
 
 

Delft University of Technology

Teachers’ Beliefs and Practices on the Naming of Variables in Introductory Python
Programming Courses

van der Werf, Vivian; Swidan, Alaaeddin; Hermans, Felienne; Specht, Marcus; Aivaloglou, Efthimia

DOI
10.1145/3639474.3640069
Publication date
2024
Document Version
Final published version
Published in
Proceedings - 2024 ACM/IEEE 46th International Conference on Software Engineering

Citation (APA)
van der Werf, V., Swidan, A., Hermans, F., Specht, M., & Aivaloglou, E. (2024). Teachers’ Beliefs and
Practices on the Naming of Variables in Introductory Python Programming Courses. In Proceedings - 2024
ACM/IEEE 46th International Conference on Software Engineering: Software Engineering Education and
Training, ICSE-SEET 2024 (pp. 368-379). (Proceedings - International Conference on Software
Engineering). IEEE. https://doi.org/10.1145/3639474.3640069
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3639474.3640069
https://doi.org/10.1145/3639474.3640069


Teachers’ Beliefs and Practices on the Naming of Variables in
Introductory Python Programming Courses

Vivian van der Werf
v.van.der.werf@liacs.leidenuniv.nl

Leiden University
Leiden, The Netherlands

Alaaeddin Swidan
alaaeddin.swidan@ou.nl

Open University of The Netherlands
Heerlen, The Netherlands

Felienne Hermans
f.f.j.hermans@vu.nl

Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

Marcus Specht
m.m.specht@tudelft.nl

Delft University of Technology
Delft, The Netherlands

Efthimia Aivaloglou
e.aivaloglou@tudelft.nl

Delft University of Technology
Delft, The Netherlands

ABSTRACT
Motivation. Variable naming practices are part of the software de-
veloper’s profession, influencing program comprehension and code
quality. Yet, little is known about how variable naming practices
are taught in beginner courses. Objective. This paper investigates
naming beliefs, self-reported teaching practices, and observations
regarding variable naming practices of teachers of introductory
Python programming courses. Methods. We adopted an in-depth
qualitative approach by interviewing ten teachers from secondary
education and higher education and developed several themes in
order to answer our research questions. Results. Among various
opinions and practices, we found that teachers agree on using mean-
ingful names, but have conflicting beliefs about what is meaningful.
Moreover, the described teaching practices do not always match
teacher’s views on meaningful names, and teachers rarely encour-
age students to use them. Instead, they express that naming prac-
tices should not be enforced and that students will develop them
by example. Whereas some teachers report focusing solely on con-
ventions, others deliberately dedicate time for students to engage
with naming, create their own guidelines, provide continuous feed-
back, or include naming exercises on exams. Discussion. Naming
practices do not seem to be deliberately taught, even though they
influence program understanding and code quality. We also identi-
fied inconsistencies in teachers’ self-reported naming practices. As
such, we encourage intentional conversations about naming prac-
tices in educational settings, specifically linking naming to code
quality and readability. We see room for group and peer activities
as a means to this end, as well as providing formative feedback
dedicated to naming.

CCS CONCEPTS
• Social and professional topics → Computing education.

ICSE-SEET ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0498-7/24/04.
https://doi.org/10.1145/3639474.3640069

KEYWORDS
Variable naming, programming education, novices, teachers
ACM Reference Format:
Vivian van der Werf, Alaaeddin Swidan, Felienne Hermans, Marcus Specht,
and Efthimia Aivaloglou. 2024. Teachers’ Beliefs and Practices on the Nam-
ing of Variables in Introductory Python Programming Courses. In 46th
International Conference on Software Engineering: : Software Engineering
Education and Training (ICSE-SEET ’24), April 14–20, 2024, Lisbon, Portugal.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3639474.3640069

1 INTRODUCTION
Professional developers spend a significant percentage of their time
(58%) on program comprehension-related tasks [48]. One root cause
of this is that code is often written with ‘meaningless’ identifiers or
variable names that are unintentionally misleading [19, 48]. This
causes problems in understanding and shows that finding a good
name might not be straightforward. Accordingly, software engi-
neering handbooks recommend professional developers to consider
naming as a part of high-quality code, focusing on names’ expres-
siveness, readability, and consistency [8, 41]. Evidently, naming
plays a big role in understanding code [4, 27, 32, 33], which holds
especially true for novice programmers [45].

While some introductory programming courses include learning
objectives that relate to code quality [41], several works already
[8, 29] noted that code quality, and naming in particular, do not
seem to get equivalent attention in Computer Science Education
research. Occasional efforts to incorporate naming include the devel-
opment of code quality rubrics that involve naming as one explicit
aspect to review or give feedback to students in their assignments
[23, 41, 42]. To the best of our knowledge, however, there is no
research on teachers’ perceptions of and approaches toward teach-
ing (variable) naming in classrooms. We are interested in variable
naming specifically, as variables are one of the first concepts taught
in an introductory course, yet, the concept of variables is challeng-
ing for students to understand [26]. To this end, we conducted 10
in-depth interviews with teachers from secondary education, uni-
versity, and adult education on the perceptions and practices of
teaching the naming of variables. With these interviews, we aim to
answer the following research questions:

(1) What are teachers’ beliefs and perceptions about vari-
able naming practices?We aim to identify how teachers
think about names and naming practices in general, as we

This work licensed under Creative Commons Attribution-NonCommercial-ShareAlike 
4.0 International License.

368

2024 IEEE/ACM 46th International Conference on Software Engineering: Software Engineering Education and Training (ICSE-
SEET)

https://orcid.org/0000-0002-6435-0531
https://orcid.org/0000-0001-9236-858X
https://orcid.org/0000-0003-0722-0156
https://orcid.org/0000-0002-6086-8480
https://orcid.org/0000-0002-6531-2166
https://doi.org/10.1145/3639474.3640069
https://doi.org/10.1145/3639474.3640069
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3639474.3640069&domain=pdf&date_stamp=2024-05-24


ICSE-SEET ’24, April 14–20, 2024, Lisbon, Portugal Vivian van der Werf, Alaaeddin Swidan, Felienne Hermans, Marcus Specht, and Efthimia Aivaloglou

believe that these convictions are the background to which
teachers adopt teaching strategies on the subject.

(2) How are variable naming practices taught? Here we in-
vestigate teachers’ self-reported approaches regarding nam-
ing practices in the classroom. This question considers ex-
plicit (active) and implicit (or passive) teaching approaches,
how teachers practice naming themselves, and information
on feedback and grading.

(3) What do teachers observe in the classroom concern-
ing variable naming?We are interested in what teachers
observe in their students; for example, specific difficulties
among their students and other observations.

2 RELATEDWORK
2.1 What is good naming for comprehension?
Software engineering research indicates that programmers rely on
names for their understanding of code [4, 27, 31–33, 44, 45], and
names often serve as beacons during code comprehension [22].
Therefore, names can be of “poor" quality when they interfere
with the reader’s comprehension. In general, the following types of
names are considered “poor” names for code comprehension: names
that are based on their data type (e.g. IntegerArray) or function
within an algorithm (e.g. LoopCount) [45], arbitrary names (e.g.
GWhiz) [45] and names consisting of single letters [27, 32, 33].
Furthermore, names can be unintentionally misleading and should
therefore be chosen cautiously [3, 4, 18, 19]. Avidan and Feitelson [4]
found that these misleading names resulted in more errors, taking
more time, or giving up completely. Especially general, non-specific
names such as “length” appeared problematic [19]. Arnaoudova [3]
identified multiple ‘linguistic antipatterns’ that misdirect a reader.
Common antipatterns that concern misleading names are names
that “says one but contains many” or vice versa, and names that
“suggests Boolean but type does not.” Lexical inconsistencies like
these significantly increase cognitive load [18].

In contrast, there are also claims and observations on the effect
of ‘good’ naming styles on code comprehension. Firstly, descrip-
tive naming styles are advantageous over meaningless naming
styles, like “Function1” or “FunctionA”, even when documentation
is provided [7]. Additionally, meaningful abbreviations can be as ef-
fective as full-word names [32], and well-chosen abbreviations can
in certain situations also be preferable over full words [33]. When
comparing letters, abbreviations, and full-word names, the latter
still gives the best results on source code comprehension [27, 32],
whereas letters can be meaningful if they convey information that
is commonly attributed to that letter (i.e. “i” for index or “s” for
string) [5]. However, attributions to specific letters vary over differ-
ent programming languages [5], which of course has implications
for learners of different languages.

Generally accepted recommendations on naming styles are that
names must be picked with caution and given careful attention so
that they reflect the concept or the role represented by each variable
[4], and, good naming consists of “limited, consistent, and regular
vocabulary” with limited name lengths, so as not to overload a
programmer’s memory (the longer the name, the harder it is to
retain the information) [6]. Different roles of variables have been

classified and investigated thoroughly in relation to comprehension
by Sajaniemi and colleagues [30, 36–38].

On the subject of intermediate variables to break complex expres-
sions into more manageable ones, Cates et al. [14] found that using
an intermediate variable is generally beneficial for understanding
only if the used name also reflects the meaning of the variables.
Concerning camelCase and underscore styles, no difference in accu-
racy is found between the two styles [40]. Finally, naming styles are
related to code quality [41]. For example, poor-quality identifiers
(especially at the method/class level) are associated with lower qual-
ity, more bugs, and less readable source code, and natural language
and recognized abbreviations can function as indicators for source
code quality [9, 11, 12].

2.2 How do developers use names?
Naming of all identifiers, including variable names, accounts for
over 70% of all characters in open-source projects and covers about a
third of all tokens [17]. Beniamini et al. [5] showed that single-letter
variable names are common practice, quoting “in C, Java, and Perl
they make up 9–20% of the names.” Gresta et al. [25] investigated
Java naming practices in open-source projects and found that the
three most common names are ‘value’, ‘result’, and ‘name’, while
also single-letter names, like ‘i’, ‘e’, ‘s’, and ‘c’, are commonly used.
In twenty open-source systems that use the languages C, C++,
C#, and/or Java, Newman et al. [34] looked for the most common
grammar patterns in several types of identifier names and found
that names typically have a singular noun-phrase grammar pattern
(i.e. ‘nextArea’ or ‘max_buffer_size’), with the exception of function
names or when representing a Boolean value. More than three-
quarters of identifiers containing a Boolean include a verb, likely to
show that a question is answered by a true or false. Moreover, plural
names often refer to a certain collection (of lists, arrays, etc.) or data
grouping. Peruma et al. [35] found that if identifiers are renamed, it
is to narrow the meaning and serve code comprehension. Recently,
Feitelson et al. [20] found that the probability that two developers
choose the same name is very low, although different names are
understood by the majority of developers. They suggest a model to
help developers choose better names; in short, select the concepts
that need to be included, choose words to represent those concepts,
and construct the name with these words.

Swidan et al. [43] analyzed projects in a block-based language
originally directed at children (Scratch) to see how variable names
are named there. They found that these names tend to be longer
than in other languages, with most names between four and ten
characters of length and only 4% of names being single letters.When
single letters are used, ‘i’, ‘x’, and ‘y’ are the most common, showing
both a crossover between languages and a focus on coordinates;
the latter reflecting the focus on games and animations in Scratch
projects. Additionally, Swidan et al. [43] found that over half of
the variable names are single words, with another 30% having
a maximum of one space. This suggests that Scratch developers
either use underscores or casing to separate words, like in most
textual languages, or that single words are most naturally chosen
by Scratch developers.

To support using consistent and concise names, a tool was de-
veloped striving to follow certain composition rules [17]. This was

369



Teachers’ Beliefs and Practices on Naming ICSE-SEET ’24, April 14–20, 2024, Lisbon, Portugal

followed up by Lawrie et al. [32], who then confirmed prior con-
clusions that programmers use a limited vocabulary [2, 13]. Fur-
thermore, Butler et al. [10] created a library checking naming con-
ventions in Java, also in the context of using certain typography,
abbreviations, and phrases. They found that about 85% of Java
projects follow standard conventions. Allamanis et al. [1] presented
a framework that learns the style of a codebase and suggests re-
visions to improve stylistic consistency. They noted that “almost
one-quarter of the code reviews examined contained suggestions
about naming,” highlighting again the relevance of proper naming.

2.3 Naming in programming education
In comparison to experienced developers, proper naming styles
(expressiveness, readability, and consistency) might be especially
relevant for novices learning to program. For example, bugs are eas-
ier to find when words are used [27], suggesting that good names
improve code comprehension and debugging. Additionally, when
developers use ‘descriptive compound names’ (i.e., “convertedIn-
put” instead of “result”), they change their reading direction less
often to find and correct a semantic bug, which they do 14% faster
than when normal names were used [39]. The effect, however, was
stronger for experienced developers compared to novices, which
suggests that novices do not benefit the same way, perhaps because
they have not learned to ‘interpret’ specific naming customs yet. In
fact, novice programmers often fail to name variables correctly [24]
and Scratch students are found to be misled by variables named
with a letter, probably because of prior knowledge from their math-
ematics education [26]. These findings highlight that opening a
discussion between teachers and students about “what is good nam-
ing” might be more relevant than just pointing toward naming
conventions created by experts. This notion is strengthened by
the work of Glassman et al. [23], who, in the context of improving
online curricula, developed a tool and a quiz for their MOOC to
assess naming in terms of length and vagueness. As a by-product of
their tool they found that feedback on naming practices, as well as
both good and bad examples, was highly valued by students. Also
Börstler et al. [8] found that feedback related to code quality was
frequently asked for by students. This suggests that topics such
as readability, including naming, might not get enough dedicated
attention in educational programs.

3 METHODOLOGY
This study aims to investigate teachers’ beliefs, practices, and class-
room observations on the naming of variables. Similarly to other
works in CS education research [29, 46], we captured such infor-
mation by asking teachers directly through the means of semi-
structured interviews.

3.1 Recruitment and teacher demographics
We targeted a wide range of teachers, including teachers at sec-
ondary school, university level, and adult education, who currently
teach or recently taught one or more Python introductory courses.
Teachers were recruited internationally through the networks of
the authors and through the national network for secondary school
informatics teachers. Teachers were required to speak either English
or Dutch during the interview but could speak a different language

in the classroom. Before the interview, teachers gave informed
consent and completed a short questionnaire covering their back-
grounds, such as programming experience, teaching experience,
and other demographics. An overview of the recruited teachers
can be found in Table 1. To minimize self-selection bias concern-
ing naming specifically among volunteering teachers, they were
approached with the topic of variables in general, not on the topic
of variable naming.

In total, we conducted 12 interviews, with 7 teachers from 4
different universities, 4 teachers from 4 different secondary schools,
and one teacher in professional “on-the-job” coaching. Participants
worked in The Netherlands, Belgium and Spain. Their mother
tongues were Catalan, Dutch (incl. Flemish), French, Italian, and
Turkish. The participating university teachers taught in English
or Dutch, whereas the secondary education teachers all taught in
Dutch. Our participants’ teaching experience ranged from 1-20
years, indicating we recruited both experienced as well as starting
teachers. Most teachers program themselves, with the exception
of one secondary school teacher. Eight teachers also taught other
languages besides Python.

3.2 Interview process
We used a semi-structured interview protocol consisting of ques-
tions on three topics about the teaching of variables: (1) general
perceptions, (2) teaching practice, and (3) student difficulties (see
Appendix A). To capture a broad view of teachers’ perceptions,
practice, and experiences, each topic contained various neutrally
posed open-ended questions that offered room to dive into detail
with follow-up questions. The interview covered both the concept
of variables in general and the naming of variables specifically.
Variable naming was covered in all three topics both as part of
specific predefined questions and as follow-up questions during
the interview. Each participant was given an equal opportunity
to talk about naming. When naming did not come up naturally,
the topic was introduced via follow-up questions. However, not
every participant spent equal time on the topic: in cases where the
interviewee was not able to elaborate any further, the interviewer
moved on to other questions. A pilot interview was used to test
and inform the interview protocol, after which it was decided that
no further alterations or refinements were needed.

All interviews were conducted online, by the first author, via MS
Teams, and recorded for transcription. The average length of the

Table 1: Overview of participants. Teachers’ IDs are in the fol-
lowing format: T1Um, referring to [T]eacher 1, [U]niversity
teacher, [m]ale. Teaching experience (programming and all)
is counted in years. No. of students is per class.

ID Education m/f Course target group Age Teaching
exp. prog.

Teaching
exp. all

No. of
students

T1Um university m CS + engineering BSc 25-34 2 2,5 70
T2Um university m CS BSc 45-54 20 20 400
T3Am adult m IT professionals 55-64 1 1 1-to-1
T4Sm secondary m HAVO/VWO, optional 25-34 4 4 50-70
T5Um university m CS + engineering BSc 55-64 16 17 400
T6Um university m CS + engineering BSc 35-44 9 23 400
T7Sm secondary m ICT track, mandatory 25-34 8 8 5-20
T8Sm secondary m VMBO/HAVO, optional 25-34 2 5 25
T10Uf university f CS BSc; CS MSc 25-34 1 1 300
T11Sf secondary f HAVO/VWO, optional <25 1 3 20-30

370



ICSE-SEET ’24, April 14–20, 2024, Lisbon, Portugal Vivian van der Werf, Alaaeddin Swidan, Felienne Hermans, Marcus Specht, and Efthimia Aivaloglou

interviews was 62 minutes, about half of that time was dedicated
to the topic of naming. The interviews were transcribed manually,
in the original language of the interview (Dutch or English), us-
ing intelligent verbatim transcription. Transcripts were checked
for discrepancies and made anonymous for subsequent processing.
From the 12 interviews we conducted, two were excluded from
the final analysis: one teacher did not teach Python programming
despite indicating this beforehand, and one interview was consid-
ered a duplicate as it was with an assistant who taught alongside a
previously interviewed teacher and revealed no new information.

3.3 Coding process
To obtain a broad overview of variable naming practices in class-
rooms, we used a qualitative open-coding approach from a con-
structivist perspective [15, 16, 28].1 This means that we prioritized
information generated by the data in an intuitive way, rather than
creating a framework or hypotheses based on literature which
then is used for deductive coding. Accordingly, the complete tran-
scripts were analyzed using an iterative process (“open coding” and
“refocused coding”), which means that all quotes throughout the
interview related to variable naming were coded in a way that best
summarizes the quote’s intent and meaning [15, 16, 28]. This pro-
cess is known to generate a large set of individual (in-vivo) codes
that can be grouped and merged into themes according to the re-
search interests. In this case, the first author coded three interviews
first and used the open codes from these interviews to develop
a more structured codebook. The initial version of the codebook
consisted of grouped themes that provided information about our
research questions, such as “naming beliefs” (RQ1), “teaching strate-
gies” (RQ2), “grading and feedback” (RQ2), “own representations”
(RQ2), and “student observations” (RQ3). In iterative rounds, the
first author, together with the last author, also identified prelimi-
nary main categories that gave direction into the specific topics that
teachers brought up. These categories distinguished, for example,
between various perspectives (i.e., focusing on meaningful names
or letters), teaching strategies (i.e., active or passive), and teachers’
own identification of their representation of naming (i.e., using
letters or full words).

Using the developed categories as a guideline, the coder then
(re)coded all 10 interviews, still maintaining a semi-open coding
approach up until saturation was reached. This means we contin-
ued creating new open codes if needed, but mostly added codes and
quotes to existing themes and categories. This process was done
iteratively and repeated for already coded interviews when new
insights were made. New insights also meant that the codebook
was updated: new themes and categories were added, renamed,
split, or merged until all relevant and remaining open codes were
summarized and grouped into categories with similar meanings and
intentions. For example, the old theme “teaching strategies” was
split and renamed into “active” and “passive” teaching approaches,
each with its own categories to more accurately describe and in-
terpret the information given by the teachers. During this process,

1Although this research follows Grounded Theory (GT) procedures, the intent of this
work is to gather various existing perspectives and teaching practices among a variety
of programming teachers. Since we know of no prior work attempting to create such an
overview, we considered an iterative process as used in GT procedures most intuitive
to discover patterns in teachers’ own descriptions.

doubts were discussed with the last author during regular meetings,
in which the last author also checked the emerging categories and
themes for clarity and validity. The final codebook is presented in
Table 2. In total, we ended up with 238 individual codes to analyze.
The tools used during the data processing and analysis were Atlas.ti
and MS Excel.

4 RESULTS
4.1 RQ1: What beliefs do teachers have about

variable names?
Below we present different topics that teachers mentioned when
they reflected on naming practices. The results are summarized by
statements reflecting teachers’ beliefs about variable naming.

4.1.1 Names should be ‘meaningful’ and ‘intention-revealing’. Most
teachers agree that naming is important and should be meaningful.
Names are consideredmeaningful when they are simple, straightfor-
ward, and intuitive. They have to be descriptive, clearly represent
the contents of the variable, or show its purpose. Mentioned ex-
amples are usually nouns: studentName, interest, length, result or
index. To sum up what is regarded as ‘meaningful’, T1Um tells his
students: “try to name it a name that makes sense to you and two
other people.” He also notes that the addition of adjectives, for ex-
ample, current_maximum, can be extremely helpful in loops, but
should be used only when it makes sense, to avoid new confusion.
For example, if there is only one maximum in the code, adding
a current to maximum is not helpful. Moreover, names are to be
intention-revealing. Teachers emphasize this specifically when it
concerns functions: names have to reflect the function’s purpose so
that “just by looking at the name of the function you can tell, okay this
function is supposed to perform this, and so on” (T11Uf). Mentioned
examples are structured with a verb to indicate it “does something”:
calculate_weight, organize_file and find_cost.

4.1.2 Teachers disagree on using letters as names. Letters and abbre-
viations are generally considered to provide too little information to
be descriptive. Especially in the context of teaching, T4Sm explains:
“if I start using very bad names like ‘a’, ‘b’, and ‘c’, then, the code still
works the same way, but it’s not telling students what it does. And
it can be a good exercise, but not in the parts where I’m explaining
what they do. It’s a good exercise on a test where [the students] need
to know better but not during teaching or not during comprehending
the concept that I’m trying to explain.”

However, there is disagreement on whether letters should be
used. In particular, T11Sf mentions that “letters in the case of oper-
ations are meaningful because [my students] can easily relate it to
their math classes from before, which makes it an appropriate naming
scheme.” Also, T8Sm remarks, “with small assignments I will use
letters, especially with basic math operations, using ‘a + b’ is just more
logical than writing ‘number1’. It’s more like mathematics” (trans-
lated). Another consideration to use letters is the traditional practice
in the (online) community. This is especially true for (nested) loops,
where the use of i - j - k is common practice: “if [students] would
google to something, they would find it like that. So I try to teach them
also in how they would find it if they would google online” (T11Sf).
However, some rather use an x - y - z structure in nested loops:
“Now, for me [i-j-k] is an example that it doesn’t make much sense

371



Teachers’ Beliefs and Practices on Naming ICSE-SEET ’24, April 14–20, 2024, Lisbon, Portugal

Table 2: Final code book with examples of codes per developed theme, category, and RQ. Examples of specific quotes can be
found in-text in the results section.

RQ Theme Category (# of codes) Examples of individual codes

1 beliefs and perspectives meaningful names (47) describes what is in the variable;
provides its function; should be intuitive

using letters (16) i, j, k, n, l are not very informative
size and detail (14) prefers longer names; depends on situation
overall structure (30) use a certain structure; use underscores

2 active teaching approach coding conventions, rules, guidelines (7) uses or focuses on a personal coding guideline;
focus on community practice

readability, programmers attitude (7) focus on readability;
focus on job expectations;
focus on human aspect

other active approaches (6) focus on errors (pointing out, discussion);
stresses code works independent of naming;
provides explicit naming assignments

2 passive teaching approach mentioning no teaching (4) not explicitly taught;
no discussion on naming

students learn by practice (12) naming comes naturally; lead the way;
only during other assignments

other (5) no specific way is required, taught on demand
2 own representation "meaningful" or similar term (8) representative; descriptive

single letters or abbreviations (5) uses single letters: loops;
uses single letters: basic operations

depends (2) depends on the program;
depends on the purpose

other (5) practical reasons, no particular style
2 grading and feedback no evaluation (4) not graded; no points deducted

unclear (5) part of general assignments;
part of other skills

evaluated (6) graded on test; continuous feedback
3 student observations difficulties (23) typos; too long names; what is ‘i’ in a loop

causes of difficulties (10) students lack creativity;
confusion because of renaming

other observations (22) better students give better names

because if I’m going through a matrix in which there is an ‘x’ and
there is a ‘y’, why am I using ‘i’ and ‘j’? I know, it’s tradition to use
i-j-k etc., I just think that in some cases it would make more sense to
use ‘x’ and ‘y’. (...) Imagine that I want to use ‘x in y’, I have to put ‘i
in j’, and then, depending on how long is the loop, I have to remember
by heart that ‘i’ is ‘x’ and ‘j’ is ‘y’ ” (T1Um).

Whether letters are considered meaningful thus seems to depend
on whether the letter itself carries meaning. In other words, using
random letters from the alphabet is generally viewed as ‘bad prac-
tice’ whereas particular letters are accepted in certain contexts, like
loops, short codes, or codes that are not intended for sharing: “If it
is for myself and nobody else is ever going to see it, I might even use
‘x’, ‘y’, ‘a’, but as soon as it’s something that I will share... yeah, no,
for sure. I put the variables with the right names. I have to consider
the fact that somebody else is going to read this” (T1Um).

4.1.3 Names have an ideal size and level of detail depending on con-
text. Several teachers report that names should not be “too short,”
or “too long.” As is the case with random letters, it is reasoned that
names that are too short create confusion because they do not con-
vey enough information to the reader, which in turnmakes it hard to
remember what contents are behind which names. Too long names,
on the other hand, create confusion because the reader might not
read the whole name and rather assumes its contents or function
after reading only a part of the name (T4Sm). Teachers furthermore
mention that “enough detail” should be provided, but not “toomuch.”
For example, the name student is not detailed enough when its con-
tents are numbers: it remains unclear if the variable represents a
student’s age or grade or something else. On the other hand, vari-
ables namedMax with contents "Max" or sevenwith an integer 7 are
“too detailed,” as well as all_names_of_name_list_starting_with_a.

372



ICSE-SEET ’24, April 14–20, 2024, Lisbon, Portugal Vivian van der Werf, Alaaeddin Swidan, Felienne Hermans, Marcus Specht, and Efthimia Aivaloglou

According to teachers, writing efficiency also affects the balance
between longer and shorter names: longer names are less efficient
and more prone to typing errors (T8Sm, T4Sm, T10Uf). However,
T11Sf mentions, “especially with beginners, I would prefer the longer
names, where we give the purpose of the variable or what it does
over short and concise names, even though I get that it’s more time-
consuming.” Nevertheless, the ideal size of a name varies per teacher
and context. Short names, and even single letters, are considered
“okay” in short programs, whereas in longer programs names should
also be longer (T1Um). The simplicity and conciseness of a single
word are valued, but only if the name is unambiguous in its meaning.
A maximum of one to three words are preferred, connected with
an underscore or via casing.

4.1.4 Overall structure is important but naming is a personal style.
The overall naming structure and the relationship between names
are considered important. Some (T1Um, T6Um, T10Uf) prefer a
numbered structure, for example, plant1, plant2, p1, p2, a1, a2, ex-
ample1, example2, str1, str2, df1, df2, or a logical structure between
the names. However, T3AM cautions that such structures can get
too complex and confusing, for example, when names are struc-
tured like aa, ab, ba, bb, etc. Moreover, T1Um and T4Sm stress that
names should not be too similar to each other to avoid confusion
between names (apple vs. apples). Additionally, T4Sm also warns
that “if all or most variables look the same, students think it should
be done that way.” He experienced this with a structure consisting
of myInput, myText, myInt, as used in a KhanAcademy module:
students copy it, and start creating names such asmyLastTwoValues.
This “does not help and is not mandatory (...) It is not bad, but it is
not what I expect from [my students] when using variables (...) [and
they] have to be able to make more complicated names if necessary.”

Naming conventions are also mentioned as important. While
T11Sf prefers following traditional Python or community guide-
lines (i.e. PEP), others adopt self-created guidelines in their teaching
(T4Sm, T7Sm). For T2Um and T6UM, using a certain naming style is
not very important, as long as their students are consistent. Further-
more, depending on the teachers’ own programming background
they prefer underscores over camel-case or vice versa, for example,
T1Um: “I do like underscore because it gives me a visual interruption.”

Finally, some teachers consider names that include data types to
be helpful to novices or prevent issues when (accidentally) combin-
ing data types. For example T10Uf, “I try to associate the variable
with its type. If it’s a list then the name has a list, if it’s a string then
the name (...) most likely is going to have a string in its desirable
name” and T3Am, “to keep a certain type-safety or reminder by in-
cluding it in the name (...), especially for beginners, I recommend using
naming that is as clear as possible, and possibly even include data
types” (translated). However, since Python is a dynamically typed
language, T7Sm notes: “it is not that important for students that
don’t use that kind of programming languages to really be constantly
reminded of the datatype” and also T6Um mentions: “in my opinion,
it’s not necessary. (...) I don’t have a tendency to say that the type
should be reflected in the variable name.”

4.2 RQ2: How are naming practices taught?
We found various teaching practices that we grouped into active
teaching approaches - naming is explicitly taught or mentioned

in the classroom, passive teaching approaches - naming is not or
implicitly taught, own representation - the way teachers use naming
themselves when teaching, and feedback and grading - whether or
not naming is evaluated.

4.2.1 Active teaching approaches. We consider teaching approaches
as active when naming is explicitly taught as part of the curriculum.
Within this group, there are two major topics: (1) coding conven-
tions, including guidelines, community practice, and specific nam-
ing rules, and (2) readability, including clear andmeaningful naming
and the human aspect, such as teamwork and job expectations.

Coding conventions, guidelines and rules. Most teachers mention
coding conventions; however, T11Sf remarks: “I try to use the con-
ventions of the languages, but that is quite difficult when the students
learn multiple different languages during the three short years that
they have computer science.” Consistent with this statement, con-
ventions, guidelines and rules are not very homogeneously taught
among the teachers, which complies with the diverse beliefs we
have identified among teachers concerning naming practices. Some
teachers set up their own naming guidelines or recommend students
to make their own structure, others mention to include tradition
and community practice (i.e. PEP) in their teaching and focus on
naming conflicts or recommending their students to include data
types in their names. T5Um mentions consistency to be most im-
portant in teaching naming: “what I would stress is more that things
are done in a consistent way rather than having, doing it always
one way or another; the point is you shouldn’t mix and match in the
same program different styles, whether it’s for naming variables or for
even programming style or indentation and the comment style, all of
that.” To help students develop their naming practices, our teachers
regularly mention to provide tips and show examples. Addition-
ally, tools such as Visual Studio Code or PyCharm are sometimes
adopted for correcting and teaching coding guidelines.

Readability, meaningful naming, and the human aspect. Most
teachers merely mention to students to use clear and meaningful
names, for example: “We do insist on trying to give names which
are as readable and as complete as possible” (T2Um). However, some
teachers (T4Sm, T6Um, T7Sm, T8Sm) (also) discuss why naming is
important. This usually includes a human aspect such as organizing
your code to remember or find stuff back. Other human aspects are
working in teams, future job expectations, and naming something
in a way that you and at least two other people can understand what
you mean. When names are not “readable,” or, “according to the
set guidelines”, T7Sm goes as far as telling his students “Okay this
thing, I don’t know what you mean here so I can’t read your code, right
now”, even if he does understand the names. Additionally, he likes
to prepare the most frequently seen mistakes in student projects,
in order to discuss and evaluate them in class and to show how
students can improve their own projects. With these strategies, he
wishes to provide continuous feedback, prioritize the importance of
naming, and motivate his students to first fix naming issues before
they can get help from him on other aspects of the code.

More active approaches. Teachers also indicate using strategies
such as pointing out naming errors (T1Um, T7Sm, T11Sf), dis-
cussing mistakes in class (T7Sm), and providing explicit naming
assignments (T4Sm, T7Sm) that include bad smells and error-hunts.

373



Teachers’ Beliefs and Practices on Naming ICSE-SEET ’24, April 14–20, 2024, Lisbon, Portugal

T1Um explicitly stresses that code works independently of naming
and that naming therefore is only important for a human reader: “I
put a lot of stress on the fact that [naming] does not matter but that it
matters on our level of organization. (...) I don’t oblige them to rename
[their variables] because (...) I want to stress that the code could work
anyway. (...) You could call it ‘banana’ and it works, you just have to
know where to put ‘banana’. On the other hand, I also tell them it has
to make sense for somebody who reads it.”

Self-reflections. Several teachers reflected upon their own prac-
tice and mentioned wanting to incorporate more specifics about
the practice of variable naming. T8Sm: “This is something that I now
will start to think about much more than I ever have before, that is
also nice for me” (translated), and T4Sm: “I underestimated how I
teach variable names because I thought it was one lesson and involved
less and I can teach them everything about variables [in one lesson].
But I’ve already split that into two, three lessons, just for Python. Not
only because it’s not as uncomplicated as I thought, but also because
it’s a lot bigger than I thought (...) It has to be done because it’s not as
natural as I think it worked.”

4.2.2 Passive teaching approaches. We consider passive teaching
approaches all strategies that do not explicitly teach naming prac-
tices. This includes all statements where teachers mention that they
do not give specific attention to naming practices, and all statements
pertaining to practices where students are (sometimes explicitly) as-
sumed to learn by themselves. This thus involves indirectly taught
naming practices (i.e. “through general exercises” or by “leading
the way”). Furthermore, some teachers do not require students to
use specific naming styles. Table 3 presents an overview.

No explicit focus on naming. Teachers report having no specific
focus on naming in their courses. For example, T2Um reports: “we
don’t have an explicit theory session where we talk about the naming
conventions for variables would be this or that”, and T11Sf mentions:
“It is not something that I start focusing on but it is something that
[students] do start noticing along the way.” Interestingly, this finding
is in contrast to what we see under active approaches. Specifically,
teachers tell us not to have a specific focus on naming practices,
while they also indicate telling students to “choose meaningful
names” or to “follow the conventions.” However, teachers with
this inconsistency do not seem to follow up their instructions with
further explanations or assignments; instead, they remain with
general tips. When elaborating on why they do not explicitly teach
naming practices (see below), teachers assume that students will
pick up “good naming practices” on their own and that naming
practices do not require more explicit teaching or attention. It is
also mentioned that naming practices should not be enforced as it
is seen as an individual choice or preference.

Naming is practiced through examples. Teachers assume that
students learn naming by themselves, either by following the tra-
ditional or given conventions or through practicing in other as-
signments. For example, “so not very explicitly, but often naming is
featured in the context of an assignment [that shows] that it eases
understanding” (T8Sm), and “we introduce the rules as we go, by the
examples we give them” (T2Um). Even more strongly, T1Um chooses
to lead the way as he assumes his students will copy him: “I do it
passively. For example, saying, “for ‘index’ ” because they’re indexes,

Table 3: Overview of passive teaching approaches used

Passive teaching approach (N) Teachers

No explicit focus on naming (6) T2Um, T5Um, T6Um,
T8Sm, T10Uf, T11Sf

Naming is practiced through examples (8) T1Um, T2Um, T3Am, T4Sm,
T5Um, T8Sm, T10Uf, T11Sf

Specific naming is not enforced (6) T1Um, T2Um, T5Um,
T8Sm, T10Uf, T11Uf

“for ‘length’ ” because it’s a list of lengths. So I try to make them get
there.” Furthermore, T5Um argues that naming practices do not
need explicit teaching. He states “I don’t insist on [naming] very
much (...) I mean, that comes more naturally by example”, and em-
phasizes that it is not “a major source of concern for the students” as
they are confronted with a lot of code through exercises, examples,
and their own written code. Following this, he mentions: “I don’t
think naming is a big concern to us [teachers].” Two more teachers
mentioned focusing only on naming if and when that was neces-
sary, for example, in the context of an error or when the topic was
brought up by a student.

Specific naming is not enforced. Teachers do not like to emphasize
-or require- specific ways of how variables should be named, but
rather leave it up to the students. T5Um: “we don’t specifically insist
very much on how variables should be named”, and T1Um: “I don’t
want to stress a lot they have to use these names or use that name.”
Instead, T2Um tells his students: “It’s okay, your code will work and
it is not so important in this course, we are happier if your code works.”

4.2.3 Own representation. We consider how teachers use names
themselves when they are using examples or show live coding to
their students as their own representation of naming practices. It
can be seen as setting an example to the students, as such, we also
consider teachers’ own representation a passive teaching approach.
However, since it is always present in a course, and therefore com-
plementary to other approaches used, it deserves its own category.

Almost all teachers report that they use, or try to use as much
as possible, meaningful names or equivalent terms. For example,
T1Um: “I’m very straightforward, so like for (...) doing the for-loop, I
do: for index in the list of indexes. Because they’re indexes, so, let’s
use index.” Interestingly, many equivalent terms are mentioned (see
Table 4), possibly showing that no one single way of good naming is
present, and perhaps also showing slight nuances in what teachers
find most important in choosing a name. The variety in the self-
reported own representations presented here is consistent with the
variety of naming beliefs that we discussed previously.

Some teachers note that their naming depends on the program
or the purpose of the code. While T3Am and T6Um explicitly told
us that they do not use one-letter names, others told us that they
do use abbreviations and one-letter names, sometimes depending
on the purpose of the program or the complexity of the code. Sin-
gle letters were especially used when teaching loops and basic
(math) operations, for reasons already discussed in Section 4.1.2.
In particular, these reasons concern a connection to prior knowl-
edge (mathematics) and tradition or community practice. Moreover,
short names, abbreviations, and single letters were also used for

374



ICSE-SEET ’24, April 14–20, 2024, Lisbon, Portugal Vivian van der Werf, Alaaeddin Swidan, Felienne Hermans, Marcus Specht, and Efthimia Aivaloglou

Table 4: Descriptions used by teachers to show what type of
naming they use themselves when teaching. Interpreted as
variations of “meaningful names.”

Description used Teachers

meaningful names T4Sm, T5Um, T11Sf
clear names T3Am, T4Sm, T10Uf
representative names T3Am, T4Sm, T8Sm
descriptive names T4Sm, T8Sm
straightforward names T1Um, T3Am
informative names T6Um
adequate names T5Um
useful names T5Um
one-letter names T5Um, T8Sm, T10Uf, T11Sf
abbreviations T8Sm, T6Um
no one-letter names T3Am, T6Um

practical reasons or convenience. T8Sm: “If it doesn’t matter much,
or the code is small, I usually use just a letter, to have overview [and]
for time efficiency. If the code grows larger or more complex I prefer
abbreviations” (translated). T6Um: “I would prefer to avoid these too
short names, although, actually, on some of my slides, I do use these
short names.” His reasoning is to avoid using a font size that is
too small while still being able to compare two pieces of code on
the same slide. During the interview, he realized that “at the same
time, if you do that too often you give a bad example, that’s... that’s a
difficulty [laughs]” (T6Um). Interestingly, as his first response to the
question of how he used names himself in teaching, he said: “I like
consistency a lot (...) that you approach things in a consistent manner,
that students get a certain, learn a certain way of thinking” (T6Um).

4.2.4 Feedback and grading. The topic of feedback and grading
came up in 7/10 interviews, from which we identify three ap-
proaches to evaluating naming practices: (1) no evaluation, (2) indi-
rectly evaluated or plays a minor role in grading, and (3) explicit
grading and/or feedback. First, there is a strong tendency to not
grade or evaluate students on their naming practices. Most teach-
ers explain that naming is not part of the evaluation of student’s
work, or that students do not get “punished” (i.e. subtraction of
points) when improper names are included in their submissions,
for example, T10Uf: “We don’t do a lot with variable naming (...) I
don’t think we pay attention to readability.” One reason mentioned is
that auto-graders do not look at naming quality. However, teachers
indicate that it does not make sense to grade it separately since
naming is interwoven with performance on other concepts (T7Sm,
T10Uf). Even though consistency within a code is often desired,
this is not enforced (T5Um, T8Sm).

Second, when naming is part of grading it is usually connected to
“programming basics,” “using conventions” and “good commenting,”
or it is graded through practice with weekly assignments. However,
although these weekly assignments are not necessarily focused
specifically on naming practices, they cover various programming
topics, including variables, and they are explicitly mentioned by
the teachers as opportunities to practice naming. Therefore, how
naming is actually evaluated remains unclear.

Third, two teachers show explicit evaluation of naming practices.
T7Sm mentioned that although naming plays only a minor part
in the grading of his students’ work, he does find it important to
provide continuous feedback on naming conventions and good
naming practices whenever a student’s code is presented to him.
This includes the active teaching approach of not evaluating a
student’s work if the names are “unreadable,” or in other words, not
to the standards that were taught in class. Only T4Sm specifies that
naming practices are explicitly considered in the grade: “During the
projects, I assess how readable the code is. It’s part of the readability, it
depends on how they describe their variables. If they’re all like x, a, z,
and b, then I don’t have a clue what’s happening, so they’ll get point
reduction because it’s not readable code. But, if they use the naming
conventions that I’ve taught them and describe what’s happening in
the code then it’s a lot more clear to read, so they’ll get points for that.”
He even implements specific naming assignments on the final test:
“there’s a specific assignment in the test that’s about what’s happening
in this program, and [I ask them to] rename the variables to make
more sense [and] to be more descriptive” (T4Sm).

4.2.5 Overarching patterns. We also investigated overarching pat-
terns by grouping individual teaching approaches. The results are
shown in Table 5. In short, we identified three different teaching pro-
files: (1) teachers that primarily use active approaches, (2) teachers
that use a mix of approaches, and (3) teachers that hardly or do not
at all incorporate naming practices in their courses. While teachers
with an “active” profile show deliberate design choices for including
naming practices, and those who do not teach naming practices
either deliberately “opt out” of it, or were previously unaware that
naming could be part of their course, most teachers show a “mixed”
profile. This could indicate that teachers act intuitively based on
their own experiences and beliefs regarding naming practices.

Our analysis further points towards a distinction between sec-
ondary and tertiary education: only secondary education teachers
show an active approach to teaching naming practices, whereas uni-
versity students are mostly expected to rely on their own abilities
to learn and use appropriate naming practices. However, the small
amount of teachers in our sample is not suited to draw any such
conclusions definitively, and the distinction made here is purely
based on the profiles emerging from the teaching approaches. As
such, there is no clear indication (yet) that the teaching of naming
practices requires different approaches across educational levels.

4.3 RQ3: What do teachers observe in the
classroom concerning variable naming?

4.3.1 Reported student observations. Teachers didn’t observe many
issues with naming practices among students. They tell us that
naming practices are not a major source of concern and students
‘get the hang of it’ very quickly. For example, T2Um: “We do insist on
trying to give names that are as readable and as complete as possible,
and I tend to believe [students] do that quite quickly. Apart from
the first few sessions, where obviously they will use variables like ‘x’,
‘y’, ‘z’, and use names that don’t say anything. We do insist on that
during the practical sessions and in all the examples we give them.
I think they very quickly catch on doing that.” Additionally, T1Um
tells us once he points out a mistake, students often recognize
their mistake immediately. Furthermore, students tend to use a

375



Teachers’ Beliefs and Practices on Naming ICSE-SEET ’24, April 14–20, 2024, Lisbon, Portugal

Table 5: Results of our cross-analysis into overarching patterns: three teaching profiles related to the teaching of the naming of
variables are identified based on several common characteristics of our research questions.

Themes profile 1 - active profile 2 - mixed profile 3 - not taught

Dominant philosophy naming is an essential skill mixed, naming is learned by example naming should not be taught

Part of course dedicated time allocated no dedicated time, but woven into
the course or by leading the way

no attention given,
students rely on themselves

Active approach focus on conventions own guideline created mixed traditional conventions
focus on readability yes mixed no
explicit naming assignments yes rarely no
attention to naming errors yes mixed no
naming tips and examples on meaning and

pro-actively given
mixed on conventions and

upon request
Passive approach required to follow guidelines yes no no
Own representation uses single letters or abbrev. no mixed mixed

consistent with teaching yes mixed mixed
Grading and feedback includes naming yes no no

Teachers T7Sm, T4Sm T1Um, T2Um, T6Um, T8Um, T11Sf T3Am, T5Um, T10Uf

mix of single letters, abbreviations, and single words in their first
programs. However, throughout the course, and once students start
to recognize and experience the importance of naming, they pick up
the habit of usingmeaningful names (T2Um, T8Sm, T11Sf), and even
start asking what convention they are expected to use at that point:
“After about three months of programming, and we start touching
upon new items, students will start asking me themselves ‘okay but
what naming convention should we use for this thing”’ (T7Sm). Also,
T11Sf says, “Currently, the students usually go back to ‘a’, ‘b’, ‘x’, ‘y’,
and sometimes something more useful. And when they start PHP, of
course not Python but PHP for their website, they start to notice ‘o wait,
the naming is kind of important’.” Furthermore, teachers observe
that more experienced students choose more appropriate lengths
for names (T11Sf), and, students that use better naming also present
better programs in general (T7Sm). T5Um and T8Sm also note that
their students seem to copy the examples that they are shown for
their own naming practices. These observations are interesting in
relation to our previous finding regarding the teaching strategy
“lead the way”: although teachers may not be directly aware of it,
they seem to say that such a passive approach to teaching naming
practices is valid, sufficient, and effective to teach naming practices.

4.3.2 Specific difficulties and reported causes. Mentioned difficul-
ties were considered of minor importance by the teachers and we
did not find any patterns among them. Firstly, teachers observe
that most mistakes concerning naming appear because students
are inconsistent, make typos, or lack creativity. T2Um notes that
this might originate from an inconsistency between teachers, exam-
ples, and learning materials, which might further confuse students.
Although the presence of typos could be just an oversight on the
students’ part, teachers mention this proneness to typos as a reason
to not use too long names: mistakes are often and easily made in
spelling, wrongly placed capitals, or using invalid names (T4Sm,
T11Sf). T11Sf furthermorementions that sometimes a student might
lack creativity, possibly caused by a lazy attitude and a desire to
make the assignments with the least amount of effort. Thinking
of a good name might be considered “too much” effort, especially
because students may not have been taught about “what is a good

name”. Teachers also observe confusion caused by names that are
too similar, especially with longer names (T4Sm). Secondly, teachers
note difficulties in connection to other identifiers such as functions
and parameters (T2Um, T5Um, T10Uf, T11Sf). These difficulties
include name conflicts or using the same names for different objects,
causing unintentional overwriting. Teachers attribute this issue to
not being sufficiently introduced to the new concepts, meaning
that with more practice and exposure, this mistake will disappear.
Thirdly, teachers observe that students may (gradually) change
names during debugging and writing (T1Um, T10Uf), leading to
confusion when students have forgotten that names have changed,
or when the name was only changed in one part of the code, but not
yet in another. Finally, T6Um and T10Uf observe that there exists
confusion among students about the “i” in a for-loop: students do
not seem to understand that this is also a name.

5 DISCUSSION
5.1 Impact on teachers and educators
The results from the interviews suggest possible impact for teachers
and educators in three directions:

5.1.1 Teaching approaches for naming. While many teachers indi-
cated that they mention naming conventions and guidelines, only
teachers with an “active” approach indicated they use explicit ped-
agogic approaches that focus on the naming of variables in their
classes. These teachers focused on an instructional approach with
direct assignments or tips. At the same time, the interviews sug-
gest that teachers realize that choosing a proper variable name is
context-dependent and dependent on who will read the code. As
a result, we see room for adopting a wide range of sociocultural
teaching approaches that focus on group and peer activities. Espe-
cially considering teachers’ philosophy in which naming is learned
by example, some activities can include the use of live coding ses-
sions, peer instruction-assessment-review, and pair programming,
all with a focus on the naming of variables.

5.1.2 Developing CS Teachers’ PCK on code quality. Teachers need
to develop further their Professional Content Knowledge (PCK) on

376



ICSE-SEET ’24, April 14–20, 2024, Lisbon, Portugal Vivian van der Werf, Alaaeddin Swidan, Felienne Hermans, Marcus Specht, and Efthimia Aivaloglou

code quality in general and on the effect of naming on code com-
prehension. This is especially important for introductory courses
that include learning objectives related to code quality. However,
from the interviews, it seems that there is a matter of priority, as
some teachers indicate that there are more important concepts
to focus on than naming, especially when it comes to grading or
feedback. To tackle this, the link between naming and code qual-
ity needs to be stressed. Having readable and expressive variable
names is not a matter of code aesthetic, but rather an important
aspect of code quality that is known to affect code comprehension
[4, 32, 39]. The effect of bad naming will extend to the professional
life of the student as a developer and will have an impact on their
ability to contribute to projects and on the performance of daily
programming tasks [48].

5.1.3 Using existing tools. Teachers are also capable of giving con-
structive feedback on naming. We believe that while teachers are
obtaining more PCK on code quality, they could already implement
such feedback. Prior work has found feedback on naming both
desirable and valuable [8, 23]. Practical examples of existing teach-
ing resources are rubrics and tools that are recently developed for
such goals [23, 41, 42]. These tools can be a good starting point
to evaluate where students stand in their variable naming so that
teachers can give constructive feedback to help improve the level
of readability, expressiveness, and consistency of the naming of
variables in their code assignments.

5.2 Reflection on teaching themes
When looking at the emerging themes on teaching variable nam-
ing, generated from the interviews, we can see that these themes
follow the two mainstream theoretical pedagogic approaches in
computer science education [21]. On one side, the ‘active’ teach-
ing theme follows an “instructivist” approach: the focus is on the
structure and presentation of learning materials more than on the
learners who are seen as recipients. Yet, this is not a pure picture:
within the profiles of teachers who presented quotes fitting to the
active teaching theme, we also observe aspects of “constructivist”
approaches. In particular, some teachers refer to programming lan-
guages’ guidelines on naming as a way to ‘support that construction
of knowledge’ rather than to communicate knowledge. This, in ef-
fect, delegates learning goals to the students who will discover
the topic of naming on their own and decide which names to use,
without the teachers integrating their students’ activities into the
classroom. These and similar constructivist approaches of teaching
variable naming are even more visible within the passive teaching
theme, again with less focus on students’ activities in the classroom.
From the interviews, we observe that such teaching approaches
have roots in the teachers’ beliefs and perceptions that naming does
not need explicit attention because it “comes naturally by example”.

5.3 Limitations and future work
As our research is based on self-reported data, teachers may have
given us socially accepted answers. We have tried to limit this by
making the topic of the interviews more general about variables,
formulating questions neutrally, and taking into account the order
of the questions to avoid leading. Especially regarding teaching
practices and student difficulties, our findings are self-reported: we

did not observe classroom practices ourselves. However, we have
already conducted research into Massive Open Online Courses to
look at actual practices and found similar results [47].

Although there was no indication before this work that naming
is or should be addressed differently across educational levels, our
findings suggest this might be the case. However, as often with
qualitative research, our sample set is too small to make representa-
tive conclusions, and being representative was not our current aim.
Nevertheless, our study could be followed up with a large-scale
(international) questionnaire to generalize and compare target au-
diences, class sizes, and class duration. Such research might also
provide further insights into the different teaching profiles that we
have found and could further dive into comparing naming practices
among different programming languages.

5.3.1 The effect of the programming language. Some findings are
specific to Python. For example, one difficulty that teachers de-
scribed was that of students using the same name for variables and
functions, causing unintentional re-assigning, which would not be a
difficulty in statically typed programming languages. Furthermore,
naming conventions and guidelines, which were often mentioned
during the interviews, are to a large extent language-specific. Fi-
nally, characteristics of other programming languages not native
to Python, such as pointers and static types, will not be reflected
in our findings, even though they might have effects on teachers’
perceptions and practices on variable naming.

5.3.2 Future work. Our future line of research is to analyze pro-
gramming textbooks, to further understand how practices are rep-
resented in different forms of education. Additional research is
planned covering in-class observations, which can be compared
with what teachers say about the topic. We also aim to design and
experiment with specific naming tasks to investigate how naming
can be easily but effectively implemented in existing curricula.

6 CONCLUSION
This paper aimed to investigate the current teaching practices and
beliefs concerning variable naming. Primarily wewant to encourage
discussion on teaching naming practices in programming educa-
tion. Hence we investigated teachers’ beliefs and perceptions about
variable naming (RQ1), their practice (RQ2), and their observations
in the classroom concerning naming (RQ3).

Our results show a diversity of opinions; however, in line with
most existing literature on ‘good naming’ for comprehension, our
teachers all advocate for simple, straightforward, and intuitive
names that clearly represent the content or show the purpose of the
variable. Nevertheless, when it comes to the actual teaching practice,
this promotion of meaningful names is not so directly demonstrated.
Even though teachers tell their students to use meaningful names,
they seem to rarely incorporate practices that encourage or force
students to think critically about what a good name entails, or how
names might be misleading. Moreover, teachers themselves do not
always use meaningful names in their examples to students, even
though they agree that students learn naming practices by example.

ACKNOWLEDGMENTS
This project was funded by: LDE Centre for Education and Learning.

377



Teachers’ Beliefs and Practices on Naming ICSE-SEET ’24, April 14–20, 2024, Lisbon, Portugal

REFERENCES
[1] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. 2014. Learn-

ing Natural Coding Conventions. In Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering (Hong Kong, China)
(FSE 2014). Association for Computing Machinery, New York, NY, USA, 281–293.
https://doi.org/10.1145/2635868.2635883

[2] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia, and
Ettore Merlo. 2002. Recovering traceability links between code and docu-
mentation. IEEE Transactions on Software Engineering 28, 10 (2002), 970–983.
https://doi.org/10.1109/TSE.2002.1041053

[3] Venera Arnaoudova, Massimiliano Di Penta, and Giuliano Antoniol. 2016. Lin-
guistic antipatterns: what they are and how developers perceive them. Empirical
Software Engineering 21, 1 (Feb. 2016), 104–158. https://doi.org/10.1007/s10664-
014-9350-8

[4] Eran Avidan and Dror G. Feitelson. 2017. Effects of Variable Names on Compre-
hension: An Empirical Study. In 2017 IEEE/ACM 25th International Conference on
Program Comprehension (ICPC). 55–65. https://doi.org/10.1109/ICPC.2017.27

[5] Gal Beniamini, Sarah Gingichashvili, Alon Klein Orbach, and Dror G. Feitelson.
2017. Meaningful Identifier Names: The Case of Single-Letter Variables. In 2017
IEEE/ACM 25th International Conference on Program Comprehension (ICPC). 45–54.
https://doi.org/10.1109/ICPC.2017.18

[6] Dave Binkley, Dawn Lawrie, SteveMaex, and ChristopherMorrell. 2009. Identifier
length and limited programmer memory. Science of Computer Programming 74, 7
(2009), 430–445. https://doi.org/10.1016/j.scico.2009.02.006

[7] Scott Blinman and Andy Cockburn. 2005. Program Comprehension: Investigating
the Effects of Naming Style and Documentation. In AUIC.

[8] Jürgen Börstler, Harald Störrle, Daniel Toll, Jelle van Assema, Rodrigo Duran, Sara
Hooshangi, Johan Jeuring, Hieke Keuning, Carsten Kleiner, and Bonnie MacKellar.
2017. "I Know It When I See It": Perceptions of Code Quality. In Proceedings
of the 2017 ACM Conference on Innovation and Technology in Computer Science
Education (Bologna, Italy) (ITiCSE ’17). Association for Computing Machinery,
New York, NY, USA, 389. https://doi.org/10.1145/3059009.3081328

[9] Simon Butler. 2009. The Effect of Identifier Naming on Source Code Readability
and Quality. In Proceedings of the Doctoral Symposium for ESEC/FSE on Doctoral
Symposium (Amsterdam, The Netherlands) (ESEC/FSE Doctoral Symposium ’09).
Association for Computing Machinery, New York, NY, USA, 33–34. https://doi.
org/10.1145/1595782.1595796

[10] Simon Butler, Michel Wermelinger, and Yijun Yu. 2015. Investigating naming
convention adherence in Java references. In 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME). 41–50. https://doi.org/10.1109/
ICSM.2015.7332450

[11] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. 2009. Relating
Identifier Naming Flaws and Code Quality: An Empirical Study. In 2009 16th
Working Conference on Reverse Engineering. 31–35. https://doi.org/10.1109/WCRE.
2009.50

[12] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. 2010. Exploring
the Influence of Identifier Names on Code Quality: An Empirical Study. In 2010
14th European Conference on Software Maintenance and Reengineering. 156–165.
https://doi.org/10.1109/CSMR.2010.27

[13] Bruno. Caprile and Paolo Tonella. 1999. Nomen est omen: analyzing the language
of function identifiers. In Sixth Working Conference on Reverse Engineering (Cat.
No.PR00303). 112–122. https://doi.org/10.1109/WCRE.1999.806952

[14] Roee Cates, Nadav Yunik, and Dror G. Feitelson. 2021. Does Code Structure
Affect Comprehension? On Using and Naming Intermediate Variables. In 2021
IEEE/ACM 29th International Conference on Program Comprehension (ICPC). 118–
126. https://doi.org/10.1109/ICPC52881.2021.00020

[15] Kathy Charmaz. 2014. Constructing grounded theory (2nd edition. ed.). SAGE,
London.

[16] Juliet Corbin and Anselm Strauss. 2008. Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory (3rd ed.). SAGE Publications, Inc.,
Thousand Oaks, California. https://doi.org/10.4135/9781452230153

[17] Florian Deissenboeck and Markus Pizka. 2006. Concise and consistent naming.
Software Quality Journal 14, 3 (Sept. 2006), 261–282. https://doi.org/10.1007/
s11219-006-9219-1

[18] Sarah Fakhoury, Devjeet Roy, Yuzhan Ma, Venera Arnaoudova, and Olusola
Adesope. 2020. Measuring the impact of lexical and structural inconsistencies on
developers’ cognitive load during bug localization. Empirical Software Engineering
25, 3 (2020), 2140–2178. https://doi.org/10.1007/s10664-019-09751-4

[19] Dror G. Feitelson. 2023. From Code Complexity Metrics to Program Comprehen-
sion. Commun. ACM 66, 5 (apr 2023), 52–61. https://doi.org/10.1145/3546576

[20] Dror G. Feitelson, Ayelet Mizrahi, Nofar Noy, Aviad Ben Shabat, Or Eliyahu, and
Roy Sheffer. 2022. How Developers Choose Names. IEEE Transactions on Software
Engineering 48, 01 (jan 2022), 37–52. https://doi.org/10.1109/TSE.2020.2976920

[21] Sally A. Fincher and Anthony V. Robins (Eds.). 2019. The Cambridge Handbook
of Computing Education Research. Cambridge University Press. https://doi.org/
10.1017/9781108654555

[22] Edward M. Gellenbeck and Curtis R. Cook. 1991. An Investigation of Procedure
and Variable Names as Beacons During Program Comprehension. Technical Report.
USA. https://doi.org/10.5555/891020

[23] Elena L. Glassman, Lyla Fischer, Jeremy Scott, and Robert C. Miller. 2015. Foobaz:
Variable Name Feedback for Student Code at Scale. In Proceedings of the 28th
Annual ACM Symposium on User Interface Software & Technology (Charlotte, NC,
USA) (UIST ’15). Association for Computing Machinery, New York, NY, USA,
609–617. https://doi.org/10.1145/2807442.2807495

[24] Abdul Rahman Mohamad Gobil, Zarina Shukor, and Itaza Afiani Mohtar. 2009.
Novice difficulties in selection structure. In 2009 International Conference on
Electrical Engineering and Informatics, Vol. 02. 351–356. https://doi.org/10.1109/
ICEEI.2009.5254715

[25] Remo Gresta, Vinicius Durelli, and Elder Cirilo. 2021. Naming Practices in Java
Projects: An Empirical Study. In XX Brazilian Symposium on Software Quality
(Virtual Event, Brazil) (SBQS ’21). Association for Computing Machinery, New
York, NY, USA, Article 10, 10 pages. https://doi.org/10.1145/3493244.3493258

[26] Shuchi Grover and Satabdi Basu. 2017. Measuring Student Learning in In-
troductory Block-Based Programming: Examining Misconceptions of Loops,
Variables, and Boolean Logic. In Proceedings of the 2017 ACM SIGCSE Tech-
nical Symposium on Computer Science Education (Seattle, Washington, USA)
(SIGCSE ’17). Association for ComputingMachinery, New York, NY, USA, 267–272.
https://doi.org/10.1145/3017680.3017723

[27] Johannes Hofmeister, Janet Siegmund, and Daniel V. Holt. 2017. Shorter identifier
names take longer to comprehend. In 2017 IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER). 217–227. https:
//doi.org/10.1109/SANER.2017.7884623

[28] Méabh Kenny and Robert Fourie. 2015. Contrasting classic, straussian, and con-
structivist grounded theory: Methodological and philosophical conflicts. Qualita-
tive Report 20, 8 (2015), 1270–1289. https://doi.org/10.46743/2160-3715/2015.2251

[29] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2019. How Teachers Would
Help Students to Improve Their Code. In Proceedings of the 2019 ACM Conference
on Innovation and Technology in Computer Science Education (Aberdeen, Scotland
Uk) (ITiCSE ’19). Association for Computing Machinery, New York, NY, USA,
119–125. https://doi.org/10.1145/3304221.3319780

[30] Mikko-Jussi Laakso, Lauri Malmi, Ari Korhonen, Teemu Rajala, Erkki Kaila, and
Tapio Salakoski. 2008. Using Roles of Variables to Enhance Novices Debugging
Work. Journal of Information Technology Education: Innovations in Practice 5
(2008), 281–296.

[31] Dawn Lawrie, Henry Feild, and David Binkley. 2007. Quantifying identifier
quality: an analysis of trends. Empirical Software Engineering 12, 4 (Aug. 2007),
359–388. https://doi.org/10.1007/s10664-006-9032-2

[32] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2006. What’s
in a Name?A Study of Identifiers. In 14th IEEE International Conference on Program
Comprehension (ICPC’06). 3–12. https://doi.org/10.1109/ICPC.2006.51

[33] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2007. Effec-
tive identifier names for comprehension and memory. Innovations in Systems and
Software Engineering 3, 4 (Dec. 2007), 303–318. https://doi.org/10.1007/s11334-
007-0031-2

[34] Christian D. Newman, Reem S. AlSuhaibani, Michael J. Decker, Anthony Peruma,
Dishant Kaushik, Mohamed Wiem Mkaouer, and Emily Hill. 2020. On the gener-
ation, structure, and semantics of grammar patterns in source code identifiers.
Journal of Systems and Software 170 (2020), 110740. https://doi.org/10.1016/j.jss.
2020.110740

[35] Anthony Peruma, Mohamed Wiem Mkaouer, Michael J. Decker, and Christian D.
Newman. 2018. An Empirical Investigation of How and Why Developers Re-
name Identifiers. In Proceedings of the 2nd International Workshop on Refactoring
(Montpellier, France) (IWoR 2018). Association for Computing Machinery, New
York, NY, USA, 26–33. https://doi.org/10.1145/3242163.3242169

[36] Jorma Sajaniemi. 2002. An empirical analysis of roles of variables in novice-
level procedural programs. In Proceedings IEEE 2002 Symposia on Human Centric
Computing Languages and Environments. 37–39. https://doi.org/10.1109/HCC.
2002.1046340

[37] Jorma Sajaniemi and Marja Kuittinen. 2005. An Experiment on Using
Roles of Variables in Teaching Introductory Programming. Computer Sci-
ence Education 15, 1 (2005), 59–82. https://doi.org/10.1080/08993400500056563
arXiv:https://doi.org/10.1080/08993400500056563

[38] Jorma Sajaniemi and Raquel Navarro Prieto. 2005. Roles of Variables in Experts ’
Programming Knowledge. In 17th Workshop of the Psychology of Programming
Interest Group (PPIG17), P. Romero, J. Good, E. Acosta Chaparro, and S. Bryant
(Eds.). Sussex University, 145–159. https://www.ppig.org/files/2005-PPIG-17th-
sajaniemi.pdf

[39] Andrea Schankin, Annika Berger, Daniel V. Holt, Johannes C. Hofmeister, Till
Riedel, and Michael Beigl. 2018. Descriptive Compound Identifier Names Improve
Source Code Comprehension. In Proceedings of the 26th Conference on Program
Comprehension (Gothenburg, Sweden) (ICPC ’18). Association for Computing
Machinery, New York, NY, USA, 31–40. https://doi.org/10.1145/3196321.3196332

[40] Bonita Sharif and Jonathan I. Maletic. 2010. An Eye Tracking Study on camelCase
and under_score Identifier Styles. In 2010 IEEE 18th International Conference on

378

https://doi.org/10.1145/2635868.2635883
https://doi.org/10.1109/TSE.2002.1041053
https://doi.org/10.1007/s10664-014-9350-8
https://doi.org/10.1007/s10664-014-9350-8
https://doi.org/10.1109/ICPC.2017.27
https://doi.org/10.1109/ICPC.2017.18
https://doi.org/10.1016/j.scico.2009.02.006
https://doi.org/10.1145/3059009.3081328
https://doi.org/10.1145/1595782.1595796
https://doi.org/10.1145/1595782.1595796
https://doi.org/10.1109/ICSM.2015.7332450
https://doi.org/10.1109/ICSM.2015.7332450
https://doi.org/10.1109/WCRE.2009.50
https://doi.org/10.1109/WCRE.2009.50
https://doi.org/10.1109/CSMR.2010.27
https://doi.org/10.1109/WCRE.1999.806952
https://doi.org/10.1109/ICPC52881.2021.00020
https://doi.org/10.4135/9781452230153
https://doi.org/10.1007/s11219-006-9219-1
https://doi.org/10.1007/s11219-006-9219-1
https://doi.org/10.1007/s10664-019-09751-4
https://doi.org/10.1145/3546576
https://doi.org/10.1109/TSE.2020.2976920
https://doi.org/10.1017/9781108654555
https://doi.org/10.1017/9781108654555
https://doi.org/10.5555/891020
https://doi.org/10.1145/2807442.2807495
https://doi.org/10.1109/ICEEI.2009.5254715
https://doi.org/10.1109/ICEEI.2009.5254715
https://doi.org/10.1145/3493244.3493258
https://doi.org/10.1145/3017680.3017723
https://doi.org/10.1109/SANER.2017.7884623
https://doi.org/10.1109/SANER.2017.7884623
https://doi.org/10.46743/2160-3715/2015.2251
https://doi.org/10.1145/3304221.3319780
https://doi.org/10.1007/s10664-006-9032-2
https://doi.org/10.1109/ICPC.2006.51
https://doi.org/10.1007/s11334-007-0031-2
https://doi.org/10.1007/s11334-007-0031-2
https://doi.org/10.1016/j.jss.2020.110740
https://doi.org/10.1016/j.jss.2020.110740
https://doi.org/10.1145/3242163.3242169
https://doi.org/10.1109/HCC.2002.1046340
https://doi.org/10.1109/HCC.2002.1046340
https://doi.org/10.1080/08993400500056563
https://arxiv.org/abs/https://doi.org/10.1080/08993400500056563
https://www.ppig.org/files/2005-PPIG-17th-sajaniemi.pdf
https://www.ppig.org/files/2005-PPIG-17th-sajaniemi.pdf
https://doi.org/10.1145/3196321.3196332


ICSE-SEET ’24, April 14–20, 2024, Lisbon, Portugal Vivian van der Werf, Alaaeddin Swidan, Felienne Hermans, Marcus Specht, and Efthimia Aivaloglou

Program Comprehension. 196–205. https://doi.org/10.1109/ICPC.2010.41
[41] Martijn Stegeman, Erik Barendsen, and Sjaak Smetsers. 2014. Towards an Em-

pirically Validated Model for Assessment of Code Quality. In Proceedings of the
14th Koli Calling International Conference on Computing Education Research (Koli,
Finland) (Koli Calling ’14). Association for Computing Machinery, New York, NY,
USA, 99–108. https://doi.org/10.1145/2674683.2674702

[42] Martijn Stegeman, Erik Barendsen, and Sjaak Smetsers. 2016. Designing a Rubric
for Feedback on Code Quality in Programming Courses. In Proceedings of the
16th Koli Calling International Conference on Computing Education Research (Koli,
Finland) (Koli Calling ’16). Association for Computing Machinery, New York, NY,
USA, 160–164. https://doi.org/10.1145/2999541.2999555

[43] Alaaeddin Swidan, Alexander Serebrenik, and Felienne Hermans. 2017. How
do Scratch Programmers Name Variables and Procedures?. In 2017 IEEE 17th
International Working Conference on Source Code Analysis and Manipulation
(SCAM). 51–60. https://doi.org/10.1109/SCAM.2017.12

[44] Armstrong A. Takang, Penny A. Grubb, and Robert D. Macredie. 1996. The
effects of comments and identifier names on program comprehensibility: an
experimental investigation. J. Program. Lang. 4 (1996), 143–167.

[45] Barbee E. Teasley. 1994. The effects of naming style and expertise on program
comprehension. International Journal of Human-Computer Studies 40, 5 (1994),
757–770. https://doi.org/10.1006/ijhc.1994.1036

[46] Ethel Tshukudu, Quintin Cutts, Olivier Goletti, Alaaeddin Swidan, and Felienne
Hermans. 2021. Teachers’ Views and Experiences on Teaching Second and
Subsequent Programming Languages. In Proceedings of the 17th ACM Conference
on International Computing Education Research (Virtual Event, USA) (ICER 2021).
Association for Computing Machinery, New York, NY, USA, 294–305. https:
//doi.org/10.1145/3446871.3469752

[47] Vivian Van Der Werf, Min Yi Zhang, Efthimia Aivaloglou, Felienne Hermans, and
Marcus Specht. 2023. Variables in Practice. An Observation of Teaching Variables
in Introductory Programming MOOCs. In Proceedings of the 2023 Conference
on Innovation and Technology in Computer Science Education V. 1 (<conf-loc>,
<city>Turku</city>, <country>Finland</country>, </conf-loc>) (ITiCSE 2023).
Association for Computing Machinery, New York, NY, USA, 208–214. https:
//doi.org/10.1145/3587102.3588857

[48] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E. Hassan, and Shan-
ping Li. 2018. Measuring Program Comprehension: A Large-Scale Field Study
with Professionals. IEEE Transactions on Software Engineering 44, 10 (2018),
951–976. https://doi.org/10.1109/TSE.2017.2734091

A INTERVIEW PROTOCOL
Questions that explicitly cover the topic of NAMING of variables:
2b, 2c, 3, 4b, 6, 7, 10. Other questions might include naming if the
interviewees brought up the topic themself.

Introduction (5 minutes)
• Overview, duration, recording, confidentiality, anonymity
• Introduction interviewer + interviewee

Practice (15-20 minutes)
(1) Can you shortly describe the setting of your course?

a) Follow up on the level of education, online/offline, class
size, language, duration

(2) Can you tell me something about how you explain variables
in your course(s)?
a) Can you give me an example?
b) Follow up on topics related to variables (assignment, nam-

ing, role), dedicated time/attention, when introduced, etc.
c) In your courses, what type of names are you promoting?

Why? Motivate.

i) Follow up on short & concise (abbreviations, letters) vs.
full words

ii) Follow up on examples of promoted names
iii) Follow up on underscore vs. camel case

d) If not taught: Why not? Can you provide a reason? (Is it a
conscious choice?)

(3) Can you provide me an example of how you name variables
yourself while you explain other concepts throughout your
course(s)?
a) Would you consider this example to be generic for the

way you use variables in your teaching? (Why not? // Are
there other ways that you use variables in your teaching
yourself?)

b) Follow-up on name length, letters, words, conciseness
c) Follow-up on underscore vs. camel case

(4) (if time) Are variables evaluated in your course? Why? How?
a) Can you give me an example?
b) Follow up on: formally/informally, which elements (inc.

naming?), why (not)

Student difficulties (15-20 minutes)
(5) What are common errors that you see your students making

when it comes to the concept of variables?
a) Follow up on misconceptions identified, causes, how to

overcome
(6) Can you give me some examples of how your students strug-

gle when it comes to variable names? What difficulties do
they experience?
a) Follow up on why they might occur and how teachers

solve them.

General perceptions (10 minutes)
(7) In your opinion, what should variable names consist of?

What information should it contain?
a) What do you consider “good naming”? What do you con-

sider “bad naming”?
(8) As a programmer, and speaking in general, how important

are variables to you while programming your own code
and/or understanding someone else’s code?

(9) As a teacher, how important do you consider variables for
teaching programming skills to students?

(10) If you could make one recommendation to other teachers
about teaching variables and their naming, what would it
be? Motivate.

(11) Recommendations about what to stop doing?

Closing
(12) Do you have final remarks or questions?

379

https://doi.org/10.1109/ICPC.2010.41
https://doi.org/10.1145/2674683.2674702
https://doi.org/10.1145/2999541.2999555
https://doi.org/10.1109/SCAM.2017.12
https://doi.org/10.1006/ijhc.1994.1036
https://doi.org/10.1145/3446871.3469752
https://doi.org/10.1145/3446871.3469752
https://doi.org/10.1145/3587102.3588857
https://doi.org/10.1145/3587102.3588857
https://doi.org/10.1109/TSE.2017.2734091

