therefore, using guided test amplification enables us to set the

amplification to generate fewer tests, while still having a good

chance at receiving a test that covers the targeted branch.

TABLE II: Average ratio of successful tests, which cover the

targeted branch (see Equation (2)).

Javapoet Stream-lib

Open Test Amplification 24% 45%
Guided Test Amplification 70% 70%

Looking how the ratio of successful tests is distributed

over the sampled, targeted branches (Fig. 4), we see clear

differences between the projects. While in Javapoet the distri-

butions are dense and the higher effectiveness of guided test

amplification is clearly visible, for the Stream-lib project the

ratio of tests successfully covering the targeted branch differs

much more significantly from branch to branch. One possible

explanation for this difference is that number of methods in

Javapoet’s classes is higher than in Stream-lib. This means

that it benefits more from the modification in guided test

amplification that explicitly calls the method under test before

the further input mutation.

C. Answer to RQ1: How effective does guided test amplifica-
tion generate tests for targeted branches (compared to open
test amplification)?

Summarizing the results of our technical case study, we can

see that guided test amplification is more effective than
open test amplification when covering a specific targeted

branch. However, both approaches fail to cover the majority of

the sampled branches and depending on the project there can

be a large variety in the ratio of generated tests covering the

targeted for both approaches. We will discuss and interpret

Fig. 4: Distribution of the ratio of successful tests (see Equa-

tion (2)).

these observations together with the insights from our user

study in Section V.

D. Design User Study

Our central ideas for guided test amplification were moti-

vated by the interaction with the user: the developer initiates

the test amplification and guides it towards a method and

branch, reducing the search space for new tests. In addition,

this should help the developer understand and review the

generated tests, because they already built up the necessary

mental task context of the method unter test [10]. To elicit the

opinions of developers on the use of guided test amplification

in comparison to open test amplification, we conduct a study.

The user study starts with a questionnaire collecting demo-

graphic information and informed consent from each partici-

pant. Then, the participants are introduced to the concept of

test amplification and asked to generate tests for two classes

with similar complexity taken from the open source project

Stream-lib. Each developer applied both open and guided

test amplification, and we equally shuffled the order of the

approaches and which class they test according to the four

groups in Table III. After the participant solved both tasks,

we conduct a semi-structured interview. Guided by a list of

closed questions (see Figs. 5 and 6) we ask the participants

to reflect on their experience with the open and guided test

amplification, to compare both approaches and to express their

overall impression of the amplified tests.

We conducted the study fully remotely in sessions of 60 to

90 minutes. We recruited 12 participants through convenience

sampling in our professional networks and on social media.

You can find the complete tasks and questionnaires in our

online appendix [12]. Our study design was approved by our

local ethics review board.

E. Results User Study

From the demographic questionnaire, we learn that we

have a relatively young population of 12 participants with a

development experience of one to three years (7), four to six

years (4) and seven to nine years (1). Two of the participants

had used an automatic test generation tool before. Their main

235

Authorized licensed use limited to: TU Delft Library. Downloaded on January 05,2024 at 09:12:39 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Task ordering for our participant groups.

Group First Task Second Task

1
User-Guided Test Amplification
StreamSummary

Open Test Amplification
ConcurrentStreamSummary

2
User-Guided Test Amplification
ConcurrentStreamSummary

Open Test Amplification
StreamSummary

3
Open Test Amplification
StreamSummary

User-Guided Test Amplification
ConcurrentStreamSummary

4
Open Test Amplification
ConcurrentStreamSummary

User-Guided Test Amplification
StreamSummary

programming languages were Python (6), Java (4), or C++ (3),

and they mainly identified as working in general software

development (4), research (2) or data and analytics (2).

1) Guided Test Amplification: Looking at the feedback

regarding the guided test amplification, presented in Fig. 5, the

participants strongly agree that the control flow graph showing

the coverage of the target method is easy to understand (Q1).

When asked whether the information provided is valuable,

the participants strongly agree (Q2) and point out that the

primary value is in visualizing the code structure and coverage,

especially when the complexity of the method under test is

high. Question (Q3) centers around whether the control flow

graph effectively lets the participants convey their expectation

of what to cover to the amplification. On average the partici-

pants agree to this, pointing out that it also helps identify all

scenarios that are possible when calling the method under test.

They agree that the same visualization is also easy to

understand when it comes to showing the coverage of an

amplified test (Q4), and helps to select which amplified test to

keep and add into the test suite (Q5). In this selection process,

the visualization was especially helpful when the amplified

tests provided diverse coverage contributions in methods with

many branching points. Two participants were neutral about

using the control flow graph to select a test, pointing to that

they only want to cover the previously selected branch and

rather focus on the code of the amplified test instead when

selecting or add the test without further inspection.

2) Open Test Amplification: When it comes to the open

test amplification, our study participants are more divided,

but on average agree that the text-based instruction coverage

explanation is easy to understand (Q6, Q7) and provides

useful information (Q8). The main complaints were that listing

each occurrence of new instruction coverage was too detailed

and that the connection between the test and the covered

instructions was not clear even with the provided hyperlinks.

The participants that were positive found the class and method

names informative and liked that the hyperlinks let them

locate the code under test conveniently. We asked whether

the provided information about the amplification mutations

in the test (Q9) and the additional coverage (Q10) helped

the developers select which test to keep. The participants on

average agreed that the additional coverage is helpful to select

which test to keep (Q10). However, they criticized that they

could not see the existing coverage to judge if a line in the

code under test is already covered or not. One participant

also thought out loud about whether the provided coverage

is actually important coverage.

3) Both Approaches Compared: After discussing each am-

plification approach separately with our participants, we asked

several questions to compare both approaches (see Fig. 6).

Directly asked whether the instruction coverage of open test

amplification or the branch coverage of guided test amplifica-

tion is easier to understand, all participants prefer the branch

coverage (Q13). The participants found it easier to map the

branch coverage to the source code structure. Some were

also not familiar with the concept of instruction coverage and

struggled to identify the single instructions in a line of code.

Most participants prefer the visualized control flow graph over

representing coverage as highlights in the editor (Q14). Using

the visualization they did not need to read the source code of

the method under test.

We asked the developers to reflect which approach helps

them more during test generation (Q16) and they were divided

between the two approaches. Seven participants prefer the

guided test amplification as it is closer to writing tests in real-

life scenarios, where they focus on specific features to cover.

Two participants prefer open test amplification: one proposes

to use it early in the test creation process to cover as much code

as possible, the other focuses on connecting a new test with

the existing ones it is based on, which is clearer during open

test amplification. Three participants were neutral and voted

to combine the two approaches. When they do not have a

specific coverage goal they would use open test amplification,

while they would choose the guided test amplification when

they aim for more control over each tests’ coverage.

Regarding selecting which resulting test to incorporate into

the test suite, the participants mainly prefer the guided test

amplification (Q15). The ten participants voting for guided test

amplification mention that when writing tests they usually have

a specific feature in the code they want to cover, which they

can achieve by guiding the test amplification. One participant

prefers open test amplification as they focus on covering the

whole project as much as possible and want to compare

the different tests based on their total contributed coverage.

One participant is neutral and would use both approaches

depending on the situation.

Finally, we asked about their overall impression of the am-

plified test, which was positive (Q11, Fig. 5). The participants

on average strongly agree that they would use test amplifica-

tion again (Q12) and gave a variety of suggestions on how to

improve the tools for both test amplification approaches. One

aspect they noted positively is that the tool clearly indicates

when it could not generate a test for a selected branch, which

made these situations less negative in the participants’ opinion.

F. Answer to RQ2: How do developers perceive guided test
amplification (compared to open test amplification)?

Looking at all the results of our user study, we see that

a majority of our participants prefer the user-guided test
amplification approach (Q16) because it fits better into the
typical situation they create tests in: when they want to

236

Authorized licensed use limited to: TU Delft Library. Downloaded on January 05,2024 at 09:12:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Participant answers on each of the two amplification approaches and test amplification in general.

Fig. 6: Participant answers on comparing user-guided and open test amplification.

test a specific location in their code. Factors contributing to

this judgement are that all participants found branch coverage

easier to understand than instruction coverage (Q13), and most

preferred the structure-revealing control-flow graph visualiza-

tion over the more precise textual representation of additional

coverage (Q14). This preference for user-guided test amplifi-

cation is also supported by the overall more positive ratings in

the detailed questions about the approach (Q1-5), compared to

the detailed questions about open test amplification (Q6-10).

From the explanations of our participants we learned that

they do not universally prefer user-guided test amplification

over open test amplification, but that it depends on their use

case, the information that they need to judge the amplified tests

and the amount of control they want to have over the ampli-

fication process. The results of our technical study showed

that the effectiveness of guided test amplification compared to

open test amplification depends on the class structure in the

code under test and the data types used as parameters. Taken

together, we see that there are trade-offs between the two
approaches that should be considered when choosing either

to work with or to improve in future research. In Section V we

collect these trade-offs and discuss the implications of them

for practitioners and researchers.

G. Threats to Validity

There are several threats to the validity of our two studies

and their results. When it comes to internal validity, we miti-

gated the threats by switching the order of the two approaches

(threat: learning effect) and which class each approach was

applied to (threat: dissimilar classes) equally over the four

randomly-assigned participant groups. The characteristics of

the two projects and their classes in our technical study could

dictate the outcome of our technical study. To mitigate this,

we manually analyzed the classes and transparently discuss the

impact of the number of methods per class and the complexity

of the used data types on the effectiveness comparison of

the test amplification approaches. To ensure the confirmability
of our user study results, we focus on presenting the closed

question ratings and support them with explanations staying

as close as possible to the participants’ formulations.

Regarding construct validity, the results of both studies are

influenced by our prototype implementations. We used the

same test amplification tool for both approaches, which is

based on DSpot and limited to Java, with the only differences

in implementation described in Section III. Another threat is

whether we are measuring the effect of the different amplifica-

tion approaches or the changed user interface (UI) from open

to user-guided test amplification. We agree with the original

creators of developer-centric test amplification [7] that a tool

for developers and its UI can fundamentally not be developed

or studied in isolation. To mitigate this threat, we ask separate

questions about the information and the UI elements to our

participants (Q1/2, Q4/5, Q6/10, Q13/14).

The external validity of the results from our technical

study is threatened by the two projects selected for the case

study. We observed that the complexity of the used data

types and the number of methods in a class influence the

effectiveness of the test amplification. Further studies on a

larger variety of projects and classes are needed to demonstrate

the generalizability of our findings. Another threat to the

external validity of our user study is whether the participants

experienced the whole variety of methods which to test with

amplification. To mitigate this, we selected example classes

with a varied complexity of methods and initial tests that cover

some methods of the class fully, partially or not at all. In

the user study we have participants from a range of different

software domains, but no participant has more than ten years

of development experience, making the results potentially not

generalizable to very senior developers.

237

Authorized licensed use limited to: TU Delft Library. Downloaded on January 05,2024 at 09:12:39 UTC from IEEE Xplore. Restrictions apply.

V. DISCUSSION AND IMPLICATIONS FOR PRACTITIONERS

AND RESEARCHERS

With designing user-guided test amplification, we set out to

improve the effectiveness of the process and the understand-

ability of the produced tests. Our technical case study indicates

that user-guided test amplification is indeed more effective,

and the user study suggests that developers find its components

more understandable than those of open test amplification.

However, we also saw that the effectiveness of each approach

varies per project and class, and that the developers might

prefer different test amplification approaches depending on

their current goal with testing. In this section, we will discuss a

series of trade-offs that we identified based on our two studies

and the design of both amplification techniques. Table IV gives

an overview of these trade-offs, together with the source from

which we take the answer for either technique.

The two amplification approaches fit two complimentary
use cases for software developers. From the participants

reflecting on which approach is more helpful to generate tests

(Q16), we learned that the user-guided version is better suited

when they write tests in conjunction with the production code,

also called test-guided development [3], [13]. When their focus

is to improve the test suite itself, e.g., to address technical test

debt [14]–[17], open test amplification would be the better

choice. This is because it connects an amplified test clearer to

the original test from the test suite by pointing out the applied

input modifications.

Open test amplification also informs the developer about

the coverage impact of an amplified test across the whole

project [7]. With the high prevalence of integration tests in

JUnit test suites [18], [19], tests amplified from them can im-

prove test coverage in several locations throughout a software

project [9]. Because this scattered coverage information can be

confusing [7] and partially irrelevant to developers [9], user-

guided test amplification focuses only on the impact in the

targeted method. In return, it can use the available room to

convey the stronger metric of branch coverage in a simple

and easy to understand visualization (Q14).

A previous study on the interaction of software developers

with test amplification showed the importance of managing
the users’ expectations and making sure they align with what

the tool can provide [7]. Open test amplification only proposes

tests for locations it can actually cover, so it can easily fulfill

the user’s expectations for receiving tests. In our proposal of

user-guided test amplification the developers can select any

branch as a target, but as we saw in the technical study, more

than half of the branches in our study projects could not be

covered. This might disappoint the user and not meet their

expectations. When the participants of our study encountered

this, they however were positive about the fact that the tool

clearly reported that it could not generate a test (participant

reflection on Q12). To address the low success rate of guided

test amplification, we would need to initialize the objects

and parameters correctly to hit the targeted branch (manual

inspection technical study). Advanced techniques like concolic

execution [20]–[22], or search-based optimization [23] could

address this. However, these can be expensive to compute.

When studying the effectiveness of test amplification in our

technical study, we saw that guided test amplification produces

a higher ratio of tests that successfully cover the targeted

branch. This highly fits the use case of testing the developer’s

current focal method. In contrast, the more explorative search

in the whole method space of a class under test that open test

amplification performs is more effective when the goal is to

improve the coverage across the whole class. Someone who

uses guided test amplification for this would need to invoke it

over and over again for each method in the class.

A. Implications for Practitioners

Our evaluation of user-guided and open test amplification

uncovered a set of trade-offs a software developer or their

manager should consider when choosing which approach to

apply. The main, reoccurring consideration is why someone

wants to generate tests: (1) to improve the test suite itself

(choose open test amplification), or (2) to get support for

writing tests while working on a specific part of the production

code (choose user-guided test amplification). Beyond this, our

study also shows anecdotal evidence that when a code base

contains many complex classes with private constructors, test

amplification with our state-of-the-art tool will likely not be

able to cover many branches.

B. Implications for Researchers

For researchers in the area of test amplification and gener-

ation, as well as developer-centric support tools, the insights

from our study point to several new research directions.

Improving the effectiveness of guided test amplification asks

for more advanced techniques to initialize objects to cover

the targeted branch. Can we apply computationally expensive

techniques while still providing an interactive user experience?

Could we actively ask the developer to help us with the

initialization of objects that are hard to create? Here the

question is whether they would know enough to provide a

valuable initialization and whether the automation would still

be worth it to use for the developer if they would have to

contribute such substantial effort to the test generation.

Many decisions in the design of either test amplification

approach are motivated by the required interactive speed.

Would it be feasible to pre-generate tests in the background

and then selectively present relevant ones to the developer

when they request tests? A complication here is that current

developer-test generation approaches like test amplification or

search-based generation with EvoSuite [24], require the code

under test to be available. However, we observed repeatedly in

our user study that developers are looking for tests covering

the code they just wrote a short while ago.

Why did the participants of our study prefer the control-flow

graph visualization of the branch coverage over the bytecode

instruction visualization of the line coverage? Based on our

observations, we conjecture that the following aspect could

influence this: (1) using a coverage metric that is embedded

238

Authorized licensed use limited to: TU Delft Library. Downloaded on January 05,2024 at 09:12:39 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Trade-offs between user-guided and open test amplification.

User-Guided Test Amplification Open Test Amplification

Fits use case Writing production code & wanting tests for it [participant
reflection on Q16]

Improving test suite and resolving technical debt [partici-
pant reflection on Q16, [7]]

Understand coverage contribu-
tion and test execution

In targeted method in detail [Q4, design user-guided test
amplification]

Across the whole project [9]

Expectation of receiving tests Might disappoint if targeted branch cannot be covered
[Technical study]

Only proposes tests / additional coverage it can provide
[design open test amplification [7]]

Runtime efficiency More effective at providing tests for method of interest
[Technical study]

Can provide larger coverage variety of tests for whole
class [7]

in the developer’s mental structure of the code, (2) limiting

the scope of the displayed code coverage to just the one

method the developer is concerned about, and (3) presenting

the existing coverage in conjunction with the additionally

provided coverage, letting the developer grasp the differential

impact a new amplified test makes.

VI. RELATED WORK

In this section, we discuss related work from the areas of

directed and interactive test generation.

A. Directed Test Generation

Search-Based Software Testing (SBST) uses search algo-

rithms to automatically find tests that a variety test objectives

captured in a fitness function [25]. SBST has been used

to automate test generation for various test goals, such as

maximizing structural coverage [26]–[30] and crash reproduc-

tion [23], [31], [32].

Test suite augmentation techniques are used to generate tests

that target code changes that the existing test suite does not

cover [33]. Xu et al. proposed several approaches for test aug-

mentation using concolic testing [34], genetic algorithms [35],

and a combined, hybrid approach [36], [37]. In their concolic

approach, they find the source node of a changed branch and

select existing tests that reach this source node. Then they

explore different directions of path conditions to find new

tests for the changed branch. Their genetic algorithm uses a

fitness function that prefers the distance of a test’s execution

to the changed branch. In contrast to their approach, our test

amplification focuses on all uncovered branches of a software,

not just the recently changed ones. Further, our approach is

simpler, as we only select a few initial tests and only amplify

them with one evolutionary iteration.

Several researchers focused on generating targeted tests

to support debugging. Ma et al. propose directed symbolic

execution, using the distance to the target line as information to

guide the symbolic execution [38]. Dinges et al. [39] combine

symbolic execution, to find a suitable entry point to reach a

target statement, with concolic execution and heuristics, to try

to satisfy constraints too difficult for the symbolic execution.

Our approach makes use of the existing tests as a basis for

the amplification, and we do not use symbolic execution to

reduce our computational costs.

B. Interactive Test Generation

Several techniques are discussed to incorporate informa-

tion provided by humans into the test generation process.

Marculescu et al. proposed Interactive Search-Based Soft-

ware Testing (ISBST) to involve domain specialists in test

generation [40]. Their feedback adapts the fitness function

during the search process by changing the relative importance

of system quality attributes. The primary difference between

their work and ours is that they involve domain specialists

in the test generation, while we target software developers.

They pointed out the importance of perfecting how automated

test systems communicate with users and ensuring that results

are understandable to the users when transferring ISBST to

industry [41]. We address this in the design of our interface,

visualizing information about the test amplification results to

help the user’s comprehension.

Murphy et al. propose to apply grammatical evolution into

SBST and incorporate human expertise into the search [42].

They proposed that users can define the search space they

want their tests to be created from by specifying a gram-

mar. Ramı́rez et al. observed two key issues hindering the

acceptance of automated tests by analyzing various studies that

evaluated the effectiveness and acceptance of test generation

tools [43]: the opacity of the generation process and the lack of

cooperation with the tester. To address this, they incorporate

the tester’s subjective assessment of readability to compare

tests with the same fitness in a search-based test generation

process. Our work also addresses the concerns Ramı́rez et

al. raised. We cooperate with testers and make the process

transparent by letting testers express their branch coverage

goal and guide the test generation. We also improve the

understandability of tests by connecting the amplified tests

with testers’ coverage goals.

VII. CONCLUSION AND FUTURE WORK

The aim of user-guided test amplification was to ease the

effort for software developers when understanding amplified

tests, by letting them point the test generation to a specific

target branch and then visualizing the resulting coverage

leveraging a control flow graph of the method under test.

Through our technical case study, we show that even sim-

ple modifications to the amplification process make guided

test amplification more effective at generating tests for a

239

Authorized licensed use limited to: TU Delft Library. Downloaded on January 05,2024 at 09:12:39 UTC from IEEE Xplore. Restrictions apply.

targeted branch. Our user study shows that developers prefer

the interaction with user-guided test amplification, but that

the choice for either technique is dependent on the current

use case of the developer. From our studies and the design

of both approaches, we identify and discuss four trade-offs

that influence the choice between open and user-guided test

amplification: (1) the current task and goal of the developer,

(2) where the amplified test should provide coverage, (3) the

ability to fulfill the user’s expectation to receive a generated

test, and (4) the available time for the test amplification.

Beyond the research implications we mentioned earlier, our

work can be the basis for several future research directions:

We observed the developer’s wishes to generate tests while

they are working on a particular piece of code. While user-

guided test amplification is a step in this direction, the next

step would be to detect when a developer has finished a

change, and automatically generate and propose a test for the

code change to the developer.

The feedback on the coverage visualization showed that it

helps developer to understand test coverage better. On the other

hand, the expectations of the user guiding the amplification

now requires more advanced test generation approaches that

are already available in other tools. The next step, would be to

disconnect the test generation tool from the interaction layer

that proposes the tests to developers. This allows for more

flexibility in choosing the test generation tool that is right for

the job while still benefitting from the continued advancement

in test communication.

REFERENCES

[1] K. L. Beck, Test-Driven Development - By Example, ser. The Addison-
Wesley signature series. Addison-Wesley, 2003.

[2] G. Meszaros, XUnit Test Patterns: Refactoring Test Code. Pearson
Education, 2007.

[3] M. Beller, G. Gousios, A. Panichella, S. Proksch, S. Amann, and
A. Zaidman, “Developer testing in the IDE: patterns, beliefs, and
behavior,” IEEE Trans. Software Eng., vol. 45, no. 3, pp. 261–284, 2019.

[4] B. Danglot, O. Vera-Perez, Z. Yu, A. Zaidman, M. Monperrus, and
B. Baudry, “A snowballing literature study on test amplification,” J.
Syst. Softw., vol. 157, p. 110398, 2019.

[5] STAMP, “Use cases validation report v3,” https://github.com/STAMP-
project/docs-forum/blob/master/docs/, 2019.

[6] B. Danglot, O. L. Vera-Pérez, B. Baudry, and M. Monperrus, “Automatic
test improvement with DSpot: A study with ten mature open-source
projects,” Empir. Softw. Eng., vol. 24, no. 4, pp. 2603–2635, 2019.

[7] C. Brandt and A. Zaidman, “Developer-centric test amplification,”
Empir. Softw. Eng., vol. 27, no. 4, p. 96, 2022.

[8] S. Bihel and B. Baudry, “Adapting amplified unit tests for human
comprehension,” KTH Internship Report, 2018.

[9] C. Brandt and A. Zaidman, “How does this new developer test fit in? A
visualization to understand amplified test cases,” in Working Conference
on Software Visualization (VISSOFT). IEEE, 2022, pp. 17–28.

[10] C. Parnin and S. Rugaber, “Resumption strategies for interrupted pro-
gramming tasks,” Softw. Qual. J., vol. 19, no. 1, pp. 5–34, Aug 2010.

[11] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds,
“An industrial evaluation of unit test generation: Finding real faults in a
financial application,” in 39th IEEE/ACM International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP).
IEEE CS, 2017, pp. 263–272.

[12] Anonymous, “Online appendix for ”when to let the developer
guide: Trade-offs between open and guided test amplification”,”
https://doi.org/10.5281/zenodo.8074647, Jun. 2023.

[13] A. Santos, S. Vegas, O. Dieste, F. Uyaguari, A. Tosun, D. Fucci,
B. Turhan, G. Scanniello, S. Romano, I. Karac, M. Kuhrmann,
V. Mandic, R. Ramac, D. Pfahl, C. Engblom, J. Kyykka, K. Rungi,
C. Palomeque, J. Spisak, M. Oivo, and N. Juristo, “A family of
experiments on test-driven development,” Empir. Softw. Eng., vol. 26,
no. 3, p. 42, 2021.

[14] E. da S. Maldonado and E. Shihab, “Detecting and quantifying different
types of self-admitted technical debt,” in 7th IEEE International Work-
shop on Managing Technical Debt (MTD). IEEE Computer Society,
2015, pp. 9–15.

[15] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” IEEE Softw., vol. 29, no. 6, pp. 18–21, 2012.

[16] Z. Codabux and B. J. Williams, “Managing technical debt: An industrial
case study,” in 4th International Workshop on Managing Technical Debt
(MTD). IEEE Computer Society, 2013, pp. 8–15.

[17] G. Samarthyam, M. Muralidharan, and R. K. Anna, “Understanding test
debt,” Trends in Software Testing, pp. 1–17, 2017.

[18] F. Trautsch, S. Herbold, and J. Grabowski, “Are unit and integration test
definitions still valid for modern java projects? an empirical study on
open-source projects,” J. Syst. Softw., vol. 159, 2020.

[19] J. Van Geet and A. Zaidman, “A lightweight approach to determining the
adequacy of tests as documentation,” Proc. PCODA, vol. 6, pp. 21–26,
2006.

[20] K. Sen, “Concolic testing,” in IEEE/ACM International Conference on
Automated Software Engineering (ASE). ACM, 2007, pp. 571–572.

[21] K. Jayaraman, D. Harvison, V. Ganesh, and A. Kiezun, “jfuzz: A
concolic whitebox fuzzer for java,” in First NASA Formal Methods
Symposium (NFM), ser. NASA Conference Proceedings, vol. NASA/CP-
2009-215407, 2009, pp. 121–125.

[22] P. Garg, F. Ivancic, G. Balakrishnan, N. Maeda, and A. Gupta,
“Feedback-directed unit test generation for C/C++ using concolic execu-
tion,” in 35th International Conference on Software Engineering (ICSE).
IEEE Computer Society, 2013, pp. 132–141.

[23] P. Derakhshanfar, X. Devroey, and A. Zaidman, “Basic block cover-
age for search-based unit testing and crash reproduction,” CoRR, vol.
abs/2203.02337, 2022.

[24] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Trans.
Software Eng., vol. 39, no. 2, pp. 276–291, 2013.

[25] S. Anand, E. K. Burke, T. Y. Chen, J. A. Clark, M. B. Cohen,
W. Grieskamp, M. Harman, M. J. Harrold, and P. McMinn, “An
orchestrated survey of methodologies for automated software test case
generation,” J. Syst. Softw., vol. 86, no. 8, pp. 1978–2001, 2013.

[26] G. Fraser and A. Arcuri, “EvoSuite: Automatic test suite generation for
object-oriented software,” in 19th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE) and 13th European Software
Engineering Conference (ESEC). ACM, 2011, pp. 416–419.

[27] L. Baresi and M. Miraz, “Testful: automatic unit-test generation for
java classes,” in 32nd IEEE/ACM International Conference on Software
Engineering (ICSE). ACM, 2010, pp. 281–284.

[28] K. Lakhotia, M. Harman, and H. Gross, “AUSTIN: an open source tool
for search based software testing of C programs,” Inf. Softw. Technol.,
vol. 55, no. 1, pp. 112–125, 2013.

[29] J. Holmes, I. Ahmed, C. Brindescu, R. Gopinath, H. Zhang, and
A. Groce, “Using relative lines of code to guide automated test gen-
eration for python,” CoRR, vol. abs/2103.07006, 2021.

[30] M. Harman, Y. Jia, and Y. Zhang, “Achievements, open problems and
challenges for search based software testing,” in 8th IEEE International
Conference on Software Testing, Verification and Validation (ICST).
IEEE Computer Society, 2015, pp. 1–12.

[31] M. Soltani, P. Derakhshanfar, A. Panichella, X. Devroey, A. Zaidman,
and A. van Deursen, “Single-objective versus multi-objectivized op-
timization for evolutionary crash reproduction,” in 10th International
Symposium on Search-Based Software Engineering (SSBSE), ser. LNCS,
vol. 11036. Springer, 2018, pp. 325–340.

[32] P. Derakhshanfar, X. Devroey, A. Panichella, A. Zaidman, and A. van
Deursen, “Botsing, a search-based crash reproduction framework for
java,” in 35th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). IEEE, 2020, pp. 1278–1282.

[33] R. Bloem, R. Koenighofer, F. Röck, and M. Tautschnig, “Automating
test-suite augmentation,” in 14th International Conference on Quality
Software. IEEE, 2014, pp. 67–72.

[34] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B. Cohen, “Directed test
suite augmentation: Techniques and tradeoffs,” in 18th ACM SIGSOFT

240

Authorized licensed use limited to: TU Delft Library. Downloaded on January 05,2024 at 09:12:39 UTC from IEEE Xplore. Restrictions apply.

International Symposium on Foundations of Software Engineering.
ACM, 2010, pp. 257–266.

[35] Z. Xu, M. B. Cohen, and G. Rothermel, “Factors affecting the use
of genetic algorithms in test suite augmentation,” in Genetic and
Evolutionary Computation Conference (GECCO). ACM, 2010, pp.
1365–1372.

[36] Z. Xu, Y. Kim, M. Kim, and G. Rothermel, “A hybrid directed test
suite augmentation technique,” in IEEE 22nd International Symposium
on Software Reliability Engineering (ISSRE). IEEE CS, 2011, pp. 150–
159.

[37] Z. Xu, Y. Kim, M. Kim, M. B. Cohen, and G. Rothermel, “Directed test
suite augmentation: An empirical investigation,” Softw. Test. Verification
Reliab., vol. 25, no. 2, pp. 77–114, 2015.

[38] K. Ma, Y. P. Khoo, J. S. Foster, and M. Hicks, “Directed symbolic
execution,” in 18th International Symposium on Static Analysis (SAS),
ser. LNCS, vol. 6887. Springer, 2011, pp. 95–111.

[39] P. Dinges and G. A. Agha, “Targeted test input generation using

symbolic-concrete backward execution,” in ACM/IEEE International
Conference on Automated Software Engineering (ASE). ACM, 2014,
pp. 31–36.

[40] B. Marculescu, R. Feldt, and R. Torkar, “A concept for an interactive
search-based software testing system,” in 4th International Symposium
on Search Based Software Engineering (SSBSE), ser. LNCS, vol. 7515.
Springer, 2012, pp. 273–278.

[41] B. Marculescu, R. Feldt, R. Torkar, and S. M. Poulding, “Transferring
interactive search-based software testing to industry,” J. Syst. Softw., vol.
142, pp. 156–170, 2018.

[42] A. Murphy, T. Laurent, and A. Ventresque, “The case for grammatical
evolution in test generation,” in Genetic and Evolutionary Computation
Conference (GECCO). ACM, 2022, pp. 1946–1947.

[43] A. Ramı́rez, P. Delgado-Pérez, K. J. Valle-Gómez, I. Medina-Bulo, and
J. R. Romero, “Interactivity in the generation of test cases with evolu-
tionary computation,” in IEEE Congress on Evolutionary Computation
(CEC). IEEE, 2021, pp. 2395–2402.

241

Authorized licensed use limited to: TU Delft Library. Downloaded on January 05,2024 at 09:12:39 UTC from IEEE Xplore. Restrictions apply.

