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Abstract 
 
Multiple phenomena occurring at the microscopic scale affect the final mechanical performance of 
composite parts manufactured through processes involving impregnation of dry fibers, such as resin 
transfer molding. Formation of fiber-poor areas in specific locations or air entrapment within the resin 
are issues that commonly arise during the impregnation. Such challenges have motivated the use of 
numerical simulations to understand the manufacturing processes better and to optimize the process 
design. However, the limitation imposed by their computational cost has encouraged the use of machine 
learning (ML) to replace them. Thus far, the state of the art has focused on predicting the permeability 
of fiber-reinforced microstructures. We expand the limits by proposing an ML-based surrogate for 
microscale steady-state velocity prediction of a fluid flowing through a fibrous microstructure. This 
model, inspired by the U-net architecture, takes as input the image representation of fiber-reinforced 
composite microstructures. It subsequently outputs the resin velocity field around the fibers based on 
prescribed boundary conditions. Those results are further used to estimate the permeability of the 
microstructures, thus encompassing previous works. We describe in this work the computational 
pipeline of our approach, starting from generation of the ground truth data to the optimization of the U-
Net hyperparameters. 

 
 

1. Introduction 
 
The resin transfer molding (RTM) process, through which a composite part is manufactured by 
impregnating a fiber preform placed in a mold with liquid resin, offers many advantages. It enables the 
production of composite parts with very complex shapes. It also makes achievable composite parts with 
good surface appearance in relatively fast cycle times [1]. However, there are many transport issues that 
affect the process and, by extension, the mechanical performance of the final products. The flow of resin 
through fiber reinforcements is driven by a combination of viscous forces and capillary forces [2-4]. 
This dual-scale nature of the flow sometimes results in air entrapment [5] during RTM. These entrapped 
air bubbles then translate into microstructural defects in the composite material after the resin 
polymerization reaction during curing [6]. Various factors affect the permeability of fibrous preforms, 
which include the architecture and stacking of the fabrics [2,7], the deformation of the preform [8]. 
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Owing to these challenges, numerical simulations [9] have long been used as a tool to better understand 
flow characteristics in microstructures and gain insight into RTM. However, one of their drawbacks is 
their computational cost [2]. Because of this hurdle, machine learning has been increasing in popularity 
as a replacement for numerical simulations. It has been well demonstrated that deep neural networks 
can virtually approximate any function [10]. Moreover, they can significantly increase efficiency [11], 
compared with numerical simulations. In their state-of-the-art work, Caglar et al. [11] trained a 
convolutional neural network (CNN) to predict the permeability of 2D microstructures. By additionally 
using a circuit analogy, they were able to predict the permeability of 3D microstructures with tortuous 
fibers, which resulted in speedups of two orders of magnitude. In the context of multiscale simulations, 
microscale permeability predictions are useful for the central areas of rovings where fibers are densely 
packed. However, only predicting a homogenized permeability is inadequate in resin-rich areas, such as 
in-between fiber bundles. A more reliable approach is to utilize microscale flow predictions to instead 
compute mesoscale permeability. To the best of our knowledge, there is currently no work in the 
literature using machine learning to predict the resin flow in fibrous microstructures. Hence, in this 
work, we introduce a neural network model trained to predict the resin flow field in microstructures 
from their image representations. Its architecture is inspired by the U-Net [12], originally designed for 
biomedical image segmentation. The results show the neural network model's ability to predict with 
high accuracy the flow field in a wide variety of microstructures. 
 

Next, we will describe the procedure employed to generate microstructures and run the 
corresponding numerical simulations for ground truth data. Following that, we will introduce the 
architecture of the ML model used to fit the simulation data. Then, we will report different parameter 
tests and the corresponding performance of the fitted models. Finally, we will report permeability 
estimation from the predicted flow field using Darcy’s law and evaluate their accuracy. 
  
2. Methodology 
 
2.1. Data Generation 
 

The targeted input and output data for the ML model are as follows. As input, we consider the 
image representation of fiber-reinforced microstructures. As output, we consider the resulting resin flow 
field after the application of prescribed boundary conditions. We subsequently detail the process 
employed to generate such data. 
 

Fiber-reinforced microstructures encountered in practice exhibit variations on several aspects 
including fiber size, volume fraction, and spatial distribution. We recognize this fact, and hence designed 
a tool capable of generating microstructures while reflecting this variability. We start by considering a 
2D space defined by fiber diameter and volume fraction. We used three values for the fiber diameters: 
7, 10, 15 µm. Meanwhile, the fiber volume fractions consist of six values, ranging from 0.2 to 0.7 with 
an increment of 0.1. Given a fiber diameter and volume fraction, there are limitless possibilities 
regarding the spatial distribution of fibers in the target microstructures. We take the following steps to 
account for these variations. We begin with a microstructure with a quadratic arrangement of the fibers. 
Then, we randomly move each fiber in an arbitrary direction and distance while enforcing non-collision 
between them. In addition, we enforced periodicity on the geometry of the microstructures. The result 
is such that we can create multiple microstructures sharing the same descriptors (i.e., fiber diameter and 
volume fraction). Using this procedure, we generated a total of 5000 microstructures, with an average 
of approximately 278 per each fiber diameter-volume fraction pair. 
 

With the geometry of microstructures properly defined, we then used Gmsh [13], an open-source 
mesh generator, to construct corresponding meshes. We note that only the fluid domain (i.e., the area 
between the fibers) is meshed. To run the numerical simulations, we utilized the open-source 
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OpenFOAM toolbox [14], which is based on the finite volume method. More specifically, we made use 
of SimpleFoam, which is a steady-state solver for incompressible flow based on the SIMPLE algorithm 
[15]. We set the fluid flowing between the fibers to be epoxy resin with a density 𝜌𝜌 = 1250 𝑘𝑘𝑘𝑘/𝑚𝑚3 
and dynamic viscosity 𝜇𝜇 = 0.5 𝑃𝑃𝑃𝑃 ∙ 𝑠𝑠 . Regarding the boundary conditions, the resin is assumed to 
enter the domain from the left side and exit it at the right side. The pressure is assumed to be null at the 
outlet. A pressure drop of Δ𝑝𝑝 = 10 𝑘𝑘𝑃𝑃𝑃𝑃 is applied across the microstructure. Cyclic boundary 
conditions are applied to the top and bottom extremities. It is worth mentioning that the entire pipeline 
from geometry definition to numerical simulations is fully automated through a Python script. Moreover, 
additional steps were taken to test the reliability of the numerical results by validating estimated 
permeabilities for perfectly hexagonal/quadratic fiber arrangements against Gebart’s equations [16] 
using Darcy’s law. 
 
2.2. Model Architecture 
 

 
Figure 1. The architecture of the model used is based on the U-Net. It takes the image representation 
of microstructures as input and returns the corresponding steady-state resin flow field. 

 
We design our neural network (Fig. 1) as a variant of the U-Net [12]. It is a neural network with 

encoder-decoder architecture, initially developed for the segmentation of biomedical images. In our case 
however, predicting velocity fields from images pertains to a regression task. We follow the original U-
Net architecture in several aspects. Each level in the contracting path of the encoder consists of two 
convolutional blocks followed by a down-sampling operation. Each block consists of a convolution 
layer, followed by batch normalization and a Leaky RELU [17] activation layer. The down-sampling 
operation is a sequence of max pooling (2×2 kernel with a stride of 2), batch normalization, and a Leaky 
RELU activation layer. This operation reduces the number of channels in the preceding block by half. 
Each level in the expanding path of the decoder consists of an up-sampling operation followed by two 
convolutional blocks. The up-sampling operation is a sequence of transposed convolution (2×2 kernel 
with a stride of 2), batch normalization, and a Leaky RELU activation layer. This operation multiplies 
the number of channels in the preceding block by two. Skip connections link corresponding levels in the 
encoder and decoder branch. In the final step before output, an additional convolutional block is added, 
which performs the final mapping to the velocity magnitude at each pixel. The convolution layer in the 
final block uses a 1×1 kernel, while all other convolution layers use a 3×3 kernel. Finally, all the 
convolution layers use zero-padding. 
 

The model takes as input the binary image (256×256 pixels) representation of microstructures, 
in which pixels in fiber regions take a value of 0, and 1 elsewhere. However, before feeding the input to 
the convolutional layers, we apply a Euclidean distance transform on it. This operation incorporates 
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information about the distance to the closest fibers (zero-valued) for each pixel that was originally one-
valued. It has been previously shown that this pre-processing step helps to improve accuracy [18]. The 
model's output is the velocity magnitude field, to which we apply a cost function penalizing the 
departures of the predictions from target values. 
 
2.3. Training 

 
We implemented the neural network using the PyTorch library [19], which allowed us to take 

advantage of its automatic differentiation capabilities. To train the neural network, we used the following 
cost function. We defined the normalized mean absolute error (NMAE) as 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
1
𝑁𝑁∑ ∑ ∑ |𝑂𝑂𝑖𝑖𝑖𝑖

𝑠𝑠 − 𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠 | 
𝑖𝑖

 
𝑖𝑖

𝑁𝑁
𝑠𝑠=1
1
𝑁𝑁∑ ∑ ∑ |𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠 | 

𝑖𝑖
 
𝑖𝑖

𝑁𝑁
𝑠𝑠=1

 
 

(1) 

in which 𝑂𝑂𝑖𝑖𝑖𝑖
𝑠𝑠

 and 𝑇𝑇𝑖𝑖𝑖𝑖𝑠𝑠  respectively refer to the predicted and target values for sample 𝑠𝑠  at pixel position 
(𝑖𝑖, 𝑗𝑗). 𝑁𝑁  refers to the number of samples being evaluated. When training the neural network, we updated 
its parameters using an Adam optimizer [20] and a learning rate of 10−4. Training was performed on a 
workstation equipped with an NVIDIA® Quadro RTX™ 6000 GPU (24 GB memory). 
 
3. Results 
 
3.1. Hyper-parameter Optimization 
 
We experimented with multiple hyper-parameters to determine the most accurate network configuration. 
One relates to the number of channels at each level. We tried out three model configurations with 
different depths, which we refer to as 2D, 3D, and 6D. The number of channels after the convolution 
blocks at each level is listed in Table 1 for each of them. 
 

Table 1. Number of channels after the convolution blocks at each level of the U-Net. 

Model Level 
0 

Level 
1 

Level 
2 

Level 
3 

Level 
4 

Level 
5 

Level 
6 

2D 64 128 256 - - - - 
3D 64 128 256 512 - - - 
6D 32 64 128 256 512 1024 2048 

 
We fitted the models on the previously described dataset, which we partitioned into training and 

validation data using an 80%/20% split. A batch size of 40 was used during training. The resulting loss 
curves are shown in Figure 2. We readily notice that the worst performance comes from the shallowest 
(2D) model. Increasing the depth of the model has a positive effect. The loss values decrease more 
quickly. Nevertheless, there is not much difference between the training loss for the 3D and 6D models, 
which are respectively 0.0609 and 0.0623. The biggest improvement is in the validation loss which 
decreased from 0.1792 (2D), to 0.1293 (3D), and then 0.0874 (6D). 
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Figure 2. Training results for different model architectures. Increasing the depth of the model results in 
lower validation loss values. 
 
3.2. Data Augmentation 

 

 
Figure 3. a) Expansion of the dataset by flipping the images in it. b) Training results for the 3D and 
6D model architectures when fitted on the original dataset (5000 samples) and augmented dataset (20 
000 samples). 
 

Besides comparing different model architectures, we took advantage of the symmetry of the 
generated microstructures to augment the size of our dataset. The geometry of the microstructures 
exhibit periodicity both in the left/right and top/bottom sides. We quadrupled the dataset size by flipping 
the microstructures horizontally and vertically, as illustrated in Figure 3a. Figure 3b shows the training 
results for the 3D and 6D model architecture. We notice that the training losses diminish in both cases 
with the augmented dataset. A drop from 0.0609 to 0.0423 was observed in the training loss of the 3D 
model, and from 0.0623 to 0.0312 for the 6D model. However, we remark that the validation losses did 
not follow the same trend. The validation loss went from 0.1293 to 0.1429 for the 3D model. Meanwhile, 
it rose from 0.0874 to 0.0973 for the 6D model. There was a decrease in accuracy in both cases, 
nevertheless it was not significant. This behavior asks for further investigation. 
 
3.3. Model Performance 
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3.3.1. Resin Flow Prediction 
 

 
Figure 4. Prediction of the resin velocity magnitude for a microstructure with small fibers (a) in the 
validation set. The (c) prediction is close to the (b) target obtained via numerical simulation. d) 
Relative difference between the target and neural network prediction. e) Average absolute difference 
between pixels (taken over the vertical direction). f) Average absolute difference between pixels 
(taken over the horizontal direction). 
 

 
Figure 5. Prediction of the resin velocity magnitude for a microstructure with large fibers (a) in the 
validation set. The (c) prediction is close to the (b) target obtained via numerical simulation. d) 
Relative difference between the target and neural network prediction. e) Average absolute difference 
between pixels (taken over the vertical direction). f) Average absolute difference between pixels 
(taken over the horizontal direction). 

 
Next, we illustrate the concrete performance of the model in accurately predicting the physics 

of resin flow in some sample microstructures. For this task, we randomly select two microstructures in 
the validation set, that the model did not encounter during training. The first one has low fiber volume 
fraction (Fig. 4a). We notice in Figure 4b-c the close similarity between predictions of the neural 
network and the target obtained via numerical simulation. Quantitatively, the NMAE loss for this 
prediction is 0.0749. For a better visualization of the similarity, we look at the relative difference 
between the two images (Fig. 4d). It can be observed that most of the errors are on the very low end of 
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the spectrum. Moreover, regions exhibiting large errors (close to/higher than 100%) correspond to areas 
with very low velocity. We additionally look at the average values of the absolute difference between 
the predicted and target pixel values, taken along the vertical (Fig. 4e) and horizontal (Fig. 4f) axes. We 
observed that they are 1 order of magnitude lower than the usual velocity values. Figure 5 shows results 
for a second microstructure with high fiber volume fraction. The NMAE loss in this case is worse: 
0.0809. Similar conclusions can be made as with the first microstructure. Errors are highest in low 
velocity regions. 
 
3.3.2. Permeability Estimation 
 

 
Figure 6. Cumulative distribution of the relative errors on the predicted permeabilities using Darcy’s 
law. The permeability values are derived with high accuracy. 
 
As a further evaluation, we estimate the permeability of the microstructures from the predicted flow 
fields using Darcy’s law. The permeability from Darcy’s law is given by 

𝑘𝑘 = 𝜇𝜇𝜇𝜇
Δ𝑝𝑝

𝐿𝐿
𝐴𝐴 

We utilize the velocity values at the inlet (first column of pixels) to estimate the flow rate 𝜇𝜇 . The 
pressure drop Δ𝑝𝑝 and dynamic viscosity 𝜇𝜇 are known from the initial conditions. The microstructure 
length 𝐿𝐿  and cross-sectional area 𝐴𝐴  are known from the problem geometry. Figure 6 shows the 
cumulative distribution of the relative errors on the predicted permeabilities for microstructures in the 
validation set. These relative errors are computed by taking the ratio of the absolute value of the 
difference between predicted and target permeability to the target permeability’s absolute value. We 
readily notice the accuracy of the predicted values. Quantitatively, 95% of the predictions have a relative 
error below 10%.  
 
4. Conclusions 
 
We have introduced a neural network capable of predicting the velocity field of fiber-reinforced 
microstructures given their image representation. The neural network was trained on a multitude of 
microstructures with varying fiber sizes, volume fraction, and spatial distribution. The results 
demonstrated the accuracy of the trained model. Moreover, the predicted flow fields were utilized to 
infer the permeability of the microstructures with remarkable precision. This work thus encompasses 
previous ones which could only predict the permeability of fibrous microstructures. This work also 
shows the potential of integrating machine learning in the process simulation for composite 
manufacturing.  
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