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Antarctic meteorites threatened by  
climate warming

Veronica Tollenaar    1,12 , Harry Zekollari    1,2,3,4,12 , Christoph Kittel    5,6, 
Daniel Farinotti    2,3, Stef Lhermitte    7,8, Vinciane Debaille    9, 
Steven Goderis    10, Philippe Claeys    10, Katherine Helen Joy    11 & 
Frank Pattyn    1

More than 60% of meteorite finds on Earth originate from Antarctica. Using 
a data-driven analysis that identifies meteorite-rich sites in Antarctica, we 
show climate warming causes many extraterrestrial rocks to be lost from 
the surface by melting into the ice sheet. At present, approximately 5,000 
meteorites become inaccessible per year (versus ~1,000 finds per year) and, 
independent of the emissions scenario, ~24% will be lost by 2050, potentially 
rising to ∼76% by 2100 under a high-emissions scenario.

Meteorites are unique samples of extraterrestrial bodies and provide 
crucial information on the origin and evolution of our Solar System1,2. 
Antarctica is the world’s most prolific site for collecting meteorites, 
with more than 60% of all ~80,000 meteorites ever found on Earth 
being collected at the surface of the ice sheet. Antarctic meteorites are 
found in blue ice areas, which are atypical zones (~1% of the Antarctic 
surface area) where layers of snow and ice are removed from the surface 
through a combination of ice flow processes and local meteorologi-
cal conditions, exposing meteorites that were once embedded in the 
ice1,3. Not all blue ice areas contain meteorites: only where processes 
interact favourably, a concentration of meteorites is built up over tens 
to hundreds of thousands of years, resulting in so-called meteorite 
stranding zones (Fig. 1a)4–6. Meteorites found in Antarctica are a few 
centimetres in diameter on average, but are easily detectable given 
their visual contrast with the underlying ice7,8. Over past decades, an 
average of ~1,000 meteorites per year have been collected through 
numerous field campaigns (Fig. 2a) and the potential of Antarctic mete-
orites remains far from exhausted: a data-driven approach9 recently 
identified over 600 meteorite-rich areas in Antarctica. Many of the 
identified meteorite stranding zones are not yet (fully) explored, and 
an estimated 300,000 to 850,000 meteorites remain to be collected 
from the surface of the ice sheet (Fig. 2b)9.

Once exposed at the surface, meteorites can stay there for thou-
sands of years due to stagnant ice flow and the lack of weathering in the 
cold, dry conditions5,6. While most of the indicators for the presence of 
meteorites—for example, ice flow velocity, elevation, mountains—are 
thought to be stable on multidecadal to centennial timescales, the con-
centration of meteorites is also directly influenced by temperature4,9,10. 
Even when temperatures are well below zero, meteorites, with their 
characteristic dark crust, warm when exposed to solar radiation11 and 
can melt the underlying ice. The warmed meteorite generates a small 
water melt pocket below the stone, resulting in a surface depression 
that deepens over time into a hole, which (in conjunction with refreez-
ing meltwater) results in the disappearance (‘sinking’) of the meteorite 
from the surface (Fig. 1)10,12,13. The sensitivity of meteorite presence to 
temperature is apparent from various independent lines of evidence:

 (1) Field observations: entrapped meteorites have been found cov-
ered by superimposed (refrozen) ice after the meteorite sank 
into the ice (Fig. 1)14–16.

 (2) Data on meteorite retrieval locations9,17 indicate that almost no 
meteorites (<1% of all finds) are found in locations where sur-
face temperatures of the ice are higher than −9 °C even very 
rarely (this near-maximum value of the surface temperature is 
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interactions, the algorithm identifies locations for which future condi-
tions become substantially different from current conditions at places 
where meteorites were recovered.

We found that in the coming decades, independent of the emis-
sions scenario used (SSP1-2.6 or SSP5-8.5; Supplementary Fig. 1),  
~5,000 meteorites yr−1 disappear from the surface of the Antarctic ice 
sheet in response to present warming conditions (Fig. 2a and Supple-
mentary Fig. 1). This rate outpaces the rate at which Antarctic meteorites 
are found by about a factor of five (Fig. 2a). The estimated meteorite 
losses under the low- and high-emissions scenarios only start to deviate 
in the second half of the century (that is, after 2050). We estimated mete-
orite losses independent of these emissions scenarios by comparing the 
losses directly with the wide range of potential temperature increases 
captured under SSP5-8.5. The Antarctic continent-wide meteorite losses 
are strongly correlated with the increase in global air temperature: 5,100 
to 12,200 meteorites (~1–2% of all current meteorites) are lost from 
the surface of the ice sheet for every tenth of a degree in temperature 
increase (r = −0.946 to −0.968 (Supplementary Fig. 2), the uncertainty 
range stems from the range in precision and sensitivity estimates of 
the machine learning algorithm; Methods). This fragile state can also 
be related to climate policy targets. If global warming is limited to  
1.5 to 2.0 °C compared with global pre-industrial levels (Supplementary 
Fig. 3), the loss of meteorites can be constrained to between 9 and 20% 
compared with 2020. However, under current policies (that result in an 
estimated global warming of approximately 2.6 to 2.7 °C)19,20, 28–30% of 
the meteorites become unrecoverable. This share increases to 35% under 
scenarios with 3 °C of warming and 55% under 4 °C of warming. Under the 
high-emissions scenario (SSP5-8.5), 76% of the meteorites are lost by the 
end of this century and only 150 meteorite stranding zones (Methods) 
with an area of 3,180 km2 would remain, representing a decrease of 
76% in the number of zones and of 78% in their areal extent (Fig. 2c–e).

The projected meteorite losses are not uniform across the con-
tinent. For some of the known dense meteorite collection areas17, we 
project that up to 50% of the total number of meteorites could be lost 
from the ice surface before 2050 (Supplementary Table 1). One exam-
ple of these sensitive areas is the Grove Mountains in East Antarctica, 
a prime meteorite collection site where already more than 12,000 
meteorites have been recovered21. In the promising, yet largely unex-
plored, Enderby Land region in East Antarctica (Fig. 2c), similar losses 
are projected, with 50% of meteorites disappearing before 2054. Data 
show that at present, the largest concentrations of meteorites are found 
at elevations between 1,800 and 2,000 m (refs. 17,22), where an 88% 
reduction is forecasted in the number of retrievable meteorites by the 
end of the century under the high-emissions scenario (Supplementary 
Fig. 4). Only at elevations above 2,500 m will the meteorite losses be 
lower than 50% (Supplementary Fig. 4). Hence, to preserve the unique 
information contained in Antarctic meteorites, ongoing meteorite 
losses not only call for fast action, but also a (global) coordination 
to secure the most vulnerable samples in areas that are particularly 
exposed to meteorite loss (for example, low-elevation meteorite 
stranding zones such as the Hutchison Icefield). At present, decisions 
on which areas to visit are largely made according to the availability 
of logistical support and national government science priorities7. In 
the field, meteorites are often found by human visual identification 
during grid searches, conducted either on foot or by snow mobile8. To 
increase retrieval rates of such labour-intensive operations, we suggest 
a major international effort to revisit known sites or access unexplored 
sites with larger searching teams over the next 10–15 years. Leveraging 
recent developments in robotics (for example, unoccupied aerial vehi-
cle observations23 in harsh environments), as well as high-resolution 
modelling, could increase the efficiency and the extent of recovery 
operations, although the development of robust, scalable methods 
are very challenging in the extreme Antarctic4,7,24. Moreover, these 
techniques might allow the detection of some samples under ice or 
transient snow cover. Snow cover can be expected to be more prevalent 

the 99th percentile of 19 years of 8 day averages derived from 
satellite observations). Moreover, in situ observations at a much 
finer temporal resolution indicate that air and ice temperatures 
rarely exceed −5 °C for more than a few minutes at Antarctic me-
teorite stranding surfaces18.

 (3) Empirical and experimental studies of meteorite heating show 
that the sinking of meteorites occurs when the downward mete-
orite motion caused by melting into the underlying ice exceeds 
the local ablation rate10,12.

 (4) Thermodynamical modelling suggests that meteorites can sink 
into the ice with air temperatures above −10 °C (ref. 4).

 (5) Data-driven meteorite-site classifications9 indicate that near- 
maximum surface temperatures are an important predictor for 
the presence of meteorites.

Hence, the temperature susceptibility of meteorites at the surface 
of the ice could cause meteorite stranding zones to disappear under 
changing climatic conditions4,9.

To quantify the loss of Antarctic meteorites, we used a machine 
learning algorithm that predicts the presence of meteorites9 forced 
with dedicated regional climate model simulations (Methods). The 
machine learning algorithm captures interactions between different 
predictors of meteorite presence by estimating a multidimensional 
density distribution of observations of these different predictors  
(for example, ice flow velocity, surface temperature; Methods). Forc-
ing the algorithm with future surface temperatures not only elimi-
nates places that will become too warm for meteorites to be found in 
future climate conditions, but also considers interactions with other 
processes (for example, the ice flow velocity). While examining these 
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Fig. 1 | Antarctic meteorites in blue ice areas. a, Schematic representation of 
the meteorite concentration mechanism, with a supply of meteorites through ice 
flow and direct infall and loss of meteorites through melting from the surface into 
the ice (sinking, red arrows). The sinking of meteorites is caused by (increased) 
warming of the dark meteorites (especially those with high metal contents 
and thermal conductivity) under solar radiation, causing the underlying ice 
to melt, and hence the meteorite to sink into the ice. b, The Hutchison Icefield 
18033 meteorite (49 g) collected as part of the Lost Meteorites of Antarctica 
Project10,24. c, Meteorite MIL 07710 (147 g) fully enclosed in ice, collected as part 
of the Antarctic Search for Meteorites (ANSMET) programme (the number in 
the photo is used for documentation in the field). A column of clear, bubble-free 
ice above the meteorite was observed during the field mission (transparent on 
photograph), indicating that the meteorite sunk through melting underlying ice 
that refroze as superimposed ice above the sample16. Credit: b, Katherine Joy,  
Lost Meteorites of Antarctica Project10,24; c, Ralph Harvey, ANSMET programme.
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in a warming climate25–27 and results in even more meteorites becoming 
unrecoverable, but this process was not considered here when estimat-
ing meteorite losses (Supplementary Section 2).

The ongoing loss of Antarctic meteorites is a consequence of cli-
mate change. Despite the delayed response of the interior of the Antarc-
tic ice sheet to climate change in terms of ice melt (with temperatures 
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Fig. 2 | Projected evolution of meteorites in Antarctica under climate 
warming. a, Antarctic meteorite finds up to 2020 (that is, including January or 
February 2019, not including 2020) documented in the Meteoritical Bulletin17 
(averaged over 5 yr intervals) and predicted future loss rates (averaged over 20 yr 
intervals) for a low-emissions scenario (Shared Socio-economic Pathway (SSP)1-
2.6) and a high-emissions scenario (SSP5-8.5) (Supplementary Fig. 1). Estimates 
for the two emissions scenarios start to deviate from 2052; therefore loss rates 
for 2020–2040 are averaged for the two scenarios with the error bar representing 
the lower and upper estimates. b, The projected number of meteorites remaining 
at the ice sheet surface in relation to global air temperature increase with respect  
to pre-industrial levels (1850–1900; Supplementary Fig. 3). The graph displays 
the average estimate (bold line) and both the lower and upper bounds (grey 
shading; Methods), and indicates under which temperature increase 25%, 50% 
and 75% of the meteorites are lost. c, Continent-wide estimate of meteorite 
stranding zones (MSZs) in 2020 and in 2100 under SSP5-8.5 (both exaggerated 

with buffers of 10 km for visual clarity). The pie charts show the number of 
meteorites lost under global air temperature increases relative to pre-industrial 
values (colour scale) for the regions outlined in grey. In other parts of the  
Antarctic continent31,32 (that is, in regions that are not within grey boundaries), 
the total estimated numbers of meteorites are negligible (~0.5% of all meteorites 
in 2020). d, Unexplored meteorite stranding zones in the Petermann ranges  
in 2020 (pink) and 2100 (under SSP5-8.5, red). Potential new areas that appear  
are mostly snow covered (Methods). Background data are false-colour  
Landsat satellite images33. e, Identified meteorite stranding zones in the  
Allan Hills and Elephant Moraine area. The Allan Hills meteorite stranding zone 
(~1,800 meteorite finds so far) is projected to persist under a warming climate, 
while those at Elephant Moraine (~2,500 meteorite finds so far) and Reckling 
Moraine (~150 meteorite finds so far) are projected to disappear before 2100 
under SSP5-8.5. Credit: d,e, Landsat Image Mosaic of Antarctica (LIMA) project.
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remaining well below zero, even with several degrees of warming), 
meteorites are affected even by very minor (decimal) increases in 
surface temperatures during exceptionally warm events, which are 
expected to occur more frequently in the future28. Rapidly and purpose-
fully collecting all meteorites is necessary to preserve the information 
on our Solar System that each additional sample contains: for example, 
information on the emergence of life on Earth through the delivery of 
water and organic matter, and how the Moon was formed2,29. A con-
certed effort would be similar in spirit to what is currently done in ice 
core research, where ice samples collected from vanishing, yet unique, 
glaciers—such as the few remaining tropical glaciers—are stored in 
long-term archives30. Ultimately, however, the only way to preserve 
the remaining unrecovered Antarctic meteorites is to rapidly reduce 
greenhouse gas emissions.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41558-024-01954-y.
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Methods
Potential meteorite locations were identified using a machine learn-
ing algorithm (for details, see ref. 9) that relies on observations of 
ice flow velocity34, surface temperature35, radar backscatter36 and 
surface slope37. The temperature observations used to develop the 
classifier consist of the 99th percentile of the 19 yr (2001–2020) dis-
tribution of 8 day averaged surface temperature observations (that 
is, near-maximum temperature) of the Moderate Resolution Imaging 
Spectroradiometer (MODIS)35. To project the future temperature 
evolution, we used the climate model Modèle Atmosphérique Regional 
(MAR)38 at 35 km resolution (see Supplementary Section 3). In these 
dedicated high-resolution simulations, we fixed the extent of blue 
ice areas over time (by fixing the albedo). The output of MAR consists 
of daily surface temperature estimates, which we averaged to obtain 
8 day estimates. From these data, for each year from 2020 to 2100, 
we retrieved the 99th percentile of the distribution of surface tem-
peratures of the preceding 19 years. We then computed temperature 
anomalies with respect to the reference period 2001–2020 and added 
these anomalies to the observed temperatures (Supplementary Fig. 5).

We estimated the number of meteorites by converting the number 
of 450 m pixels that were identified as potential meteorite sites by the 
machine learning algorithm. We used an estimated precision of the 
classifier of 0.47–0.81 and an estimated sensitivity of 0.74–0.48 for the 
lower and upper bounds, respectively9. To derive absolute numbers, 
we used the fact that there are five meteorite finds per positive 450 m 
pixel (directly derived from the 12,906 meteorites that have been 
found over the 2,554 450 m pixels used to develop the classifier)9. For 
the lower bound, we did not consider any newly appearing meteorite 
stranding zones with respect to the reference year 2020. The physical 
understanding of the meteorite concentration mechanism indicates 
that there is temporally asymmetric behaviour regarding the (dis)
appearance of meteorites (accumulating meteorites takes thousands 
of years, while they can be lost in a matter of years)5,8,18. However, for 
the upper estimate of the number of meteorites on the continent, we 
did not discard the limited number of newly appearing meteorites 
in existing blue ice areas and their near vicinity9,39. By doing so, we 
tend to overestimate the number of meteorites remaining on the ice 
sheet. A visual inspection of the newly appearing meteorite stranding 
zones showed that the algorithm identifies locations that are mostly 
snow covered (for example, Fig. 2d). Other uncertainties that result 
in meteorite losses higher than those predicted here are related to 
climate model uncertainties and the assumption that temperatures at 
meteorite locations did not change between the moment of collection 
(Fig. 2a) and the observational period (2001–2019). These processes 
are discussed in more detail in Supplementary Section 2. For both the 
upper and lower bounds, we subtracted the number of meteorites 
that have already been collected from the total number of meteorites 
throughout the century by: (1) excluding the locations that intersected 
with location data of meteorite finds; and (2) subtracting 32,307 mete-
orites from the estimates to account for the meteorite finds without 
(reliable) location information. Unless indicated as range, all presented 
values refer to the average between the upper and lower bounds. Loss 
rates (Fig. 2a) were estimated by fitting a piecewise linear function to 
the average number of meteorites over time. The fitting was performed 
using linear least squares (Supplementary Fig. 1).

Data availability
All data needed to evaluate the conclusions in the paper are present 
in the paper and/or the Supplementary Information. Additional data 
related to this paper are available via Zenodo at https://doi.org/10.5281/
zenodo.10579625 (ref. 40). Data used in this study comprise: (1) the 
MEaSUREs InSAR-Based Antarctica Ice Velocity Map, Version 2, avail-
able through NASA National Snow and Ice Data Center Distributed 
Active Archive Center (NSIDC DAAC)34; (2) MODIS/Terra Land Surface 
Temperature data, available through NASA EOSDIS Land Processes 

DAAC35; (3) RAMP AMM-1 SAR Image Mosaic of Antarctica, Version 2, 
available through NASA NSIDC DAAC36; (4) the Reference Elevation 
Model of Antarctica, available from the Polar Geospatial Center37; (5) 
blue ice area outlines39 and (6) geoid heights41, both part of the data 
package Quantarctica available through the Norwegian Polar Insti-
tute42; (7) MEaSUREs Antarctic Boundaries, Version 2, available through 
NASA NSIDC DAAC31,32; (8) the Landsat Image Mosaic of Antarctica, 
available through the United States Geological Survey33; (9) meteorite 
finding locations and (10) outlines of dense collection areas, available 
through the Meteoritical Society’s Meteoritical Bulletin Database17; 
and (11) the TanDEM-X PolarDEM of Antarctica, available through the 
repositories of the German Aerospace Center22.

Code availability
Code constructed for the data analyses, Fig. 2 and Supplementary  
Figs. 1–7 is available via Zenodo at https://doi.org/10.5281/zenodo. 
10589098 (ref. 43).
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