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Abstract
Shallow trade cumuli over subtropical oceans are a persistent source of
uncertainty in climate projections. Mesoscale organization of trade cumu-
lus clouds has been shown to influence their cloud radiative effect (CRE)
through cloud cover. We investigate whether organization can explain CRE
variability independently of cloud-cover variability. By analyzing satellite obser-
vations and high-resolution simulations, we show that more clustered cloud
fields feature geometrically thicker clouds with larger domain-averaged liq-
uid water paths, smaller cloud droplets, and consequently larger cloud opti-
cal depths. The relationships between these variables are shaped by the
mixture of deep cloud cores and shallower interstitial clouds or anvils that
characterize cloud organization. Eliminating cloud-cover effects, more clus-
tered clouds reflect up to 20 W/m2 more instantaneous shortwave radiation
back to space.

K E Y W O R D S
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1 INTRODUCTION

Marine shallow cumulus clouds, as the most prevalent
cloud type (Johnson et al., 1999), play a vital role in
the climate system by reflecting incoming solar radiation
back to space (Bony et al., 2004; Bony et al., 2015; Bony
& Dufresne, 2005). Alongside the uncertain response of
cloud-controlling factors to climate change, the response
of these clouds to changes in cloud-controlling factors is a
long-standing uncertainty of model-based climate projec-
tions (Nuijens & Siebesma, 2019; Schneider et al., 2017).
Recently, observations of contemporary climate have
constrained this response (Cesana & Del Genio, 2021;

Myers et al., 2021) but also emphasized the importance
of the mesoscales, which climate models do not represent
correctly (Vogel et al., 2022).

Shallow cloud fields in the trades exhibit a diverse
range of mesoscale patterns (Bony et al., 2020; Stevens
et al., 2020). A comprehensive analysis by Janssens
et al. (2021) shows that the quantification of such pat-
terns needs at least two effective dimensions. Cloud frac-
tion fc, as a bulk one-dimensional (1D) measure, and
the organization index Iorg, which quantifies the level of
non-randomness in the cloud spatial distribution within a
cloud field (Tompkins & Semie, 2017; Weger et al., 1992),
are an example of a suitable variable choice to represent
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2 ALINAGHI et al.

these two dimensions. How relevant this mesoscale orga-
nization is for the low-cloud climate feedback remains an
open question.

The shortwave (SW) and longwave (LW) radiative
effects of trade cumulus clouds are sensitive to organiza-
tion (Denby, 2020). The daily mean cloud radiative effect
(CRE) varies by approximately 10 W/m2, primarily due
to differences in fc, with a variability of about 5 W/m2

at a fixed fc (Bony et al., 2020, Fig. 5). Contrary to the
case of deep convective clouds (Tobin et al., 2012), where
outgoing LW radiation increases with clustering, Luebke
et al. (2022) suggest a correlation between increased Iorg
values and reduced LW warming. No influence of clus-
tering on SW cooling is observed in their study. For stra-
tocumulus cloud decks, McCoy et al. (2022) demonstrate
that different morphologies, indicative of differences in the
horizontal organization of the cloud decks, modulate the
relationship between albedo and fc.

We aim to investigate whether—independent of fc
variability—the horizontal organization of shallow cumu-
lus cloud fields has an impact on their net CRE. To do
so, we combine satellite data with a large ensemble of
large-eddy simulations by Jansson et al. (2023) (Section 2).
After removing the confounding effect of cloud fraction
(Section 3.1), we show that clustered cloud fields feature
optically thicker clouds (Section 3.2). This stems from
clouds in clustered fields containing more liquid water
and smaller retrieved cloud droplets (Section 3.2). In turn,
analyzing the simulations establishes that the increases
in liquid-water path with clustering result primarily from
increases in cloud geometric thickness (Section 3.3).
Section 4 concludes.

2 METHODOLOGY AND DATA

To disentangle the effects that spatial organization may
have on the CRE independently of fc, we adopt the fol-
lowing simple model. Firstly, CRE consists of SW and LW
CRE at the top of the atmosphere. In a single cloudy col-
umn, SWCRE depends on both fc and cloud albedo Ac,
approximately as

SWCRE ≈ fcAcS0, (1)

where S0 is the incoming solar radiation (Ramanathan
et al., 1989). Three-dimensional radiative effects could
alter the SWCRE significantly, yet Singer et al. (2021)
demonstrated that neglecting these effects has a small
effect at the top of the atmosphere for trade cumu-
lus clouds. We therefore relate Ac to cloud optical
depth 𝜏c through the plane-parallel assumption (Lacis &
Hansen, 1974):

Ac =
𝜏c

𝜏c + 7.7
. (2)

The cloud optical depth 𝜏c is related to the liquid-water
path  and cloud-droplet effective radius re through (Han
et al., 1994)

𝜏c =
9
5


re
. (3)

The liquid-water path , in turn, depends on the cloud
geometric thickness h and degree of adiabaticity fad, given
approximately by (Feingold et al., 2017; Wood, 2006)

 ≈ fadh2
. (4)

LWCRE is primarily determined by the cloud-top
temperature Tc and its emissivity 𝜖, following the
Stefan–Boltzmann law, with

LWCRE ≈ 𝜖𝜎T4
c , (5)

where 𝜎 represents the Stefan–Boltzmann constant
(Ardanuy et al., 1991). Since Tc can be approximated
by cloud-top height zt, deeper clouds tend to be colder,
emitting less LW radiation to space, thereby resulting in
more LW radiative warming. Since our focus is on shallow
clouds, the LWCRE variability is minimal and SWCRE
variability will govern the net CRE variability; we show
this in Section 3.1. In the following sections, we will there-
fore use the relations above to interpret how remotely
sensed and simulated fc, 𝜏c, , re, fad, and h make up vari-
ations in SWCRE, due only to the spatial patterning of
clouds.

Following previous studies (Bony et al., 2020; Janssens
et al., 2021; Stevens et al., 2020), we focus on clouds
over the tropical Atlantic Ocean to the east of Barbados
(10◦–20◦N, 48◦–58◦W), which have been shown to be rep-
resentative for the trades (Medeiros & Nuijens, 2016). Our
analysis covers December–May of 2002–2020. The satellite
dataset used here combines data from NASA’s Moderate
Resolution Imaging Spectroradiometer (MODIS) aboard
the Aqua satellite, with data from the Clouds and the
Earth’s Radiant Energy System (CERES) instrument. We
compute organization metrics from MODIS cloud masks
with 1-km spatial resolution. For each cloudy scene, we
calculate two metrics: cloud fraction (fc) and degree of
organization (Iorg). The metric Iorg is derived based on the
distribution of the nearest-neighbor distances (Janssens
et al., 2021; Weger et al., 1992), which characterizes cloud
fields as clustered when Iorg > 0.5, random at Iorg = 0.5,
and regular for Iorg < 0.5. The preprocessing of MODIS
cloud masks follows Janssens et al. (2021): scenes with
> 20% cirrus coverage (≈5% of the total data) are excluded,
as are cloud fields with solar zenith angles > 45◦ (≈15%
of the total data). In line with the analysis of Bony
et al. (2020, fig. 5), we use the full 10◦ × 10◦ domain, which
leads to excluding about 50% of the total data due to the
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ALINAGHI et al. 3

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

F I G U R E 1 Distribution of cloud field properties from Aqua MODIS and CERES satellite data. (a) Cloud fraction fc, (b) degree of
organization Iorg, (c) domain-mean net cloud radiative effect (CRE), (d) domain-mean SWCRE, (e) domain-mean LWCRE, (f) domain-mean
cloud-top height zt, (g) domain-mean cloud optical depth 𝜏c, (h) domain-mean cloud effective radius re, (i) domain-mean cloud field albedo,
and (j) domain-mean liquid-water path . [Colour figure can be viewed at wileyonlinelibrary.com]

satellite swath not covering the whole 10◦ × 10◦ domain.
Following Schulz et al. (2021), we focus solely on shal-
low clouds by excluding scenes with cloud-top heights
zt > 4 km, which excludes about 5% of the total data.
After preprocessing, out of about 3200 cloud scenes,
approximately 750 cloud fields remain for analysis, which
is about 25% of the total data. Nevertheless, the dis-
tributions of fc and Iorg shown in Figure 1a,b con-
firm that the remaining data still cover a rich spectrum
of patterns, and are similar to distributions shown by
Bony et al. (2020).

CERES provides hourly top-of-the-atmosphere SW and
LW radiative fluxes for all-sky and clear-sky conditions, as
well as 𝜏c, Ac, zt, , and re. The CERES dataset features
a spatial resolution of 1◦. We select CERES data around
13:30 local time, which corresponds to the overpass time
of the Aqua satellite. SWCRE and LWCRE are calculated
as the difference between the all-sky and clear-sky radia-
tive fluxes at the top of the atmosphere. For each cloud
scene, we calculate domain-mean values of cloud proper-
ties provided by CERES. The distributions of CERES data
are shown in Figure 1c–j.

We extend our satellite analysis with the Cloud Botany
dataset (Jansson et al., 2023). This is a large ensemble
(ca. 100 members) of high-resolution (100-m) large-eddy
simulations (LES) of shallow cumulus clouds with a
domain size of 150 km by 150 km. It was initialized with
a variety of conditions derived from ERA5 reanalysis data
(Hersbach et al., 2020) of trade cumuli that cover the cli-
matological conditions of the area under consideration.

We refer to the dataset article, Jansson et al. (2023),
for details. Our motivation for employing the Botany
simulations is twofold. Firstly, considering that satellite
retrievals of liquid-water path  (and effective radius re)
might be underestimated (overestimated) in broken cloud
fields containing small clouds (Cho et al., 2015; Coak-
ley et al., 2005; Painemal & Zuidema, 2011; Seethala &
Horváth, 2010; Zhang & Platnick, 2011), the simulations
support that our results are physical. Secondly, the simu-
lations provide data on cloud-base height (zb) and cloud
geometric thickness (h), so that we can investigate how
those vertical characteristics are correlated to organiza-
tion. The distributions of lifting condensation level as
well as zb (Figure S1) show qualitative agreement with
those of Barbados Cloud Observatory data as shown in
Albright et al. (2023, figs. 2, 3). We use hourly data
from hours 37–43 of the simulations (574 cloud fields
in total). These times are chosen because they approxi-
mately align with the daily overpass times of the Aqua
satellite to match the diurnal phase. To determine the
geometric thickness h of each cloudy column, we calcu-
late the difference between the altitudes of the highest
and lowest cloudy pixels where the liquid water spe-
cific humidity is larger than zero. Subsequently, for each
cloud field, we compute the domain-averaged h. We fur-
ther compute the mean size of cloud objects within each
cloud field using Lc = (

∑n
1
√

Ai)∕n, where Ai represents
the area of each individual cloud object i, and n cor-
responds to the total number of cloud objects within
the field.
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4 ALINAGHI et al.

3 RESULTS AND DISCUSSION

3.1 Cloud clustering impacts CRE
independently of fc variability

Bony et al. (2020) showed that trade cumulus mesoscale
organization affects CRE through variations in fc: scenes
with organization types of higher cloud cover have a
larger, negative CRE. In this section, we aim to inves-
tigate whether mesoscale organization still affects CRE,

independently of fc. Figure 2a–c shows that more clustered
clouds (higher Iorg) reflect less SW radiation towards space
(smaller magnitude of SWCRE). In addition, increased
clustering is also correlated with decreased LWCRE. Over-
all, the warming effect induced by the SW component
is partially compensated by the reduced LW warming.
Consequently, enhanced clustering of clouds results in
diminished net cloud radiative cooling.

It is crucial to emphasize that the relationships illus-
trated in Figure 2a–c are confounded by the variability of

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

F I G U R E 2 Dependence of domain-mean CRE on clustering. In the first row (a–c), the relationships between Iorg and (a) SWCRE,
(b) LWCRE, and (c) net CRE are illustrated. The second row (d–f) presents the same relationships, but the data are grouped into four classes
based on the 0th (P0), 25th (P25), 50th (P50), 75th (P75), and 100th (P100) percentiles of fc, indicated by colors ranging from purple to yellow,
representing low to high fc, respectively. The third row (g–i) shows the same relationships, but removing the fc variability through partial
correlation analysis (Equation 6). The mean values of Iorg (for the third row, Iorg|fc) in each bin are denoted by red (purple, blue, green, and
yellow for the third row) circles, with their size proportional to the number of points in the bin. The dots are fitted with a dashed line. Values
below the 5th and above the 95th percentile of Iorg (for the third row, Iorg|fc) are excluded from the fit. [Colour figure can be viewed at
wileyonlinelibrary.com]
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ALINAGHI et al. 5

fc, as fc is correlated with Iorg (R2 = 0.61), SWCRE (R2 =
0.51), and LWCRE (R2 = 0.34) (see also Figures S2, 2d,e).
To understand better how fc controls the relationships
between organization and radiation, Figure 2d–f presents
the same data as Figure 2a–c, but grouped into quartiles of
fc. Figure 2d shows that, although Iorg and SWCRE exhibit
a positive correlation across the entire dataset (Figure 2a),
they demonstrate a negative correlation within each fc
bin. Hence, the relationship between Iorg and SWCRE
presented in Figure 2a emerges because Iorg itself depends
on fc (purple to yellow lines in Figure 2d–f). Once we
remove this correlation between Iorg and fc, for example,
by binning on fc, we observe that the SWCRE becomes
more negative when the cloud fields become more clus-
tered (lines at constant fc have a negative slope). Similarly,
Figure 2e shows that the strong negative Iorg–LWCRE cor-
relation (Figure 2b) is almost entirely due to variations in
fc; it almost vanishes upon grouping the data by fc. The
net CRE is dominated by its SW component (Figure 2f),
and therefore follows the results from Figure 2d. Hence,
Figure 2a–c essentially captures the findings by Bony
et al. (2020), showing that, to first order, variations in fc
control variations in SWCRE.

To eliminate the confounding effect of fc on the
Iorg–CRE relationship, we employ the concept of partial
correlation analysis (Baba et al., 2004). For any given met-
ric (e.g., X), we eliminate the variability associated with fc
using a regression analysis,

X = c ⋅ fc + X|fc, (6)

where fc serves as the regressor, c represents the coef-
ficient, and X|fc denotes the remaining variability in X
that cannot be explained by fc. It should be noted that
Equation (6) does not keep fc constant. In a scatter plot
with a linear fit c ⋅ fc, X|fc instead measures the distance
from the regression line (Figure S3). Partial correlation is
conceptually similar to grouping data by a confounding
variable, as in Figure 2d–f, but it controls continuously for
the confounder across the whole dataset. This gives more
statistically significant correlations compared with simple
grouping, where the number of data points can decrease
drastically after the grouping has been performed. The
different colors in Figure 2d–f correspond to subtracting
different offsets c ⋅ fc from X . By measuring the distance
from the central fit line, the method thus collapses all the
lines in Figure 2d–f into a single line.

Figures 2g–i present the variables with their partial
correlation to fc removed. Figure 2g shows that, as Iorg
| fc increases, SWCRE|fc becomes more negative, that is,
as clouds cluster, they reflect more incoming SW radi-
ation. Quantitatively, as Iorg | fc varies between −0.05
and 0.05, the radiative cooling induced by SW reflection

increases by approximately 20 W/m2. This confirms that
the positive correlation observed in Figure 2a is due
to Iorg and SWCRE being negatively correlated with fc
(Figure 2d). Similarly, after elimination of fc variability, the
response of LWCRE to cloud clustering is strongly reduced
to about 1 W/m2 (Figure 2h), indicating that the correla-
tion between Iorg and LWCRE in Figure 2b is almost solely
due to their mutual correlation with fc (Figure 2e). The
variability in LWCRE due to clustering is thus similar in
magnitude to the LW radiative effect (≈ 0.75 W/m2) of
the “cloud twilight zone” (Eytan et al., 2020). Ultimately,
as Figure 2i illustrates, the dependence of net CRE on
Iorg | fc arises almost exclusively from the dependence
of the SW component on cloud clustering. In summary,
our findings of this section emphasize that mesoscale
organization affects CRE, even after controlling for
fc variability.

3.2 Clustering and cloud optical
thickness are positively correlated

In the previous section, we eliminated the impact of fc on
the Iorg–SWCRE relationship. The remaining variability in
SWCRE after controlling for fc is primarily due to varia-
tions in Ac (Equation 1): a bilinear regression with fc and
Ac as regressors can explain 94% of variability in SWCRE
in our dataset (Figure S4). This confirms that the impact
of 3D radiative effects is small compared with fc and Ac in
these large cloud fields. Having 3D effects excluded, the
remaining variability in SWCRE corresponds primarily to
changes in cloud albedo and equivalently cloud optical
depth 𝜏c (Equation 2).

Figure 3a displays the variability of cloud patterns in
a plane spanned by 𝜏c|fc and Iorg|fc. This figure shows a
continuous range of patterns, ranging from small, unclus-
tered clouds in the lower left corner to large, highly clus-
tered clouds in the upper right corner. On average, 𝜏c|fc
increases with increasing Iorg|fc (Figure 3b). Quantita-
tively, a 0.1 increase in Iorg|fc corresponds to a 0.5 increase
in 𝜏c|fc, which is about 10% of the total 𝜏c variability
(Figure 1g). Such a 0.1 increase in Iorg|fc results in an
approximately 0.01 increase in the domain-mean albedo
(Figure S5). In trade-wind regimes, even such small albedo
variability makes up a non-negligible portion (roughly
10%, Figure 1i) of the total albedo variability, consistent
with Denby (2023). The relationship between Iorg|fc and
𝜏c|fc indicates that horizontal cloud field organization, as
measured by Iorg, is linked to its optical properties, as cap-
tured by 𝜏c: trade cumuli are optically thicker when they
are more clustered.

As theoretically expected (Equation 3), 𝜏c is pro-
portional to ∕re in our dataset (Figure S6). Figure 4

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4783 by T
u D

elft, W
iley O

nline L
ibrary on [02/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 ALINAGHI et al.

(a) (b)

F I G U R E 3 Dependence of domain-mean cloud optical depth on clustering. (a) The scatter plot of MODIS cloud features and (b) the
two-dimensional histogram depict the Iorg | fc–𝜏c | fc relationship. Specifically, for the scatter plot in (a), instead of displaying individual
points, the entire cloud field is visualized to enhance pattern visualization. Clouds are represented in white, while the blue background
represents the ocean color (MODIS true-color images). For plot (b), the mean values of Iorg|fc in each bin are denoted by red circles, with their
size proportional to the number of points in the bin. The red dots are fitted with a dashed black line. Values below the 5th and above the 95th
percentile of Iorg|fc are excluded from the fit. [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b)

F I G U R E 4 Dependence of domain-mean liquid water path and effective radius on clustering. The figure shows the 2D histograms of
the relationships between (a) Iorg|fc and |fc, and (b) Iorg|fc and re|fc. The mean values of Iorg|fc in each bin are denoted by red circles, with
their size proportional to the number of points in the bin. The red dots are fitted with a dashed black line. Values below the 5th and above the
95th percentile of Iorg|fc are excluded from the fit. [Colour figure can be viewed at wileyonlinelibrary.com]

shows that both  and re contribute to mediating the
relationship between clustering and optical depth. With
the fc effect eliminated, there is a positive correlation
between the degree of cloud clustering and the amount of
liquid water present within the clouds (Figure 4a). Sim-
ilarly, as the level of clustering increases, clouds tend to
exhibit smaller radii re (Figure 4b).

Stevens et al. (2020) introduced a subjective classi-
fication of patterns, which they termed Sugar, Gravel
and Flowers. Sugar consists of small randomly distributed
clouds. Gravel is associated with ring-like structures. Their
organization is not as random as for the Sugar type but

still features values of Iorg that indicate an unclustered
state. Flowers are commonly highly clustered groups of
circular clouds with clear-sky regions between them. Our
–Iorg relationship seems to be in contrast to Schulz
et al. (2021), who show that individual clouds in unclus-
tered Gravel configuration have higher liquid-water path
 compared with individual clouds in Flowers configura-
tion, which is highly clustered. To reconcile this with our
results, we need to remind ourselves that the large cloud
scenes analyzed here contain a mixture of different clouds.
Stevens et al. (2020) report that Gravel clouds tend to coex-
ist with Sugar. For Flowers, such a coexistence is less

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4783 by T
u D

elft, W
iley O

nline L
ibrary on [02/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


ALINAGHI et al. 7

pronounced. Instead, Flowers feature anvils, stratiform
outflows that form once the updrafts encounter stable
layers such as the inversion, causing the cloud to grow
horizontally. Such shallow cumulus anvils have notable
geometric thickness (up to 600 m: Dauhut et al., 2023).
This means that anvil cloudiness is optically thicker and
more reflective than typical Sugar. When considering
two cloud fields with identical fc, it therefore seems rea-
sonable that a Flower-dominated field features a larger
domain-averaged  compared with a field dominated by
Sugar and Gravel.

Similarly, the relationship between Iorg,, and re might
seem unexpected. Based on adiabatic parcel lifting, we
would expect  and re to be positively correlated, while
Figure 4 suggests a negative correlation. When correlating
 versus re directly, we find the expected positive corre-
lation, as shown in Figure 5. However, Figure 5 shows
further that, with increasing Iorg|fc,  increases while re
decreases, indicating that more clustered cloud fields con-
tain more liquid water with smaller effective radius. To
hypothesize why, we use an example snapshot from a
scene (Figure S7a) at the high end of the Iorg|fc values:
in such scenes, clouds have substantially smaller re in
their veils compared with their core updrafts. In contrast,
unclustered cloud fields exhibit a more homogeneous re
with relatively larger values (Figure S7b). These snapshots

F I G U R E 5 Relationship between domain-mean liquid-water
path and effective radius. This figure shows that |fc is positively
correlated with re|fc. The figure further shows that with increased
clustering Iorg|fc, that is, going from the lower right corner to the
upper left corner, re decreases while  increases. The mean values
of re|fc in each bin are denoted by red circles, with their size
proportional to the number of points in the bin. The red dots are
fitted with a dashed black line. Values below the 5th and above the
95th percentile of re|fc are excluded from the fit. [Colour figure can
be viewed at wileyonlinelibrary.com]

suggest that, for highly clustered cloud fields, the aver-
age  is influenced primarily by their cores, while the
average re is influenced by their veils. This is consistent
with the fact that is proportional to r6

e (Goren et al., 2022),
resulting in a more pronounced contrast between the core
and veils in  compared with re. This could well explain
why the average  of highly clustered cloud fields is larger
compared with that of unclustered cloud fields, while their
average re is smaller in comparison with unclustered cloud
fields.

It is of utmost importance to recognize that satel-
lite retrievals of  and re over broken clouds come with
uncertainties, as documented in previous studies (Paine-
mal & Zuidema, 2011; Seethala & Horváth, 2010; Zhang
& Platnick, 2011). These uncertainties can result in an
overestimation of re and an underestimation of , espe-
cially for small clouds, such as Sugar and Gravel. This is
because these clouds might feature smaller sizes compared
with the resolution of satellites (≈ 1 km), leading to more
frequent partially filled pixels (Cho et al., 2015; Coakley
et al., 2005). By utilizing standard satellite products, which
exclude highly uncertain pixels associated with very small
clouds (see Figure S7b), these biases are mitigated to some
extent and enhance the reliability of our analysis of re and
. Nonetheless, it is essential to note that this analysis
urges the need for further modeling or in situ observational
studies exploring the relationship between the organiza-
tion and microphysics of trade cumulus clouds.

It is interesting to contrast the small droplets in rel-
atively thick anvils described here with the very large
droplet sizes and optically thin veil clouds that have been
reported in the context of the stratocumulus-to-cumulus
transition (Wood et al., 2018). While Wood and Bretherton
(2018) report an increase in the corresponding ultra-clean
conditions with boundary-layer height, this relationship is
unlikely to extend to deep trade cumulus Flowers, which
can be considered shallow mesoscale convective systems
with complex outflow dynamics (Dauhut et al., 2023).
On the microphysical process level, ultra-clean conditions
have been associated with strong precipitation scavenging
(Wood & Tseng, 2018), while Radtke et al. (2023) discuss
that the conversion efficiency to precipitation decreases
with increasing clustering in trade cumulus.

Overall, our discussion of the relationship between
liquid-water path and effective radius to clustering and the
resulting effects on optical depth highlight that organized
cloud fields cannot be conceptualized with a single, typical
profile of cloudiness. Instead, addressing horizontal spatial
variability necessitates the consideration of at least two dis-
tinct cloud types, associated with horizontal variations in
the profiles of liquid water and droplet sizes (see sketches
in Figure 7 later).
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3.3 Mean cloud geometric thickness
increases with clustering

For an entraining lifting parcel, liquid-water path  ∝
fadh2 (Equation 4). To explain the observed Iorg– rela-
tionship, we therefore investigate the relationships of Iorg
with geometric cloud depth h and degree of adiabatic-
ity fad in the Botany simulations. We repeat the analysis
from Sections 3.1 and 3.2 for the Botany dataset. We notice
that the correlation between fc and Iorg is smaller (R of
0.1) in the Botany dataset that features smaller domain
size compared with our satellite data (Figure S8a). This
is in line with the results of Janssens et al. (2021) on
satellite data over 500-km domains in which the fc–Iorg
correlation (R) is about 0.3 (their fig. S2 in the supplemen-
tary information). This shows that the fc–Iorg correlation
decreases on reducing the domain size. We hypothesize
that reducing the domain size increases the variability in
fc, with fc potentially reaching values of 1 (Figure S9). Con-
versely, reducing the domain size decreases the probability
of a cloud field featuring more than one type of pattern,
thus reducing the variability in Iorg (Figure S9). There-
fore, with increased fc towards 1, Iorg cannot decrease to
less than a limit, as reduced domain size shrinks its vari-
ability. This potentially decreases the covariance between
fc and Iorg, weakening the strength of the fc–Iorg correla-
tion. fc and Iorg being almost orthogonal in the Botany
data (Figure S8a) implies that combinations of fc and Iorg
explain most patterns that develop in the Botany dataset,
and their relation to 𝜏 and the CRE might be understood
without controlling for fc (Janssens, 2023, chap. 7). Here,
we still remove the effect of fc from both CRE and Iorg,
to investigate solely the effect of Iorg on CRE independent

of fc variations and remain consistent with the analysis
in Section 3.1.

Repeating the analysis for the simulation data
shows qualitative agreement with the observations
(Figures S10a–c and S11) and thus justifies using the sim-
ulations to analyze the relationships between Iorg, h, and
fad further. Note that the discrepancy in the response of
re to clustering between simulations and satellite data
(Figure S10d) is expected from the fixed cloud droplet
number in the simulations, but does not fundamentally
affect our discussion of  here.

Figure 6a shows that the domain-averaged geometric
thickness increases by more than 100 m as cloud fields
become more clustered (increasing Iorg|fc). Additionally,
compared with fad, the variability in h has a significantly
larger influence on the value of  (Figure S12). Thus, our
LES-based results indicate that the simulated increase in
due to enhanced clustering (Figure S10c) stems primarily
from the geometric thickening of cloud fields.

Figure 6b further explores the relationship between
horizontal and vertical cloud field properties and shows
that the average size of cloud objects (Lc) increases with
Iorg|fc. This positive correlation shows that cloud horizon-
tal extent as quantified by Lc is positively correlated with
cloud vertical extent as quantified by h, consistent with
the findings of Feingold et al. (2017). The figure more-
over illustrates that an increase in Iorg | fc corresponds
to a rise in the domain-average cloud-base height (zb).
Note that zb is not the lifting condensation level; instead,
it represents the lowest height of a cloudy pixel within
each column. This means that a higher domain-mean zb
is an indication of the presence of more anvils in the field.
Overall, Figure 6 demonstrates that enhanced clustering

(a) (b)

F I G U R E 6 Dependence of domain-mean geometric thickness, average size of cloud objects, and domain-mean cloud-base height on
clustering. (a) The figure shows the 2D histogram of the relationship between Iorg|fc and h|fc. (b) The plot shows the relationship between Iorg|fc

and the mean-field cloud object size (Lc), with contour colors representing the values of domain-averaged cloud-base height (zb). The gray
shade indicates the inter-quartile range variability of Lc in each bin of Iorg|fc. For both plots, the mean values of Iorg|fc in each bin are denoted
by red circles, with their size proportional to the number of points in the bin. The red dots are fitted with a dashed black line. For both plots,
values below the 5th and above the 95th percentile of Iorg|fc are excluded from the fit. [Colour figure can be viewed at wileyonlinelibrary.com]
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ALINAGHI et al. 9

F I G U R E 7 Summary of results.
Comparing two cloud fields with
identical cloud cover, the highly
clustered cloud field features a larger
domain-averaged geometric thickness, a
higher liquid water path, more frequent
anvils with smaller cloud droplets, and,
consequently, brighter clouds and
therefore larger SW reflection in
comparison with the unclustered cloud
field. Blue arrows and corresponding
equations are supported by theory and
thus imply causality. Purple arrows are
the main results of our study, which
only indicate correlations. The gray
arrows illustrate apparent paradoxes,
which are discussed in Section 3.2.
[Colour figure can be viewed at
wileyonlinelibrary.com]

is correlated with a higher occurrence of larger cloud
objects with elevated domain-mean zb, indicating a larger
anvil extent.

4 CONCLUSIONS AND OUTLOOK

We have explored the impact of shallow cumulus cloud
field organization on cloud radiative effects, where con-
founding variability of fc was removed through partial
correlation analysis (Equation 6). Based on satellite data,
our analysis shows that an increased level of clustering

(Iorg|fc) results in up to 20 W/m2 higher SW reflection
to space (Figure 2g,i). We observe that, irrespective of fc
variations, more clustered cloud fields exhibit, on aver-
age, higher liquid water path (Figure 4a), smaller cloud
droplets (Figure 4b), and, consequently, greater opti-
cal thickness (Figure 3). A complementing ensemble
of large-eddy simulations indicates that increased clus-
tering corresponds to geometrically thicker cloud fields
that feature increased anvilness (Figure 6). Figure 7
summarizes these results. Collectively, they suggest
that, eliminating the effect of fc, the distribution of
horizontal cloud sizes ultimately relates to the vertical
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extent of clouds, subsequently influencing liquid-water
path and cloud optical depth, and ultimately albedo
and SWCRE.

What do our results mean in terms of the cloud
feedback of trade cumulus? To translate the potential
impact of increased SW radiative cooling from organiza-
tion (independently of fc) into cloud feedback estimates,
a worthwhile follow-up effort would be to repeat our
analysis for all trade-wind regions. Such global statistics
would contribute to a comprehensive quantification of
the sensitivity of CRE to Iorg. Considering the sensitiv-
ity of mesoscale organization to cloud-controlling factors,
Myers et al. (2021) (their Supplementary Information)
show that, in addition to an increase in sea-surface temper-
ature, which is not expected to trigger a notable response
in trade cumulus cloudiness (Cesana & Del Genio, 2021;
Myers et al., 2021), estimated inversion strength (EIS)
is projected to increase moderately, and surface wind to
decrease slightly. According to Bony et al. (2020), such
an increase in EIS would favor high-cloud-fraction Flow-
ers over Gravel and Sugar with lower cloud fractions. In
contrast, the decreasing surface wind would favor Sugar.
While our results highlight the tight relationship between
horizontal cloud organization and geometric thickness,
whether cloud fraction and optical depth interact posi-
tively or negatively in response to drivers of organization
remains an open question. To address this interplay, we
need to explore further how mesoscale processes (George
et al., 2023; Janssens et al., 2023; Vogel et al., 2021) mod-
ulate cloud fraction, liquid-water path, effective radii, and
anvil extent.
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