P5 Presentation

Correcting Global Elevation Models for Canopy and Infrastructure Using a Residual U-Net

Haoyang Dong

CONTENT

- Introduction
- Related Work
- Methodology
- Results & Discussion
- Conclusion & Future Work

Introduction

Background: DEM

- Digital Elevation Model (DEM): "A regular gridded matrix representation of the continuous variation of relief over space."
- Importance of DEM
 - Hydrology, Geomorphology, Civil Engineering, ...
- Increased availability and accessibility of DEM data

Background: DTM and DSM

- Evolution of mapping and data acquisition techniques
- Digital Terrain Model (DTM) vs Digital Surface Model (DSM)
- Most current DEMs are DSMs

Motivation

- Importance of understanding the true terrain surface
- Problems caused by above-ground features in DSMs
- Need for techniques to convert DSMs to DTMs

Study Area & AHN4 Dataset

- The Netherlands: Vulnerable to flooding, extensive infrastructure, diverse landscape
- Actueel Hoogtebestand Nederland 4 (AHN4): High-resolution DEM of the Netherlands
 - Accurate
 - Classified
 - Multiple distributions

7

Research Objective

- Main Goal: Develop and assess a Residual U-Net model for reliable DTM extraction from DSMs
- Sub-questions:
 - Comparing the performance of the Residual U-Net with other methods
 - Comparing the model's results to global DEMs
 - Influence of resolution on the model's performance
 - Advantages and limitations of the Residual U-Net approach

Related Work

DEM Analysis

- Slope
- Roughness
- Aspect
- Topographic Roughness Index (TRI)
- Topographic Position Index (TPI)

DSM

Roughness

DTM Extraction & Machine Learning

- Traditional Regression Analysis
- The problem with traditional approaches
 - The "Curse of Dimensionality"
- Machine Learning as a solution

Emerging Approaches for Elevation Error Correction

- Forest and Building Digital Elevation Model (FABDEM)
- Progressive morphological filter
- Convolutional Neural Networks (CNNs)
- Residual U-Net framework
- Current Research Gap

FABDEM

- Multi-source data utilization
- Pre-classification of zones
- Random Forest Regression Models
- Improved accuracy and lower RMSE (root-mean-square errors)

The U-Net Architecture

- Effective in various applications
- Two primary components: Contracting and Expansion Path
- Pixel-level segmentation

Residual Networks (ResNets)

- Mitigation of the vanishing gradient problem
- Residual layers

 \mathbf{X}

weight layer

weight layer

(+)

relu

relu

Identity and Convolutional Blocks

 $\mathcal{F}(\mathbf{x}) + \mathbf{x}$

 $\mathcal{F}(\mathbf{x})$

Residual U-Net

- U-shaped structure of original U-Net
- Incorporates residual blocks
- Enhanced depth of the network

Methodology

Residual U-Net Architecture

- Integration of U-Net and ResNet-18
 - Downscaling path (Contraction): Based on ResNet-18
 - Upscaling path (Expansion): Follows U-Net architecture
- Pre-trained

TUDelft

DEM Preprocessing Overview

- Utilization of AHN4 DTMs and DSMs
- Resampling to a 30m resolution
- Generation of ground truth data
- Handling of no-data values in the DSMs
- Computation of slope and roughness maps
- Division of data into 64x64 slices
- Data normalization

Input data	Number	Shape (height, width)
Orignal AHN4 DSM	455	(1250, 1000)
DSM @ 30 m resolution	455	(208, 167)
Image-like array after slicing	5460	(64, 64)
Image-like array after augmentation	43680	(64, 64)

DTM (5m)

Ground Truth Labelling

- The main goal is to remove pixels representing the canopy and infrastructure
- Criteria based on the comparison between DSM and DTM pixels
 - Terrain pixels (labelled as 0)
 - Pixels representing canopies and infrastructures (labelled as 1)

Slicing with Overlap

- The term "slicing" refers to the procedure of partitioning an image-like array into smaller segments
- Preservation of all relevant information for subsequent reassembly
- Incorporation of overlaps between adjacent segments

Generating DTMs

- Input DSM undergoes processing methodology
- Subsequent feeding into the trained model to generate prediction maps
- Assembling individual prediction maps into a comprehensive one
- Identifying and removing certain pixels in DSM
- Interpolation of the partially emptied DSM to result in final DTM

Stitching

- Stitching as the complementary procedure to slicing
- Objective: to integrate individual slices into a complete array
- Slicing and stitching applied to distinct types of arrays
- For binary prediction maps, method ensures more representative estimation for each pixel
- No-data pixels in the slice do not overwrite valid pixels in the merged image

Evaluation: Root-mean-square Error (RMSE)

- RMSE as a measure of the differences between predicted and observed values
- Serves to aggregate prediction errors into a single measure of predictive power
- Used when comparing prediction errors of different models or configurations
- RMSE equation:

$$RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}$$

Results & Discussion

Segmentation Accuracy

- The accuracy of the Residual U-Net model was assessed by comparing predicted and ground truth label maps
 - Mean accuracy: 94.21%
 - Accuracy range: 86.03% to 98.93%
- The minor variation in patch accuracies shows the model's effectiveness
- encounters challenges when processing areas characterized by significant changes in elevation and in regions with mountainous terrain

the best performance area

the worst performance area

Visual Comparison and Positive-negative maps

- Positive-negative maps
 - 1: the prediction erroneously classified the pixel as 1 while the ground truth labelled it as 0
 - -1: the prediction map incorrectly identified the pixel as 0 while the ground truth classified it as 1
 - 0: correct predictions
- the positive and negative pixels are distributed randomly
 - No bias observed in the model towards either removing or retaining more pixels
- tendency to remove roads

Comparison with FABDEM

- FABDEM: a suitable example for comparison
- Root Mean Square Error (RMSE) Computation
 - reference: AHN4 DTMs
 - 3 sets:
 - DTMs from the model with AHN4 DSMs as inputs
 - DTMs of FABDEM
 - DTMs from the model with COP30 DSMs as inputs

	The method	FABDEM
Inputs	Resampled AHN4 DSMs	COPDEM30, AHN3 , forest heights, ICESAT2 canopy heights, Travel Times, Night Lights, WorldPop Constrained, GHS Urban Centre Database, World Settlement Footprint
Outputs	DTMs	DTMs
ML Method	Residual U-Net Segmentation	Random Forest Regression
Postprocessing	IDW	Pit-filling and bilateral filter

DTM set	RMSE
DTMs generated from AHN4 DSMs	0.60
FABDEM	0.93
DTMs generated from COP30 DSMs	1.18

COP30 DSMs as Inputs

- the difference in model predictions with COP30 and AHN4
- the increased errors in areas with canopy coverage
 - the model struggles with canopy areas when fed COP30
- the consequent effect on the RMSE

Satellite Image

AHN4 DSM @ 30 m

COP30 DSM

Prediction for AHN4

Prediction for COP30

Comparison with FABDEM

- the DTM generated from AHN4 DSM mirrors the reference DTM more accurately.
 - also reflects in the lower RMSE
- The model, not trained on COP30 data, shows predictably less precision with these DSMs.
- My method creates artifacts that can resemble fake hills after interpolation
- FABDEM appears more blurred due to its postprocessing step

FABDEM

AHN4 DSM @ 30 m

Generated DTM from AHN4

COP30 DSM

Generated DTM from COP30

Evaluating Model Performance in Miami and Elevated Miami

- Testing model performance outside of the Netherlands
- Choosing Miami for its similar elevation characteristics
- Utilizing Copernicus DEM (COP30) for Miami as input data and NOAA Sea Level Rise Viewer DEM dataset as reference DTM
- Creation of an elevated version of Miami to assess model's performance
- Remarkable reduction in RMSE demonstrates model's efficacy

	RMSE
Generated DTM of Miami	0.74
Generated DTM of elevated Miami	0.87
FABDEM	0.67
COP30	1.43

Performance in Elevated Miami

- Model's performance remains robust with elevated Miami
- Effective elimination of certain pixels while retaining key terrain features
- challenges with higher elevations

	RMSE
Generated DTM of Miami	0.74
Generated DTM of elevated Miami	0.87
FABDEM	0.67
COP30	1.43

Visual Comparison: Dense Urban Area (Shibuya and Shinjuku in Tokyo)

- dense urban landscapes, combination of natural and built environments, and generally flat terrain.
- The model successfully identified most building pixels and removed trees in park areas
- DTM generated by the model has noticeable artifacts

Visual Comparison: Vast Forested Region (Amazon Basin)

- dense tropical rainforests, diverse flora and fauna, complex hydrological system, and predominantly flat terrain
- The model correctly identified a significant number of trees within the basin
- Some remaining pixels led to higher elevation areas in the DTM, showing differences compared to FABDEM

Visual Comparison: Mountainous Area (Alps in the western region of Austria)

- rugged landscapes, steep slopes, high elevation changes, and a mix of vegetation types
- Challenges faced by the model due to the extensive geographical extent and the wide range of elevations
- The ridge section in the upper left corner of the generated DTM appears blurred, suggesting difficulties in accurately capturing steep slopes.

Model Performance Across Different Resolutions

- Evaluation of model performance when applied to 10-meter and 90-meter resolutions
- The model performs best on 30m resolution data

Input resolution	Accuracy	RMSE
30 m	94.1%	0.59
10 m	77.5%	2.16
90 m	68.8%	1.85

(a) Satellite Image

(d) resampled DSM (10 m)

(d) resampled DTM (30 m)

AHN4 DTM @10 m

(e) resampled DTM (10 m)

4HN4 DSM ⊚90 m

(e) resampled DSM (90 m)

10 20 30

(c) AHN4 DTM at 5 m resolutio

(f) resampled DSM (30 m)

(f) resampled DTM (90 m)

37

Conclusion & Future Work

Conclusion

- A novel approach for converting DSMs to DTMs using a Residual U-Net deep learning model
- Model's adaptability to different resolutions and datasets, indicating potential in various geoscience applications
- Despite limitations, the model shows promising results for DTM extraction

Future Work

- Addressing model's limitations with additional data sources, such as optical and radar imagery
- Exploring different deep learning architectures and techniques to optimize model's performance

Thank you for your attention

