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A B S T R A C T

In the second half of the 20
th and beginning of the 21

st century the amount of natural disasters
has increased rapidly. Due to this rise in occurrences, more people are affected. An important
indicator for people affected is the amount of damage to buildings. To gather this information
aid workers now have to go into the field to gather data on the amount of destruction. In re-
sponse to the possible dangers these people encounter in the field, remote sensing and analysis
techniques have been developed for automated damage detection. However, due to various
limitations on the implementation, these techniques are not yet widely adopted in emergency
response and humanitarian aid.

This work compares two methods and two data sources for the detection of building damage.
The methods are evaluated on their accuracy and implementability within humanitarian aid
in disaster situations. The main methods considered are equalisation of histograms of pre-
event and post-event imagery, followed by Univariate Image Differencing; and a convolutional
neural network on features withdrawn from post-event imagery, using OpenStreetMap data.
Remotely sensed data sources considered are synthetic aperture radar and very high resolu-
tion optical imagery. All results are analysed and compared to current standards in damage
detection.

From the results it can be concluded that more research is required for a practical implemen-
tation of deep learning techniques. The constraint posed by the requirement of large datasets,
make these methods impracticable without sufficient preparation and resources. More sim-
pler methods, like Univariate Image Differencing, can be validated on smaller ground-truth
datasets, and are therefore easier in implementation when resources are limited. The possible
accuracy increase of deep learning methods does, at this moment, not outweigh the ease of an
elementary differencing approach.
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1 I N T R O D U C T I O N

Weather related natural disasters cost the world economy around 100 billion dollars every
year [Kousky, 2014]. According to the Centre for Research on the Epidemiology of Disaster
[2015] 69.800 deaths per year are inflicted as the result of these disasters and earthquakes. The
effects are felt around the world, however most deaths occur in low or middle income areas.
Advances in technology and preparedness have decreased the amount of deaths caused by
natural disasters since the second part of the previous century [United Nations, 2004]. However,
due to an increase in the frequency of disasters [figure 1.1] more people are affected and more
damages occur; with the most economic damage recorded in 2011 [Coppola, 2015; Kerle, 2015].
2017 was no exceptions to both trends, as it was the year with the second most economic
damage but with less people killed [Munich RE, 2018].
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Figure 1.1: Natural disaster per year from 1965 to 2016 [From: EM-DAT: The Emergency
Events Database - Universite catholique de Louvain (UCL) - CRED, D. Guha-Sapir
- www.emdat.be, Brussels, Belgium]

One of the major disasters of 2017 was hurricane Irma, being labelled the worst storm in the
Caribbean in recordARed history [Daniell et al., 2017]. In the first week of September this
hurricane raged over multiple islands causing billions worth of damage, affecting millions in
its path [Phipps, 2017; Daniell et al., 2017]. One of the islands affected is St. Maarten, part of
the Kingdom of the Netherlands. It was hit by the eye of the hurricane on the 6th of September
with winds up to 185 miles per hour [Wilts, 2017]. Two other major hurricanes passed over the
area in the weeks following hurricane Irma, however, fortunately these did little to no extra
damage on the island [Gray, 2017; Bijnsdorp, 2017]. First damage estimates show that 70 - 90%
of the island may be affected by the storm [Rode Kruis, 2017; UNOSAT, 2017]. The indica-
tion and location of the damage caused is a leading planning tool for organisations like the
Netherlands Red Cross (NLRC), providing a first indication of the most vulnerable people in an
affected area. Indications of damage have allowed the NLRC to help 18.881 individual people
since the landfall of hurricane Irma and subsequent relief operation; and long term operations
are being started right now to facilitate the rebuilding of the island [Rode Kruis, 2017].

Around the world, in both wealthy and impoverished regions, individuals and organisations,
both governmental and Non-governmental Organisations (NGOs), are motivated to reduce and
manage the impact of disasters [Coppola, 2015]. Within this disaster management the deci-
sion making process and risk management process are bounded by three key characteristics
[Zlatanova and Li, 2008]. [1.] Rapid action needs to be taken, [2.] aware of the situation and
context [3.] with a connected overview of the data available. The goal of the Disaster Risk
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Management (DRM) is to minimize the impact from a disaster [Piero and FabioGiulio, 2012].
Information on the extent of the damage is therefore paramount, as demonstrated by relief
operations from the NLRC. Building damage is an essential indicator for this [Schweier and
Markus, 2006]; but can be hard to establish as it requires a lot of manual field labour; a danger-
ous and timely ordeal for aid workers involved [Kerle, 2010]. Automated detection of building
damages based on remotely sensed data could be the solution, allowing for faster and more
efficient response [Vetrivel et al., 2016b].

Remote sensing has long been part of the DRM cycle. According to Kerle [2015] this started at
the beginning of space-based remote sensing around the 1960s and 1970s and brought about
the increase in information within the DRM. From here the development of remote sensing
techniques, both in space (optical and Synthetic Aperture Radar (SAR)) and within the atmo-
sphere (aerial and Unmanned Aerial Vehicle (UAV) based), accelerated over the past 50 years
and increasingly allows for higher resolution information in a more timely manner. The perfor-
mance increase in remote sensing solutions make it applicable for the automated classification
of building damage [Dell’Acqua and Gamba, 2012; Dong and Shan, 2013]. Many solutions
for automated damage detection or classification have been developed over the past years in
academia, based on several remote sensing techniques. Dong and Shan [2013] provides a clear
overview of the solutions up until 2013 and several more have been developed since [Dominici
et al., 2017; Sharma et al., 2017; Kakooei and Baleghi, 2017; Vetrivel et al., 2016b; Menderes
et al., 2015]. However, in practice, services from the International Charter, like Copernicus and
UNOSAT, are mostly used for Satellite-based Emergency Mapping (SEM) [Voigt et al., 2016]
as they produce usable results [Kerle, 2010]. The method for damage classification used by
these services is manual visual interpretation of remotely sensed data, as is indicated by the
disclaimers or map information of products from these services and a program specialist at
UNOSAT [Copernicus EMS, 2017; UNDAC, 2017]. While this approach is safer for the aid
workers in the field, it remains a laboursome task.

1.1 problem statement
It seems remarkable that the extensive academic research on automated damage detection is
not implemented in the disaster relief sector, as the building damage is a fundamental indicator
used in DRM and relief operations [Schweier and Markus, 2006]. The lack of implementation
of automated methods can be seen as an indicator of the absence of support from the hu-
manitarian agencies. Several considerations could be the cause of this; [1.] there is too little
communication between humanitarian agencies and academics, resulting in too complex meth-
ods or inadequate solutions. [2.] the methods proposed do not deliver the expected outcomes
concerning effectiveness or accuracy. [3.] there are no resources to implement the new meth-
ods in existing procedures. An example of this can be found in Ajmar et al. [2011]. This paper
mentions the lack of predictable results and time involved as impediments for implementation
of automated approaches. Disaster situations require fast implementations as lives might be at
stake, while reliable results are necessary for fair distribution of aid.

The stringent requirements from humanitarian organisations in disaster situations results in
the recurrence of visual interpretation within damage detection from remotely sensed data. In
this process a group of professionals has to visually inspect pre-event and post-event imagery
to conclude the extent of damage to areas. Even though this is common practice, it is only
viable on smaller areas, as the task of human comparison is labour intensive and requires spe-
cialist knowledge. The return to this method is aided by the understanding that automated
approaches are not as accurate as human interpretation from satellite imagery. However, this
is difficult to corroborate as academic literature seems to insinuate the opposite.

This research explores methods for the accurate classification of building damage after a nat-
ural disaster. Existing academic methods will be taken into consideration and tested on the
available -real world- data from St. Maarten. Furthermore, the research will be conducted in
cooperation with NLRC to cope with some of considerations that might be causing the lack of
implementation. Advances in remote sensing techniques, machine learning and Geographic
Informations Systems (GIS) are recognised as upcoming and supportive technologies within
the organisation, as it established a new data team [510] in 2016. The data team and NLRC, as
well as other humanitarian organisations, could benefit from the research into the automated
classification of building damage after a disaster, as it would allow for more efficient delivery
of aid and humanitarian relief. The academic field working on remote sensing for disaster sit-
uations could also benefit from this research as it will provide a comparison between methods
in a scenario different from the academic examples.
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An viable method would enable humanitarian organisations to accurately plan their interven-
tions and relief operations on the basis of damage inflicted in a disaster struck areas. This
would allow for an increase in effectiveness of the activities, and therefore help more people
affected by a natural disaster.

1.2 research objectives
The objective of this research is: to develop a method for the automatic classification of damage
inflicted by hurricanes using remotely sensed data; applied to the case of hurricane Irma on the island of
St. Maarten. This will be based on already existing methods, which will be extended to suit the
requirements from humanitarian organisations for improved aid delivery. To achieve this goal
the following research question will be answered:

Is the use of remotely sensed data a viable option for the automatic classification of
hurricane inflicted damage?

To develop such method various other challenges will need to be handled. These will be dealt
with in the literature research and analysis of existing academic methods. To guide this process
the following sub-questions have been formulated:

• How is damage determined?

• What criteria are set for damage classification methods?

• Which methods already exist?

• How do these methods perform?

• How does the state of the art compare to these methods?

With answers to these sub-questions, a description of an effective method is developed. This
allows for insight in the necessities of such method. The difference between damage detection,
classification, and assessment is also considered as all three require different approaches. The
restrictions imposed by humanitarian organisations, especially within disaster situations, are
also taken into consideration; as these might impose other criteria on methods. As described
in this chapter various methods already exist, a subset of these will be considered in this
research after the criteria for damage classification have been established. The next scientific
challenge lies in the determination of the effectiveness of existing methods. The main question
to be answered in this regard is the accuracy comparison between ground truth data from St.
Maarten and the results from these methods. An assessment to classify accuracy is necessary to
be able to compare the methods. To better map the impact of a disaster an extended overview
of the damage is necessary, to achieve this the methods will be examined for extension to allow
for damage classification. To ensure the possible solutions and extensions can be applied, these
will be evaluated for performance compared to existing methods and ground truth. This will
take into account the data derived from Copernicus assessment of the island from September
2017. With answers to all these sub-questions and the main research question, it would be
necessary to see the methods and possible extensions on a broader scale and consider their
fit within both the academic field and humanitarian field of operation. This will allow for
reflection on the results and might allow for discussion on the possibility of implementation in
the field.

1.3 research methodology
In this section the methodology to achieve the main research goal will be defined. As shown
in figure 1.2, the methodology for this research is linearly structured with 3 sub-groups, Prepa-
ration, Research implementation, and assessments of Results. To answer the first three sub-
questions an extensive literature research has been set-up as preparation for the implementa-
tion of existing methods. On this bases, methods have been selected to be implemented and
possibly extended. Lastly, the results from all implementations will be compared and dis-
cussed.

1.3.1 Preparation

The literature review as preparation for the implementation and comparison will form the base
for this research. To allow for a thorough, yet workable, approach the following guiding princi-
ples have been used. The inclusion criteria for the research were different for the various topics.
In general the literature are peer reviewed papers or masters or doctorate theses from the past
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Figure 1.2: Methodology structure, highlighting the various phases [Grey = Preparation,
Green = Research implementation, and Yellow = Assessment of Results]

15 years. However, exceptions have been made for explanations of guiding principles. All liter-
ature is related to the topic they are describing and have been found through a combination of
related key-words. The literature review regarding existing methods have been more strictly
limited to the past 15 years with emphasis on newer material. Furthermore, have solutions
for all disaster been considered, as long as the damage descriptions were not disaster specific.
Particularly design studies have been regarded, in which new methods were developed. This
process was guided by key-words and other literature comparing methods. The results from
this review can be found in chapter 2.
From the literature review a systematic approach to the testing of methods has been developed.
This systematic approach considers both data and method in the comparison. A description of
this approach is provided in chapter 3.

1.3.2 Implementation and Comparison

The implementation of methods and the comparison of results is based on the systematic ap-
proach defined in the preparation based on the knowledge acquired from the literature review.
A selection of methods has been implemented using the description of their respective litera-
ture; as well as extended to fit the requirements for classification in a disaster situation. The
results from this implementation have been compared to the State of the Art (STOA) approaches
in use in humanitarian response to disasters and ground truth data acquired. This comparison
provides an insight in the viability of methods to be implemented in disaster situations and
possible future research.

1.4 research scope
This research will focus on the accurate and automated classification of building damage in a
hurricane struck area. Limitations in a masters thesis are unavoidable as time and resources
are limited. Spatially the research is restricted to the Dutch part of the island St. Maarten as
well as temporally limited to the aftermath of hurricane Irma in 2017. These limitations are set
forward by the data available and is also supported by the fact that the author has been to the
island in the aftermath of the hurricanes. This on-the-ground experience could be helpful in
the understanding of the problem.
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The method to be developed will be based on existing methods and will use, for where possi-
ble, existing software packages. This will shift the focus from a completely new method, to an
adaptation with potential for implementation in various disaster procedures. This allows for
more investigation into existing methods, and selecting effective techniques. By choosing this
approach, developing a method which would be added to a list of unused, existing methods, is
avoided. To further reduce the scope, only two existing methods will be selected for rigorous
assessment. These will be chosen through the theoretical framework and literature research,
set forward in chapter 2.
For this research, the task of object detection, as used by various other academic methods
[Vetrivel et al., 2016b; Kakooei and Baleghi, 2017], will not be used. The datasets available
allow for the use of existing building outlines, gathered from recent data. The NLRC uses vol-
untary cartographers to map disaster areas shortly after an incident and where possible, in
case of the hurricane on St. Maarten, shortly before a disaster. Making sure that maps are up
to date and can be used for planning. This eliminates the need for object detection from data
sources, however requires the data input to be properly matched.
The research is limited to the various datasets available through the 510 team of the NLRC as
cleaning, relief and reconstruction activities on the island make new data collection impossible.
However, these datasets can be considered a good representation of available data in the wake
of large scale disaster. The cooperation with the data team of the NLRC allows for a good bal-
ance between the technical approach of the Delft University of Technology and a more societal
aspect from a humanitarian organisation.

1.5 reading guide
The following will be discussed in this document:

• Chapter 2 will go into further detail concerning the theoretical framework of this re-
search. Existing methods will be inventoried and two will be selected for further exam-
ination. More details on background topics concerning these methods and the method-
ology will be provided as well.

• Chapter 3 describes the implementation of the existing methods and the extension to
allow for classification over detection.

• Chapter 4 showcases the results from the various implementations. All of these are
supported by a short discussion with regards to the various requirements and accuracy
measures.

• Chapter 5 concludes the research and summarises the findings.

• Chapter 6 lists possible relevant new approaches or angles to problems encountered
within the analysis, as well as areas of research which could result in new solutions or
findings.
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2 T H E O R E T I C A L F R A M E W O R K

To assess the various remote sensing techniques and damage classification methods, a theoret-
ical framework has to be established. This framework will allow the organisation of methods
and technologies and will allow the selection of appropriate approaches in various circum-
stances. The framework presented here is based on literature research from Dong and Shan
[2013] and Kerle et al. [2008] in combination with requirements from the field.

2.1 disaster
The International Federation of Red Cross and Red Crescent Societies [2017] defines a disaster
as follows:

”A disaster is a sudden, calamitous event that seriously disrupts the functioning of a
community or society and causes human, material, and economic or environmental losses
that exceed the community’s or society’s ability to cope using its own resources.”

These characteristics in this definition emphasize the need for timely intervention by others
outside a community or area to help and support those affected. Ray Shirkhodai notes in Al
Achkar et al. [2008, p. i] that a rapid overview of the situation and extent of damage is necessary
to achieve this goal, as is corroborated by Okada and Takai [2000] and Schweier and Markus
[2006]. This rhetoric is an abstract approach to the problem, in reality every step within the
DRM cycle have separate requirements for information regarding to damage. The faster more
detailed information is available, the better. However, the first phase of the DRM, Search and
Rescue, requires much less detail for teams to be send into the field. This is a limitation set
forward by the time necessary for the procurement of data and information. The result is a
curve closely linked to time, in which the data detail requirements rise as time passes. This re-
search focusses on the emergency relief and rehabilitation phase, towards recovery [figure 2.1]
[Wisner and Adams, 2002; Crutchfield, 2013]. In these first week after a disaster, the needs for
information change from a course overview per area affected, to highly detailed information
on a block or even building level [Ozisik, 2004].

Figure 2.1: DRM activity cycle, including ongoing development. [From: Wisner and Adams
[2002, p. 19]]

To gather this data with minimum risk to aid workers, the international community established
the so-called International Charter [Bessis et al., 2003]. With resources from various space
agencies around the world it became possible to use SEM to provide rapid situation awareness
after a disaster. However, as described by Kerle et al. [2008] there are a diverse selection of other
remote sensing techniques which can be used for the collection of data, which could make
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other forms of Emergency Mapping (EM) possible. This research will take into account this
broader approach to remote sensing, looking at advances in UAV and shrinking data collection
technologies as new data sources in the immediate aftermath of a disaster.

2.2 detection, classification, and assess-
ment

Besides spatial resolution scales of information [house, block, neighbourhood], the results of
EM can also be categorised in various information densities. For the purpose of this research
these have been categorised as follows:

• Damage detection

• Damage classification

• Damage assessment

The lowest information density considered is damage detection [figure 2.2]. In this form of
EM the focus is to differentiate between buildings with and without damage. This comparable
to the studies that can distinguish between two grades of damage as described by Dong and
Shan [2013]. An example of this is Wang and Jin [2012], in which image classification is used
to derive the difference between buildings damage and not damaged by a disaster.

One step up from detection is the damage classification as used within this research [figure
2.3]. For classification, various grades of damage need to be considered. Dong and Shan
[2013] describe this as three grades or more. They also provide a framework for five damage
classes that can be used in achieving damage classification. These classes are derived from
Grünthal [1998], however the ambiguity introduced with five classes, especially between the
three middle grades, is not beneficial for humanitarian aid organisations. Therefore, the clas-
sification method proposed by Al Achkar et al. [2008], known as the Baker, Achkar, Raymond
method (BAR), will be used in this research. This framework is focused on damage inflicted to
buildings, allows for sufficient variation between damage grades and has example of damage
induced by wind. The four classes identified within the BAR method are: [1.] No visible dam-
age, [2.] Minimal Damage, [3.] Significant Damage, and [4.] critical damage, examples of the
damage extend are available in figure 2.3 and Al Achkar et al. [2008]. A simplified variation
of this is also used by the NLRC and is used within this research due to the availability of data.
[Simplified approach available on 510.global].

The last resolution is damage assessment [figure 2.4]. This requires more insight in the damage
caused, as well as interior damage which is usually not observable in EM or SEM. Therefore
people on the ground are required to do thorough investigation into the damage caused. The
exception to this is the use of high resolution oblique imagery, which in some cases might be
able to distinguish damage in the vertical plane [Vetrivel et al., 2016a], however most damage
assessment will need to be done by humans with guides from governments, like from The
Federal Emergency Management Agency [2016].

Classification

Statistical classification is the methods for organising various samples in the right classes
[Theodoridis and Koutroumbas, 2009]. Humans are able to discern various features of an object
to decide the classification. To achieve the same with the help of machine intelligence, various
methods have been described. These range from linear classifiers to Support Vector Machines
and Neural Networks. These can be subdivided in Supervised, Semi-Supervised and Unsuper-
vised classification algorithms, based on the amount of pre-existing knowledge [Theodoridis
and Koutroumbas, 2009]. In this research two specific approaches to this are researched, an
empirical approach, in which Bayes Decision Theory is used as well as a Convolutional Neural
Network (CNN). In Bayes Decision Theory an assumption of the distribution of features is
made to classify others. A-priori (or existing) knowledge is used to inform the classification
process to make decisions [Theodoridis and Koutroumbas, 2009]. With a CNN approach, little
a-priori knowledge is used to train an algorithm to classify features.
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Figure 2.2: Example of damage detection [Based on: Netherlands Red Cross (11 Sept. 2017),
Cole Bay - Sint Maarten [georeferenced image], used under CC-BY4.0 as part of
Open Imagery Network, retrieved from www.openaerialmap.org]

Figure 2.3: Example of damage classification [Based on: Netherlands Red Cross (11 Sept.
2017), Cole Bay - Sint Maarten [georeferenced image], used under CC-BY4.0 as
part of Open Imagery Network, retrieved from www.openaerialmap.org]

Figure 2.4: Example of damage assessment [Based on: Netherlands Red Cross (11 Sept. 2017),
Cole Bay - Sint Maarten [georeferenced image], used under CC-BY4.0 as part of
Open Imagery Network, retrieved from www.openaerialmap.org]
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2.3 method assessment framework

The unexpected nature of a natural disaster, as described in section 2.1, make it hard to prepare;
the collection of datasets can therefore, usually, not be planned in advance. However, time is
of the essence in a disaster situation, both for response and data acquisition. The first is ex-
emplified by the need for information on the magnitude of disaster. Knowledge regarding the
extend of an effected area is paramount for the planning of relief operations [Al Achkar et al.,
2008; Schweier and Markus, 2006]. Which requires timely data, this is an conceptualisation
of the time it takes to get data to the user while it is, still, or most valuable [Christopher and
Doeglas, 2015]. In the case of disaster this can be defined as directly when available. The faster
data is available for analysis, the quicker people affected by a disaster can be helped. The latter
is described by Christopher and Doeglas [2015] as window of opportunity. This describes the
short amount of time certain data can be collected, this may vary per disaster. An example of
this is that in case of a hurricane, clouds can obscure the struck area. Furthermore, the accuracy
of data is a consideration as well. For the very first relief operations, global data of damage
will suffice as these kind of operations require a specific time to set up as well. Very rapidly
after that more detailed information is necessary for the planning of future operations and long
term relief. Reflecting back on the requirements of time and resolution, it can be concluded
that the chosen remote sensing techniques are very dependent on the resolution they can offer
as well as the timely manner they can do that in. The methods chosen for implementation will
need to reflect this as well.

An extensive analysis and description of remote sensing techniques can be found in Kerle
et al. [2008]. The various specifications, capabilities, operation advantages and limitations, and
examples are presented per system. This allows for a good overview of all the possibilities.
However, humanitarian organisations do rarely have the opportunity to choose out of all op-
tions as they require specialist operators or equipment. Those are most of the time neither
available in disaster areas which limits the options. Exceptions on this rule is the availabil-
ity of satellite data that becomes more open for humanitarian organisations around the world
through projects like the International Charter [Voigt et al., 2016]. This program allows all
involved in relief operations to gain access to satellite data and subsequent information. The
advances of portable UAVs and smaller capture technologies also allows humanitarian organ-
isations to quickly gather Very High Resolution (VHR) imagery of areas affected by disasters.
They provide an economical substitute for regular aerial surveillance [Nex and Remondino,
2014] and are already more implemented in disaster situations [Lieshout, 2017; Johnson, 2017].

Dong and Shan [2013] give an overview of various building damage research up until 2013.
A summery of the various techniques and data types is also presented. The classification of
methods is done on the basis of data, collection platform and amount of damage levels that can
be detected. This subdivision allows for the selection of appropriate methods in varying situa-
tions. However, the clear absence of any indication of accuracy of methodologies only allows
for an overview of the field of research and less for selection for implementation in operational
procedures.

There is no perfect framework that would classify the various methods on their feasibility in
specific disaster situations. This would allow humanitarian data specialist to select the best
suitable solution for specific disasters. The main factor from literature on which methods can
be classified is accuracy, however for the feasibility of an implementation for humanitarian
context other aspect have to be considered as well. Due to the window of opportunity, the
timely acquirement of data is critical. Various acquisition techniques described by Kerle et al.
[2008] are therefore not available. A similar restriction is set due to monetary restrictions in
a disaster situation. The main source of remotely sensed data for humanitarian organisations
are: Satellite optical imagery provided through the International Charter, Satellite SAR data
provided through various governmental space agencies, and UAV optical imagery collected by
delegates in the field. Collection method is therefore part of the framework, combined with
acquisition time. Resolution is less of an issue for various of the methods, however the best
resolution for humanitarian action would allow identification of damage on a building level
without extensive extra data. For an adequate selection of methods a combination of the above,
with time indication, resolution, data, and accuracy is necessary. Some of these indicator will
be connected and change dependently, however an overview in which all is displayed allows
for a quicker overview of methods connected to remote sensing techniques. Table 2.1 shows
the various classes which are of importance for the feasibility of methods in humanitarian op-
erations.
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Table 2.1: Method assessment framework parameters

Requirement Description

Accuracy Percentage of building damage classified correctly.
Acquisition time Period from disaster to acquisition of data, travel time of dele-

gates not included.
Acquisition method The technique used for the procurement of the data, mostly lim-

ited by financial and time restrictions.
Resolution The resolution of the data and information retrieved from

method.

2.4 datasets available
As described in section 2.3, the availability of remotely sensed datasets is limited in a disaster
situation. However, this is changing with more emerging techniques. An overview of datasets
usually available in a disaster can be provided taking operational limitations into account. This
section, summarised in table 2.2, will provide an overview of these datasets and their advan-
tages and disadvantages. These are based on operational restrictions from the 510 team at the
NLRC. A clear similarity between the datasets is the use of governmental acquiring techniques
[Satellite acquired data and Digital Elevation Model (DEM)] or individual acquiring techniques
[UAV data]. These datasets are usually available due to the limited resources necessary in col-
lection, as no specialised acquisition companies are involved. The access to satellite datasets is
regulated in the international charter, which ensures the availability of these datasets in case of
a disaster. Satellite imagery usually provides extensive coverage for an affected area, however
it lacks on interpretability and requires specialist knowledge. More NGOs and humanitarian
organisations acquire UAVs to quickly collect data after a disaster or in preparation of expected
disasters. This allows for focused collection of data with high resolution, however the tech-
nique is extremely limited in the geographic coverage. All datasets are a balance between
speed and interpretability. This trade-off by design becomes part of the methods for damage
detection.

Table 2.2: Datasets usually available after a disaster with resolution per pixel and respective
advantages and disadvantages.

Dataset Resolution Advantages Disadvantages

Satellite Optical 2x2m - 0.3x0.3m
• Large coverage
• quickly available
• centralised approach

• High resolution is expen-
sive

• affected by atmospheric
conditions

• resolution can be limiting
in interpretation

Satellite SAR 20x20m - 1x1m
• Large coverage
• quickly available
• centralised approach
• less affected by atmo-

spheric conditions

• High resolution is expen-
sive

• difficult to interpret
• specialist necessary for in-

formation deduction

UAV Optical 0.2x0.2m -
0.02x0.02m • High resolution relatively

cheap
• easily interpretable

• Small coverage
• slow acquisition
• affected by weather condi-

tions

UAV DEM 5x5m - 1x1m
• High resolution relatively

cheap
• Small coverage
• slow acquisition
• affected by weather condi-

tions

Global DEM 30x30m
• Freely available world

wide
• Low resolution
• without other data sources

fruitless in damage detec-
tion

• only available data from
before the disaster
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2.5 existing techniques
Table 2.3 summarises the findings of various research of the past 15 years into the [semi-] au-
tomated detection or classification of damage to buildings. These have been selected by the
inclusion criteria as described in section 1.3.1. This is a non-exhaustive summary but allows
for a clear overview of the various approaches. Only [semi-] automated solutions are taken into
consideration, all information about technique, resolution and accuracy has been taken from
the respective paper, while acquisition time has been related to sensing technique or taken
from Kerle et al. [2008]. From this table it is clear that most research is already focused on the
datasets mostly available in disaster situations. However, most of the research is dedicated to
the detection of damage and not classification. This proves a gap in the research which could
benefit the humanitarian organisations.

Table 2.3: Overview of existing methods [Alphabetic order]

Method Description

[Antonietta et al., 2015] Various semi-automated approaches based on satellite optical
data from typhoon Hainan. Methods consist of [1.] Multi-
temporal change detection based on various algebraic and image
transformations, [2.] and Mono-temporal Segmentation.

[Brunner et al., 2010] Damage detection using VHR optical and VHR SAR datasets.
Method based on image matching and height estimation. Lim-
ited to rectangular buildings and tested on limited dataset.

[Li et al., 2017] Method for building and damage detection using VHR satellite
optical imagery. Based on Chinese Restaurant Franchise ma-
chine learning, combined with unsupervised approach for earth-
quake damage detection.

[Martha et al., 2015] Through the use of stereographic panchromatic images, a 3D
overview of the 2011 Sikkim earthquake was formed. The
method used block triangulation and stereographic visual
change detection for geologic and infrastructural damage detec-
tion. A lack of image signatures made damage detection on
building level scales not possible.

[Menderes et al., 2015] A change detection algorithm based on DEM data from pre-event
and post-event. The detection is based on a threshold on the
difference in coherence between a Digital Surface Model and
Digital Terrain Model in both situations.

[Ozisik, 2004] Damage identification on VHR optical imagery was achieved
through: colour indices, edge intensity, and variance of edge
intensity. An implementation of the Maximum likelihood classi-
fication algorithm allowed for improved damage identification.

[Samadzadegan and
Rastiveisi, 2005]

An implementation in which vector features are used for the
classification of damage. Genetic Algorithm and Fuzzy Infer-
ence System were used to handle optimum feature selection and
to eliminate ambiguity in the process.

[Vetrivel et al., 2016b] Multiple methods are proposed for the use of CNN. The algo-
rithms are used for the identification of features and the detec-
tion of damage. Various CNNs are used with varying results
however all work with high accuracies in detection. More in
section 2.5.2.

[Yun et al., 2015] This method uses radar [SAR] coherence change detection for the
creation of damage proxy maps. These maps highlight damage
and are used for visual interpretation of the information. SAR
preprocessing and histogram matching are used for the correct
identification of damage. More in section 2.5.1.

Methods considered for this research are limited to those that can be used with the data avail-
able and that have considerable accuracies in the prediction of damage classes. From table 2.4
it is clear that there are various valid options for the detection of damage and even possibilities
for the classification of damage.

The selected methods for this research are Vetrivel et al. [2016b] and Yun et al. [2015]. These
showed most promise in the research for the summary represented in table 2.3. Vetrivel et al.
[2016b] uses a machine learning approach and achieves a high accuracy. This methods is
similar, using more modern techniques to Ozisik [2004] which was able to achieve classification
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Table 2.4: Framework analysis of existing methods. * marks classification, and ◦ marks detec-
tion as described in section 2.2. Info scale is the scale of the resulting information;
B = Building, BL = Building Block, and N = Neighbourhood. [Alphabetic order]

Method Technique Resolution Acq.
time

Accuracy Info
scale

[Antonietta et al., 2015]◦ Satellite Optical 0.8x0.8m 6 days 70-80% B
[Brunner et al., 2010]◦ Satellite Optical and

Satellite SAR
0.6x0.6m
1.1 x 1.0m

6 days 90% B

[Li et al., 2017]◦ Satellite Optical 0.6x0.6m 6 days 70% B
[Martha et al., 2015]◦ Satellite Optical 0.6x0.6m 6 days n/a N
[Menderes et al., 2015]◦ Aerial Optical 0.3x0.3m Days 90% BL
[Ozisik, 2004]◦ UAV Optical n/a Hours 70-80% B
[Samadzadegan and
Rastiveisi, 2005]*

Satellite Optical 2.44x2.44m 3 days 74% B

[Vetrivel et al., 2016b]◦ UAV Optical n/a Hours 80-90% B
[Yun et al., 2015]◦ Satellite SAR 2.7x22m 6 days n/a BL

of datasets available for this research. The implementation of the method will provide insights
into the use of machine learning for classification of damage and the transferability of such
method. Yun et al. [2015] is the only paper in the list that can cite users of the data and
provides analysis using this method for other disasters. Providing a strong base for the possible
transferability of method, which would allow it to be used in other disaster situations. The
difference in data used for these approaches to the problem also allows for comparison of
methods on various sorts of data. Within this comparison some other approaches to existing
datasets will be used, these are further explained in chapters 3 and 4.

2.5.1 Equalisation and subtraction - Yun et al. [2015]

In their paper, Yun et al. [2015] develop a method for the detection of damage after a disaster.
This methods is tested on the 2015 Gorkha earthquake in Nepal, but their database shows
the application on disasters of other origin as well [JPL, 2018]. Their guiding principle is
the change in coherence between SAR images. Coherence maps are used to identify noise in
images [Ferretti et al., 2007]. This approach by Yun et al. [2015] is based on the notion that the
structure within an image changes when destruction occurs, hence a change in noise within
the coherence map. This can be visualised in an optical image [figure 2.5]; in which the human
brain can identify an building by the cohesion between pixels in an image, while a damaged
building can be identified by the incoherence of pixels within the image.

(a) Black and White coherence of im-
age pre-event

(b) Black and White coherence of im-
age post-event

Figure 2.5: Structure within an image, pre-event (Left) and post-event (Right) damage sus-
tained [From: Left: IGN France (16 Feb. 2017), Saint-Martin Orthoimage [georef-
erenced image] — Right: Netherlands Red Cross (15 Sept. 2017), Quilletor Dr -
Sint Maarten [georeferenced image] — both used under CC-BY4.0 as part of Open
Imagery Network, retrieved from www.openaerialmap.org]

To identify this structural change Yun et al. [2015] use a equalised coherence maps, one pre-
event and one post-event. These maps are created from CSK and ALOS-2 datasets with respec-
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tive resolutions of 3 meter and 10 meter. Equalisation is achieved through the matching of the
histograms of the coherence maps, resulting in statistically equal images in which specific pixel
values can vary. Empirically a threshold is chosen to differentiate between noise and change
for the detection of damage. Figure 2.6, shows all steps of the process. The results from this ap-
proach are used by various agencies around the world, as it allows for a quick visual overview
of the damage sustained in a disaster, which can be used for prioritisation of humanitarian aid.
The damage sustained is not quantified or projected on [building] features, which limits the
process to the interpretation of a user.

Figure 2.6: Method used by Yun et al. [2015]

InSAR and Coherence

Satellite Interferometric Synthetic-Aperture Radar (InSAR) is a particular use of radar, namely
SAR. Radar makes use of electromagnetic pulses in the microwave spectrum, therefore it is
considered an active imaging sensor [Hanssen, 2001; Ferretti et al., 2007]. These properties
make it extremely valuable for the imaging of the earth in sub-ideal conditions [night-time or
under cloud cover]. As described in section 2.3, time is of the essence in a disaster situation,
the ability to gather data under sub-ideal conditions is extremely beneficial for a humanitarian
mision. InSAR uses two observation of the same part of the earth to calculate the interferometric
observations [Ferretti et al., 2007]. These images have a slight offset, which can be achieved
by either using two sensors, spatially offset from each other on the same carrier, or the same
platform observing the same area twice. This multiplication of the phases of either observation
can be used for various remote sensing applications, most notably the generation of a DEM, or
the deformation of the sensed area.

A coherence map is a product derived from the interferometric observation of earth in which
the cross-correlation of the phases of either observation is estimated over a kernel [Hanssen,
2001; Ferretti et al., 2007]. The normalised value is a indication of coherence between observa-
tions, which can be used for the estimation of noise in observations, as well as change detection.
Areas with little to no coherence can usually be correlated to vegetation or other natural en-
vironments in which change is observed between offset observations. Man-made structures
are related to a high coherence as these are likely to remain similar over larger time spans or
various angles.

Change detection

For the detection of change between two images various solutions have been developed over
the years based on different approaches [Singh, 1989; Tewkesbury et al., 2015]. Yun et al. [2015]
have chosen for a pixel based approach. This Univariate image differencing [equation 2.1]
subtracts one observation from the other and transforms these to a positive number [Singh,
1989]. It is however noted that the threshold chosen for the detection or classification of change
influences the outcome of this approach. Various methods for esthablishing the threshold have
been developed, ranging from empirically set thresholds to the assessment of the meta-data
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and various specifics of the images used [Singh, 1989]. Yun et al. [2015] use an empirically set
threshold, in which ground truth data can be used to adjust this parameter.

Dxk
ij = xk

ij(t2)− xk
ij(t1) + C (2.1)

2.5.2 Convolutional Neural Network - Vetrivel et al. [2016b]

Vetrivel et al. [2016b] describe a broad approach to the detection of building damage through
the use of machine learning, CNN and Support Vector approaches. Their method is tested on
various earthquake datasets, i.a. 2010 Port-au-Prince Haiti, 2012 Mirabello Italy, 2015 Kath-
mandu Nepal. Their proposed method is a comprehensive approach using oblique UAV im-
agery. Various characteristics of the imagery are used in the approach which mainly relate
to the use of 3D point-cloud features. Oblique imagery allows for the creation of 3D point
clouds through a photogrammetric process. The fusion of this point cloud with the imagery
is the bases for a Support Vector Classification of the damage. However, in the design process
various other methods using machine learning have been tested with varying results, the most
promising is the detection of damage features using CNN.

Three approaches to the use of CNN have been defined by Vetrivel et al. [2016b]. The first
approach is the definition of a new CNN and training from scratch. For this method the ar-
chitecture [figure 2.7] and various settings are provided in the paper. Secondly a pre-trained
network from Krizhevsky et al. [2012] has been modified and retrained for the classification
of damage. Lastly this retrained network is used for the extraction of features to be used in
combination with the 3D point cloud. All CNN approaches have been validated for damage
detection on the same datasets with respectively 7130 and 5414 classified samples. No signif-
icant accuracy increases where found for any of the approaches, all scored within the 90th
percentile. These accuracy scores and model transferability quoted in the paper make this a
valid approach for similar datasets, in the case of this research ortho-rectified imagery.

Figure 2.7: CNN architecture [From: Vetrivel et al. [2016b]]

Due to the various restrictions of this research only one approach to CNN for damage detection
will be considered. As there are no accuracy benefits for choosing any, other circumstances
will be taken into consideration. The simple approach to a new CNN, which can be trained
from scratch will guarantee the model awareness of the data, increasing the changes of correct
classification. A similar sized training set is available and the new approach allows for fine-
tuning. The steps necessary to achieve an approach as described by Vetrivel et al. [2016b] is
summarised in 2.8.

Neural network
Neural networks, and therefore also CNNs, have come from the field of deep learning [Hard-
esty, 2017]. This approach to machine learning is roughly modelled on the human brain. A
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Figure 2.8: CNN implementation from scratch, Vetrivel et al. [2016b]

network of connections is being trained to perform a specific task, for example the classification
of data. The first mentions of such an approach to machine learning date back to the second
half of the last century [Lawrence et al., 1997; Hardesty, 2017]. CNNs have evolved to become a
distinct approach within Neural Networks, in which various layers guide data through filters
to reduce data and deduct weights and thresholds. A simple CNN has been shown in figure 2.9,
in which the various convolutional layers reduce the images by kernels, activated with a spe-
cific algorithm. These so-called pooling algorithms are used to reduce the data. This pyramid
structure allows the last layer, usually a regression algorithm, to determine the class assigned
to the specific feature [Lawrence et al., 1997].

Figure 2.9: A simple CNN. [From: Lawrence et al. [1997]]

2.6 related background information
2.6.1 Colour space

For the comparison of approaches as mentioned in section 1.3, various colour spaces are used
to gain a simplification of the dataset. Colour spaces are methods used for standardisation of
the description of colour. These are all based around the sensations regarding colour percep-
tion as described by Hunt and Pointer [2011]; Ford and Roberts [1998]. These are:

• Brightness of a colour, regarding the variance in light

• Hue of a colour, the similarity between colour, usually expressed in Red, Green, and
Blue (RGB)

• Colourfulness of a specific area, the amount of hue in a feature

• Lightness, this is a description of brightness referenced to a white area

• Chroma, is the colourfulness referenced to lightness

• Saturation, is the colourfulness relative to the brightness.

Ford and Roberts [1998] describe the various colour spaces available for use. These are all used
for various applications and are simplifications of the sensations of colours for humans. These
simplifications are necessary for computers to represent colours as data. The colour spaces
considered in this research are RGB and Hue, Saturation, and Lightness (HSL), specifically Hue,
Saturation, and Value (HSV). RGB is the most commonly used colour space, most cameras and
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monitors represent colour in this way [Ford and Roberts, 1998]. It separates the colour into 3

bands described by Red, Green, and Blue, while all other colours are a mix of these 3. It is
easy to implement and understand [figure 2.10a], but are non-linear with human sensations
of colours. HSL is a group description for colour spaces in which the first two parameters
are Hue and Saturation, while the last is on of the other options for sensations of colour as
described in the list above. For this research HSV has been chosen. Value is used to describe
the colourfulness of an area [figure 2.10b]. As RGB these colour spaces are non linear, and can
therefore be linearly transformed both ways using pseudo-code as described by Schwarz et al.
[1987] [Code block 2.2]. However, they are more intuitive and comparable to the sensation of
colour for humans. This comparability allows for introduction into the classification process of
damage. Visual interpretation is the preferred method used for damage detection [chapter 1]
and a more comparable approach to colour definition could help the introduction of automated
approaches. HSV is more computationally effective than HSL and has therefore been applied in
this research [Schwarz et al., 1987].

(a) RGB colour space (b) HSV colour space

Figure 2.10: Colour spaces visualised in 3D. [From: Horvath [2011]]

Psuedo code RGB to HSV from Schwarz et al. [1987]

F = H ∗ 6 − Floor(H ∗ 6)

T1 = V ∗ (1.0 − S)

T2 = V ∗ (1.0 − (S ∗ F))

T3 = V ∗ (1.0 − (S ∗ (1.0 − F)))

case f loor(H ∗ 6) mod 6 o f

0 : (R, G, B) = (V, T3, T1)

1 : (R, G, B) = (T2, V, T1)

2 : (R, G, B) = (T1, V, T3)

3 : (R, G, B) = (T1, T2, V)

4 : (R, G, B) = (T3, T1, V)

5 : (R, G, B) = (V, T1, T2)

(2.2)

2.6.2 Inter-rater statistics

Cross classification is a popular statistic to describe the accuracy of a method for prediction
[Warrens, 2011]. The description of these inter-rater statistics have been developed throughout
many academic fields. These have originally been developed to determine the accuracy of two
human raters in various research fields [Bhowmick et al., 2008]. However, with the growth of
machine learning and other predictors, these indices have been used more to describe their
performance with regards to ground truth. This more elaborate description of cross classifica-
tion or inter-rater statistics is used in this field to compensate for the possibility of unbalanced
input and outcomes, in which a larger subset of a specific class might affect the accuracy, in
which only the correct answers are considered [Equations 2.3].

accuracy =
correctly classfied samples

total classified samples
(2.3)

For this research, two methods to describe inter-rater statistics have been chosen. These are
the so-called F1-score [Sørensen–Dice coefficient] and the Cohen Kappa coefficient [Dice, 1945;
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Sørensen, 1948; Cohen, 1960].Both of these are popular and established methods for the de-
scription of inter-rater accuracy for the evaluation of learning algorithms.

Cohen Kappa
The Cohen Kappa is developed in 1960 by Jacob Cohen at New York University [Cohen, 1960].
It’s first implementation was used to describe the categorisations [nominal descriptors] of 2

observers in clinical-social-personality studies. The kappa score is described by Cohen [1960]
as an indicator of agreement. In the definition of the Cohen Kappa coefficient, it compares
the agreement between observers compared to random assignment [Warrens, 2011]. From
which the statistic can handle imbalances between classes as well as multiple classes [Kam-
pakis, 2016]. These characteristics make it useful for the description of performance in nominal
machine learning techniques, and therefore a suitable descriptor for the performance of the
methods considered in this research.

As described by Warrens [2011], the Cohen Kappa coefficient is given in equation 2.4. Which
holds true if the categories are in the same order for both observers, such that the row and
column totals can be described as in equation 2.5.

κ =
P − E
1 − E

Where

P =
n

∑
j=1

pjj and E =
n

∑
j=1

pjqj

(2.4)

pj =
n

∑
k=1

pjk and qj =
n

∑
k=1

pkj (2.5)

F1-Score
The F1-score or Sørensen–Dice coefficient is based on the work of Dice [1945], in which the
association between species is measured, and Sørensen [1948], in which the same is described
for plants. This method considers the harmonic mean of both recall and precision [Sasaki,
2007]. In this descriptor of inter-rater statistics, the precision is considered the rightly classified
as proportion of the total classified within one category; recall is considered the inverse of
precision as described as the proportion of the rightly classified over the ground truth total
within one category [Buckland and Gey, 1994]. This description was generalised by Chinchor
[1991] in which the classifier could be varied by an β constant. As described by Sasaki [2007],
the F1-score reflects to β = 1, with a resulting equation 2.6, in which P is precision and R is
recall.

F =
2PR

P + R
(2.6)

The development of this method for cross classification in information retrieval by Chinchor
[1991] and the broader statistics of the data with the inclusion of precision and recall per
category, allow for an in-depth understanding of the results of machine learning algorithms.
These characteristics suit this research, as it provides more understanding of the results per
classification category than the generalised Cohen Kappa coefficient. The inclusion of the
other precision and recall indicators is, however, paramount.

Critique on inter-rater statistics
Both the F1-Score and Cohen Kappa coefficient are not unscrutinised [Feinstein and Cicchetti,
1990; Pontius and Millones, 2011; Powers, 2015]. The use of Cohen Kappa leaves some room
for ambiguity, however is still the most accurate method to measure agreement while factoring
in random assignment. It can however be bias in some extremely unbalanced test sets in which
the categories are skewed to a particular classification. As described by Powers [2015], the
F1-Score should only be used to look at one category at a time, this because it is very sensitive
to majority classes. A balance between methods is therefore necessary. The inclusion of recall
and precision can be used to further explain the Cohen Kappa coefficient, while taking into
account limitations from both methods.
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3 I M P L E M E N TAT I O N

This chapter describes the implementation of the methods for comparison of the performance
in a disaster situation. The implementation is mainly focused on the comparison of accuracy
of the models. A discussion on the implementation, including the humanitarian aspects, can
be found in section 4.5.

3.1 preparation
In the preparation of this research various background information has been collected, the re-
sults of this research have been represented in chapter 2. These results are based on literature
studies and practical experience from the field regarding the use of damage data in the wake
of a disaster. However, the methods selected for comparison have also been selected for their
variety in data sources used. This guarantees the availability of either dataset in case of unseen
disaster situations. To thoroughly compare the impact of data and methods, table 3.1 has been
developed for easier comparison. The goal of this matrix is the comparison between the influ-
ence of data and methods. Further more it allows for the exploration of comparable methods
between datasets to achieve new methods and possibilities for classification. As the method
by Yun et al. [2015] is developed for SAR data, a comparable method will need to be found or
developed for optical data. Vice versa for the method described by Vetrivel et al. [2016b], in this
case the methods are written for optical data and should be considered for SAR data. Section
3.3 will elaborate on these comparable approaches to damage detection and how these might
apply to damage classification.

Table 3.1: Design matrix for combination of methods and data. Combinations have been
abbreviated for continuity in text. These combinations are: Equalisation and
Subtraction on Optical UAV data (ESO), Equalisation and Subtraction on Satellite
SAR data (ESS), CNN approach for Optical UAV data (CNO), and CNN approach for
Satellite SAR data (CNS).

Optical UAV Data Satellite SAR Data
Equalisation and
subtraction

ESO ESS

Convolutional Neu-
ral Network

CNO CNS

3.2 tools and datasets used
Tools and data are necessary to facilitate the implementation of the methods in design matrix
[Table 3.1]. the following sections provide a short overview of the tools and data used in the
implementation. These relate to the methodology described in section 1.3 and methods selected
in section 2.5.

3.2.1 Tools

The tools in table 3.2 are select for the assessment of the existing methods as described in sec-
tion 2.5. These are based on Open Source or Free to Use software packages as these are also
available for deployment in the field by the NLRC. Furthermore allow these package for more
customisability for implementation with specific datasets. All code is available on GitHub 1.

1 https://github.com/DKersbergen/AutomatedDamageClassification
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Most of the implementation has been done using Python, this universal programming language
is compatible with the other tools available for this research. Some steps required specialised
algorithms, these steps are the following: [1.] To accommodate for the use of [visual] geo-
programming, Qgis has been used. All code was written in Python but based on internal
analysis methods from Qgis. Other geo-programming components have been done in Python
using GDAL and OSR. [2.] For the specialised pre-processing and analysis performed on SAR
imagery, the free to use European Space Agency (ESA) processing tool SNAP has been used. [3.]
Lastly, to perform deep learning within the Python language, the module tflearn for Tensorflow
has been used. This module has compatibility problems with Windows, therefore a Windows
Subsystem for Linux (WSL) has been used to accommodate this tool.

Table 3.2: Tools and modules used in this research [Alphabetic order]

Tool Used for Notes

Python General programming language, tflearn
module available as implementation of
Tensorflow

Most steps are done through
automation via Python to en-
sure quick overviews of large
datasets.

Qgis For visualisation, change detection, and
Geo-referencing

–

SNAP To prepare SAR datasets for change de-
tection

Free to use [for non-profits] SAR
processing software from ESA.

Tensorflow Machine learning tool, with pre-trained
networks available

Used through a WSL install of
Ubuntu.

3.2.2 Data

The data available for this research has been summarised in table 3.3. These datasets have been
guidance in the selection of methods to be implemented, as put forward in section 1.4.

The specifications of the datasets are provided in table 3.3, including the sources. All datasets
are available through the various portals. Ground truth data is excepted as it might contain
sensitive data about the people on the island of St. Maarten. The portals for the data are [1.]
OpenAerialMap 2 for the UAV and aerial datasets, [2.] Copernicus Scihub 3 for the SAR datasets,
[3.] the Shuttle Radar Topography Mission (SRTM) dataset has been acquired via a plug-in to
the SNAP tool, [4.] Turbo Overpass 4 has been used to acquire the building vector layer from
OpenStreetMap 5, and [5.] lastly the STOA data for damage classification from manual visual
interpretation was retrieved from the Copernicus Emergency Mapping Service (EMS) Hub 6.
Furthermore, it must be noted that not all UAV optical data is of the exact same resolution or
from the exact date, therefore the average has been indicated in the table for the resolution and
a interval for the dates. Lastly, the ground truth data is derived, by the 510 team of the NLRC,
from VHR UAV imagery by visual interpretation following the principles discussed in section
2.2. Per dataset an example is provided.

Table 3.3: Datasets with specifications, available for this research [Alphabetic order]

Platform Technique Resolution Acquisition
date

Source fig.

Aerial Optical 0.2x0.2 m 20-Feb-2017 IGN 3.1
Satellite SAR 2.7x22 m 11-Aug, 23-Aug,

16-Sept-2017

Sentinel 3.2

UAV Optical 0.04x0.04 m 11-Sept-2017 –
2-Oct-2017

NLRC – RescUAV 3.3

Satellite DEM 30x30 m unknown SRTM n/a
– Building outline building 2-Oct-2017 OpenStreetMap 3.4
– Ground truth building 2-Oct-2017 NLRC 3.4
– STOA building 14-Sept-2017 Copernicus EMS 3.4

2 www.openaerialmap.org

3 scihub.copernicus.eu.org

4 https://overpass-turbo.eu/

5 www.openstreetmap.org

6 https://emergency.copernicus.eu/mapping/
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Figure 3.1: Example of aerial dataset [From: IGN France (16 Feb. 2017), Saint-Martin
Orthoimage [georeferenced image], used under CC-BY4.0 as part of Open
Imagery Network, retrieved from www.openaerialmap.org]

Figure 3.2: Example of SAR dataset [From: Copernicus Open Access Hub (2017), ESA
[georeferenced image] - used under open access by In-Orbit Commissioning
Review, retrieved from scihub.copernicus.eu.org]

Figure 3.3: Example of UAV dataset [RescUAV (13 Sept. 2017), Philipsburg NE - Sint
Maarten [georeferenced image], used under CC-BY4.0 as part of Open Imagery
Network, retrieved from www.openaerialmap.org]
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Figure 3.4: Example of building dataset [From: OpenStreetMap contributors (2017),
Philipsburg - Sint Maarten [georeferenced data], used under ODbL as part of
OSMF, retrieved from www.openstreetmap.org]

3.3 research implementation
The research phase can be subdivided in the four subcategories described in table 3.1. This sec-
tion will go into detail about the approach to each of these combinations of data and method-
ology, while the results will be presented in chapter 4.

3.3.1 Equalisation and subtraction

SAR data
For the ESS approach, the method is already elaborated by Yun et al. [2015] and in section
2.5.1. This method has two clear phases, preprocessing and method implementation. Due to
use restrictions, the software from National Aeronautics and Space Administration (NASA), de-
scribed by Yun et al. [2015], is not available outside the United States and therefore this research.
However, the ESA also provides similar tools in their SNAP package, which is available freely
for use by NGOs as explained in section 3.2. The methodology as described by Yun et al. [2015]
can therefore still be implemented. The same steps will be followed for the pre-processing of
the data, namely:

• Set building through the pairing of the Sentinel 1 SAR datasets. These sets are labelled
pre-event [11th of August 2016 paired with 23rd of August 2017] and post-event [23th
of August 2016 paired with 16th of September 2017].

• Coherence mapping with a window of size 3 pixels in the azimuth direction, propor-
tionally scaled to the SAR data available.

• Topographic phase removal using SRTM DEM data.

• Co registration of the various swaths using telemetry data.

• Terrain correction for geo-referenced result using SRTM DEM data.

The result of these steps are two coherence maps, pre-event and post-event respectively. In the
combination of these coherence maps, the method determines if damage is present. To do this
the histogram of the second coherence map is matched to the first, before univariate image
differentiation is applied. This method is not described in detail by Yun et al. [2015], so the
following approach has been defined:

• The array size of the post-event coherence map is determined

• Both coherence maps are flattened to a single list of pixels

• All unique pixels values are listed for both datasets

• The cumulative distribution function is determined by normalising the cumulative sum
of the amount of pixels in each map

• linear interpolation is used to match the statistics of the post-event map to that of the
pre-event data

22

www.openstreetmap.org


From here the matched coherence maps are subtracted from each other using univariate image
differencing, in which each pixel value from the post-event coherence map is subtracted by the
value of the pixel with the same X,Y coordinate in the pre-event coherence map [as described
in section 2.5.1]. To visualise the change all change is considered absolute, in which an increase
in pixel value can also be classified as change. Empirically a threshold will be set to determine
the pixels classified as damage. As ground truth data is available this will be used to determine
a more optimal threshold for the detection of damage. Yun et al. [2015] describe a masking
technique which involved the human settlement index, this is used to focus the change detec-
tion on the areas in which people are living. However, as this research is focused on building
scale level and building features available are, will this not be implemented and will the results
be evaluated on a building scale.

Optical data
For the ESO approach similiar steps are implemented for the detection of damage using his-
togram matching and univariate image differencing. The optical data from UAVs differs from
SAR data in various ways. First of all is the optical data available in products with 3 bands
namely RGB. Furthermore, only one dataset is available from before the disaster [aerial optical
imagery from the IGN], as well as one after the disaster [UAV optical imagery from the NLRC
and RescUAV]. This requires a different approach the the pre-processing of the data before
histogram matching and univariate image differencing can be implemented. To achieve a com-
parable approach, one band simplification of the dataset is applied. the optical imagery will be
transformed to a HSV image, of which each band is considered separate. Though this process
the image is changed from a mix of colours to a description of features within the colour space,
as described in section 2.6. In this new description of the data, three key characteristics of
colour are described, particularly the Hue of a pixel, the Saturation, and the Value. For change
detection it is important to understand what feature changes in case of damage. As can be
seen in figures 3.5 and 2.10b the saturation of an object describes the presence of colour. This
clearly does shift in the case of damage sustained to a building. From the same figures, the hue
of a building might change not as much, as the colours are roughly the same or of the same
family in the pre-event and post-event imagery. Lastly the value, this seem to change quiet a
bit during a disaster in which the amount of light reflected from a building clearly decreases as
more light is bounced around between the rouble before it is bounced back, hence a decrease in
lightness. For this method comparison all three reductions of information however are consid-
ered and taken into account in chapter 3. Considerations with all of the simplifications, from
RGB to single HSV layers, concern the time shift between images, creating other artefacts or
noise. An example of this is the value change due to a different lighting condition. However
the histogram matching as used by Yun et al. [2015] does account for these changes in lighting,
reducing the amount of artefacts or false positives.

(a) Colour representation of image pre-event
(b) Colour representation of image post-

event

Figure 3.5: Change between pre-event and post-event colour. Structure within an image.
[From: a: IGN France (16 Feb. 2017), Saint-Martin Orthoimage [georeferenced
image] — b: Netherlands Red Cross (15 Sept. 2017), Quilletor Dr - Sint Maarten
[georeferenced image] — both used under CC-BY4.0 as part of Open Imagery
Network, retrieved from www.openaerialmap.org]

The reduction from a three layered RGB dataset to a single layered map of the data allows
for the implementation of histogram matching as described for the SAR data in the previous
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subsection. However, as the pre-event and post-event datasets are not of the same resolution
[table 3.3] an extra step of pre-processing is necessary before the univariate image differencing
can be used. In this step the post-event image will be down-sampled using the algorithm
defined by Lanzcos [represented by equations: 3.1], as it performs best along other re-sampling
algorithms [Narendra and Madhukar, 2013]. From here an empirically set threshold can be
used to determine the damage detection, which can be combined with an informed approach
by optimising the threshold using ground truth data.

L(x) =

{
sinc(x).sinc(X/a) if − a < x < a
0 elsewhere

(3.1)

Classification
To extent the method described by Yun et al. [2015], to allow for classification, an empirically
set thresholds can be used to determine more classes than only detection. However, this is only
possible if the groups of damaged features are clearly distinguishable in the datasets acquired.
This does not translate to a clear identification by visual interpretation, but clear distribution
along the pixels classified for change, with correct density functions. A clear density func-
tion can allow for the identification of the damage classes, as described by Theodoridis and
Koutroumbas [2009] [figure 3.6]. Aided by the existing ground truth data on building level, the
threshold will be set empirically to determine the correct classification for damage.

Figure 3.6: Probability density function used for object classification with two classes [From:
Theodoridis and Koutroumbas [2009]]

3.3.2 Convolutional Neural Network

Optical data
For the CNO approach, the method described by Vetrivel et al. [2016b] is applicable. The steps
remain relatively similar for this research, however as this is a comparison the CNN defined in
the paper has been used. To detect damage on the optical dataset using CNN, the following
steps will be taken.

• Feature creation

• Neural network training

• Classification of samples

Due to the availability of features from OpenStreetMap, the feature creation step will vary
from the approach by Vetrivel et al. [2016b]. In this research a bounding box around the objects
will be determined, based on the outline of the buildings acquired from OpenStreetMap via
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the Missing Maps 7 initiative. For a neural network, inputs with the same dimensions are
beneficial. To ensure all features are of the same size and dimensions, the bounding boxes are
taken as squares around the building features. These bounding boxes are used to cut features
from the post-event UAV optical imagery. The resulting features are then rescaled to be the
same pixel dimensions, namely 100 x 100 pixels. These are introduced to the Neural Network
as described in figure 2.7. 70% of this dataset is used for training the CNN, while the other
30 % is used as validations set, this to the parameters described by Vetrivel et al. [2016b]. The
learning rate is set to 0.001 to allow for swift learning while ensuring no over-fitting occurs
due to a large learning rate. The resulting trained network is saved and used as input for the
classification of an unseen dataset. This unseen dataset is a set of features extracted from the
main set before training. Geographically this set is defined by the area described in chapter 4.
This set will be used in the results phase for comparison.

SAR data
In the CNS approach, the same definition as for the CNO approach can be used with regards
to the use of a CNN for damage detection. In this approach, the features can be created from
the post-event SAR data in the pre-processing phase, in contrast to the post-event UAV data
described in the previous subsection. However, the data used in this research is not compatible
with such approach as will be elaborated upon in chapter 3.

Classification
CNN methods are very suitable for extension of the classification classes, in this case from two
to four. A network can be trained for four classes instead of two by simply tweaking the deeper
layers of the network. However, as networks are usually designed for a specific goal there is
no guarantee that CNN architectures available for damage detection will also work for damage
classification with multiple classes. For this research the same network will be re-trained for
the classification of the images to 4 classes. In this approach the same features will be used,
however the training and validation set will be classified differently. This diversification of the
dataset results in a decline of features per class, which can negatively impact the performance
of the method.

3.4 assessment of results
To allow for a good comparison between the ground truth data, methods described in this
chapter, and visual interpretation as used by Copernicus EMS, various techniques for the rating
of inter-rater agreement will be used. These will be the Cohen Kappa Score, the resulting
confusion matrices, and the F1 score. All of these methods are used to determine the consensus
between the prediction and ground truth data, as described in section 2.6.2. Furthermore,
will these principles also be used for the performance rating of the various empirically set
thresholds for the method described by Yun et al. [2015]. The guiding principle in the selection
of results will be the Cohen Kappa Score. Agreement is seen as good within this context and
is therefore used for interpretation of the methods.

7 www.missingmaps.org
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4 R E S U LT S

This chapter show cases the results from the implementation as described in the previous
chapter. The evaluations in this chapter are used to answer the main research question; Is the
use of remotely sensed data a viable option for the automatic classification of hurricane inflicted damage?.
This chapter mainly focuses on the following sub-questions: How do these methods perform? and
How does the state of the art compare to these methods?. To answer these questions the results
of the methods described in chapter 3 will be discussed as well as compared to each other,
ground truth, and STOA methods. The implementation validation is focused on an area called
Middle Region in the centre of the island. Around 900 houses are part of this neighbourhood,
which was moderately hit [figure 4.1]. This area has been selected to ensure sufficient data was
available for all methods to perform analysis and validation on. The extent has been defined by
the available UAV datasets of this area. Methods will be tested on this part on the island, while
training will be based on data from all the other areas available. This chapter also discusses
the results and reflects back on the framework developed in section 2.3.

Class # buildings

none 326

partial 193

significant 186

destroyed 135

unknown 16

Figure 4.1: Map of Sint Maarten with Middle Region highlighted [Left]. Ground truth
classification of buildings from the NLRC [Right]. These have been derived by
visual interpretation from the VHR UAV imagery guided with the principles
described in section 2.2. [From: OpenStreetMap contributors (2017), Sint
Maarten [georeferenced data], used under ODbL as part of OSMF, retrieved from
www.openstreetmap.org]]

4.1 equalisation and subtraction
4.1.1 SAR data

For the ESS, the method as described in sections 3.3.1 has been applied. From the pre-processing
steps, two coherence maps where derived [figure 4.2]. Visual inspection of these datasets
already show less cohesion over the whole island after the hurricane. This is to be expected as
all vegetation was likewise hit by the hurricanes. These two coherence maps are used as input
for the histogram matching algorithm and univariate image differencing to allow for change
detection. As described by Yun et al. [2015] a threshold is empirically set for the definition of
damage detection, in this case 0.3. The resulting image [figure 4.3], clearly shows the outline
of the island and urban areas, in which the most change due to damage is expected. However
the paper does not quantify any of the results and focuses on the creation of damage proxy
maps from this result, which in this case would highlight various urban areas for damage.
These can only be used by visual interpretation for estimation of amount of damage in an area.
Section 4.3 will quantify the results of this map and compare these to the results from other
approaches.
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(a) Coherence map pre-event (b) Coherence map post-event

Figure 4.2: Resulting coherence maps from ESS approach as described in section 3.3.1.
Showing aggregated coherence per pixel, an increase in lightness correlates to an
increase in coherence.

Figure 4.3: Result from empirically set threshold [0.3] after Univariate Image Differencing
from the coherence maps. Darker colour indicate more change. All change
under the threshold has been discarded and pixels are considered not damaged.

4.1.2 Optical data

The UAV dataset for Middle Region from RescUAV and aerial imagery from IGN have been
used for the implementation of the ESO approach. To achieve a satisfactory result, the pre-
event imagery has to be of the same geographic dimensions as the post-event imagery both as
bounding box and concave hull. This to ensure the equalisation algorithm only affects -real-
data and not the masked out areas. Figure 4.5 shows the characteristic non-rectangular outline
from stitched UAV data. The correct pre-event dataset was created by using a mask with the
outline of the post-event data from the UAV. This was done with the following steps:

• For every pixel in the post-event imagery, it was decide if this pixel had data, if so it
was classified as 1, otherwise 0.

• The resulting raster was vectorised to create a mask of the area.

• The polygon with value 0 was discarded.
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• Using the polygon with value 1 a comparable pre-event dataset was created from the
aerial imagery

However, the first results show an error in the geographic alignment of the pre-event and post-
event data [Figure 4.4]. There is a very apparent shift in the datasets, this could be caused by
various sources. As can be seen in figure 4.4, the shift is not of the same magnitude through-
out the image. The pool on the right hand side of the imagery has moved further than the
buildings on the left hand side of the imagery. One explanation would be an error in the
geo-referencing algorithm that stitched either the pre-event or post-event data. However, it is
more likely that the UAV data has a lower accuracy in positioning than the aerial imagery used.
This could cause the uneven shift throughout the image. To continue the research, some [four]
of the datasets have been manually geo-referenced, using rubber-sheeting algorithms in Qgis,
based on the pre-event aerial imagery available. These areas are Middle Region, Cul du Sac, St.
Peters East, and Billy Folly.

Figure 4.4: Result of univariate image differencing before rubber-sheeting for
geo-referencing.

From the creation of these dataset the method as described in 3.3.1 could be implemented. For
Middle Region all three characteristic bands where calculated and went through the histogram
matching and univariate image differencing algorithm. All with varying results. In figure 4.6
the results are visually compared to the original RGB image. From this comparison it can be
concluded that the use of lightness, equalised relative to the pre-event situation allows for the
best manual interpretation of the data. However, this is due to the capabilities for humans
to build connections and recognise objects in abstract representations of data, section 4.3 will
quantify the results. The lighter colour implies more change, in the hue change map nearly
all buildings are a lighter colour indicating that something else is causing the change. The
same amounts for saturation in which non of the buildings seem to have undergone significant
change, while this is certainly the case. The value layer is not a perfect one-to-one indication
of damage to building, however it does indicate change on the buildings which have sustained
damage. This is specifically true in the cohesion of the pixels within the feature, not specifically
on their intensity.

Figure 4.5: Optical UAV imagery Middle Region, with masked extent [From: RescUAV (17

Sept. 2017), Middle Region - Sint Maarten [georeferenced image], used under
CC-BY4.0 as part of Open Imagery Network, retrieved from
www.openaerialmap.org]
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(a) Raw data

(b) Hue change map

(c) Saturation change map

(d) Value change map

Figure 4.6: Comparison between Dataset Middle Region on a normalised scale. [From:
RescUAV (17 Sept. 2017), Middle Region - Sint Maarten [georeferenced image],
used under CC-BY4.0 as part of Open Imagery Network, retrieved from
www.openaerialmap.org]30
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4.2 convolutional neural network

4.2.1 Optical data

As described in section 3.3.2 there are three steps necessary for the creation of a CNN method.
First of all the features need to be created. In the case of St. Maarten these features can be cre-
ated from available data. The square bounding boxes necessary for a fruitful implementation
of a CNN was done using features, with classification from OpenStreetMap. These bounding
boxes where than used to cut features of 100x100 pixels from the various input layers. These
layers are the UAV datasets, which have been used for the creation of the ground truth data;
which is the foundation of the CNN. A sample of these features have been represented in fig-
ure 4.7. From this image it can already be noted that not all of the features have been selected
correctly. This is mainly due to the geographical shift between images from before and after
the disaster. As described in section 4.1 this shift has a varying magnitude through out the
datasets and can only be fixed by rubber-sheeting geo-referencing. Due to the time constraints
of this research, these transformations where not possible. Hence an attempt has been done
with the available data.

Figure 4.7: Features generated from bounding boxes, classified as destroyed

The CNN architecture described in 3.3.1 has been implemented in TFlearn for Python and run
on the available dataset. This run is based on the settings from Vetrivel et al. [2016b] and
implemented for damage detection. The first training was based on a learning rate of 0.1, 5

epochs, and no normalisation. Unfortunately where the first runs unsuccessful with over-fitting
of the regression layer. This resulted in a varying loss indicator, but a stable validation accuracy.
To avoid over-fitting more epoch where run with the same settings. A slow increase to 5, 10,
15, 25, and 35 epoch had no influence on the results. Over-fitting was the norm and no to little
increases in the loss function or accuracy where noted. A similar approach was used for the
increase of the learning rate from 0.1 to 0.01, with similar results. The addition of normalisation
should allow for a better distribution of the features, resulting in better predictability. However,
after 35 epochs [figure 4.8] the neural network still over-fits. The resting validation accuracy
can be interpreted as the regression layer continually predicting the same class, the validation
accuracy in this case therefore arises from the fact that guessing this option gives the best
outcome most of the time. This is the result of a skewed input regarding the classes, or skewed
input regarding the actual features.
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Figure 4.8: Training of CNN, last 2 epochs, full training in appendix A.1

4.2.2 SAR data

The characteristics of the SAR data do not allow for the use of a CNN method. As described
in section 2.5.2 for a CNN to work it needs to do convolutions on the datasets. As shown in
figure 4.9 the pixel size of the SAR dataset is of the same magnitude as the building outlines.
This results in less than 1 pixel per structure, thus per feature. A CNN can not perform any
convolutions or other transformations on a feature that starts with only one pixel value. This
would not allow for the detection of borders or other characteristics which might encompass
change or damage. A machine learning approach could still be feasible, however this would
now be focussed on a 1D feature vector, comparable to those of support vector machines or
least squares adjustment. As these methods differ from a close comparison to the method
proposed by Vetrivel et al. [2016b] these have not been considered in this research.

Figure 4.9: SAR coherence map superimposed on buildings [Based on: RescUAV (17 Sept.
2017), Middle Region - Sint Maarten [georeferenced image], used under
CC-BY4.0 as part of Open Imagery Network, retrieved from
www.openaerialmap.org]

4.3 comparison
From sections 4.1 and 4.2 the matrix from section 3.1 can be filled. Matrix 4.1 indicates which
methods have been tested and which was not possible to execute. However, some implemen-
tations so far have been focused on visual interpretation as a last step in determining damage.
This section will quantify the results for a direct comparison on accuracy performance for dam-
age detection as described in section 2.2. The extension and comparison of the methods is
described in section 4.4.

Table 4.1: Matrix used for comparison methods and data, Green = Implemented, Orange =
Not implemented.

Optical UAV Data Satellite SAR Data
Equalisation and
subtraction

ESO ESS

Convolutional Neu-
ral Network

CNO CNS
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The quantification for the ESO and ESS is done by empirically checking various possible combi-
nations of thresholds and feature statistic and the calculation of the Cohen Kappa Coefficient.
Only a summary of these results with the highest Cohen Kappa coefficient will be compared,
these are fully represented in appendix A.2. For the CNO approach, the network as described in
sections 2.5.2 and 3.3.2 is trained on all data available expect Middle Region. This pre-trained
network is then used for the detection of damage in the features from Middle Region. Lastly
the STOA method, implemented by Copernicus EMS is considered and compared. All of these
results are available in table 4.6.

The ground truth data consist out of vector representations of the buildings on the island and
their respective classification as described in section 2.2. To allow fair comparison between
this data and the other methods for damage detection this datasets will need to be translated
to match the granularity of the damage description. In this case, four categories have been
reduced to two. These classes have been used in the comparison between methods described
in this section. Table 4.2 shows this reduction translation between classes.

Table 4.2: Translation from damage classification provided in ground truth to damage
detection, as defined in section 2.2

Damage classification Damage Detection

No Damage
Minimal Damage No Damage

Significant Damage
Critical Damage Damage

For the ESO and ESS approaches four change maps, namely the interferometry and HSV change
sets from the UAV optical data, are considered. To do so these pixel values have been aggregated
over the various buildings outlines. These vector representations of the buildings are derived
from the ground truth data. By subsequently taking the median of intersecting or enclosed pix-
els an aggregated value is derived per building. To determine whether a building is damaged
a threshold needs to be empirically set to differentiate between damaged buildings and non
damaged buildings. Such a threshold is determined for all four changes maps systematically.
These have been generated for every 0.01 of change within the change maps, resulting in one
hundred thresholds per image. All quantifications are then compared to the ground truth data
obtained by visual interpretation by the NLRC. Table 4.6 summarise the best findings, based on
their Cohen Kappa Scores. In appendix A.2 the full F1 matrices, and confusion matrices from
the four change maps are represented. From that table 4.6 it can be concluded that although
the method is working, it is not on the data for which it is intended. The interferometry data
has a low Kappa score and F1-score of 0.45, this is about comparable to estimated guessing
with a-priori knowledge of the damage distribution. For the optical approaches, namely Satu-
ration and Value, the empirical threshold does allow for better results especially considering
regarding the considerations saturation and value, even though these might not have seem a di-
rect hit on visual interpretation, they do provide knowledge about the distribution of damage,
with both Cohen Kappa scores around the 0.5 and F1-scores close to 0.7. Furthermore, both
perform well on the detection of damage, for which the F1-scores are 0.74 and 0.73 respectively.

As mentioned in section 4.2.1 the CNO approach fails to converge on the loss indicator. This is
due to the skewed input as a result of geographic misalignment. Therefore, all features have
been classified as not damaged, as shown in the confusion matrix in table 4.3. This is reflected
in the indices for both F1-score and Cohen Kappa coefficient [Table 4.2].

Table 4.3: Confusion matrix [Vertical Ground Truth, Horizontal predicted] for the
CNO based method.

No Damage unknown
No 519.0 0.0 0.0
Damage 321.0 0.0 0.0
unknown 16.0 0.0 0.0

Lastly, the STOA method implemented by Copernicus EMS was compared to the ground truth.
As with the ground truth, the STOA data are vector representations of the buildings with clas-
sifications attached. The STOA data has been spatially matched to the vector representations
of the ground truth data, to ensure the vector representations corresponded to the right clas-
sifications in both methods. Like with the ground truth data, the STOA classifications need
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to be translated to damage detection, table 4.4 shows the corresponding categories. From the
comparison and corresponding confusion matrix [Table 4.5], using the same accuracy mea-
surements for agreement as the other methods, it can be concluded that the STOA approach
heavily overestimates the damage. It is also indicated that the method does not significantly
outperform other methods implemented in this research.

Table 4.4: Translation from damage classification provided in the STOA method to damage
detection, the latter as defined in section 2.2

Damage classification Damage Detection

Not affected
Negligible to slight Damage No Damage

Moderately Damaged
Highly Damaged
Completely Destroyed Damage

Table 4.5: Confusion matrix [Vertical Ground Truth, Horizontal predicted] for the
STOA approach.

No Damage unknown
No 142.0 377.0 0.0
Damage 51.0 270.0 0.0
unknown 4.0 12.0 0.0

Table 4.6: Accuracy comparison between methods described in chapter 3, quantified using
thresholds and ground truth data.

Technique Threshold Kappa coeff. Avg. F1-Score

ESO Hue 0.11 0.070 0.47

ESO Saturation 0.07 0.429 0.71

ESO Value 0.21 0.389 0.69

ESS 0.30 0.059 0.54

CNO n/a 0.000 0.46

STOA n/a 0.093 0.45

4.4 extension to classification
To answer the main research question fully, an evaluation of the extended methods for classifi-
cation is indispensable. The implementation for extension require little change to the existing
methods and is based on the same principles. The definition for classification of damage as
described in section 2.2 is used. Therefore, the ground truth data is used without translation
as it is already based on this definition. To facilitate the extension of the ESO and ESS, multiple
thresholds are required. As in section 4.3, these threshold will be systematically empirically
checked. With the four classes defined for damage classification this translates to three thresh-
olds. The extension of the CNO approach requires little tweaking of the deepest, regression
layer of the CNN, in which the parameters are tuned from two to four classes. The STOA clas-
sification still differentiates from the defined classification and requires a translations schema.
The summary of the results is presented in table 4.9.

For the systematic approach to the three thresholds for the ESO and ESS methods, all valid com-
binations of thresholds is examined. Intervals between thresholds are defined by 0.025 steps
between 0 and 1, a combination of thresholds is considered valid when the third threshold is
larger than the second threshold, which has to be larger than the first threshold. From all valid
thresholds, those with the highest Cohen Kappa score are represented in table 4.7.

The CNO approach has similar steps as in section 4.3. Through these steps, the network is
retrained with the deepest layer altered for four classification categories, and this trained net-
work is applied to the unseen dataset. However, as in the comparison for damage detection,
the CNN does not converge on the loss indicator [Appendix A.3 provides an overview of the
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training] and all features classified as not damaged.

As the STOA approach to classification is defined differently than in this research, the data
needs to be translated for comparison. The same vector outlines as in section 4.3 have been
used but with the translation provided in table 4.7. The resulting accuracy indices indicate a
bleak implementation. The STOA approach heavily overestimates the damage, corroborated by
the confusion matrix [Table 4.8], as in the damage detection.

Table 4.7: Translation from damage classification provided in the STOA method to damage
classification as defined in section 2.2

Damage classification Damage Detection

Not affected
Negligible to slight Damage No Damage

Moderately Damaged Partial Damage

Highly Damaged Significant Damage

Completely Destroyed Critical Damage

Table 4.8: Confusion matrix [Vertical Ground Truth, Horizontal predicted] for the
STOA approach for classification.

No Damage unknown
No 142.0 377.0 0.0
Damage 51.0 270.0 0.0
unknown 4.0 12.0 0.0

Table 4.9: Accuracy comparison between methods described in chapter 3, quantified using
thresholds and ground truth data.

Technique Threshold Kappa coeff. Avg. F1-Score

ESO Hue 0.08, 0.11, 0.88 0.054 0.23

ESO Saturation 0.08, 0.08, 0.31 0.250 0.37

ESO Value 0.13, 0.18, 0.26 0.188 0.40

ESS 0.23, 0.31, 0.34 0.0511 0.30

CNO n/a 0.00 0.21

STOA n/a 0.078 0.24

4.5 discussion
This section provides discussion on the results from the comparison for damage detection and
damage classification, as well as an interpretation of the framework for method assessment de-
fined in section 2.3. The conclusions and recommendations from this discussion are presented
in chapters 5 and 6 respectively.

The results gathered in sections 4.3 and 4.4 leave room for discussion and interpretation. First
of all it must be noted that, as described in section 2.6.2, the inter-rater statistics provide a
tinted look on accuracy. However, agreement is considered a better description for accuracy in
this case study. Although the extension of methods to damage classification is possible, they
perform considerably less than the methods for damage detection. The main negative outliers
in both approaches are the CNO, STOA, and ESS approaches. As the results of the CNO approach
are faulted by design, these are not considered for discussion. However, a lesson learned from
this faulty approach is the need for properly geo-referenced imagery in the use of multiple
datasets for damage determination, as corroborated in section 4.1. The bad performance in
both damage classification as well as damage detection by the STOA approach is unexpected.
However, the speed with which these datasets are provided by UNOSAT or Copernicus EMS
is nearly unbeatable as the first damage maps were available one week after the hurricane
struck the island. Furthermore, this approach overestimates the damage in a disaster struck
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area, which is desirable for humanitarian organisations to ensure proficient aid is supplied.
Lastly,the ESS approach is not suited for damage determination on a building scale level, how-
ever, this is also not claimed by Yun et al. [2015]. Therefore, this method might be unsuitable
for building damage determination but it might still be useful in larger disaster where prioriti-
sation of areas is paramount to an operation.

All methods considered, the ESO approach was the most surprising, as a deducted method
from Yun et al. [2015], it performs reasonable on a building scale level, mainly due to the in-
crease in resolution. However, the empirically set threshold is not a robust approach for other
disasters, as variations in camera systems or external influences might impact the performance.
Ground truth data is therefore indispensable to make sure a threshold can be set systematically
with a machine learning minimisation approach.

The implementations of the various methods and STOA approach, have varying degrees of
accuracy. However, accuracy is only one of the parameters defined in section 2.3 for the as-
sessments of methods for damage detection or classification. The others are acquisition time,
acquisition method, and resolution for input data and output information. Acquisition time
and acquisition method are highly depended and pros and cons have been summarised in ta-
ble 2.2. The datasets used in this research are complementary, especially concerning the spatial
coverage and resolution of input data. Most methods described in this research are able to pro-
vide output on a building level resolution, without regards to accuracy, and this is the required
level of information for the phase from the DRM activity cycle on which this research focused.
The SAR data is highly regular and can be provided within 6 days of a disaster indifferent of
the atmospheric conditions, however the larger coverage area from this method is balance by
the lower input resolution. Paired with the specialised technical know-how, and disappointing
results in accuracy, this would not be the best implementation for the St. Maarten hurricane.
In this specific disaster, the higher resolution input data from UAV imagery, provides more in-
formation than the larger extent, mainly due to the small size of the island. The methods used
for optical imagery provide sufficient accuracy to be a better indication than STOA approaches,
and manual visual interpretation could provide ground truth information about the damage
extent.
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5 C O N C L U S I O N S

The main goal of this research was to find a method for the automatic classification of damage
inflicted by hurricanes on the island of St. Maarten using remotely sensed data to support
the operations of the NLRC and other humanitarian NGOs. To achieve this goal the following
question was defined, Is the use of remotely sensed data a viable option for the automatic classification
of hurricane inflicted damage? The various sub-questions all contributed to a stream-lined method
for answering this question.

5.1 how is damage determined?
To determine the damage to buildings, various information densities can be used. Section 2.2
provides an exemplified overview of the three nominal gradations used in this research. These
are the detection, classification, and assessment of damage. The difference between these meth-
ods is in the detail to which the damage is described. The increase in inclusion of detail is
proportional to the ongoing developments within the DRM activity cycle of a humanitarian
organisation after a disaster; the further into this development, the more detail is necessary
for the correct planning of humanitarian aid. Limited standardised methods exist for all three
nominal gradations of damage determination, this research therefore proposes the use of a clas-
sification diagram, based on efforts from the Harvard Humanitarian Initiative and 510 from the
NLRC. This classification diagram is applicable to both automated and manual approaches for
damage classification and allows for clear distinction between damage classes while avoiding
ambiguity.

5.2 what criteria are set for damage clas-
sification methods?

Operation criteria for the classification of damage are set by humanitarian organisations, like
the NLRC. These are based on the information needs in a disaster situation. As described in
section 2.1, this research focusses on the emergency relief and rehabilitation phases. The detail
requirements are set to block or building level, in which classification, as described in section
2.2, suffices. To be able to select a method for rapid assessment using remotely sensed data,
a framework has been established with 4 parameters: [1] Accuracy, [2] Acquisition time, [3]
Acquisition method, and [4] Resolution. These are the four parameters that should be taken
into account in the development or assessment of a method for use in a humanitarian context.
In this context, accuracy describes the percentage of correct classification, which can be defined
in various manners, as described in section 2.6.2. A clear guideline to the accuracy is to include
all people in need of help, while still differentiating to ensure effective distribution of means.
Acquisition time is an operation requirement that relates to the time constraints in a DRM ac-
tivity cycle. For a method to be implemented in a specific part of the humanitarian response
to a disaster, time constraints the possibilities for data collection. This is closely linked with
the acquisition method, which describes how and what data can be collected. This would be
limited by sources of data, as well as the specialities within a humanitarian team. Resolution is
a two-fold parameter to describe methods for damage detection or classification. It describes
both the resolution of the input data and output information, which are constraint by time and
resources. In the various phases of the DRM activity cycle, the requirements for the informa-
tion vary. The definition of sufficient detail in the output information, is proportionally linked
with the activity of ongoing development. Furthermore, are humanitarian mission restricted
by resources in the various phases to process high resolution data.

For most of these parameters no specific guidelines for values are provided, as every situation
in humanitarian action is different and all require slightly different datasets or implementations.
In the selection of method for damage classification, it is therefore inevitable that guidelines to
these parameters are set by the specific humanitarian mission and will vary as a result.
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5.3 which methods already exist?
A broad selection of methods are already available in academic literature. Section 2.5 provides
a non-exhaustive overview. While all approaches differ in exact techniques used to determine
damage, the range of remotely sensed data they use is limited to satellite optical and SAR data
or UAV optical data. This is only a small subset of the possibilities described by Kerle et al.
[2008]. Most quoted accuracies range between 70% - 90%, with acquisition times under a week.
This indicates suitability for use in the DRM activity cycle after a disaster. Vetrivel et al. [2016b]
and Yun et al. [2015] describe methods with most potential. The CNN approach by Vetrivel
et al. [2016b] yields the highest accuracy claims, with over 90% accuracy. The equalisation and
univariate differencing technique described by Yun et al. [2015] has found the most traction in
the humanitarian sector with uses by various NGOs.

5.4 how do these methods perform?
To indicate performance, a pure definition of accuracy is not sufficient. In case of unbalanced
data this might lead to a false indication of accuracy. Other inter-rater statistics are therefore
necessary. In this research the Cohen Kappa coefficient and F1-score have been used for their
inclusion of randomness in the accuracy measurement, and inclusion of precision and recall,
respectively. These approaches to accuracy are used to provide a more complete overview of
the performance of the methods.

In this research the methods by Vetrivel et al. [2016b] and Yun et al. [2015] have been adapted
in compared. Both methods have been implemented with the data they were intended for UAV
optical and satellite SAR, respectively. However, these methods have also been extended to
allow for comparison between the SAR data and optical data, this translate to implementations
for the other datasets as well. Due to characteristics of the SAR data, it is not possible to in-
clude an implementation based on a CNN approach. Furthermore, all implementations have
been extended to allow for smaller granularity in the output information, which translates to
an implementation for damage detection and damage classification.

Quantified inspection of the methods indicate that the adapted approached of Equalisation
and Subtraction and a CNN approach are not sufficiently suitable for direct implementation in
damage classification, with low values for both the Cohen Kappa coefficient and average F1-
score. The methods based on differencing perform all roughly equal, while the CNN approach
is hindered by inappropriate input features. For the detection of damage these methods show
suitable results for the use by humanitarian organisations. The methods based on optical
image differencing work adequately, specifically on those features which indicate damage. The
same approach based on the SAR data performs not as well, especially with regards to the
identification of damage. The CNN approach suffers the same problems as in the classification
approach and perform not up to par.

5.5 how does the state of the art compare
to these methods?

The state of the art for damage determination in humanitarian aid is the use of visual inspection
by Copernicus and UNOSAT. The comparable information for this research is based upon
satellite optical data. Compared to the ground truth data this approach over-estimates the
damage in an area. This is in line with the approach of humanitarian organisations which
prefer to supply more people with aid than have people left out. Comparatively this approach
is quantifiable less accurate, however has some major implementation advantages. While the
damage is overestimated, other humanitarian organisations are not burdened with the task of
collecting and processing data. This set-up has a clear operational advantage as less specialised
personnel is necessary for the implementation of new automated measures. It offers an all-
inclusive solution with fast results. In comparison a subtraction approach based on UAV optical
imagery would take more investment to obtain sufficient workable coverage of a larger scale
disaster, even if it provides better accuracy. A similar problem arises with the use of CNN
approaches. In that case specialised people are necessary to train and maintain a CNN to allow
for fast implementation after a disaster, which can furthermore be hindered by the lack of
granular data collection.
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5.6 summary
Is the use of remotely sensed data a viable option for the automatic classification of hurricane inflicted
damage? Yes, there are many possibilities for the use of remotely sensed data to be used for
the classification of damage. However, the practical implementations are not available yet.
Various possibilities for future research, to make this possible, have been illustrated in chapter
6. Methods for damage detection exist and can be introduced in emergency situations, however
they are not user friendly for the humanitarian delegates in the field, without technical know-
how. The result of this is the return to practical solutions offered by other NGOs, based on
visual interpretation. A more human approach to the problem would allow non-technicians
to get acquainted with the possibilities of remotely sensed data and the benefits for disaster
response. This could pave the path for willingness to invest in new automated approaches to
make humanitarian aid more effective and efficient.
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6 R E C O M M E N DAT I O N S

Due to the broad nature of this research various recommendations can be made regarding new
research topics and practical implementations. These could improve existing methods, extent
methods for the classification as described in section 2.2, or be possibly developed into new
solutions.

6.1 optical data
Regarding the use of univariate image differencing for the detection of change based on RGB
or HSV values could be improved in various ways. First of all, an approach as described by
Yun et al. [2015], in which the coherence between datasets is used, could also be advisable for
applications based on multi-layered optical images. In that case multiple datasets should be
pre-emptively collected, to allow for the creation of coherence maps. This requires pre-emptive
resource investments. However, these would allow for description of the coherence between
pixels, which could be used as an indicator of damage. Practically, this approach might incur
more opposition due to the investment necessary. However, especially regarding repetitive and
predictable disasters, like hurricanes, this could be a benefit for all involved in the humanitar-
ian operation later. Secondly, the datasets could be subtracted in multiple bands, this would
allow for more data to be used in the detection of change and or damage. To achieve this,
a new method would need to be developed capturing various features of the date to capture
the coherence. A CNN or other convolution algorithm would allow for the description of the
pixel coherence to be used for classification. Lastly, the change indicator layers as presented in
section 4.1, figure 4.6, could provide extra indication of damage in case visual interpretation is
used. This as it highlights possible change, which would make manual classification more ac-
cessible. Which is especially useful in the possible crowd-sourcing of this kind of information
using approaches similar to Missing Maps 1.

In the use of CNN for damage classification, various improvements could be made. A single
implementation architecture for damage detection or classification is hard to establish. This
is due to data variability caused by variance in the sensors, conditions, or other exterior influ-
ences. To achieve a result for all datasets, a library with various datasets within would need
to be created. This approach, similar to ImageNet 2, would allow NGOs to develop tools based
on data available from a diverse range of disaster, all oriented on the classification of damage.
With this database, new networks could be designed to cope with various inputs and variations
in other exterior influence. An existing database with known damage identified on post-event
imagery could also inspire other technologies for damage classification.

Furthermore, would a CNN approach be helped by improved creation of the features. This
could also be achieved through more machine learning. If it would be possible for a Neural
Network approach to identify buildings on a pre-disaster image, it would be possible to create
clear outlines for use on OpenStreetMap as well as within operations using CNNs for the
classification or detection of damage. This also reflects back to the geo-referencing of imagery.
Newer techniques allow for faster and more accurate data collection, however the smaller
packages and cheaper sensors do not allow for perfect geo-referencing. An improvement in
the alignment of imagery and the geo-referencing of optical imagery would be beneficial for
the results of various methods.

6.2 SAR data
The use of SAR in both approaches is limited by the resolution of the input. Higher resolution
inputs, or lower resolution expected output, could allow the use of CNN for all datasets. How-

1 http://www.missingmaps.org/

2 http://www.image-net.org/
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ever it must be noted that it can be hard to distinguish features on SAR data. This property
would transfer to the use of machine learning, specifically CNNs, as the method is based on the
use of distinguishable features for classification. A further deep-dive into the methodology de-
vised by Yun et al. [2015] could also uncover possible areas of improvement. Various research
around the world have been able to detect millimetre changes in static objects using satellite
SAR data [Sousa et al., 2010].

Another solution for the use of lower resolution data is an aggregation of damage after the
pixels have been classified. In this case, if a building is covered by 4 pixels partly, an aggregate
of these pixels would be subscribed to the building. If in that case one of the pixels is classified
as damaged and overlaps the building by 25%, this building would be considered damaged for
25%. A similar approach would be valid for use with the optical data sets in which it would
be the amount of pixels classified as damaged relative to the total amount of pixels within the
building bounds.

6.3 data combination
While this research only considered datasets separately, the combination of datasets could
provide new possibilities for the determination of damage. As mentioned in section 4.5, the
advantages of satellite based SAR, in particular the operational agility and large coverage area,
are complementary to the VHR UAV imagery, which are limited in coverage area but provide
more information about damage. In the fusion of these datasets, and the possible addition of
others, combination of methods could be used to fully- or semi- automatically determine the
damage extent after a disaster.

6.4 disaster specific properties
This research considered general approaches to the detection and classification of damage. This
is based on the premise that building damage is generally similar between disasters, however,
it can be noted that various disasters might have specific damage patterns around buildings.
The manual method proposed by Okada and Takai [2000] is based on the premise of building
damage patterns to determine the extend of the area affected. An automated approach could
use similar indicators for remotely sensed data. An example of damage patterns surrounding
buildings could be the debris spread observed after a hurricane, where debris is scattered
around a building in the direction of the prevailing winds; compared to earthquake damage,
where debris is usually less scattered and more concentrated on the building footprint.

6.5 method assessment framework
The pre-existing conditions regarding damage classification and information needs within hu-
manitarian aid changes constantly. A more social approach to the problem would allow for
clearer definitions of needs and possible holes in the information provision with regards to
remotely sensed data. An implementation review of the approach used by Copernicus and
UNOSAT, which would focus on the use of the information, would allow for understanding
of their products. This would further allow the introduction of new data sources in the pro-
grammes of NGOs, which in turn would favourably influence the research with regards to
implementation possibilities.

In this research the focus was placed on a part of the DRM activity cycle. However, information
needs vary within this cycle as well. Other methods, including predicting approaches, would
be useful in the various stages of the DRM activity cycle for humanitarian organisations. Exam-
ples of this include the work done by Lint [2016] and Bulte [2017], in which predictive models
estimate the damage after typhoons and earthquakes. Similarly an approach in which verified
data from the field can be used to train new methods for more accurate damage classification
in later stages of a disaster, allowing for better accuracy on a higher resolution.

Other methods identified in this research, could transfer better to the datasets used. More
research regarding their capabilities would allow for the development of new practicable meth-
ods. These methods in combination with the knowledge from this research, might be capable
of the classification of damage, automatically or semi-automatically. Lastly, the use of semi-
automated methods could also be a practical approach. As disasters vary from location, time,
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and intensity, a flexible human approach could benefit the method. In such an approach some
steps are identified by humans, so a-priori knowledge can be supplied to the automatic classifi-
cation tools. This synergy would allow for the best of both approaches, the flexible insights of a
human and the meticulous repetitive approach of machine learning, allowing for faster creation
of information. This would not be a troublesome practical approach as most disaster datasets
have to be scrambled from various sources; human involvement is - for now - indispensable.

6.6 comparison of results
The use of the Cohen Kappa Coefficient, F1 Score, and Confusion Matrix are non optimal
indicators for the use in humanitarian circumstances. It would benefit the humanitarian organ-
isations if the risk of false negatives, regarding building damage would be minimised. This
would ensurethat everybody in need of assistance receives aid. Another minimisation tech-
nique might therefore be beneficial for these problems. This could be achieved by the addition
of weights to certain classes, in which it is more important that these are classified correctly.
A certain distinction is still necessary and the balance should not be moved to classifying as
many buildings as possible as damaged, as this would defy the goal of a damage classification
method for disaster impact. This could be done with the F1-Score mentioned in section 2.6.2
as well as other classification techniques.
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A A P P E N D I C E S

a.1 neural network training for damage de-
tection

Figure A.1: Full results training CNN with 35 epochs.
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a.2 results empirical approach to damage
detection

Table A.1: Confusion matrix [Vertical Ground Truth, Horizontal predicted] and F1

classification for interferometry univariate change detection with a
threshold of 0.30. Cohen Kappa Score: 0.05896

No Damage unknown
No 439.0 80.0 0.0
Damage 254.0 67.0 0.0
unknown 12.0 4.0 0.0

precision recall f1-score support
No 0.44 0.21 0.28 321

Damage 0.62 0.85 0.72 519

unknown 0.00 0.00 0.00 16

avg / total 0.54 0.59 0.54 856

Table A.2: Confusion matrix [Vertical Ground Truth, Horizontal predicted] and F1

classification for Hue based univariate change detection with a threshold
of 0.11. Cohen Kappa Score: 0.07099

No Damage unknown
No 179.0 340.0 0.0
Damage 83.0 238.0 0.0
unknown 8.0 8.0 0.0

precision recall f1-score support
No 0.41 0.74 0.52 321

Damage 0.66 0.34 0.45 519

unknown 0.00 0.00 0.00 16

avg / total 0.55 0.49 0.47 856

Table A.3: Confusion matrix [Vertical Ground Truth, Horizontal predicted] and F1

classification for Saturation based univariate change detection with a
threshold of 0.07. Cohen Kappa Score: 0.42963

No Damage unknown
No 349.0 170.0 0.0
Damage 64.0 257.0 0.0
unknown 5.0 11.0 0.0

precision recall f1-score support
No 0.59 0.80 0.68 321

Damage 0.83 0.67 0.74 519

unknown 0.00 0.00 0.00 16

avg / total 0.73 0.71 0.71 856

Table A.4: Confusion matrix [Vertical Ground Truth, Horizontal predicted] and F1

classification for Value based univariate change detection with a
threshold of 0.21. Cohen Kappa Score: 0.38926

No Damage unknown
No 347.0 172.0 0.0
Damage 78.0 243.0 0.0
unknown 5.0 11.0 0.0

precision recall f1-score support
No 0.57 0.76 0.65 321

Damage 0.81 0.67 0.73 519

unknown 0.00 0.00 0.00 16

avg / total 0.70 0.69 0.69 856

Table A.5: Confusion matrix [Vertical Ground Truth, Horizontal predicted] and F1

classification for the CNN based method. Cohen Kappa Score: 0.0
No Damage unknown

No 519.0 0.0 0.0
Damage 321.0 0.0 0.0
unknown 16.0 0.0 0.0

precision recall f1-score support
No 0.00 0.00 0.00 321

Damage 0.61 1.00 0.75 519

unknown 0.00 0.00 0.00 16

avg / total 0.37 0.61 0.46 856
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Table A.6: Confusion matrix [Vertical Ground Truth, Horizontal predicted] and F1

classification for the Copernicus classification. Cohen Kappa Score:
0.09283

No Damage unknown
No 142.0 377.0 0.0
Damage 51.0 270.0 0.0
unknown 4.0 12.0 0.0

precision recall f1-score support
No 0.41 0.84 0.55 321

Damage 0.72 0.27 0.40 519

unknown 0.00 0.00 0.00 16

avg / total 0.59 0.48 0.45 856

a.3 neural network training for damage clas-
sification

Figure A.2: Full results training CNN with 35 epochs.
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a.4 results empirical approach to damage
detection

Table A.7: Confusion matrix [Vertical Ground Truth, Horizontal predicted] and F1

classification for interferometry univariate change detection with a
threshold of 0.23, 0.31, 0.34. Cohen Kappa Score: 0.05110

none partial significant destroyed unknown
none 241.0 42.0 8.0 35.0 0.0
partial 128.0 34.0 8.0 23.0 0.0
significant 136.0 18.0 11.0 21.0 0.0
destroyed 91.0 14.0 7.0 23.0 0.0
unknown 9.0 3.0 0.0 4.0 0.0

precision recall f1-score support
none 0.22 0.17 0.19 135

partial 0.40 0.74 0.52 326

significant 0.31 0.18 0.22 193

destroyed 0.32 0.06 0.10 186

unknown 0.00 0.00 0.00 16

avg / total 0.33 0.36 0.30 856

Table A.8: Confusion matrix [Vertical Ground Truth, Horizontal predicted] and F1

classification for Hue based univariate change detection with thresholds
of 0.08, 0.11, 0.88. Cohen Kappa Score: 0.0543

none partial significant destroyed unknown
none 79.0 41.0 205.0 1.0 0.0
partial 31.0 28.0 132.0 2.0 0.0
significant 25.0 20.0 141.0 0.0 0.0
destroyed 23.0 15.0 97.0 0.0 0.0
unknown 3.0 5.0 8.0 0.0 0.0

precision recall f1-score support
none 0.00 0.00 0.00 135

partial 0.49 0.24 0.32 326

significant 0.26 0.15 0.19 193

destroyed 0.24 0.76 0.37 186

unknown 0.00 0.00 0.00 16

avg / total 0.30 0.29 0.25 856

Table A.9: Confusion matrix [Vertical Ground Truth, Horizontal predicted] and F1

classification for Saturation based univariate change detection with a
threshold of 0.08, 0.08, 0.31. Cohen Kappa Score: 0.25029

none partial significant destroyed unknown
none 280.0 0.0 46.0 0.0 0.0
partial 104.0 0.0 88.0 1.0 0.0
significant 53.0 0.0 133.0 0.0 0.0
destroyed 41.0 0.0 94.0 0.0 0.0
unknown 6.0 0.0 10.0 0.0 0.0

precision recall f1-score support
none 0.00 0.00 0.00 135

partial 0.58 0.86 0.69 326

significant 0.00 0.00 0.00 193

destroyed 0.36 0.72 0.48 186

unknown 0.00 0.00 0.00 16

avg / total 0.30 0.48 0.37 856
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Table A.10: Confusion matrix [Vertical Ground Truth, Horizontal predicted] and F1

classification for Value based univariate change detection with a
threshold of 0.13, 0.18, 0.26. Cohen Kappa Score: 0.18838

none partial significant destroyed unknown
none 141.0 93.0 57.0 35.0 0.0
partial 44.0 69.0 54.0 26.0 0.0
significant 12.0 54.0 85.0 35.0 0.0
destroyed 5.0 27.0 64.0 39.0 0.0
unknown 0.0 4.0 9.0 3.0 0.0

precision recall f1-score support
none 0.28 0.29 0.29 135

partial 0.70 0.43 0.53 326

significant 0.28 0.36 0.31 193

destroyed 0.32 0.46 0.37 186

unknown 0.00 0.00 0.00 16

avg / total 0.44 0.39 0.40 856

Table A.11: Confusion matrix [Vertical Ground Truth, Horizontal predicted] and F1

classification for the CNN based method. Cohen Kappa Score: 0.0
none partial significant destroyed unknown

none 101.0 33.0 6.0 186.0 0.0
partial 41.0 24.0 5.0 123.0 0.0
significant 40.0 10.0 2.0 134.0 0.0
destroyed 11.0 10.0 3.0 111.0 0.0
unknown 4.0 1.0 0.0 11.0 0.0

precision recall f1-score support
none 0.00 0.00 0.00 135

partial 0.38 1.00 0.55 326

significant 0.00 0.00 0.00 193

destroyed 0.00 0.00 0.00 186

unknown 0.00 0.00 0.00 16

avg / total 0.15 0.38 0.21 856

Table A.12: Confusion matrix [Vertical Ground Truth, Horizontal predicted] and F1

classification for the Copernicus classification. Cohen Kappa Score:
0.07871

none partial significant destroyed unknown
none 101.0 33.0 6.0 186.0 0.0
partial 41.0 24.0 5.0 123.0 0.0
significant 40.0 10.0 2.0 134.0 0.0
destroyed 11.0 10.0 3.0 111.0 0.0
unknown 4.0 1.0 0.0 11.0 0.0

precision recall f1-score support
none 0.20 0.82 0.32 135

partial 0.51 0.31 0.39 326

significant 0.31 0.12 0.18 193

destroyed 0.12 0.01 0.02 186

unknown 0.00 0.00 0.00 16

avg / total 0.32 0.28 0.24 856
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