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Abstract

Continuous affective self-reports are intrusive and expensive to acquire, forcing researchers to use alterna-
tive labels for the construction of their predictive models. The most predominantly used labels in literature
are continuous perceived affective labels obtained using external annotators. However an increasing body
of research indicates that the relation between expressed emotion and experienced emotion might not be as
apparent as previously assumed. Retrospective self-reports provided by participants do capture experienced
emotion, but models applied on these labels suffer from the lack of continuous annotations during training.
In this work, we aim to answer whether this lack of temporal information can be remedied by using continu-
ous external annotations as proxies for experienced emotion over time. Furthermore, we investigate whether
weakly-supervised models can generate accurate continuous annotations to reduce the annotation burden
for large datasets. Our results indicate that external annotation sequences bear little significant information
for the prediction of self-reports. However, forcing models to reflect changes in external annotations by train-
ing models in a multitask fashion improves model performance, suggesting that such temporal supervision
helps models to distinguish relevant segments in input data. Besides this, we find that weakly-supervised
models can to a certain extent capture changes over time, but in general yield poor results compared to fully-
supervised models.
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ABSTRACT
Continuous affective self-reports are intrusive and expensive
to acquire, forcing researchers to use alternative labels for
the construction of their predictive models. The most pre-
dominantly used labels in literature are continuous perceived
affective labels obtained using external annotators. However
an increasing body of research indicates that the relation
between expressed emotion and experienced emotion might
not be as apparent as previously assumed. Retrospective
self-reports provided by participants do capture experienced
emotion, but models applied on these labels suffer from the
lack of continuous annotations during training. In this work,
we aim to answer whether this lack of temporal information
can be remedied by using continuous external annotations as
proxies for experienced emotion over time. Furthermore, we
investigate whether weakly-supervised models can generate
accurate continuous annotations to reduce the annotation
burden for large datasets. Our results indicate that external
annotation sequences bear little significant information for
the prediction of self-reports. However, forcing models to
reflect changes in external annotations by training models in
a multitask fashion improves model performance, suggesting
that such temporal supervision helps models to distinguish
relevant segments in input data. Besides this, we find that
weakly-supervised models can to a certain extent capture
changes over time, but in general yield poor results compared
to fully-supervised models.

1 INTRODUCTION
Affective state estimation has been a common goal for com-
puter scientists and psychologists alike. Systems capable of
accurately predicting which affective state its users are in are
valuable in various domains, such as interactive multi-media
applications, education and healthcare, but also in research
and marketing. Obtaining the continuous ground truth for
experienced emotion is however intrusive and disruptive, as
it can only be acquired by continuously asking participants
to report their experience through self-reports.

Having access to temporal labels is valuable to account
for intra-video variations of emotion, as multiple emotions
can be experienced during the same stimulus. Due to the

high cost and intrusiveness of obtaining continuous self-
reported annotations, current affect prediction models are
often trained using external annotations. While still costly,
these labels are obtainable for moderately sized datasets, as
one annotators can label multiple response videos. How-
ever, by doing so models implicitly assume that displayed
expressions equate to the experienced affective state, for ex-
ample interpreting smiling as happiness. Although various
works argue that coherence between bodily responses and
experienced emotion exists[17, 22, 54, 65], displayed expres-
sions are not equal to experienced emotion as emotion is
not always expressed[15]. Furthermore, there might be no
prototypical expressions for experienced emotion[26] (see
Barrett et al. [3] for an extensive review).

If one wants to be sure that experienced emotion is cap-
tured, another alternative is to sacrifice the continuous anno-
tations and use self-reports collected upon task completion.
Doing so requires participants to recall their experience over
the whole task and report a ’summarised’ experience label.
Although less informative than continuous experience labels,
these retrospective self-reports are also of large interest, as
they capture the overall emotion a certain stimulus induced.
Models predicting retrospective self-reports are valuable in
domains such as personalized multimedia recommendation,
marketing and empathic agent design.
A major issue that these models face is the lack of temporal
information available during training, as only one self-report
per video is present. On top of this, these summarised self-
reports are subject to a steep loss of episodic information[85];
Due to biases in episodic and semantic memory, the peak
and end effects of an experience will exert a disproportionate
influence on retrospective self-reports respectively[46, 85].

Incorporating knowledge about external annotations dur-
ing the prediction of retrospective self-reports would remedy
the lack of temporal knowledge due to the unavailability of
continuous labels. Because external annotations are assumed
to be proxies for experienced emotion, using these as contin-
uous labels could be beneficial during prediction. However,
because of the complex relationship between expressions
and experienced emotion it is unclear how emotion is exactly
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expressed through bodily behaviour. Adding to this, as exter-
nal annotations are subject to annotators’ interpretation of
bodily behaviour, it is unclear whether these annotations are
good proxies for retrospective self-reports at all. This leads
to one of the research questions we aim to answer in this
work:

Research Question 1: How do visual behaviours relate to
retrospective self-reports of experienced emotion? Does the
utilisation of external annotations improve the predictive
power?

Psychological works finding coherence between bodily
response systems is a good indicator that expressions might
carry significant information for the prediction of experi-
enced emotion. However, the exact relationship between
them is unclear. Various studies indicate that emotions might
have no prototypical expression, and that various expres-
sions are shared between emotions[3, 26]. External annota-
tions, which are the annotators’ interpretations of partici-
pants’ displayed behaviour, might therefore not necessar-
ily find similar coherence between the interpretations of
expressions and experienced emotion. With the following
sub-question we aim to gain a better understanding of how
the relationship between external annotations and retrospec-
tive self-reports compares to the relationship between visual
behaviours and these self-reports.

Research Question 1.1: Are external annotations signifi-
cant predictors for retrospective self-reported emotional ex-
periences? How do they compare to raw visual behaviours?

Because external annotations are interpretations of expres-
sions and are thus perceiver-dependant, the attribution of
emotion to these expressions might be off. However, changes
in external annotations are likely to be caused by changes in
the participants behaviour. This notion of change might be
valuable for the prediction of retrospective self-reports as it
could indicate variations of emotion within the stimulus. As
models trained for the prediction of self-reports only have
access to a single video-level label, adding these external an-
notations as temporal supervision provides the model with
a sense of intra-video emotion variations that would other-
wise be absent. This could help models distinguish relevant
segments from background data, which could boost model
performance. We pose the following subquestion:

Research Question 1.2: Do external annotations help to
seperate emotional episodes from neutral segments?

In all previous questions we have assumed external an-
notations are available. However obtaining these temporal

annotations is time-consuming and costly, hindering the
creation of large in-the-wild datasets with continuous an-
notations. However, most affective state prediction models
are trained on external annotations and do require contin-
uous labels during training. Various other domains cope
with similar annotation costs, such as action or object locali-
sation, protein function prediction and text categorisation.
Approaches in these fields have tried to overcome this by
using weakly-supervised models[72, 106, 109, 113], achiev-
ing promising results. A major benefit of these models is
that they are specifically designed to cope with label sparsity,
noisy data or annotations. Utilising weakly-supervised mod-
els in the domain of affect estimation allows these models
to be trained on a single video-level label, while being able
to predict on frame or segment resolution. However, up to
now few works have applied weakly supervised models for
affective state estimation. We therefore aim to investigate
the viability of these models for the prediction of retrospec-
tive self-reports, as well as the prediction of continuously
perceived emotion.

Research Question 2 How well can weakly supervised
models be deployed to predict continuous annotations from
video-level annotations?

As mentioned above, weakly-supervised models are capa-
ble of predicting at a higher resolution than the label they
were trained on. This property has the benefit that locali-
sation can be done simultaneously with classification and
that insights into relevant segments for classification can be
generated. A prominent example of this is weakly supervised
action localisation, where a model is trained on a video-level
label, but is capable of indicating in which segments of the
video this label is present. Having accurate models capable
of performing localisation allows annotators to label signifi-
cantly less, allowing for the creation of larger datasets. To
evaluate the viability of transferring such weakly supervised
models to the domain of affect estimation, we pose the fol-
lowing subquestions:

Research Question 2.1 How does retrospective self-report
prediction performance compare to fully-supervised mod-
els?
Research Question 2.2 How well can weakly supervised
models predict continuous external annotation labels from
video-level labels?

Answering these questions helps us to gain insight in the
value of obtaining external annotations for the prediction
of retrospective self-reports, and whether they can be ob-
tained in a less costly manner. The remainder of this work
is structured as follows. Section 2 describes related litera-
ture and gives a background to emotion theory. Section 3
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describes the different datasets that are utilized in this work.
In Section 4, the proposed classification pipeline and selected
models are introduced. After this, Section 5 will describe a
set of experiments and their results to investigate the pre-
dictive value of external annotations for the prediction of
retrospective self-reports. This is followed by an analysis of
the predictiveness of behavioural patterns in Section 6. A
modality ablation study is presented in Section 7. Section
8 contains the results of experiments aiming to address the
viability of utilising weakly-supervised models in affective
computing. Lastly, Section 9 discusses the joint outcomes
of these experiments and their implications. Furthermore,
possible directions for future work are proposed.

2 RELATEDWORK
Emotion Representations
Before one can attempt to build emotion estimation models,
a quantifying definition for emotion needs to be selected.
Various representations for emotion exist in psychological
literature, ranging from categorical to fully continuous. In
the work of Darwin and Prodger [17] and Ekman et al. [24],
emotions are seen as distinguishable evolutionarily evolved
traits leading to a categorical representation for emotions. Ek-
man distinguishes six ’basic’ emotions; emotions that can be
distinguished from each other across cultures based on their
corresponding facial expressions. Plutchik argues there are
eight primary emotions, and introduces families of related
emotions that evolve into each other based on the intensity
of the emotion. This leads to a two-dimensional model, with
one discrete dimension and one continuous dimension, called
the Plutchik Wheel of Emotion[78]. A fully continuous rep-
resentation is proposed by Russell and Mehrabian [88]. They
propose a 3D model for representing emotions with Valence,
Arousal and Dominance as its dimensions. In this model, Va-
lence describes the pleasantness of the emotion, Arousal the
energy of the emotion and Dominance describes how con-
trolling and dominant an emotion is. Closely related is the 2D
"core affect" model proposed by Russell [87]. Here the Dom-
inance axis is omitted from the 3D model, hence emotions
are modelled using two continuous dimensions: Arousal and
Valence. The author suggests that different emotions can
be placed in a circular spatial field in which emotions that
are closely related lie close to each other. This continuous
representation enables affective constructs to be defined as
a combination of others, allowing for fuzzier definitions and
to define more subtle variations in emotions. Ekman’s basic
emotions, Plutchik’s wheel of emotion and the core affect
model can be seen in Figure 1.

Communication and Attribution of Emotion
Psychologists have been trying to gain insight into how peo-
ple experience and communicate emotion for years. One of
the most prominent theories is the one proposed by Ekman
et al. [24], arguing for the existence of six basic emotions
that can uniquely be identified from the face. Based on his
findings, Ekman and Friesen [23] developed the Facial Ac-
tion Coding System (FACS), in which combinations of Ac-
tion Units (AUs), activations of individual facial muscles,
are mapped to emotion. Various other works argue for the
importance of the face during the communication of emo-
tion. In the work of Mehrabian [67], the author used verbal,
vocal and facial cues to convey a message and investigated
how they influenced the effect of the message. He found
that when verbal and nonverbal cues communicated differ-
ent affective states, facial cues contributed 55 percent to the
interpreted effect of the message[67]. This dependency on
the face during the conveying of emotion is also found in
the works of Barrett et al. [3], Fölster et al. [28], Zhang et al.
[112].

Besides the face, scientists have focused on the contribu-
tion of body posture and movement for the communication
of emotion. Various works have in found evidence for the
expressiveness of different body parts in static poses[16, 43].
Wallbott [104] shows that significant differences in body pos-
ture exists between 14 investigated emotion categories. In
[18] the author researches the expressiveness of body move-
ments for affective states. He found that particular body
movements are expressive for specific emotional states, and
that combinations of movements can predict emotion attribu-
tion. Shafir et al. [91] find significant effects between move-
ment sequences and the emotion that participants reported
after performing these movements. Furthermore, multiple
works argue that face and body modalities might be con-
nected during emotion attribution. Ambady and Rosenthal
[2] found that human judgements of behaviours that were
based on both face and body cues were 35% more accurate
than those based solely on the face. Furthermore, works re-
port that incongruency between modalities hinders correct
attribution of acted out emotions[32, 60, 100]. As both the
face and body appear to play important roles during the
communication of emotions, we apply a combination of both
modalities in our predictive models.
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(a) categorical representation[23] (b) Plutchik wheel of emotion[78] (c) Core Affect model[87]

Figure 1: Different emotion representations

Given the vast amount of works linking emotion and fa-
cial and bodily responses, external annotations have been a
popular choice for obtaining emotional labels to train predic-
tive models. External annotators are tasked with attributing
emotion by interpreting behavioural cues in response videos.
However, over the years concerns have been voiced regard-
ing the direct connection between experienced emotion and
facial expressions. For example, in the work of Fernandez-
Dols et al. [26], the authors find no coherence between par-
ticipants’ self-reports and the prototypical facial expressions
corresponding to the reported emotion. Similarly, Ortony
and Turner [74] argue that emotional experience is linked
to individual muscular movement, rather than to full facial
configurations. In the work of Hirt et al. [40], the authors di-
rectly compare the output of an emotion classification model
and their relation to self-reports and find low coherence be-
tween the two.
Besides this, multiple works have shown that emotion attri-
bution is a difficult task for humans. In the work of Elfenbein
[25], the authors perform an extended meta-analysis over
multiple studies investigating human emotion recognition
capabilities, finding an overall attribution accuracy of 58%
across cultures. Alongside this, works have found that an-
notators will overestimate the duration of emotional events
compared to neutral ones[19, 21]. While training annotators
is possible and results in fewer missatributions[64], doing
so significantly increases annotations costs and hinders the
annotation of large datasets.

Self-reports on the other hand are not subject to interpre-
tation by others, as they are directly reported by participants
themselves. However, these self-reports are difficult to obtain

in a continuous fashion, as doing so would require partic-
ipants to label their emotion during a stimulus which dis-
tracts them from this stimulus. For this reason, self-reports
are often gathered before and upon task completion, asking
participants to recall and summarise their experience over a
stimulus. Multiple works have shown that emotional experi-
ences are subject to a quick loss of information and that when
multiple emotions are experienced within the stimulus, these
mixed emotions become increasingly difficult to recall over
time[1, 85]. Biases in episodic and semantic memory cause
participants to base their self-reports on emotional episodes
of high intensity and moments closer towards the end of the
stimuli[46, 82, 90]. Besides the influence of memory biases,
self-reported emotion might be susceptible to intentional
or unintentional distortions by the participant. For exam-
ple, participants might not report their true emotions due to
social desirability biases[38], altering their reports to hide
negative emotions such as shame and embarrassment[53, 89].

Summarising, ample research has shown that facial and
bodily behaviour play an important role in the interpretation
of emotions. However a growing body of research argues
that the relation between expressed behaviours and experi-
enced emotions appears to be more involved. For this reason
we conduct a set of experiments to investigate how visual
behaviours relate to retrospective self-reports. Furthermore,
we study the relationship between interpretations of these
visual behaviours in the form of external annotations and
self-reported emotion to investigate whether these interpre-
tations serve as good proxies for experienced emotion.



The Effect of Temporal Supervision on the Prediction of Self-reported Emotion from Behavioural Features , ,

Predictive models
Over the years ample approaches have been proposed for the
classification of emotion from video.Most of thesemodels are
trained on externally annotated label sequences, and hence
attempt to predict emotion labels that match with the anno-
tator’s attributed emotion to participant behaviours. Early
versions of these models used the FACS from Ekman and
Friesen [23] and based their predictions solely on detected
facial landmarks[56, 101]. More recent approaches often ap-
ply deep learning techniques to deduce emotions directly
from raw images or video of faces. Convolutional Neural
Networks (CNNs) are a popular component of these mod-
els, as they can exploit local structures and are translation
equivariant. For example, Burkert et al. [8] use a standard
CNN approach to learn visual features for emotion recogni-
tion from videos, which can then be passed to a traditional
classifier. Gudi et al. [34] apply a similar approach to pre-
dict AU occurrence and intensity. This move towards deep
models can also be observed for models that utilise the body
modality. Initial models often used skin-color tracking algo-
rithms to extract the locations of body parts of interest, and
used these coordinates for their predictive models[11, 30].
Newer models apply deep models to extract keypoint loca-
tions instead[27, 79, 80], or directly attempt to learn relevant
body parts or movements from data in an end-to-end fash-
ion, often applying similar CNN-based models[4, 105, 108].
Learning from raw images or videos does however require
a large amount of data during training, which might not be
available. For this reason various approaches have attempted
to use the output of pretrained models and build a classifi-
cation network on top of these outputs showing promising
results[27, 77, 79]. Doing so allows for leveraging the general-
ising capabilities from such pretrained models, significantly
reducing the required amount of training data. Taking in-
spiration from these approaches, we apply two CNN-based
pretrained networks to represent facial and bodily informa-
tion.

With the shift towards end-to-end models, fusing modali-
ties has become more common as training on modalities can
be done jointly, incorporating information between modal-
ities during optimisation. Various approaches have com-
bined modalities for affect estimation and report improved
model performance of these models[4, 27, 36, 98]. Besides
exploring the effect of fusing modalities, affective comput-
ing researchers have also attempted to incorporate temporal
dimensions into their models, as the temporal dynamics
of expressions can provide valuable information for emo-
tion classification. Gunes et al. [35] apply a Bidirectional-
Long short-term memory (LSTM) and compare model per-
formance to a Support Vector Machine (SVM). They report

superior model performance for the temporal model, and con-
clude that temporal dynamics are crucial for affect prediction.
This is supported by various other works[4, 98], showing a
large temporal dependency on onset, apex and offset frames
of expressions. Due to the shown importance of temporal in-
formation, we include time-basedmodels in our experiments.

Comparatively little work attempts to predict retrospec-
tive self-reported emotion instead of using externally anno-
tated data. In the work of Liu et al. [59], the authors attempt
to predict retrospective self-reported emotion from recog-
nised facial expressions, they report significantly above ran-
dom chance model performance for predicting self-reports
from facial expressions. In a follow-up study, the authors
also model for the relation between retrospective self-reports
and the expected induced emotion of a stimulus video. They
report that including the expected induced emotion only pro-
vides a minor improvement, which they attribute to these
relationships varying per subject and emotion[108]. These
works do however not train on complete response videos,
but are trained on the onset, apex and offset frames of expres-
sions. Other studies focus on the usage of physiological sig-
nals for the prediction of retrospective self-reports, instead
of using facial or bodily behaviour, such as [50], [95] and
[47]. To the best of our knowledge, the work by Li et al. [55]
is the only approach attempting to predict continuous self-
reports. They evaluate their model on an internally collected
dataset, in which participants were asked to continuously
annotate their Arousal and Valence during the exposure to
movie scenes. Correlations between predictions based on
Galvanic Skin Response (GSR) signals and these continuous
self-reports was then investigated, revealing a low correla-
tion (Pearson correlation = 0.26).
Above works either require temporal annotations in the form
of onset, apex and offset annotations or require sensors often
unavailable outside labaratory settings to estimate experi-
enced emotion. As these problems hinder the creation of
large in-the-wild datasets, in this work we test whether mod-
els can predict self-reported emotion from video without the
need such temporal annotations.

Because of the cost of collecting continuous self-reports
and continuous external annotations, models that do not re-
quire these labels during training but are capable of predict-
ing them are an interesting option. However little research
has been conducted that investigates the viability of apply-
ing such models in the domain of affective computing. Some
approaches in the domain of implicit tagging exist, applying
various unsupervised techniques on collected physiological
signals to detect emotional highlights (i.e. [10, 69, 93]). How-
ever, due to their unsupervised nature these models are only
capable of detecting possible emotional episodes, they do
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not predict a corresponding emotional label.
Weakly-supervisedmodels on the contrary are capable of per-
forming detection and prediction simultaneously. This allows
for the localisation of temporal or spatial segments as well
as the classification of global labels using the same model. In
Sikka et al. [92] the authors apply such a weakly-supervised
Multiple Instance Learning model to classify and localise ex-
pressions of pain in videos. Similar models have been applied
outside the domain of affective computing. Wu et al. [109]
apply an Multiple Instance Learning (MIL) model to perform
protein function classification. In Zhou et al. [113], the au-
thors apply MIL models to various domains, such as image
and text categorisation. More recently, weakly supervised
deep models have been proposed and have primarily been ap-
plied to the domain of object and action localisation in videos.
These models, just like previous weakly-supervised models,
are capable of predicting both temporal and global labels
simultaneously, but eliminate the need for feature extraction,
as they can be trained in an end-to-end fashion[72, 94, 106].
As these weakly-supervised models have shown promising
results in different domains, we propose to apply these mod-
els in the domain of emotion prediction. Inspired by the
approach presented in [92], we test a time-invariant Multi-
ple Instance Learning model alongside a recurrent weakly
supervised deep model as applied by Wang et al. [106].

Concluding, many works have been proposed for the pre-
diction of perceived emotion annotation sequences and show
good results. This is in line with psychological literature
indicating that visual behaviours play an important role dur-
ing emotion attribution. However, little affective computing
works have focused on predicting self-reported experience
from bodily behaviours. To address this gap in literature
we test various models to investigate whether models can
capture relevant visual behaviours for the prediction of retro-
spective self-reported emotion. As these models suffer from
the lack of temporal information during training, we test
if external annotation sequences can serve as proxies for
relevant emotional segments. Obtaining these annotation se-
quences through external annotators is however expensive
and hinders the creation of large in-the-wild datasets. To
help alleviate this problem, we conduct a set of experiments
to test whether weakly-supervised models can accurately
predict external annotations from a single global label.

3 DATASETS
In this work experiments aremainly conducted on the RECOLA
dataset[84]. This dataset was selected as it contains response
videos of spontaneous interactions from a collaborative task
captured in a controlled environment, in combination with
continuous external annotations and self-reports. However
as this dataset is relatively small, experiments that do not

require external annotations will be verified on the larger Me-
mentos dataset[20]. Characteristics and differences of these
datasets will be explained in the following subsections.

RECOLA
The RECOLA dataset contains spontaneous collaborative
and affective interactions in French[84]. Participants were
grouped in dyads, but placed in seperate rooms. Both were
seated behind a desk and had electrodes placed to record
physiological signals. Participants were first individually
tasked with solving a survival task: rank a number of items
according to their importance for survival. After participants
created their individual ranking, they were asked to reach
a consensus through a group discussion. This discussion is
what is captured in the dataset.
The dataset contains audio, video, Electro-Cardiogram (ECG)
and Electro-Dermal Activity (EDA) signals of a duration of 5
minutes. Participants were asked to report their mood before
and upon task completion, as well as to report the mood of
their teammate through Self-Assessment Manikins[6] with a
9 point scale. Furthermore, the corpus contains continuous
Valence-Arousal labels, obtained through external annota-
tors. Six Fresh speaking annotators separately annotated
Arousal and Valence in a continuous fashion using an an-
notation slider with values ranging from -1 to +1. These
annotations where normalised and synchronised between
annotators and averaged to form the gold-standard external
annotation. The resulting corpus contains the data of 27 par-
ticipants, their self-reports and the continuous annotation
sequences. In this work we only focus on the captured video
data and corresponding labels, although we believe that in-
corporation of the other available modalities could improve
model performance.

Mementos
The Mementos dataset contains videos of spontaneous re-
sponses to one minute clips of music videos[20]. Three hun-
dred participants were shown a random 7 video sample from
a 42 video subset of the DEAP corpus[49]. After each music
video participants were asked to report their affective state
through the AffectButton by Broekens and Brinkman [7],
resulting in a Pleasure, Arousal and Dominance score all
ranging from -1 to +1. Participants were also asked whether
this stimuli elicited particular memories, and to report the
affect associated with these memories. Data were collected
using the Mechanical Turk platform, hence response videos
are captured in an uncontrolled environment, leading to
varying lighting, pose and video quality conditions. In total,
2098 videos and their corresponding self-reports were suc-
cessfully collected. No external annotations are available for
this corpus. From these 2098 videos, we filter out all videos
with a length of 65 seconds or more. The motivation for this
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is that the video recordings should only capture responses
to the stimuli, which have a duration of a minute. Therefore,
recordings which are significantly longer than a minute are
the result of problems with the recording setup, which the
authors attribute to participants’ varying internet connec-
tions or used web browser. Applying this filter, we obtain
1988 unique videos which are used to train our models.

4 METHOD
This section will provide an overview of the flow from raw
input videos to the final affective label that is predicted by
the models. We will first provide a description about how
response videos are represented as features for our predic-
tive models. After this, the label preparation procedure is
discussed. Lastly, we introduce the predictive models that
are selected for our experiments. A visual representation of
the classification pipeline can be seen in Figure 2.

Feature extraction
The first step in any classification approach is choosing a rep-
resentation for the original data in terms of feature vectors
that the model can learn from. As learning from raw pixel
values requires large amounts of data, we use the outputs of
pretrained models to represent our videos. This allows us to
obtain meaningful descriptors from these models without
the need for a large-scale dataset. Similar to [27, 77, 79], we
build our classification network on top of these outputs. We
apply two different pretrained models to represent our input
videos. The first model is a domain specific facial expression
classification model, which returns emotion categories as
well as Action Unit activation. The second is a body pose
model capable of returning coordinates for specific body
parts. By fusing the outputs of these two models, we can
capture both fine-grained facial movement as well as body
orientation and movements. These separate models will be
discussed in more detail in the following paragraphs.

Facial feature extraction. Given an input video, we apply the
pretrained DeepFace model from VicarVision’s FaceReader
software package[33, 34] to represent facial behaviour. For
each frame in the video, a cropped grayscale image of the
face is extracted. An alignment transformation is applied
to this image using the locations of the eyes to correct for
rotations of the face. From this aligned image the model
predicts probabilities for Ekman’s six basic emotions and a
neutral class. Furthermore, it predicts demographics such as
gender and age, alongside Action Unit activations for 20 AUs.
For frames where the eyes are occluded or out-of-frame, we
simply return a array containing only masked values. We
1Image retrieved and modified from VicarVision’s FaceReader Demo video:
https://www.youtube.com/watch?v=emqhpMNcoRk
2Image modified from [51].

end up with an 𝑁 × 32 representation of facial behaviour,
where 𝑁 denotes the number of frames. An example of an
output on a single frame can be seen in Figure 3a. This figure
shows detected activated Action Units overlapped on the
face, as well as a categorical emotion estimation.

Body feature extraction. In parallel to the extraction of body
features, we apply a pretrained model to represent bodily
behaviour. For this we use the pretrained OpenPose model[9]
to obtain human pose from an input video. Each frame in
the video is passed through the model, which returns the 2D
location of 25 body parts. Since participants in our datasets
are likely to be seated behind a desk, we decided to omit all
body parts below the elbow, as these are occluded or out-of-
frame most of the time. We are left with the location of 10
body parts (Ears, Eyes, Nose, Neck, Shoulders and Elbows)
for each frame in the video. Whenever one of these selected
body parts is occluded or out-of-frame, it is substituted with
a masking value in a post-processing step. After passing a
complete video through the OpenPose model, the represen-
tation of this video is an 𝑁 × 20 feature vector, where 𝑁
represents the total number of frames per video. An example
of the OpenPose model’s output can be found in Figure 3b. In
this figure, numbered points denote detected body keypoints,
which are connected to form the upperbody skeleton.

Joining Features. From these two sets of extracted features,
we form our final input vector for each frame by joining these
two sets of features based on their respective frame number.
Whenever either of the models report missing values, so
occluded body parts in case of the OpenPose model, or at
least one occluded eye in the FaceReader model, we replace
these values with a masking value of -2. As all outputs of
either models are strictly positive, this masking value will
not interfere with any legitimate data points, and can thus
safely be used for masking. The final result is an 𝑁 × 52
feature vector, representing both facial and bodily features.

Creating uniform sequence lengths. As videos in both datasets
vary in their amount of frames, the feature embedding for
each video will be of different sizes. However, most classifi-
cation models require uniform input sizes between inputs.
To achieve this, we apply two different approaches. The first
approach is to compute statistical features over the time
dimension of the feature embedding. As features are aggre-
gated over the temporal dimension, the output dimension
will be irrespective of the original video length. The resulting
feature vector includes time-independent statistics, such as
mean, max and standard deviation, but also contains fea-
tures that do take the sequential order into account such
as autocorrelation and partial autocorrelation for different
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Figure 2: Proposed self-report classification pipeline utilising pretrained models to represent input videos.

(a) DeepFace1 (b) OpenPose2

Figure 3: Examples of the outputs of the applied pretrained DeepFace and OpenPose models

lags, Fourier analysis and seasonality3. This approach will
be referred to as Statistics aggregation in the remainder of
this work.

Our second approach uses a combination of resampling
and padding to achieve similar sequence lengths. We first

3For a complete feature overview, see https://tsfresh.readthedocs.io/en/
latest/text/list_of_features.html

resample each video to a desired frame rate to account for
varying frame rates between videos. After this we pad each
video to the maximum number of frames occurring in the
resampled dataset. This padding value is then masked within
the models to account varying sequence sizes. This approach
will be denoted by Resample aggregation in the following
sections.
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Label preparation
Before classification can be performed using the extracted
features described in the previous subsection, we first need
to define what labels will be used during training. We discuss
how we handle both the retrospective self-reports as well as
the external annotation labels.

Binning of retrospective self-report values. Due to the low
amount of datapoints available in the RECOLAdataset (n=18),
attempting to classify the self-reports into the original 9 lev-
els is infeasible due to the low amount of examples per class.
Therefore, we bin the original labels for Arousal into 3 dis-
tinct bins, representing low arousal, medium arousal and
high arousal respectively. The bin boundaries for these dis-
tinct bounds set at [1-3], (3,6] and (6,9] respectively. Follow-
ing from this binning approach, resulting bins contain 7,7,4
samples respectively. We apply a similar binning strategy for
the Mementos dataset. However, since values for self-reports
in this dataset range from -1 to +1, we first linearly project
these values to a 1 to 9 scale before bins are determined using
the same bin boundaries as defined for RECOLA. Arousal
and Valence distributions of the datasets before and after
binning can be found in Figures 18 to 21 in Appendix C.

As becomes apparent in Figure 19, the Valence dimension
in the RECOLA dataset is severely skewed, leading to little
label variance. Applying our binning approach to the Va-
lence distribution results in 0, 2 and 16 samples in the three
respective bins. Choosing different bin boundaries would
lead to difficulties during result interpretation, and could
cause misinterpretations regarding the predictability of each
of the Arousal-Valence dimensions. For these reasons, the
prediction of valence has been omitted from further experi-
ments.

Synchronising External annotations and behavioural features.
Besides retrospective self-reports, external annotation se-
quences are available in the RECOLA dataset. These external
annotations are collected at a 40ms rate, and authors report
that this corresponds to the collected video frame rate of
25FPS. This frame rate is however not exact, leaving a small
asynchrony between annotations and total amount of frames.
To illustrate this, each annotation sequence has a length of
7501 (5 minute video reported at 40ms), whereas the length
of the videos range from 7331 to 7501 frames. To account
for this, we compute a timestamp per frame by assuming a
stable frame rate throughout the video and label each frame
with the annotation that is closest to its time stamp. A visual
description of the synchronisation of video frames and anno-
tations can be seen in Figure 4. As external annotations for
the Mementos dataset are unavailable, this step is omitted.

We are left with a three category label per video, which
represents self-reported Arousal, and in the case of RECOLA
a 𝑁 × 2 label sequence representing the continuous exter-
nal Arousal-Valence annotations. These labels will be used
throughout the various classification models that are dis-
cussed in the following paragraphs.

Affect classification models
Now that both input and outputs have been obtained, we
describe how we attempt to model the relationship between
input and output. To do so, we apply several machine learn-
ing approaches, which will seperately be introduced in the
following subsections. For a more thorough description and
background on thesemodels, we refer the reader to Appendix
A.

Support Vector Classifier. SVMs have been a popular model
choice in various domains, due to its robustness and ability
to perform non-linear classification. A SVM model is a bi-
nary classification model that applies a predefined kernel to
the input data to project this data into a hyper-dimensional
space[5]. It then attempts to find a decision boundary that
maximises the distance (or so-called margin) between the
class instances and the decision boundary.
In our work we apply the SVMmodel to predict self-reported
emotion. As the SVM is a binary classification model, the
model we apply to our 3-class classification problem is es-
sentially an ensemble of SVMs. Each of the models in the
ensemble is trained in a one-versus-all fashion, training three
different models for the three categories respectively. For
each video, the final label is obtained by assigning the label of
the model with the highest positive class probability. Models
were trained using the scikit-learn python package[76]. Each
of our models utilise the following parameters during train-
ing, which have been obtained by applying a combination of
cross-validation and gridsearch over the RECOLA dataset:
• RBF kernel
• RBF kernel coefficient 𝛾 = 0.005
• Regularisation parameter 𝐶 = 1𝑒3

Multi-layer Perceptron. Whereas SVMs uses predefined ker-
nels to transform the model’s input into high-dimensional
feature space, MLPs are purely data-driven. First introduced
by McCulloch and Pitts [66], these models work by multiply-
ing the input with one or more weight matrices. Non-linear
relations can be captured by applying so-called activation
functions to the result of each consecutive multiplication.
During training the model’s output is compared with the
ground truth. This difference is then used to compute a loss-
value, from which weight gradients can be computed using
backpropegation.
We apply two different MLP models in our experiments.
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Figure 4: Synchronisation of video frames and external annotation sequences.

(a) Multilayer Perceptron (MLP) (b) Gated Recurrent Unit (GRU)

Figure 5: Model Architectures of the MLP and GRU models. The red boxes contain the temporal prediction heads and are
omitted for models solely predicting self-reports. FC denotes a Fully Connected output layer

The first model is solely tasked with the prediction of self-
reported arousal. The second model has an additional output
head, allowing us to predict continuous external annotations
simultaneously with global self-reported arousal. Differences
between the two model architectures can be found in Fig-
ure 5a. The red boxes denote the temporal prediction head,
which are omitted for models solely predicting self-reports.

Bothmodels apply 2 hidden layerswith relu activations[29]
to each timestep of the input. The outputs of each timestep
are combined using a maximum pool operation over the
temporal dimension. This is fed into an output layer using a
softmax activation to obtain the video-level label. To predict
continuous annotations, we apply a separate output layer
with a hyperbolic tangent activation function to the outputs
of each timestep. We apply the hyperbolic tangent as out-
put activation as our continuous target labels vary within
the range of -1 and +1, which matches with the output do-
main of the hyperbolic tangent function. We apply Gaussian
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noise and Dropout[97] as regularisation techniques to pre-
vent models from overfitting.
Models were trained using the following training hyperpa-
rameters:
• Adam optimiser[48] with learning rate 𝛼 = 0.01
• A learning rate decay of 0.1 based on plateaus in the
validation loss
• Input augmentation using Gaussian noise (𝜎 = 0.1)
• Dropout between hidden layers (rate = 0.2)
• Video-level loss: Categorical cross-entropy
• Temporal loss: Mean Squared Error (Model 2 only)

Gated Recurrent Unit Network. Previously discussed mod-
els were not capable of exploiting the temporal dynamics
that can be present in sequential data. As emotional expres-
sions can usually be divided into a neutral, onset, apex and
offset phase, the dynamics between these phases might be
crucial for accurate predictions. Recurrent Neural Network
models are capable of using the temporal dimension and
explicitly model for temporal relationships over time. One of
such Recurrent Neural Network (RNN) models is the Gated
Recurrent Unit model introduced by Cho et al. [12]. In this
model, sequential information is kept between timesteps in a
hidden state that propagates information over time. For each
timestep the model applies an update and forget gate to the
combination of this hidden state and the input to compute
the hidden state for the following timestep. Similar to the
MLP model, the model is trained using backpropegation.
In our experiments we utilise two different versions of the
GRU model, one only predicting video-level labels, the other
predicting both video-level labels and continuous temporal
labels. Figure 5b shows the difference between the model
architectures, where the temporal prediction heads denoted
by the red boxes are only included for the models predicting
temporal annotations.

Both models utilise a Bidirectional GRU layer with a latent
dimension of size 100. In the model predicting only video-
level labels, we pass the hidden state of the GRU layer for the
last timestep as input to an output layer with softmax activa-
tion. For the model generating temporal predicting, we pass
the hidden state of the gru layer of each timestep to another
output layer using a hyperbolic tangent activation function.
This approach closely resembles the architecture of the MLP
model with the key distinction being that temporal patterns
between timesteps can be considered for learning a sequence
representation. This is illustrated by the dotted lines in Figure
5b and the absense of such lines for the MLP model shown
in Figure 5a. Similar to the MLP model described above, we
apply Gaussian noise and Dropout to prevent overfitting on
training data. Additional training parameters are reported
below.

• Adam optimiser with learning rate 𝛼 = 0.001
• A learning rate decay of 0.1 based on plateaus in the
validation loss
• Input augmentation using Gaussian noise (𝜎 = 0.1)
• Recurrent dropout between timesteps (rate = 0.05)
• Video-level loss: Categorical cross-entropy
• Temporal loss: Mean Squared Error (Model 2 only)

MILBoost model. During the prediction of retrospective self-
reports, all models are tasked with learning a relationship
between the representation of a whole video and the corre-
sponding affective label. However, since affective episodes
in response videos are likely to be sparse, the label for the
complete video might only depend on several small segments
in the input. MIL models inherently embed this notion of re-
dundancyinto their designs. They operate on so called bags,
where each bag contains multiple instances. For our task, we
define each video as a separate bag, and each frame of that
video as a separate instance in the bag. The MILBoost model
as introduced by Viola et al. [103] classifies a bag as positive
if at least one of its instances is classified as positive. It pre-
dicts every instance using a boosted ensemble of Decision
Trees. As this ensemble is only capable of binary classifica-
tion, we train 3 different models for our 3-class classification
problem in similar fashion to the SVM model. Again, labels
are assigned based on the model with the highest label prob-
ability. However in contrast to previously described models,
this model by design predicts a label for each instance, so
tasks such as localisation can be performed in parallel to
predicting global bag-level labels. In our experiments we use
the same model for the prediction of self-reports as well as
the prediction of continuous annotations. Each of the mod-
els in our ensemble apply are trained using the following
parameters:

• Boosting ensemble of 50 iterations
• Decision Tree Boosting classifier (max depth =5)
• Generalized Mean softmax as in [92]

Weakly supervised Action Localisation model. A drawback
of the MILBoost model is that it cannot handle sequential
data, forcing its users to create sequential embeddings if
they aim to utilise temporal information. Over the last years,
weakly supervised deep models have gained popularity in
the domain of action recognition in videos and object locali-
sation in images. Similar to regular MIL models, these models
also predict an output for each instance. However, temporal
dynamics can be leveraged through the usage of recurrent
models. The model we apply to our input data is an adapta-
tion of the work of Wang et al. [106]. During training, this
model randomly samples sequences of frames from the input
video. These so called shots are fed to a bidirectional LSTM
layer of size 256 to obtain individual feature embeddings
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for each shot. This representation is passed to two separate
output heads, one determining the temporal output value
for each sequence, the other determining a relevance score
of this sequence for the global label. Outputs of both heads
are multiplied for each shot to form temporal predictions.
Video-level predictions are obtained by summing these tem-
poral predictions. The model’s training parameters can be
found below:

• Adam optimiser[48] with learning rate 𝛼 = 0.01
• Early stopping based on increases of the validation
loss
• Recurrent dropout between timesteps (rate = 0.1)
• Dropout in output heads (rate=0.3)
• Video-level loss: Mean Squared Error

5 PREDICTING SELF-REPORT FROM EXTERNAL
ANNOTATIONS

Traditionally, affect classification tasks attempt to predict
a label for each time-step, where the labels of these time-
steps are often collected from external annotators. These
external annotations are formed by interpreting behavioural
cues and expressions that participants display. However, if
one is more interested in predicting experienced emotion,
self-reports can be used as alternative form of annotation.
However collecting continuous self-reports is intrusive and
at best costly. Therefore, experiment designers often opt for
asking for a single global self-report before and after task
completion. This does however require participants to recall
and summarise their experience during the task. As only a
single self-reported label is available, models have no knowl-
edge about variations of emotion within the stimuli that
participants might experience, which is assumed to be cap-
tured in the external annotations. Therefore, we investigate
to what extent external annotations can be applied for the
prediction of self-report. If external annotations are good
proxies for experienced emotion, then correlations between
these external annotations and retrospective self-reports are
likely to exist.

Experiment 1: Significance of external annotations
on self-reports
To investigate whether perceived emotion sequences can
directly be mapped to self-reported emotion, we perform
a statistical analysis using self-reported emotion as the de-
pendant variable. We describe our external annotations as
statistical features similar to the ones described in Section 4.
By doing so we avoid testing individual time-steps for sig-
nificance, but rather test for significant properties of the an-
notation sequences. We obtain 763 interdependent features,
for which we individually compute P values using Kendall’s
tau and Mann-Whitney U tests. To account for Type 1 errors

(false significant features) introduced by performing a large
number of independent tests, a Benjamini-Hochberg post-
hoc procedure is applied to test each feature for statistical
significance. This procedure assumes that falsely significant
features occur with a predefined chance 𝑄 (set to 0.05 in our
work) and tries to accounts for this. P values for each feature
are ordered, determining a significance rank 𝑖 per feature.
This rank is multiplied by the expected false discovery rate𝑄
and divided by the total number of tested features𝑚 to form
the Benjamini-Hochberg critical value as shown in Equation
1.

𝐵𝐻𝑐𝑟𝑖𝑡 (𝑖) = 𝑖 ∗𝑄
𝑚

(1)

Features are assumed to be significant if P values are smaller
than the critical value, or if features with a lower rank com-
ply with this criteria. Table 1a shows the most significant
features for the prediction of Arousal, while Table 1b reports
the most significant features for Valance.

Although we observe multiple statistical significant P
values for both arousal and valence, we reject all of these
features as being significant by means of the Benjamini-
Hochberg procedure. This indicates that external annotation
sequences bear little predictive value for retrospective self-
reports. Although this result could be caused due to a too
aggressive correction on significance values, this seems un-
likely as decreasing the probability of false discovery 𝑄 by a
factor 10 would still lead to the rejection of all features for
valence, and all but one feature for arousal.

Experiment 2: Predicting self-reports from external
annotation sequences
To further investigate the relation between self-reports and
external annotation sequences, we perform a set of experi-
ments to discover how well classification models can predict
self-reports from external annotations. Applying non-linear
models to the statistical representation as well as the raw
annotation sequences allows us to test whether non-linear
relationships might be missed during statistical analysis. Fur-
thermore, comparing performances between models trained
on the raw annotations sequences and model trained on
the computed statistical feature representation enables us to
evaluate whether relevant information was excluded from
the statistical representation.

In this experiment we apply the MLP to both the statistical
features and the raw annotation sequence. The GRUmodel is
solely applied to the raw annotation sequence due to its time-
based nature. Lastly, we apply the SVM only to the statistical
features, to avoid rigidly fixing each timestep to a different
dimension. Model performance was computed by averaging
accuracy scores over 10 sessions of 3-fold cross-validation
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Table 1: Top 5 significant external annotation features for self-reported Arousal and Valence. 𝐵𝐻𝑐𝑟𝑖𝑡 denotes the Benjamini-
Hochberg critical value to test P value against for significance. No significant featureswere found for bothArousal andValence.

(a) Arousal

Feature Specifics P value 𝐵𝐻𝑐𝑟𝑖𝑡

Fast Fourier Transform coefficient 67 3.3e-4 6.6e-5
Fast Fourier Transform coefficient 78 1.8e-3 1.3e-4
Fast Fourier Transform coefficient 15 5.2e-3 2.0e-4
Fast Fourier Transform coefficient 81 8.4e-3 2.6e-4
Fast Fourier Transform coefficient 68 1.1e-2 3.3e-4

(b) Valence

Feature Specifics P value 𝐵𝐻𝑐𝑟𝑖𝑡

𝜎 |𝑐ℎ𝑎𝑛𝑔𝑒 | Quantiles 0.2-0.6 2.8e-3 6.6e-5
𝜇 |𝑐ℎ𝑎𝑛𝑔𝑒 | Quantiles 0.4-0.6 2.8e-3 1.3e-4
𝜎𝑐ℎ𝑎𝑛𝑔𝑒 Quantiles 0.2-0.6 2.8e-3 2.0e-4
𝜇 |𝑐ℎ𝑎𝑛𝑔𝑒 | Quantiles 0.2-0.6 3.6e-3 2.6e-4
Fast Fourier Transform coefficient 65 3.6e-3 3.3e-4

Table 2: Model performance for the classification of retro-
spective self-reported Arousal from external annotations.
Models fail to predict above random chance performance,
indicating that external annotations contain little predictive
value.

Model Modality Aggregation ACC STD
Majority None None 0.38 0.18
SVC Ext. Annotation Statistics 0.2 0.12
MLP Ext. Annotation Statistics 0.27 0.18
MLP Ext. Annotation Resample 0.3 0.17
GRU Ext. Annotation Resample 0.33 0.21

on the RECOLA dataset. The results of this experiment can
be found in Table 2. In this table, the Aggregation column
defines whether models were trained on statistical repre-
sentations of the external annotation sequences as in the
statistical test (denoted by Statistics), or were applied on
raw unprocessed annotation sequences instead (denoted by
Resample).

Similar to our first experiment, this experiment reveals
that external annotations contain no significant predictive
power for retrospective self-reports. Applying increasingly
complex models did not boost performance. This result indi-
cates that predictive power is not bound bymodel complexity
or the model’s ability to model for non-linear relations. Fur-
thermore, a comparison between the MLP model trained on
statistical features and a similar model trained on raw data
shows that no substantial performance increase was found
by using raw annotation sequences, suggesting that the sta-
tistical representation contains similar levels of information
as the raw annotation sequences.

Both sets of experiments therefore find that external anno-
tations are of low predictive value for the prediction of ret-
rospective self-reports. Various explanations can be thought

of for these findings. Firstly it could be that there exists
low coherence between bodily behaviours and retrospective
self-reports. This would cause external annotations, which
are purely based on these visual behaviours, to have little
to no predictive value. This explanation is however in con-
trast to various other works, where authors are able to cap-
ture summarised self-reported emotion labels from bodily
responses[59, 96, 108].

Another possible explanation could be that annotators are
insufficiently able to attribute the experienced emotion from
expressions alone. Various works have researched how well
humans are able to attribute emotion from visual cues, show-
ing that humans across cultures are capable of recognising
basic emotion at better than chance levels. Although above
chance, recognition levels for basic emotions were estimated
to be 58% percent (see [25] for an extensive meta-analysis).
Similar results were found by Matsumoto et al. [64], who
found a recognition rate of 47% for untrained annotators,
which jumped to 65% after training. Although these results
were obtained for discrete emotion categories, similar mis-
attributions are at least plausible for continuous emotion
representations. Annotators’ misattribution of arousal and
valence could therefore be a possible cause for the lack of
predictive power of external annotations on self-reports.

A last explanation can be found in the size and charac-
teristics of the used dataset, as only 18 external annotation
sequences with their respective self-reports are available.
This amount may be insufficient for a statistical analysis to
reveal significant effects, and for models to have too little
examples to learn meaningful decision boundaries. Besides
this, a single video and retrospective self-report is available
per participant. Because of this, it is not possible to account
for personal biases that might exist in these self-reports. Due
to these biases, participants might rate similar emotions with
different levels of arousal and valence. As continuous anno-
tations are obtained through external annotators who rated
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the complete dataset, this participant-specific bias is not re-
flected in the continuous annotations, adding to a reduced
coherence between self-reports and said external annota-
tions.

6 PREDICTING SELF-REPORT FROM VISUAL
BEHAVIOUR

Our previous experiments revealed that external annotation
sequences by themselves contain little predictive value for
retrospective self-reports. This indicates that dedicated mod-
els are required to be able to estimate self-reports. In this
section we investigate whether models can predict retro-
spective arousal from visual behaviours. Furthermore, we
investigate whether external annotations can serve as prox-
ies for relevant affective behaviour to provide the model with
additional temporal information during training.

Experiment 3: Predicting self-reports from behaviour
cues
To further investigate whether the low predictive power of
self-reports is due to incorrect assumptions made on coher-
ence of visual behaviour and retrospective self-reports we
apply models directly to uninterpreted behavioural data. We
use the output of the FaceReader model to capture facial
behaviour and apply the OpenPose model to obtain bodily
features, using the combined set of outputs per frame as
input to our models to predict Arousal self-reports. We apply
similar models as in the previous experiment, only adjust-
ing the models’ sizes to account for the larger input space.
External annotations are therefore not considered in this ex-
periment and are not part of the input to the models. Results
of this experiment can be seen in Table 3. Reported values on
the both dataset denote the average accuracy and standard
deviation after 10 sessions of 3-fold cross-validation.

Table 3: Model performance for the classification of retro-
spective self-reported Arousal from behavioural cues on the
RECOLA and Mementos dataset. Models are able to pre-
dict self-reported Arousal with above chance performance
on both datasets. The time-based GRU model outperforms
other time-invariant models.

Model Modality Aggregation RECOLA Mementos
Majority Face+Body None 0.39±0.18 0.45±0.02
SVC Face+Body Statistics 0.27±0.12 0.51±0.02
MLP Face+Body Statistics 0.48±0.24 0.46±0.02
MLP Face+Body Resample 0.48±0.11 0.50±0.03
GRU Face+Body Resample 0.57±0.14 0.53±0.03

Results indicate that behavioural features are capable of
capturing self-reported emotion with better than chance per-
formance. This does provide an additional indication that

the poor predictive power of external annotations found in
previous experiments is not due to a low coherence of visual
behaviour and retrospective self-reports.
Similar to other affective computing works[4, 35, 98] we
find a positive effect of utilising temporal dynamics in our
models, as our time-based GRU model outperforms the time-
invariantMLPmodel by a fairmargin on the RECOLAdataset.
A similar but smaller performance increase is observed for
the Mementos dataset indicating that this effect transfers
between datasets and persists under the more challenging
lighting and pose conditions present in this dataset.

Experiment 4: External annotations as temporal
supervision
In the previous experiment we investigated the predictive
power of behavioural patterns for self-reports. In thesemodel
architectures, models had to learn the relation of a com-
plete input sequence to a single self-report label. As affec-
tive episodes are likely to occur sparsely throughout the
video, finding these episodes without temporal supervision
might be troubling for the model. To remedy this, we add
external annotations as temporal supervision to the mod-
els. Although we found that external annotations bear a low
predictive power for self-reports, they do provide a notion
of affective variation over time. Even when the attributed
emotion value of these external annotations is completely
off, relative changes in these annotations are likely to be
caused by changes in participants’ behaviour. These changes
might help the model with distinguishing relevant segments
from background expressions. Therefore, adding the external
annotations as an additional supervision, forcing the model
to reflect temporal changes in its output could help to place
more focus on segments where behavioural changes occur,
leading to increased performance. As we aim to predict a tem-
poral affective labels alongside the video-level self-reports
we only apply models to the raw annotation sequences, and
omit models trained on statistical features from this exper-
iment. As the Mementos dataset does not contain external
annotation sequences, results will only be reported on the
RECOLA dataset.

Statistical tests to verify whether the addition of tempo-
ral supervision causes a significant effect were considered,
however doing so would require a larger amount of training
data. Standard statistical tests such as the Student t-test as-
sume independence between samples, which is violated by
performing cross-validation due to shared training instances
between folds. Other tests, such as the McNemar symmetry
chi-square test require a too large amount of false negatives
or positives to accurately estimate the underlying chi-square
distribution[44, 81]. A 5x2 cross-validation scheme would
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result in too few train examples to accurately learn the re-
lation between inputs and self-reports. For this reason we
have decided to omit such tests in this analysis and draw
our conclusions based on the accuracy distributions of the
model alone.

Table 4: Model performance for the classification of retro-
spectiveArousal self-reportswith different levels of supervi-
sion. MLPs models benefit from additional temporal super-
vision, whereas GRUmodels are less affected by the level of
supervision.

Model Modality Temporal supervision ACC STD
Majority None No 0.39 0.18
MLP Face+Body No 0.48 0.11
GRU Face+Body No 0.57 0.14
MLP Face+Body External Annotation 0.61 0.13
GRU Face+Body External Annotation 0.61 0.17

Table 4 shows the performance of the models for differ-
ent levels of supervision. Figure 6 visualises the model’s
accuracy distributions. We observe that adding temporal su-
pervision causes a substantial increase in model performance
for the MLP model. This indicates that temporal supervision
helps the model distinguish relevant cues from background
data. As our previous experiments revealed that external
annotations bear little predictive value for the prediction
of self-reports, this improvement is not likely to be caused
by the raw values of the temporal annotation sequences.
Instead, it seems more plausible that interactions between
the location of changes in the annotation sequences and the
model’s input are responsible for this increase. As changes
in external annotations are likely caused by notable affective
changes in a participant’s behaviour, training the model to
reflect such changes forces it to find patterns in the input
sequence explaining this difference. Therefore, doing so pro-
vides the model with a sense of what annotators attributed
as relevant behaviours. The increase in model performance
when adding temporal supervision indicates that differences
between segments as indicated by annotators are indeed rel-
evant for the prediction of self-reported emotion.

Interestingly, a smaller performance gain is observed for
the GRU model. This result could be explained by the fact
that the GRU model is a temporal model which explicitly
models for changes over time. It could therefore be that the
model can already distinguish similar behavioural patterns
over time in the input sequence without specific temporal su-
pervision. This would cause external annotations to convey

less relevant information which leads to a smaller perfor-
mance gain.

Although our analysis shows a beneficial effect of tempo-
ral supervision for both models, care has to be taken during
interpretation of our results, as we can not show the signifi-
cance of this effect due to the size of the dataset. However,
inspection of the boxplots in Figure 6a showing the accuracy
distributions for both versions of the MLP model gives us a
good indication that it is unlikely that these results stem from
the same underlying distribution. We therefore conclude that
the addition of temporal supervision to the time-invariant
MLP model leads to a substantial performance gain, while
the time-dependant GRU model benefits less or not at all, po-
tentially due to its underlying capability to capture variations
over time without the need for temporal supervision.

7 MODALITY ABLATION STUDY
To investigate how the different modalities contribute to
model performance we perform an ablation study on the pre-
viously described models. Various psychological works have
focused on revealing how emotions manifest themselves
through facial and bodily behaviour, showing that both play
important roles during both the conveying and interpreta-
tion of emotion[2, 16, 52, 100]. For this reason we expect
that utilising both modalities within the same model leads to
improved model performance. This hypothesis has also been
adopted in various other works[4, 27, 36, 98], which show
improved model performance, indicating that both modal-
ities contain unique relevant information. These works do
however show the contribution of different modalities for
the predicting of perceived emotion in the form of external
annotations. In this work we research whether similar rela-
tionships can be observed for the prediction of retrospective
self-reports.

Experiment 3.2: Effect of face and body modalities on
prediction of self-reported arousal
To better understand how the face and body modalities sep-
arately contribute to the prediction of self-reported arousal,
we apply our classification models to both modalities sepa-
rately. As models in this case only have information regard-
ing one modality, we can compare the performances to the
models where both modalities were available to understand
the contribution of the removed modality. We report the
results for the prediction of self-reported arousal on both
the RECOLA and Mementos datasets in Tables 5 and 6 re-
spectively. Similar to previous experiments, values represent
average accuracy scores and standard deviations obtained
by performing 10 × 3 cross-validation.
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(a) Multilayer Perceptron (b) Gated Recurrent Unit

Figure 6: Model Accuracy distributions for different levels of supervision. A substantial increase in performance for the MLP
model is observed, whereas the increase is absent for the GRU model.

Table 5: Model performance for the classification of retro-
spective self-reports on the RECOLA dataset using different
inputmodalities. Values represent accuracy and standard de-
viation over repeated k-fold validation

Model Face Body Full
Majority 0.39±0.18 0.39±0.18 0.39±0.18
SVC 0.29±0.12 0.24±0.16 0.27±0.12
MLP𝑠𝑡𝑎𝑡 0.37±0.15 0.30±0.12 0.48±0.24
MLP𝑠𝑒𝑞 0.48±0.22 0.46±0.14 0.48±0.12
GRU 0.52±0.21 0.48±0.14 0.57±0.18

Table 6: Model performance for the classification of retro-
spective self-reports on the Mementos dataset using differ-
ent input modalities. Values represent accuracy and stan-
dard deviation over repeated k-fold validation

Model Face Body Full
Majority 0.45±0.02 0.45±0.02 0.45±0.02
SVC 0.51±0.01- 0.45±0.01 0.51±0.02
MLP𝑠𝑡𝑎𝑡 0.47±0.02 0.43±0.02 0.46±0.02
MLP𝑠𝑒𝑞 0.50±0.03 0.46±0.04 0.50±0.03
GRU 0.51±0.03 0.46±0.02 0.53±0.03

We observe that in the RECOLA dataset, the bodymodality
does convey some significant information as both the MLP
and GRU models applied to the sequential body data achieve
above majority class accuracy scores. This effect is however
not observed for the Mementos dataset, as model perfor-
mance lies very close to majority class prediction scores.

This indicates that the body modality does convey little pre-
dictive value on its own in Mementos, possibly due to the
in-the-wild nature of the dataset. As illumination conditions
strongly vary in this dataset, body poses as predicted by the
OpenPose model might contain a significant amount of noise.
This is in contrast to the RECOLA dataset, where data was
collected in a controlled environment.

The face appears to be a better predictor for self-reported
arousal, as we achieve above random chance performance for
multiple models in the Mementos dataset. We also observe
that models using only the facial modality consistently out-
perform models trained solely on the body modility. It does
therefore seem that our models are better able to capture
relationships between facial expressions and self-reported
arousal than capturing such relationships between body pose
and self-reports. Although the body modality conveyed rele-
vant information about self-reported arousal for the RECOLA
dataset, training models on the combined modalities in gen-
eral does not seem to improve model performance. Our re-
sults reveal that only the GRU model consistently benefits
from modality fusion. We attribute this to the models abil-
ity to model for temporal dependencies between the face
and body modalities. All other models either assume time
points are independent (the MLP model trained on sequence
data), or can only model temporal variations within the same
modality (the models trained on the statistical representa-
tions). As various works found that there might exist an
asynchrony between bodily movements and corresponding
facial behaviour [37, 112], they might therefore not be able
to benefit from the addition the body modality.
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Experiment 4.2: Effect of modalities on prediction of
self-reported arousal with temporal supervision
In our earlier experiments we found that the addition of
temporal supervision led to a substantial increase model per-
formance for the MLP model, and to a lesser extend to the
GRU model. To investigate whether particular modalities
benefit more from this supervision, we perform a similar
ablation study as in our previous experiment. That is, we
train the models on the individual modalities and compare
their performance to models trained with both modalities
available. Model performance for the different modalities
and levels of supervision on the RECOLA dataset is reported
in Table 7.

In general we observe a similar relative performance pat-
tern between the face and body modalities as in our previous
experiment; the face modalities outperforms the body modal-
ity for all tested models. Interestingly, we find an increase in
performance for all modalities when temporal supervision
is added. This provides additional empirical evidence that
applying external annotation sequences as temporal supervi-
sion increases model performance for self-reported arousal.
Models trained on the face modality do however show amore
substantial increase in performance from the addition of tem-
poral supervision than models trained on the body modality.
This indicates that temporal supervision helps the models
to better distinguish facial expressions that are relevant for
self-reported arousal. The lower performance increase in the
body modality could be caused by multiple factors. A first
explanation could be that external annotation sequences are
more influenced by facial behaviour than by body move-
ments. As participants in the RECOLA dataset were seated
and had electrodes attached to their hands, body movements
could be restricted and therefore be used more sparsely to
convey emotion. A likely result of this would be that changes
in external annotation sequences are primarily caused by
changes in facial behaviour, and are therefore very relevant
for the models using the face modality. However, models
trained on the body modality would benefit substantially
less from these annotations sequences as changes in the tem-
poral annotations might have no matching changes in body
movement. A second but related explanation could be that
due to the restricted body movements, the body modality
might simply contain less predictive information, causing
models to be unable to better discriminate between arousal
levels from body movement patterns alone.

In contrast to our previous experiment were models per-
formed equally good or better when modalities were fused,
fusing modalities for models with access to temporal supervi-
sion appears to slightly degrade performance for bothmodels

when compared to the face modality. This could be caused
by various factors. First it could be that information of the
body modality is largely redundant when adding temporal
supervision, as the temporal annotation sequences used for
this supervision stem from interpretations of both the face
and body modality. When the body modality is primarily
used by models to regulate the temporal relevance of facial
behaviours, models trained with external annotations can
use these annotations for this purpose, rendering the body
modality less useful. As a result of this, model performance
is likely to be equal or slightly less for models trained on
both modalities due to the possibility of incongruency be-
tween modalities or noise introduced by the body modality.
This hypothesis could however not be verified due to the
black-box nature of our models.
Another possibility is that the performance difference is an
artefact introduced by the low number of training samples.
As the difference in model performances is small and the
standard deviations on the accuracy scores relatively high, it
could be that both the accuracy distributions for both models
are samples stemming from the same underlying distribu-
tion. As we cannot perform statistical tests due to the low
dataset size and cannot verify whether similar behaviour
occurs on the Mementos dataset due to its lack of temporal
annotations, no definitive conclusions about the nature of
this difference can be drawn.

8 WEAKLY SUPERVISED MODELS FOR AFFECT
RECOGNITION

As temporal annotation cost is high for both external anno-
tations and self-reports, weakly-supervised models that do
not require these labels during training but are capable of
predicting them could help to alleviate annotation costs on
large spontaneous in-the-wild datasets. Similar practice is
applied in the domain of object or action localisation from
videos, where videos or images are temporally annotated
with the help of weakly-supervised models[72, 105, 110].
Transferring these types of models to the domain of affective
state estimation not only enables training on large sparsely
labelled datasets, but can also be used to simultaneously tem-
porally annotate said data. To get an insight in the viability of
transferring these models to the domain of affect estimation,
we perform a twofold of experiments. The first experiment
aims to evaluate the global video-level prediction, while the
second experiment focusses on the model’s performance
during temporal label generation. These experiments will be
described in more detail in the following subsections.
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Table 7: Model performance for the classification of retrospective self-reports using different input modalities. Values repre-
sent accuracy and standard deviation over repeated k-fold validation

Model Temporal Label Face Body Face+Body
Majority - 0.39±0.18 0.39±0.18 0.39±0.18
MLP No 0.48±0.22 0.46±0.14 0.48±0.12

External Annotation 0.64±0.23 0.50±0.16 0.61±0.13
GRU No 0.52±0.21 0.48±0.14 0.57±0.18

External Annotation 0.63±0.18 0.53±0.15 0.61±0.17

Experiment 5: Predicting self-reports using weakly
supervised models
Traditional supervised models such as the ones used in Sec-
tion 5 often start with the assumption that every feature or
time-step is equally important and attempt to distinguish
relevant features during training. On the contrary, weakly-
supervised models such as MIL models inherently assume
redundancy is present in data. To test whether this helps
models during prediction, we deploy two types of weakly
supervised models; the MILBoost model as used by Sikka
et al. [92] and an Action Localisation model, which is an
adapted version of the UntrimmedNet[106]. We compare
these models against the models predicting self-reported
Arousal as used in Section 6. Similar to previous experi-
ments, models are trained on the RECOLA dataset and at-
tempt to predict a binned Arousal label from behavioural
cues. Weakly-supervised models were not applied to the Me-
mentos dataset due to time constraints and is considered
as future work. Table 8 shows a comparison between the
weakly-supervised models and fully-supervised models in
terms of accuracy and standard deviation on retrospective
self-report predictions.

Table 8: Comparison of weakly supervised model per-
formance on the prediction of retrospective self-reported
Arousal for the RECOLA dataset. Weakly-supervised mod-
els do not outperform traditionalmodels for video-level pre-
dictions.

Model Modality ACC STD
Majority None 0.39 0.18
MLP Face+Body 0.48 0.11
GRU Face+Body 0.57 0.14
MILBoost Face+Body 0.45 0.24
Action Localisation Net Face+Body 0.50 0.19

The results of this experiment show that applying weakly
supervised models for the prediction of self-report results in
equal or worse performance than our tested fully supervised
models. This indicates that explicitly modeling for sparsity or

irrelevance of time-steps in the model’s architecture does not
lead to improved classification results. Various explanations
can be thought of to explain these results. Firstly, it could
be that the fully supervised models are sufficiently capable
of dealing with sparsity in the input and explicitly mod-
elling for irrelevant time-steps is not necessary. Secondly, it
could be that too little data is available during training to
learn meaningful distinctions between relevant and irrele-
vant time-steps, resulting in comparable performances. How-
ever, since models are capable of predicting self-reported
Arousal with better than random chance performance, this
explanation seems less likely as the model is successful in
learning meaningful predictive patterns from the input se-
quence. However, it would be interesting to research whether
this behaviour is observed on other larger datasets, such as
Mementos.

Comparing both weakly-supervised models, we observe
higher model performance for the time-dependant Action Lo-
calisation Net. This increase in performance could be caused
by the ability of the Action Localisation Net to model for
temporal dynamics in the input sequence by means of its re-
current layer. Alternatively, differences in the underlying as-
sumptions on sparsity these models make could have caused
this difference in performance. In the MILBoost model a sin-
gle positive instance is enough for a video to be classified
as that positive label. As such, videos might be classified
as high Arousal based on a single segment containing high
Arousal. Participants might however take more than a single
episode of high Arousal into account in their self-reported
score. The Action Localisation Net on the other hand obtains
video-level classifications by a weighted average over the
segments. Therefore, video-level predictions are based on
the context of the complete video. From our results it seems
that the Action Localisation model’s capabilities to model for
temporal dependencies in both its input and output leads to
increased performance. This is in accordance with our results
from our previous experiments, where we find that the recur-
rent GRU model consistently outperforms the time-invariant
MLP model when no temporal supervision is available.
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Experiment 6: Predicting temporal annotations using
weakly supervised models
In our previous experiment we tested the performance of
weakly-supervised models on video-level predictions. How-
ever, these models are inherently capable of predicting on a
temporal level while being trained solely on video-level la-
bels. To predict informative temporal labels, models have to
be capable of learning the complex relation between a video-
level label and the temporal manifestation of these labels in
the video itself. Whereas labels are objective in domains such
as action localisation (a video either does or does not contain
an action), global labels for affective computing are harder to
interpret, as they are subjective measures and might have no
clear manifestation in a video. Besides this, episodic informa-
tion is quickly forgotten in retrospective reports, leading to
biases towards peak and end effects[46, 85]. Lastly, we found
no significant relation between the continuous annotations
and retrospective self-reports in our previous experiments.

For these reasons, localisation of perceived emotional
episodes from a retrospective self-report label might be in-
tractable at this time. Therefore, we construct a simplified
experiment where we disregard the complex relationship
introduced by biases in memory and differences in annota-
tion sources. Instead of using retrospective self-reports, we
construct a new video-level label which is the result of a sim-
ple max aggregation over the external annotation sequences.
This newly constructed label is what will be used as super-
vision to the weakly supervised models. We compare these
weakly supervised models with the MLP and GRU models
with temporal heads that have been solely trained on the
external annotation sequence. Furthermore, we include vari-
ations of these MLP and GRU models in our experiment who
are solely trained on the newly constructed video-level label.
Doing so allows us to compare dedicated weakly-supervised
architectures against more naive models trained on similar
labels.

The metric used in this experiment is Lin’s Concordance
Correlation Coefficient (CCC)[57], which is the evaluation
metric used in the the Audio/Visual Emotion Challenges
(AVEC) measuring agreement between temporal model pre-
dictions and a target sequence. This metric is unbiased to
changes in scale and location and includes both information
on precision and accuracy[57]. Lin’s Concordance Correla-
tion Coefficient is defined as in Equation 2:

𝜌𝑐 =
2𝜌𝜎𝑥𝜎𝑦

𝜎2
𝑥 + 𝜎2

𝑦 + (𝜇𝑥 − 𝜇𝑦)2
(2)

In this equation 𝜌𝑐 defines the CCC, 𝜌 denotes the Pear-
son correlation between the two time series, 𝜇𝑧 and 𝜎𝑧 are

the mean and standard deviation of time series 𝑧 respec-
tively. This metric can interpreted as a penalised Pearson
correlation, where the penalty is determined by the squared
perpendicular deviation from the 45◦ line drawn between
pairs of the two time series to penalise for differences in
scales. The CCC is equal to +1 if sequences are in perfect
agreement, and -1 if sequences are in perfect disagreement.

We report our results on the test partition of the RECOLA
dataset, where models are trained using both the train and
test partitions. Because continuous annotation sequences
can contain a delay as annotators are unable to respond to
displayed changes instantly[62, 73], for each model we com-
pute the optimal forward shift on the validation set. To do so,
we shift our predictions forward by 0 to 8 seconds in steps
of 400 milliseconds. Missing values introduced by this shift
are filled with the prediction of the first timestep. A similar
approach is applied to the baseline model of the AVEC 2017
challenge [83]. Figure 7 provides a visual explanation of this
shift. The shift value obtained on the validation set is then
applied to the predicted test sequences after which the CCC
value is computed. Besides the value of the CCC metric, we
report the applied shift value in Table 9.

Figure 7: Visual description of shifting temporal model
predictions forward in time.

From these results we observe that the MILBoost model
seems to be unable to capture meaningful information, as
its Concordance Correlation Coefficient value lies very close
to zero indicating no agreement between the model predic-
tions and the true annotation labels. Interestingly, model
performance of the MILBoost model is similar to those of
naive temporal prediction models that were solely trained
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Table 9: Comparison of model performance on the prediction of temporal Arousal annotations. Weakly supervised models
are able learn some variations in the external annotation sequences, but are substantially outperformed by fully-supervised
variants.

Model Modality Temporal Label Global Label CCC delay
SVR[83] BoVW External Annotation No 0.308 600ms
MLP Face+Body External Annotation No 0.211 800ms
GRU Face+Body External Annotation No 0.274 0ms
MLP Face+Body No max(𝑦𝑒𝑥𝑡 ) 0.019 2800ms
GRU Face+Body No max(𝑦𝑒𝑥𝑡 ) 0.038 1600ms
MILBoost Face+Body No max(𝑦𝑒𝑥𝑡 ) 0.020 3600ms
Action Localisation Face+Body No max(𝑦𝑒𝑥𝑡 ) 0.088 800ms

on video-level label. This indicates that the MILBoost’s spe-
cialised architecture does not yield a performance benefit for
this task. This could be caused by the way we constructed
our temporal outputs for the MILBoost models. As the MIL-
Boost model is a classification model, we need to convert its
temporal outputs to continuous values in order to compute
the CCC value. This conversion from categorical predictions
to regression values might introduce a significant amount of
noise to the temporal prediction, causing a low agreement
score.

Contrasting this, the Action Localisation Net model does
seem to capture some correlations with the true external
annotation sequences and outperforms the naive models,
indicating that its architecture allows for building a more
accurate representation of relevant segments over time. How-
ever, when compared to models that had access to temporal
supervision during training, we observe that it is signifi-
cantly outperformed by such models. Therefore it seems
currently unfeasible to apply weakly-supervised models to
generate accurate temporal labels as an alternative for ex-
ternal annotators. However, as the dataset size is relatively
small, the model’s ability to achieve positive agreement with
the external annotation sequences without explicit temporal
supervision indicates that these models could show promis-
ing results when trained on larger datasets.

Experiment 7: Effects of time and value relaxation on
model performance
To gain a deeper understanding where weakly-supervised
models lack performance compared to their fully-supervised
counterparts, we perform an additional set of experiments.
In these experiments we research the relation between the
model’s predicted signal and the true annotation sequence
in terms of differences in time and value. As the CCC met-
ric applies a penalty for differences in both time and value
between signals, the decrease in model performance could

be caused by either factor. Therefore, in this experiment we
try to make the relationship between these differences and
model performance more explicit. To do so, we apply a tol-
erance based accuracy metric. Given a list of predictions,
target labels and tolerance values, this metric is computed
as in Pseudocode 1. The metric can be interpreted by over-
lapping each point on the predicted sequence with a box
whose width and height are equal to an allowed time and
value offset respectively. A point is considered as an accurate
prediction if any point in the true annotation sequence falls
within this box. Figure 8 provides a visual interpretation
of this metric for a single point in the predicted sequence.
Results of this experiment can be found in Tables 9a to 9c. Vi-
sual representations of these tables can be found in Figure 10.

(a) Time tolerance (b) Value tolerance

Figure 8: Examples for time and value tolerances for a
single prediction point. Blue lines indicate model

predictions, orange lines denote target labels. The green
box denotes the range in which a target label point needs

to lie for the prediction to be considered correct.
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(a) MILBoost (b) Action Localisation Net (c) GRU with temporal supervision

Figure 9: Average accuracy values for different levels of time and value tolerance for different models.

Figure 10: Surface plot of prediction accuracy for different levels of value and time tolerances for different models.

We observe that the MILBoost model preformance appears
to increase linearly as both the time and value thresholds get
relaxed. This indicates that the models original model predic-
tions are off in both the time and value domains, leading to
low quality predictions. The Action Localisation Net on the
other hand seems to be less influenced by increases of the
time tolerance. We find that increasing the time tolerance
when no value tolerance is allowed has very little effect on
accuracy scores. This indicates that the model systematically
predicts a value that is either too high or low compared to
the true labels. This is verified by the sharper increase of
accuracy values along the value tolerance axis for low time
offsets. This indicates that the model is already relatively
capable of capturing some temporal variations in a relatively
close time proximity, but attributes incorrect values to these

patterns. This ability to better capture temporal variations
could be explained by the models ability to model for tem-
poral dependencies in the input, which are not modelled for
in the MILBoost model.

When comparing the fully supervised GRU model to the
Action Localisation network, we observe that the fully super-
vised model achieves roughly similar accuracy performance
when no time tolerance is allowed. However, compared to
the Action Localisation Net, the fully supervised model’s
accuracy values at low time and value tolerances increase
faster in both directions as more tolerance is allowed. This
indicate that predictions of the fully supervised model on
average lie closer to the target label, both in time proximity
as in value proximity, leading to superior performances.
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Algorithm 1: Computation of tolerance based Accu-
racy matrix
input :Prediction 𝑋 ; Target 𝑌 , Time-tolerance list

𝑇𝑇 , Value-Tolerance list 𝑉𝑇
Result: Tolerance based accuracy matrix
𝑃 ← length X;
𝑁 ← length TT;
𝑀 ← length VT;
acc_tol_sum← 𝑁 ×𝑀 Matrix;
for 𝑡 ← 0 to 𝑃 do

for 𝑖 ← 0 to 𝑁 do
𝛿𝑡 ← 𝑇𝑇𝑖 ;
time_range← 𝑌𝑡−𝛿𝑡 to 𝑌𝑡+𝛿𝑡 ;
for 𝑗 ← 0 to𝑀 do

𝛿𝑣 ← 𝑉𝑇𝑗 ;
prediction_diff← |𝑡𝑖𝑚𝑒_𝑟𝑎𝑛𝑔𝑒 − 𝑋𝑡 | ;
if ∃ point ∈ prediction_diff: point ≤ 𝛿𝑣
then

acc_tol_sum[i,j] + = 1;
end

end
end

end
return 𝑎𝑐𝑐_𝑡𝑜𝑙_𝑠𝑢𝑚

𝑃

Summarising, we find that the performance differences be-
tween the MILBoost model and the Action Localisation Net
can be attributed to the Action Localisation model’s ability to
predict more relevant values at low time tolerances. Further-
more, training models in a fully-supervised manner allows
the model to form predictions that are closer to the target
sequence in terms of both value and time.

Overall, we find that applying weakly supervised models
for the prediction of self-reported emotion yields similar
performance to unspecialised model architectures, indicat-
ing that explicitly modelling for sparsity does not lead to
improved classification results. Besides this, we find that
tasking the weakly supervised models with the prediction of
external annotation sequences seems unfeasible at this time.
Although the Action Localisation Net is able to achieve a
positive agreement with the external annotation sequences,
performance is low compared to fully supervised models.
Analysis revealed that training with temporal supervision
allows fully supervised models to make estimations that are
both closer in value and time compared to weakly super-
vised models. However, as the Action Localisation model

was able to capture positive agreement with external anno-
tation sequences from little training data, this model could
be promising when applied to larger datasets.

9 DISCUSSION
A major in challenge in the domain of affect classification
is the inability to obtain continuous ground truth labels for
experienced emotion. In this work we have focused on the
relation between the two main alternative label types re-
searchers adopt in their models: continuous external an-
notation sequences and retrospective self-reports. Through
various conducted experiments we are able to answer the
research questions that were posed in the introduction of
this work. In this section, we will address each question sep-
arately and discuss the findings of the related experiments.

Research Question 1.1: Are external annotations signifi-
cant predictors for retrospective self-reported emotional ex-
periences? How do they compare to raw visual behaviours?

In our first set of experiments, we evaluate the predictive-
ness of external annotations using a statistical analysis on
aggregated features, as well as applying increasingly pow-
erful predictive models. We find that neither the statistical
analysis nor the predictive models reveal a significant pre-
dictive effect. This implies that external annotations alone
do not carry sufficient significant information to accurately
capture self-reports. This finding has several implications for
researchers attempting to predict retrospective self-reports.
First of all, external annotations seem to capture a different
psychological construct than retrospective self-reports, as is
indicated by the lack of feature significance. This could have
multiple explanations, among which are annotator misattri-
bution of experienced emotion from expressions, dataset size,
and the fact that we cannot account for personal biases in
self-reports. Therefore, these results should be treated with
care and further experiments on larger datasets should be
conducted to verify these results.
Second, results from applying the external annotations as
direct input to predictive models indicate that transfer learn-
ing using existing models trained to predict these external
annotations is not a viable option on its own. Therefore, ded-
icated models have to be constructed to capture self-report,
leading to the necessity of larger datasets as relations have
to be learned from scratch.

Although transfer learning from models predicting exter-
nal annotations seems infeasible, using pretrained models
that predict facial expressions and bodily keypoint locations
show promising results. Our results indicate that training
on the outputs of such pretrained models allows for better
than chance performance for the predicting of self-reported
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arousal. This indicates that relevant visual behaviour can
indeed be captured by such models and that visual behaviour
can successfully be used for the prediction of self-reports.
Results of our ablation study revealed that the facial modality
conveys the most relevant information for the prediction of
self-reports and that bodily behaviour alone seems to contain
insufficient information for accurate self-report predictions.
Furthermore, we found that only the GRUmodel consistently
benefited from the fusion of modalities, which we attribute
to its ability to model for dynamics between modalities.

Research Question 1.2: Do external annotations help to
seperate emotional episodes from neutral segments?
The prediction of self-reported emotion is in itself a chal-
lenging field, as only a single video-level label is available
for models to learn from. This forces the models to learn the
relationship between temporal behavioural cues and retro-
spective self-reports without temporal supervision. We re-
searched whether applying external annotations sequences
as an additional level of supervision helps to overcome this
issue, by forcing the model to reflect changes in these anno-
tation sequences over time. Doing so resulted in improved
model performance, which indicates that although external
annotations in itself might not be viable predictors for self-
report, forcing models to reflect changes in the annotation
sequences helps to distinguish relevant segments in the in-
put video.

With these joined results of our sets of experiments, we
are able to formulate an answer to our first research question:

Research Question 1: How do visual behaviours relate to
retrospective self-reports of experienced emotion? Does the
utilisation of external annotations improve the predictive
power?

Results on two datasets showed that the facial modal-
ity is most predictive of self-reported arousal and that vi-
sual behaviours can predict self-reported arousal with better
than chance performance. External annotations by them-
selves seem to contain insufficient information to capture
self-reported arousal, but applying them as temporal super-
vision consistently leads to improved model performance.
This indicates that interactions between external annotation
sequences and the visual behaviours help the model to dis-
tinguish relevant sections for the prediction of self-reports.

Obtaining continuous external annotations is however
very costly which hinders the creation of large-scale datasets.
In this work we proposed two weakly-supervised models to
predict such temporal annotations automatically without the
need for continuous labels during training. We conducted

experiments to investigate the performance of weakly super-
vised models for both the prediction of self-reported emotion,
as well as their performance on the prediction of continuous
annotations. This allows us to answer our second set of re-
search questions:

Research Question 2.1 How does retrospective self-report
prediction performance compare to fully-supervised mod-
els?
Our results on the RECOLA dataset indicate that weakly-
supervised models can be used for the prediction of self-
reported emotion with above chance performance. However,
they are outperformed by our tested fully-supervised GRU
model. This indicates that explicitly modelling for sparsity in
the input does not help these models for the prediction of self-
reported arousal. This could indicate that fully-supervised
models are sufficiently capable of dealing with the sparsity
of emotional displays in the input. However, this behaviour
could also be caused by the low amount of training samples
and results should therefore be verified on larger datasets
such as Mementos.

Research Question 2.2 How well can weakly supervised
models predict continuous external annotation labels from
video-level labels?
As obtaining continuous temporal affective labels using ex-
ternal annotators is time-consuming and costly, the auto-
matic generation of such annotations using predictive mod-
els has gained significant attention. However up to now, all
of these models require the availability of temporal labels
during training. We tested whether our weakly-supervised
models are able to predict accurate temporal annotations
trained solely on video-level labels. Our results show that
the proposed Action Localisation model is able to achieve
some agreement with the true external annotation sequences
(Lin’s 𝐶𝐶𝐶 = 0.09), but in general is substantially outper-
formed by fully-supervised models (Lin’s 𝐶𝐶𝐶 = 0.27). An
analysis of the effects of time and value tolerances on the
performance of the Action Localisation model revealed that
model performance was more dependant on value tolerances
than on time tolerance. This indicates that the model is rela-
tively capable of capturing temporal variations with a close
time proximity, but attributes incorrect values to these pat-
terns. When compared to fully-supervised models, we find
that training on continuous labels results in predictions that
are closer to the target sequence in both value and time prox-
imity.

With these results on the performance of weakly super-
vised models, we can address our final research question:
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Research Question 2 How well can weakly supervised
models be deployed to predict continuous annotations from
video-level annotations?

Our results indicate that applying weakly supervised mod-
els to the prediction of self-reported arousal does not lead
to improved accuracy. Furthermore, when applied to the
domain of predicting perceived emotion sequences in the
form of external annotations we observe that these models
are substantially outperformed by fully-supervised variants.
For these reasons it seems that the application of weakly-
supervised models in this domain is currently unfeasible.
However, since the weakly-supervised Action Localisation
model was able to capture some agreement with external
annotation sequences from a small amount of input data, we
feel that such models could be promising when applied to
larger amounts of training data.

limitations & future work
Several limitations might hinder the generalisability of our
results to different datasets. The first and most apparent lim-
itation is the size of the used RECOLA dataset. Due to the
low amount of available data in this dataset, obtained results
indicating that external annotation sequences are not pre-
dictive for self-reported arousal should be treated with care.
Although these results are in line with previous research of
Hirt et al. [40], who found that automated systems trained to
predict external annotations are not predictive of retrospec-
tive self-reports of interest, boredom and valence, additional
experiments on larger corpora should be conducted to gain
a better understanding of the complex relationship between
the two annotation types.

Another limitation of our work is that we did not account
for personal biases in self-reports. As works in literature have
found that the experience of emotion is highly subjective[70],
accounting for these personal biases could help models dur-
ing training. Furthermore, experiments conducted on the
relation between perceived emotion and bias-corrected self-
reports could provide additional insights into the relationship
between experienced and perceived emotion. Future works
could attempt to account for personal biases through the
usage of the relative difference between reports collected
at the start and the end of stimuli or through the usage of
personalized models trained per individual.

Lastly, in this work we applied weakly-supervised models
for the prediction of perceived annotation sequences that
were trained on an aggregated video-level label. The choice
of this aggregation function might have significantly influ-
enced the model’s ability to predict temporal annotation

sequences. Further research should be conducted to inves-
tigate whether the usage of different aggregation functions
improves the model’s performance. Ideally however, datasets
are constructed containing both continuous and global level
labels stemming from the same annotator source, removing
the need for a manually defined aggregation function. The
construction of datasets containing continuous self-reported
emotion is however costly and involved as methods need to
be found to obtain such ground truths without significantly
distracting participants from the stimuli they are exposed to.
An alternative and perhaps more feasible option would be
to construct datasets containing continuous perceived anno-
tation labels obtained from external annotations in addition
to a global retrospective label provided by said annotators.
Applying weakly supervised models to such a dataset would
indicate the viability of generating continuous annotations
from a single video-level perceived emotion label. Positive
results would significantly reduce the annotation burden on
external annotators, as they would only need to report a
single label per video. Although our results suggest that it
might be too early to successfully apply weakly-supervised
models to the domain of affect classification, rapid technolog-
ical advances in these models are made in domains such as
Action Localisation in videos. As such, a successful transfer
of these models to the domain of affect estimation might
simply be a matter of time.
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A MODEL PRELIMINARIES
In this section each model used in our experiments will be
discussed in more detail. Model background and descriptions
of their inner workings will be described in the sections
below.

Support Vector Classifier
Model background and applications. Support VectorMachines
are binary classification models that are trained to perform
maximum margin classification. First introduced by Vapnik
[102], these models attempt to find a decision boundary that
maximises the distance, or so called margin, of this boundary
to the nearest point from each class. Points are classified by
the side of the decision boundary these points are located
in hyperspace. However, a problem for these models is that
in their most naive form, they cannot capture non-linear
relationships. To overcome this issue [5] proposed to use
non-linear projections of the input before fitting a decision
boundary. This projection is widely known as the kernel-
trick and allows SVM models to model for non-linear rela-
tions. Various different kernel functions have been proposed,
among which the Polynomial and Radial Basis Function ker-
nel are most notable.

Another issue that needs to be accounted for in SVMs
is the fact that these models in their original definition do
not allow for misclassifications and are therefore very sen-
sitive to outliers which significantly shift the location of
the decision boundary. To overcome this, the concept of
soft-margin SVMs were introduced. By a reformulation of
the optimization objective function, the model is allowed
to make misclassifications and is therefore less suspetible
to outliers in the data. SVMs have been extensively applied
in various domains, showing their robustness and ability to
work with a high feature dimension or sparsity. This has
made them a popular choice in domains such as document
classification and gene classification[31, 42, 61, 71]. Affective
computing researchers have also deployed them in tasks such
as multi-modal affect recognition[35, 96], the prediction of
task performance[75] and emotion attribution to videos[99].

Mathematical Definition. Soft-margin SVMs are tasked with
minimising the average hinge loss function, which is intro-
duced in Equation 3.

Lℎ𝑖𝑛𝑔𝑒 (−→𝑥𝑖 ) = max(0, 1 − 𝑦𝑖 (−→𝑤 · −→𝑥𝑖 − 𝑏)) (3)

In this equation, 𝑦𝑖 is the target label for data point −→𝑥𝑖 , −→𝑤
is the models learned normal vector to the decision hyper-
plane and 𝑏 determines the offset of the hyperplane to the
origin along the direction of −→𝑤 . The model estimates these
parameters −→𝑤 and 𝑏 by minimising the average hinge loss

plus a term to allow for misclassifications, as can be seen in
Equation 4:

Lℎ𝑖𝑛𝑔𝑒 =

[
1
𝑛

𝑛∑
𝑖=1

max(0, 1 − 𝑦𝑖 (−→𝑤 · −→𝑥𝑖 − 𝑏))
]
+ 𝜆∥−→𝑤 ∥2 (4)

In this equation the 𝜆 parameter controls the how far misclas-
sifications are allowed to be from the classification boundary.
For values of 𝜆 approaching zero, we obtain the hard-margin
variant of the SVM. This equation can be solved using qua-
dratic programming by maximising the coefficients 𝑐𝑖 as
defined in Equation 5.

−→𝑤 =
𝑛∑
𝑖=1

𝑐𝑖𝑦𝑖𝜑 (−→𝑥𝑖 ) (5)

where 𝜑 (−→𝑥𝑖 ) denotes data point −→𝑥𝑖 transformed into hyper-
space by a predefined kernel function.

Applied model. The support vector we applied in our tests
uses the Radial Basis Function kernel function to transform
data points into a higher dimensional space. This kernel is
applied to statistical features computed on the joined output
sequences of the OpenPose and DeepFace models. To com-
pute the statistical features from our input sequences, we
use the tsfresh python package4. From a 𝑉𝑖𝑑𝑒𝑜𝑠 × 7501 × 52
input sequence representing containing the output of the
DeepFace and OpenPose model for each frame, we compute
a 𝑉𝑖𝑑𝑒𝑜𝑠 × 64092 feature vector. These feature vectors are
then standardised by removing the mean and scaling to unit
variance before being fed to the support vector classifier for
classification. Optimal model parameters were estimated us-
ing a gridsearch over the regularization parameter𝐶 ([1,1000]
using exponential increases) and kernel coefficient 𝛾 ([1e-4,
0.1] using 5e-4 increases).

Multi-layer Perceptron
MLPs models are heavily inspired by the biological structure
of the brain. In the 1940s McCulloch and Pitts [66] suggested
that simple calculation units in the brain called neurons work
together and exchange information to make decisions. In
MLP models, neurons are organised in layers, where neu-
rons between layers are densely connected with a certain
corresponding weight. The model obtains outputs by multi-
plications of the input with the weight matrixes that connect
neurons between layers. However, since the model’s output
is purely derived from linear combinations of inputs and
weights, MLP models often use activation functions on the
outputs of each layer to introduce non-linearity. Common
choices for activation functions are the Sigmoid, Hyperbolic
tangent and Rectified Linear Unit[29] functions.

4https://tsfresh.readthedocs.io/en/latest/text/introduction.html
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During training themodel attempts to find suitableweights
for the connections between neurons. This is done using a
process called back-propagation in which the model’s predic-
tions are iteratively compared to target labels to compute a
predefined loss function from which weight gradients can be
estimated. Various different methods to obtain this weight
gradient exist, among which are Stochastic Gradient Descent,
Adam[48] and RMSprop[39]. Due to their ability to learn re-
lations from input to output without the need for manual
feature engineering, various works have applied the MLP for
affective state estimation from various inputs, such as Elec-
troencephalography (EEG) signals and speech[58, 68, 111]

Mathematical Definitions. We demonstrate the mathemat-
ical formulation and calculations for update gradients for
the most simple variant of the MLP model, the single-layer
perceptron using Gradient Descent. For variants of the MLP
model with more layers between input and output, model
definition and weight updates resolve around the same math-
ematical concepts, but require more intermediate computa-
tions. For the single-layer perceptron, the relation between
input 𝑥 and output 𝑜 is denoted by the following formula:

𝑜 = 𝑔(−→𝑤 · −→𝑥 + 𝑏) (6)
Where 𝑔 denotes the activation function of the model, −→𝑤
denotes the weight matrix of size (𝑜𝑢𝑡𝑝𝑢𝑡_𝑑𝑖𝑚 × 𝑖𝑛𝑝𝑢𝑡_𝑑𝑖𝑚)
between the input and output neurons and 𝑏 denotes learn-
able bias of size (𝑜𝑢𝑡𝑝𝑢𝑡_𝑑𝑖𝑚 × 1). During training weight
gradients Δ−→𝑤 and Δ𝑏 can be computed using the formula
defined in Equation 7.

Δ−→𝑤 = 𝛼
𝜕𝐿(𝑋 )
𝜕−→𝑤

Δ𝑏 = 𝛼
𝜕𝐿(𝑋 )
𝜕𝑏

(7)

In this formulation 𝛼 denotes the learning rate, 𝐿 is the
defined loss function and 𝜕𝐿 (𝑋 )

𝜕𝑧 denotes the partial deriva-
tive of 𝐿 with respect to 𝑧. Model weights are updated by
subtracting the gradients, after which this update procedure
repeats for a predefined number of epochs.

−→𝑤 𝑡+1 = −→𝑤 𝑡 − Δ−→𝑤 𝑡

𝑏𝑡+1 = 𝑏𝑡 − Δ𝑏𝑡
(8)

Applied model. The model applied in this work is a four lay-
ered Multilayer Perceptron for the prediction of self-reports
with hidden layer shapes of sizes 100 and 50 respectively.
Due to the continuous nature of video data, we tested two dif-
ferent model architectures. In the first model, each time-step
of the input is concatenated to form the input to the model,
resulting in a (𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 ∗ 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠) × 1 input vector. This
input is then passed through the hidden layers and output

layer to form a global prediction. This model architecture
can be seen on the left in Figure 11. Our other approach
applies a four-layered MLP to each time-step of the input. In
this model, the input is therefore not concatenated, and has
a dimension of 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 × 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 . This MLP essentially
outputs a latent representation per time-step, which are then
passed through a max-pooling layer to combine them into a
single representation for the complete video. A final single
fully connected layer with a softmax activation is used to
transform this sequence embedding to a video-level label.
This approach is similar to the one applied in [27], where the
feature extraction phase is replaced to work the OpenPose
and DeepFace model outputs instead of learning from raw
frames. The architecture of the second approach can be seen
in on the right hand side of Figure 11

Comparisons between these models revealed no signifi-
cant difference in performance. However, the model using a
time-distributed MLP has several benefits over the concate-
nation model. First of all, the total number of parameters
present in the time-distributed model is far less compared
to the concatenation model. This is due to the fact that the
same MLP model is applied to each time-step, where each
time-step has an input dimension of 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 × 1. This re-
sults in a weight matrix of dimension 𝑙𝑎𝑡𝑒𝑛𝑡_𝑑𝑖𝑚× 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠
between the input and first hidden layer. In comparison the
first weight matrix of the concatenation model requires a
weight matrix of size (𝑙𝑎𝑡𝑒𝑛𝑡_𝑑𝑖𝑚 × (𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 ∗ 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠)).
Besides this, the secondmodel allows for easier incorporation
of temporal supervision, as a temporal prediction head can
easily be built on top of the latent temporal representation
before this is aggregated with the max-pooling operation
into a video-level representation. For these reasons, all exper-
iments are conducted using the time-distributed architecture.
The model architecture for including temporal supervision is
depicted in Figure 12. As described, it adds a temporal output
head to each latent time-step representation before they are
aggregated for final prediction. The temporal output branch
is denoted by the red "Temporal head" box. During training,
both the global label and temporal labels can be fed to the
model, as is depicted by the blue boxes.

Gated Recurrent Unit
GRUs models stem from the same core concepts as the MLP
model. However, in contrast to the MLP model, these mod-
els are allowed to contain cycles between neurons. This
allows for the modelling of temporal patterns in the in-
put. Initial simple designs of Recurrent Neural Networks
were introduced in the paper of Ruineihart et al. [86]. These
models do however contain two key issues regarding the
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Figure 11: The two different MLP model architectures. The left model utilizes feature concatenation, the right model a
temporally distributed MLP model.

weight gradients: the vanishing and exploding gradient prob-
lems. For this reason Hochreiter and Schmidhuber [41] in-
troduced the LSTM network, which attempts to solve such
issues by the utilisation of gates, which are responsible for
controlling what information will be passed on to further
timesteps. In 2014, Cho et al. [12] introduced the GRU model,
which is closely related to the LSTM model but is compu-
tationally more efficient. Empirical results have shown that
model performance between the GRU and LSTM models is
similar[13, 45].

Mathematical Definitions. GRU models resolve around the
concept of a hidden state that propagates over time. In gen-
eral, this be hidden state can be defined by the following
formula:

ℎ𝑡 = 𝑓 (ℎ𝑡−1, 𝑥𝑡 ) (9)
where ℎ𝑡 defines the hidden state at time 𝑡 , 𝑓 is a non-linear
function that defines what information should be kept over
time and 𝑥𝑡 is the models input for time 𝑡 . In a GRU model
this function 𝑓 is defined by means of an update and reset
gate applied to the hidden representation ℎ𝑡−1 and input 𝑥𝑡 .
These gates are defined as follows:

𝑧𝑡 = 𝜎 (𝑊 𝑧𝑥𝑡 +𝑈 𝑧ℎ𝑡−1)
𝑟𝑡 = 𝜎 (𝑊 𝑟𝑥𝑡 +𝑈 𝑟ℎ𝑡−1) (10)

Where 𝑧𝑡 and 𝑟𝑡 are the update and reset gate values for
timestep 𝑡 , 𝑠𝑖𝑔𝑚𝑎 denotes the sigmoid function,𝑊 𝑘 defines
the input weight matrix for gate 𝑘 and𝑈 𝑘 defines the hidden
state weight matrix for gate 𝑘 . With these gate values, we can
obtain a memory matrix that captures relevant information
from the past timesteps. Using this memory we can define

the function 𝑓 from Equation 9.

ℎ
′
𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑡 + 𝑟𝑡 ◦𝑈ℎ𝑡−1)

𝑓 (ℎ𝑡−1, 𝑥𝑡 ) = 𝑧𝑡 ◦ ℎ𝑡−1 + (1 − 𝑧𝑡 ) ◦ ℎ′𝑡
(11)

In these equation ℎ
′
𝑡 denotes the memory content as time

𝑡 , 𝑡𝑎𝑛ℎ denotes the Hyperbolic Tangent and ◦ denotes the
Hadamard product (element-wise product). Similar to the
MLP model, weight updates can be obtained by taking the
partial derivatives of the loss function with respect to the
layer. However as these computations are more involved and
quite extensive for the GRU model, they have been omitted
from this report.

Applied model. In our models, we stack two recurrent GRU
layers on top of each other; one applied on the sequence from
past to future, the other applied from future to past. Doing
so allows the model to utilise past and future information
to create a latent sequence representation by combining
the outputs of the two unidirectional models. This latent
representation is passed through a single fully-connected
layer with softmax activation to obtain the final video-level
classification, in similar fashion as the MLP model. Temporal
supervision can be added by building a regression head on
top of the temporal outputs of the bidirectional GRU model,
as denoted by the red "temporal head" boxes in Figure 13.
These are omitted for models only predicting video-level
labels.

MILBoost
the MILBoost model is a weakly-supervised binary classifi-
cation model in the Multiple Instance Learning model family.
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Figure 12: MLP model architecture showing both global and temporal output heads. Temporal heads denoted by red boxes
are omitted from models predicting video-level labels.

The MILBoost model was introduced by Viola et al. [103]
for image object detection. This model combines the weakly
supervised cost functions found in Multiple Instance Learn-
ing models with an AnyBoost[63] boosting scheme. This
allows the model to predict continuous annotations while
being trained on video-level labels. Due to this desirable
property, these types of models have been applied in object
localisation tasks[14, 103], pain localisation[92] and protein
function classification[109].

Multiple instance learning models often define two key
concepts: bags and instances. A bag is a collection of in-
stances with an associated label. Instances represent inde-
pendent model inputs. As an example, in an object local-
isation task from videos, each instance could represent a
video frame, and each bag contains frames associated to a

certain video. Positive bags must contain at least one posi-
tive instance, whereas negative bags can contain no positive
instances.

Mathematical Definitions. Asmentioned above, theMILboost
model predicts an output for each instance in the bag and
assigns bags as positive if it contains one ore more posi-
tive instances. During training the model obtains a decision
boundary by minimising the Negative log-likelihood loss
function, as defined in Equation 12:

L = −
𝑁∑
𝑖

𝑡𝑖𝑙𝑜𝑔(𝑝𝑖 ) + (1 − 𝑡𝑖 )𝑙𝑜𝑔(1 − 𝑝𝑖 )

𝑝𝑖 = max
𝑗
(𝑝𝑖 𝑗 )

𝑝𝑖 𝑗 =
1

1 + 𝑒𝑥𝑝 (𝐶 (𝑥𝑖 𝑗 ))

(12)
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Figure 13: GRU model architecture showing both global and temporal output heads. Temporal heads denoted by red boxes
are omitted from models predicting video-level labels.

In these equations, 𝑁 is the number of bags or videos, 𝑡𝑖 is
the global video label and 𝑝𝑖 𝑗 is the probability of instance
𝑗 belonging to bag 𝑖 , which is determined by the output of
classifier 𝐶 given input 𝑥𝑖 𝑗 .

Using this loss function, we can obtain weights for each
instance in a bag using the derivative of the loss with respect
to the predicted instance label:

𝑤𝑖 𝑗 =
𝜕L(𝐶)
𝜕𝐶 (𝑥𝑖 𝑗 ) (13)

Using these weights we can perform a boosting iteration.
In each iteration of boosting, a weak decision stump is added
to the model ensemble. This decision stump is determined

by the classifier that maximises the following equation:

𝑐𝑡 = max
𝑐

[∑
𝑖 𝑗

𝑐 (𝑥𝑖 𝑗 )𝑤𝑖 𝑗

]
(14)

The classifier’s weight 𝜆 is determined by a line search
maximising Equation 15.

𝑙𝑜𝑔L(𝐶 + 𝜆𝑡𝑐𝑡 ) (15)

Applied model. In our models we use an ensemble of MIL-
Boost models to obtain multi-class classification. These mod-
els are trained in an one-versus-all fashion, yielding three
separate models for the three respective levels of Arousal.
After training each model as described above, the bag-level
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label is determined by the model with the highest class prob-
ability, that is:

𝑝𝑖 = max
𝑚

max
𝑗
(𝑝𝑖 𝑗𝑚) (16)

where 𝑚 is a single model in the ensemble and 𝑝𝑖 𝑗 is the
probability of instance 𝑖 belonging to bag 𝑗 predicted by
model 𝑚. Similarly, temporal instance labels are assigned
by taking the maximum positive instance probability across
models:

𝑝𝑖 𝑗 = max
𝑚

𝑝𝑖 𝑗𝑚 (17)

Models were trained using Decision Tree classifiers as the
weak decision stump and a boosting scheme of 50 iterations.
A visual representation of the MILBoost model can be found
in Figure 14.

Figure 14: Visual description of the MILBoost model.
Positive bags contain at least on positive instance, negative

bags contain no positive instances..

Action Localisation Net
The Action Localisation model is another weakly supervised
model, but applies a deep learning approach instead of us-
ing Multiple Instance Learning techniques. Similar to the
MLP and GRU networks, these models are based on con-
nected simple computational neurons. First introduced by
Wang et al. [106], these models attempt to learn to capture
temporal relevant segments from a single global label. The
proposed model architecture in Wang et al. [106] heavily re-
sembles the TSN network’s architecture as proposed in [107],
but does not require temporal annotations during training.
This Action Localisation model computes an activation map
over the spatial or temporal dimension, effectively assigning
a relevance label for each instance in that dimension. This
activation map is combined with the output of a classifica-
tion head to form the predicted global label for the video or
image. These models form a video-level classification based
on the weighted sum of all instances in the relevant dimen-
sion, contrary to MIL models where only the entry with the
maximum activation is considered.

Mathematical Definitions. As the applied model is based on
a combination of GRU and MLP layers, the math behind
these models has been omitted from this subsection. Simi-
lar to these models, training the Action Localisation model
is performed by computing weight gradients using partial
derivatives of the loss function with respect to a specific
layer.

Applied model. The utilised Action Localisation model is an
adapted version from the model proposed in [106]. Specifi-
cally, in their model the authors differentiate between multi-
ple phases: sampling, feature extraction, classification and
selection. In our model, we adapted the feature extraction
phase to work with the output of the pretrained DeepFace
and OpenPose model outputs instead of learning from raw
frames. Furthermore, we modified the classification phase to
support training as a regression problem instead. Figure 16
shows the architecture of our proposed model.

Clip Sampling This model relies on the sampling of clips
during training of the model. This means that the model only
sees small snippets of the complete video during training. To
obtain these snippets, we first split our videos into evenly
sized segments of 10 seconds. Then, for each batch a ran-
dom subset of segments (𝑛𝑟_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = 7 in our case) are
sampled from the total pool of segments. For each of these
segments, a predefined number of shots (𝑛𝑟_𝑠ℎ𝑜𝑡𝑠 = 15)
are sampled at random start times. These shots contain
small sequences of features stemming from five consecu-
tive frames. Doing so leaves us with an input dimension of
𝑛𝑟_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠×𝑛𝑟_𝑠ℎ𝑜𝑡𝑠×𝑠𝑒𝑞_𝑠𝑖𝑧𝑒× 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑑𝑖𝑚. Figure 15
shows an example of how clip sampling is performed during
training.
During testing, we sample a shot every second in the input
video, filling the segments with consecutive shots. Similar
to [106], the recognition scores of segments are aggregated
with a weighted sum to yield the final video-level prediction.
The weight of each segment for final prediction is deter-
mined by multiplying its attention score with the output of
the regression head.

Feature Extraction Instead of the temporal and spatial
CNNs that Wang et al. [106] apply for feature extraction for
each shot, we apply an LSTM over the sequence of features
within a shot to obtain a representation for that sequence.
These features are the outputs of the DeepFace and Open-
Pose models stemming from the selected frames in a shot.
To obtain a representation per shot, we perform an Aver-
age Pooling operation over the sequence dimension. This
representation is then fed to the regression and selection
heads.

Model prediction Given this representation for each shot,
the network performs two operations to obtain video-level
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Figure 15: Shot sampling procedure during training of the Action Localisation model. An input video is segmented into
evenly sized segments. A random subset of these segments is selected in each batch. From each segment, shots with random

start times are selected.

predictions. First, the model computes a regression score per
shot by applying a deep layer to each shot. These regression
scores per shot are averaged to obtain a segment level re-
gression score. Second, the model computes an attention or
relevance score per segment by applying a different deep
layer to all individual shots. Again, the scores for each shot
are averaged to obtain segment-level scores. However, in this
model head, a softmax operation over the segment dimension
is applied to weigh each segment relative to other segments
in the video. This weight can be seen as a relative importance
per segment in the video. Finally, to obtain video-level pre-
dictions, the regression scores per segment and their relative
importance are multiplied to obtain a weighted score per
segment. These are then summed to obtain video-level classi-
fication scores. To obtain temporal predictions, the weighted
score per segment is scaled to obtain values in the same value
domain as the video-level prediction:

𝑦𝑖 =

[
𝑦𝑖 −max𝑦𝑡

𝜎𝑦𝑡
∗ 𝜎𝑦𝑡𝑡𝑟𝑎𝑖𝑛

]
+ 𝑦𝑣𝑖𝑑 (18)

In this equation, 𝑦𝑖 is the predicted value at time 𝑖 , 𝑦𝑡 is
the prediction sequence for all timesteps, 𝜎𝑦𝑡 denotes the
standard deviation for the full prediction sequence. 𝜎𝑦𝑡𝑡𝑟𝑎𝑖𝑛
denotes the average standard deviation of the true annotation
sequences in the training set and𝑦𝑣𝑖𝑑 denotes the video-level
prediction of the model. This transformation can be seen as
a normalisation procedure, where we scale the maximum
value of the prediction sequence to the predicted video-level
label. We multiply by the standard deviation of the training
annotation sequences to account for the difference in scales,

as we expect that the standard deviations of test sequences
will roughly approximate the same standard deviation.
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Figure 16: Model architecture of the Action Localisation network.
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B DATA LOADING ON EXTERNAL MACHINES
Data containing recordings of human behaviour is privacy
sensitive, and does often require users of that data to sign
an End-user Licence Agreement (EULA). In this EULA, one
specifies who will be allowed access to the data and on what
terms data can be used. With the rise of deep learning and
increasingly complex models, there is often a need for train-
ing in a distributed setting as training on a single host would
be infeasible due to time or compute constraints. However,
these compute clusters are inherently shared among users,
therefore requiring additional thought on how to prevent
unauthorised data access when processing sensitive data on
shared networks. To this end, we propose a containerised
system capable of running in a distributed setting, which
minimises the risk of unauthorised data access.

We have posed the following requirements for this system:
(1) Data can not be accessed by other users of the cluster
(2) A data point will only reside on the shared compute

node during the processing of that point
(3) Data will be inaccessible upon completion or failure

of the processing software
(4) System does not require elevated privileges
With these requirements in mind, we propose the follow-

ing method for data processing in shared compute environ-
ments. The system will be based on Singularity containers
which will be deployed on each requested compute node
in the cluster. These Singularity containers contain the pro-
cessing code as well as a startup script that will create a
mount to a protected data server. Once these containers are
deployed on the node, it essentially creates an overlay of
its internal file system on the host machine, and shares the
users privileges. By doing so, the mount point is bound to
system memory, which could allow for potential access from
external users using that compute node. For this reason, we
use SSHFS to create a mount point as this allows us to bind a
specific user to that mount point, making it inaccessible for
all others, including users with administrator rights5. This
approach fulfils our first requirement.

After data is mounted on the host, data files are not yet
pulled to the compute node; Only a list of files is available
inside the Singularity container. Once the code starts process-
ing a a data point, that particular data point is fetched from
the external server and placed in the containers cache. Once
the code progresses to a new data point, the cache is cleared,
removing the old data point from the machine’s memory. In
this way data only resides on the machine during the actual

5Documentation of FUSE access permissions: https://man7.org/linux/man-
pages/man8/mount.fuse.8.html#OPTIONS

processing of that data point, fulfilling requirement 2.

Upon completion of the processing code, the last data is
cleared from cache, the mount point released and the con-
tainer is terminated. However, to prevent data remaining in
the machine’s cache upon crashes or other unexpected termi-
nation of the processing code, we bind a handler to the data
processing code, responding to various system signals, such
as EXIT, SIGQUIT, SIGABRT and SIGTERM signals. These
signals are raised by the system whenever the code exits,
quits, aborts or terminates. Whenever one of such signals is
received, the same procedure as upon successful completion
is applied. Therefore, crashes of the code inside of the con-
tainer will not result in remaining data on the host. Another
possibility is a full crash or unexpected termination of the
Singularity container. This could for example occur when
cluster schedulers kill the container for trying to use more
resources than requested. However, due to the containerised
nature of our approach and the fact that the mount point
is bound inside the container, crashes of the container will
make the mount point unavailable and inaccessible. These
precautions make sure that data will never be present on the
compute nodes upon completion or failure of the processing
code or container, as required by requirement 3.

Lastly, it is important that users do not require elevated
privileges to use this data handling procedure, as this is
generally not allowed by the compute cluster. Singularity
and other containerised approaches are specifically designed
with this requirement in mind and can therefore be ran with
standard user permissions. Allowing for FUSEmounts within
an unprivileged user name-space has been made possible
since Linux kernel 4.18. This kernel dependency and the
need for a Singularity installation are the only system re-
quirement imposed by this approach on the compute cluster,
there is no need for specialised user privileges, as specified
by requirement 4.

This approach does therefore fulfil all set requirements
to protect unauthorised data access when running on un-
controlled hosts. A diagram of the proposed method can be
found in Figure 17. However, applying this method comes
with some drawbacks that might hinder usability. First of
all, due to the constraints on data availability on the com-
pute node, data has to be fetched from a remote server using
the SSH File Transfer Protocol (SFTP) protocol. Especially
if one is working with a large number files with large sizes,
this approach significantly slows down processing speeds,
as downloading these files to the compute node can take
some time. Second, batch processing comes at a cost of re-
quiring more data to simultaneously exist on the compute
node. However, especially for training deep models, such
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behaviour is desired to stabilise gradients and to optimise
prediction speeds. Lastly, this approach can not utilise ef-
ficient cluster computations such as map-reduce, in which
data is split and divided over multiple nodes, as the data is
not present on a cluster level, only nodes can access the data
from within their singularity containers. Summarising, this
approach ensures data protection, but comes at the cost of
reduced processing efficiency. Although some of these draw-
backs might be optimised by relaxing some of the constraints
of the system, this was out of scope for this project and has
not been researched.
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Figure 17: Data loading procedure.
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C SELF-REPORT DISTRIBUTIONS
This section shows the data distributions for of Arousal and
Valence for the RECOLA and Mementos datasets. We show
the original distribution as well as the obtained distribution
after our binning operation. Distributions for RECOLA can
be found in Figure 18 and 19, distributions for Mementos in
Figure 20 and 21.

RECOLA

Figure 18: Distributions of self-reported Arousal of the
RECOLA dataset before and after binning.

Figure 19: Distributions of self-reported Valence of the
RECOLA dataset before and after binning.

As can be observed from the distribution of Valence, self-
reports are severely skewed. As binning would result in
bins containing 2, 0 and 16 samples respectively we decided
to omit experiments for the prediction of Valence due to
insufficient class variance.

Mementos

Figure 20: Distributions of self-reported Arousal of the
Mementos dataset before and after binning.

Figure 21: Distributions of self-reported Valence of the
Mementos dataset before and after binning.
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ACRONYMS
AU Action Unit. 3, 5, 7

CCC Concordance Correlation Coefficient. 19, 20
CNN Convolutional Neural Network. 5, 34

ECG Electro-Cardiogram. 6
EDA Electro-Dermal Activity. 6
EEG Electroencephalography. 30
EULA End-user Licence Agreement. 37

FACS Facial Action Coding System. 3, 5

GRU Gated Recurrent Unit. 10–12, 14–19, 21, 23, 30, 31, 33,
34

GSR Galvanic Skin Response. 5

LSTM Long short-term memory. 5, 11, 31, 34

MIL Multiple Instance Learning. 6, 11, 18, 34
MLP Multilayer Perceptron. 9–19, 29–32, 34
MSE Mean Squared Error. 11, 12

RBF Radial Basis Function. 29
ReLU Rectified Linear Unit. 29
RNN Recurrent Neural Network. 11, 30

SFTP SSH File Transfer Protocol. 37
SVM Support Vector Machine. 5, 9, 11, 12, 29

VA Valence-Arousal. 6


