
 
 

Delft University of Technology

Simulation Based Assessment Methods

Meer, Arjen A. van der; Bhandia, Rishabh; Palensky, Peter; Cvetkovic, Milos; Widl, Edmund; Nguyen, Van
Hoa; Tran, Quoc Tuan; Heussen, Kai
DOI
10.1007/978-3-030-42274-5_3
Publication date
2020
Document Version
Final published version
Published in
European Guide to Power System Testing: The ERIGrid Holistic Approach for Evaluating Complex Smart
Grid Configurations

Citation (APA)
Meer, A. A. V. D., Bhandia, R., Palensky, P., Cvetkovic, M., Widl, E., Nguyen, V. H., Tran, Q. T., & Heussen,
K. (2020). Simulation Based Assessment Methods. In T. Strasser, E. C. W. D. Jong, & M. Sosnina (Eds.),
European Guide to Power System Testing: The ERIGrid Holistic Approach for Evaluating Complex Smart
Grid Configurations (pp. 35-50) https://doi.org/10.1007/978-3-030-42274-5_3
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-030-42274-5_3
https://doi.org/10.1007/978-3-030-42274-5_3


Simulation-Based Assessment Methods

A. A. van der Meer, R. Bhandia, P. Palensky, M. Cvetković, E. Widl,
V. H. Nguyen, Q. T. Tran, and K. Heussen

1 Introduction to Smart Grid Modelling and Simulation

In general, smart grids can be considered as the application of various types of
automation and control for the operation of energy technology, with a focus on elec-
trical power engineering. Examples include the application of distributed automa-
tion in substations, smart metering of domestic consumers, and wide-area protection
mechanisms. Such technology allows the energy systems to be operated and con-
trolled more optimally and to be pushed to their design boundaries. Notwithstanding
these advantages, these concepts heavily rely on ICT structures, which form the glue
between the physical domain (e.g., energy systems and their components) and the
control and automation domain (e.g., decision-making devices, overarching logic
and algorithms). Together, these domains constitute the concept of cyber-physical
energy systems (CPES).

The domain coupling challenges of CPES are evident. The overall system exhibits
multi-time scale (transients versus market decisions) interactions, multi-size (decen-
tralised measurements, wide-area protection) properties, and heterogeneous (physi-
cal versus discrete events) behaviour. In order to assess the operation, security, and
reliability of CPES, the common way of testing and validation for smart energy
components shall be reconsidered. Eventually, lab-based approaches to test, validate

A. A. van der Meer (B) · R. Bhandia · P. Palensky ·M. Cvetković
Delft University of Technology, Delft, The Netherlands
e-mail: a.a.vandermeer@tudelft.nl

E. Widl
AIT Austrian Institute of Technology, Vienna, Austria

V. H. Nguyen · Q. T. Tran
Université Grenoble Alpes, INES, Le Bourget du Lac, France

CEA, LITEN, Le Bourget du Lac, France

K. Heussen
Technical University of Denmark, Roskilde, Denmark

© The Author(s) 2020
T. I. Strasser et al. (eds.), European Guide to Power System Testing,
https://doi.org/10.1007/978-3-030-42274-5_3

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42274-5_3&domain=pdf
mailto:a.a.vandermeer@tudelft.nl
https://doi.org/10.1007/978-3-030-42274-5_3


36 A. A. van der Meer et al.

Fig. 1 Overview of simulation based assessment of CPES. Domain-specific approaches (i.e., a and
b), and multi-domain simulations (i.e., c and d)

and roll-out new concepts must be able to capture the cross-domain interactions the
system or component under test will be subject to.

One of the steps that need to be taken to achieve this is analysis, modelling, and
simulation of cross-domain interactions. Figure1a and b show for example of how
domain-specific models (e.g., physical and ICT) are usually simulated by dedicated
tools with specialised solvers. Cross domain interactions can be included by attempt-
ing to model the entire system under test in a general-purpose simulation tool like
Simulink or OpenModelica (i.e., Fig. 1). This approach has the advantage of main-
taining the entire model into one simulation tool. A common downside it that such
models commonly scale badly in size and phenomena addressed. Another method is
to include themodel of the ’alien’ domain (saymodel B of Fig. 1 d)) into a specialised
tool and subsequently make this model compatible with the applied solver. This is
usually done when it is assumed justifiable to simplify parts of the overall model to
make it suitable for a single-domain tool.

Figure1 often lead to a suboptimal trade-off between simulation efficiency (speed)
and accuracy of the phenomena of interest. This chapter will focus on the simulation
aspects of this challenge and more specifically on one particular method to deal with
this: coupled simulations, also referred to as co-simulations [7]. As an assessment
approach, co-simulation offers key advantages for the simulation of cyber-physical
systems-of-systems:



Simulation-Based Assessment Methods 37

Fig. 2 Variants of coupled simulations

1. Modularity—Co-simulation allows to represent (parts of) sub-systems with the
most appropriate tool available. This encourages a modular representation of the
system under test, with clean semantic and functional model boundaries along
the real-world domain borders.

2. Hierarchical composition as a feature of system-of-systems architectures, is sup-
ported in co-simulation by the modular approach, where a hierarchical modelling
strategy allows to switch out abstracted functional representations with explicit
models of system layers (e.g., abstracted ICT layer: point-to-point information
exchange, detailed: explicit transport layer model).

In the following, the basic concepts of co-simulations will be explained. Then
the available standardized approaches to set up a co-simulation, such as the high-
level architecture and the functional mock-up interface will be introduced. Finally, a
survey of scaling aspects in terms of co-simulation of CPES follows and an example
implementation is discussed, which concerns coupling a power system simulation to
a general-purpose simulation.

2 Co-simulation Based Assessment

2.1 Introduction to Co-simulation, Goals, and Challenges

The term co-simulation is typically used, when two or more models are used in one
simulation. (Real) Co-simulation happens, when these two or more separate models
are executed concurrently and if their variables or states depend on each other (i.e.,
option c in Fig. 2). These simulators have to synchronize with each other periodically.
Sometimes embedding a model into another one and executing them with just one
simulator (i.e. numerical solver) is called co-simulation with model exchange. If one
simulation component is just uni-directionally using data (e.g., time series) from
another simulation we speak of sequential simulation.



38 A. A. van der Meer et al.

Fig. 3 A master algorithm
synchronizes the simulators
and passes on shared
variables

Figure3 shows the time sequence and data flow of two simulators that are coupled
via a master algorithm. The master must have some possibility to start and stop the
simulators, ideally in an on-the-fly fashion that does not require re-initialization
of the states. The choice of synchronization steps is usually up to the co-simulation
engineer. If both simulators have fixed time steps, and if these time steps aremultiples
of each other, the synchronization becomes easy. If, however, the time steps are
totally independent of each other the master might have to interpolate variables that
are exchanged between two-time steps. This situation in shown in Fig. 3 and might
require the master to roll-back simulators from time to time if possible and required.

The reasons why co-simulation is often used are usually pragmatic and solution
oriented:

• Existing legacy models can be used with new models. Often it is not feasible to
re-implement existing models in the simulator of choice with the given resources
(such as shown in Fig. 2b).

• Specialized simulators can be used for parts of a multi-disciplinary problem. By
that, models of one sub-model (e.g., discrete events) do not have to be badly
“imitated” in the simulator of another sub-problem (e.g., continuous dynamics).
The specialized simulators usually have a better (andmaybe even validated) model
library and a tailored work-flow and user-interface for their particular domain.

• The simulation study can have multiple foci. Unlike in the case of a standard
(monolithic) simulation, there is no need to simplify sub-problems. Each sub-
problem (may it be mechanical, thermal, electric, economic, etc.) can be modelled
in all detail since it runs (and can even be tested) in its own specialized environment.

These advantages have to be contrasted with a number of disadvantages, too:

• Models in different modelling environments need to be maintained. This involves
multiple modelling languages, simulation project files, and software licenses. This
also means that the staff, doing the simulation, needs to be educated in all these
tools—plus the co-simulation environment! A high level of versioning and doc-
umentation discipline is required to achieve a sustainable way of working with
that.

• Experience shows, that co-simulation is slow. Although its perfect suitability for
parallel computation would suggest speed gains, it is the synchronization of simu-
lations (that were often not designed to be synchronized) that slows things down.
Some legacy simulators process licensing information when they are stopped and



Simulation-Based Assessment Methods 39

restarted or require a fresh initialization, which of course grinds down performance
if frequent synchronization is needed.

• Error propagation and estimation of co-simulation is poorly understood. The
choice of simulation step sizes or synchronization points is therefore not trivial
and is still subject of technical developments.

Interfacing with the master can be done via various APIs (application program
interfaces), one that received broad industry support is called FMI: the Functional
Mockup Interface. It is an open standard, based on a C-interface that offers the
specification of required functions such as start, stop, step, synchronization, variable
exchange, etc.

The master algorithm itself is in its core often very simple but associated func-
tionality (such as scenario handling, data logging, distributed computing, etc.) can be
quite complex. Again, there are a few popular master platforms, two of them being
HLA (the high-level architecture) and mosaik.

Once the master and the simulators are set up, the work flow is very much as a
standard simulation-based analysis: Scenarios are generated (e.g., parameter sweeps,
etc.), and an optimizer or engineer runs these scenarios in a number of simulations
until the expected result is found.

2.2 Current Co-simulation Standards and Their
Functionality

The High Level Architecture (HLA) was originally developed under the umbrella
of the Department of Defense of the USA in order to serve its high demands for a
versatile simulation environment. The developmentwas initiated in the early nineties,
and the current HLA version is standardized under HLA 1516–2010 (known also as
HLA Evolved) [1]. This standard does not focus on the implementation of the co-
simulation master, but instead, establishes the list of services that must be provided
by the master (in HLA terms called Run-Time Infrastructure (RTI)). Some of the
greatest advantages of HLA are its versatility and configurability, while at the same
time, these features amount to a steep learning curve for the co-simulation engineer.

The Functional Mockup Interface (FMI) was created to ease model exchange
between vendors of various components assembling larger physical systems (one
such example is automotive industry). Therefore, its primary focus is on model
encapsulation (within so-called Functional Mockup Unit (FMU)) and its current
standard, FMI 2.0, provides a comprehensive interface for model engagement (such
as model evaluation, Jacobian retrieval, etc.) [4]. As the second step in its evolution,
FMIwas enhancedwith a co-simulation interface (such as starting, stopping, stepping
of themodels). The current standard anticipates packaging of FMUswith andwithout
internal solvers. If packaged with internal solvers, the FMUs can be directly included
in co-simulation. Otherwise an external solver must be engaged to step the model
within FMU.



40 A. A. van der Meer et al.

FMI andHLAare complementary in nature, since FMI focuses on the engagement
of models, while HLA focuses on the master services [5]. Today, many engineering
simulation tools allow to export the models as FMUs, which improves the breadth
of co-simulation scope.

Finally, mosaik was created with a particular intention to serve as a smart grid
co-simulation framework, and as such, it is largely in tune with energy system appli-
cations [8]. In contrast to the previously mentioned standards, mosaik is a direct
implementation of a master algorithm, and not a standard per se. It is written in
Python, based on a discrete event scheduler and is capable of FMU integration.
Besides FMU integration, it also provides interfaces for several common tools in
the energy system realm (such as DigSilent PowerFactory, PandaPower, etc.). Since
its primary user group are energy engineers, the elaborate co-simulation settings are
greatly simplified, which represents mosaik’s greatest advantage. A comparison of
mosaik and HLA for a co-simulation of a power system control action is performed
in [9].

3 Co-simulation Framework for Smart-Grid Assessment

3.1 Co-simulation Interfaces Based on FMI

In order to accurately simulate Smart Grids, the interaction between the domains of
electrical power systems, communication and automation and control is of crucial
importance. As a proof-of-concept, co-simulation interfaces based on the FMI stan-
dard have been developed for selected state-of-the-art tools, examples of which are
described in the following.

3.1.1 Power System Simulation with PowerFactory

DIgSILENT PowerFactory1 is a commercial tool for power system design and analy-
ses. PowerFactory does not officially provide an FMI-compliant co-simulation inter-
face. However, it provides an API that enables basic interactions with simulation
models at run-time like setting/retrieving variables and calculating power flows.

Furthermore, PowerFactory provides the possibility to issue so-called events dur-
ing time-domain simulations (more specifically, RMS simulations in PowerFactory)
that can change the system state at a specified point in simulation time. This mech-
anism has been utilized to enable a dynamic interaction with simulation models at
run-time. It is suited for co-simulation and has been integrated into a stand-alone
FMU exporter tool.2

1DIgSILENT PowerFactory, http://www.digsilent.com, accessed April 17, 2020.
2The FMI++PowerFactory FMUExportUtility, http://powerfactory-fmu.sourceforge.net, accessed
April 17, 2020.

http://www.digsilent.com
http://powerfactory-fmu.sourceforge.net


Simulation-Based Assessment Methods 41

3.1.2 Communication Network Simulation with Ns-3

In recent years, ns-3 has become very popular in the network simulation community.
ns-3 is a highly flexible simulation package, which allows programmers to add new
attributes without modifying the core of the source code, or having to deal with a
specific, restricted and complex API. The default version of ns-3 comes with an
extensive library of models, which can be used to describe the components and other
aspects of communication networks (e.g., devices, channels, interfaces, protocols).

A dedicated ns-3 package called fmi-export has been developed, which provides
all functionality needed for creating an FMU for C—Simulation from a user-defined
ns-3 application (typically referred to as script). An FMUcreatedwith the help of this
package implements a tool coupling mechanism that allows to control the execution
of the ns-3 simulator and to establish a connection for data exchange during run-time.

3.1.3 Control Simulation with MATLAB

Despite the popularity and widespread use of the numerical computing environment
MATLAB, there is so far only comparably little support within the context of FMI.
For instance, the Modelon FMI Toolbox3 and the FMI Kit for Simulink4 offer the
export of Simulink models as FMUs for Model Exchange, but so far there is no tool
available that allows to provide MATLAB’s full functionality via an FMI-compliant
co-simulation interface.

Therefore, the FMI++ MATLAB Toolbox5 has been implemented that provides
two components: a front-end component to be used by the co-simulation master
and a back-end component to be used by MATLAB. The corresponding interfaces
are tailored to suit the requirements of the FMI specification and they implement
the necessary functionality required for a master-slave concept, i.e., synchronization
mechanisms and exchange of data.

3.2 Mosaik for Scenario Development and Simulation
Orchestration

The mosaik6 framework is an easy-to-deploy software package that facilitates the
integration of new simulators as well as the creation of co-simulation experiments.
This is achieved via a lightweight software core based purely on Python, a special

3FMI Toolbox for MATLAB/Simulink, https://www.modelon.com/products-services/modelon-
deployment-suite/fmi-toolbox, accessed April 17, 2020.
4FMI Kit, https://www.3ds.com/products-services/catia/products/dymola/fmi/, accessed April 17,
2020.
5The FMI++ MATLAB Toolbox, http://matlab-fmu.sourceforge.net, accessed April 17, 2020.
6Themosaik Smart Grid co-simulation framework, http://mosaik.offis.de/, accessedApril 17, 2020.

https://www.modelon.com/products-services/modelon-deployment-suite/fmi-toolbox
https://www.modelon.com/products-services/modelon-deployment-suite/fmi-toolbox
https://www.3ds.com/products-services/catia/products/dymola/fmi/
http://matlab-fmu.sourceforge.net
http://mosaik.offis.de/


42 A. A. van der Meer et al.

Component-API for simulator integration, and a Scenario-API for flexible simulator
coupling. The mosaik framework is still under active development and new features
are being introduced based on activities within the smart grid testing and validation
community.

3.2.1 FMI Support

As an example, the FMI++ Python Interface7 and the mosaik framework have been
successfully combined for the co-simulationofFMUs.Several examples of importing
FMUs have been implemented using the FMI++ Python Interface to interact with the
FMU and mosaik’s high-level component API to integrate it into the co-simulation.
For this, especially the functionality for conveniently handlingFMUswas extensively
used, such as extracting the FMU, parsing its model description or the ability to
refer to input/output variables by name (rather than the numerical value reference
associated to each variable).

3.2.2 Handling of Cyclic Dependencies

The term cyclic dependencies refers to a co-simulation setup in which two (or more)
simulators require data from each other to advance their state in time (i.e., Fig. 2c).
These data dependencies may lead to deadlocks with all simulators waiting for data
from each other, halting the whole simulation process. Therefore, proper handling
of these cyclic dependencies is one of the most crucial tasks in co-simulation. This
is especially true in the case of Smart Grid applications, which typically involve
feedback loops and a strong physical coupling between the individual components
and subsystems.

The co-simulation framework mosaik has been developed with a strong focus
on flexibility in terms of configuring the connected simulators. Accordingly, the
scheduling algorithm of mosaik is designed in a way to allow integration of any
number of simulators. Furthermore, all integrated simulators may display different
step sizes and even vary their step size over time. In order to guarantee the absence
of deadlocks for any given setup, the handling of cyclic dependencies in mosaik
has so far had some limiting characteristics. In particular, using mosaik’s intuitive
connection capabilities to establish cyclic data exchange between two or more sim-
ulators has been prohibited. Instead, users had to extend the simulator interfaces
to realize cyclic data exchange, which obviously decreases the usability of mosaik
for researchers with limited programming experience. Furthermore, the described
solution in mosaik only supports serial data exchange schemes.

Recently, the capabilities of mosaik have been extended to allow for higher usabil-
ity in the handling of cyclic dependencies. The basic idea of this extension is the
separation of data exchange into two stages: Simulators may receive data either

7The FMI++ Python Interface, https://pypi.org/project/fmipp/, accessed April 17, 2020.

https://pypi.org/project/fmipp/


Simulation-Based Assessment Methods 43

Fig. 4 Possible data exchange schemes in mosaik

before they are called to calculate a time step, or after they have calculated so that
they store the data for the next time they are called. With this separation, priorities
between simulators can be established so that deadlocks are avoided. Figure4 illus-
trates different data exchange options between two simulators A and B. Connections
for data exchange before calculations are called standard connections since they are
part of the typical functionality of mosaik. The newly added connection type is called
time-shifted connection since they provide data to simulators that already have been
called for calculation.

Figure4 shows that standard connections in mosaik provide data to a simulator
for its calculation of the current time step while time-shifted connections provide
data for the next time step to be calculated. Furthermore, mosaik provides the option
to set default input data for the first calculation of a simulator that is addressed by
time-shifted connections. In this way, parallel data exchange schemes may also be
realized if initial input data can be assigned to each simulator. Overall, the extension
of mosaik improves its usability and provides it with the most common options for
handling cyclic dependencies in black box co-simulation for smart grid applications.

4 Scaling Considerations

The purpose of simulation-based smart grid assessment is often the ability to evaluate
the (often non-linear) effects of changes in system parameters on large systems
that cannot be established through abstracted analytical models or limited physical
experiments with few hardware components.

Scaling-up of established simulation components to a large-scale scenario is con-
ceptually simple in co-simulation: due to the modularity and hierarchical build-up of
models, system components can be re-used with alternative parameters and scenario
APIs allow scripted scenario configuration and handling.

However, there is a number of non-trivial issues that needs to be considered when
planning and developing scale-up simulations, arising from either a) the complexity
of system interactions represented, or b) the increasing simulation program scale
and complexity [2]. Table1 offers a view on several types of large-scale phenomena
in energy systems, distinguishing whether these emerge from the physical domain



44 A. A. van der Meer et al.

Table 1 Large scale phenomena considered in the context of smart grids

Real world (Investigated
phenomena)

Physical (Laboratory) Virtual (Simulation)

Scale in number of nodes and
components

Number of
nodes/buses/components

Number of equations

Complexity through
inter-dependencies across
multiple domains

Number of domains (power,
heat, ICT etc.)

Number of simulation tools
and instances

Complexity through
stake-holder interpretations

Number of relevant layers
(business, information,
communication, components
etc.)

Variety of models of
computation (time-continuous,
event-driven, stochastic, etc.)

Socio-geographical size Geographical size

Table 2 LSS phenomena characterization chart

Dependency on control parameters Scale with the system size (linear, logarithmic,
exponential, and polynomial)

Appear at certain critical system sizes (i.e.
phenomenon appears and remains beyond a
certain control parameter value

Appear and disappear at certain operational
zone of control parameters or parameter
combinations

Variation of observation parameters Extreme values (e.g. performance increase or
decay; system failure)

Inadvertent oscillations

Intermittent performance degradation

(real-world application) or inaccuracies of the research infrastructure (laboratory or
simulation environment).

To distinguish Large Scale System (LSS) phenomena, we characterize them by
their effects on system parameters, as presented in Table2. The phenomena are char-
acterized by the observable relation between system input and control parameters—
factors in design of experiment (DoE) terms—and the resulting variation of obser-
vation parameters (observables, performance metrics, DoE: response variables).

In order to consider appropriate assessment methods for the aforementioned cat-
egories, two principal scaling approaches can be adopted:

• Upscaling in terms of system properties (i.e., scale out): this method targets phe-
nomena directly related to physically large scale systems. E.g., how does the
co-simulation scale with physical system size?

• Upscaling in terms of simulation andmodelling (i.e., scale up): this method targets
large scale implementations in models and simulation for the validation of smart



Simulation-Based Assessment Methods 45

grids. E.g., how does the co-simulation scale with the number of models and
simulations involved?

The co-simulation example demonstrated in the next section introduces a co-
simulation that has been subject to upscaling principles: in terms of properties—
scale out (rate power, number of wind turbines) and in terms of modelling—scale up
(number of FMUs) [3].

5 Fault Ride-Through of a Wind Park Example

This section comprises a typical test case in which domains and their co-simulation
challenges come together, with a focus is on the evaluation of cyclic dependencies
between different models in the context of co-simulation. In the implementation
example a standard IEEE 9-bus dynamic test system is modified to contain a Wind
Power Plant (WPP), which replaces one of the 3 main generators. A wind park is
typically subject to grid connection requirements by the network owner, formulated
in grid codes. The Fault ride-through (FRT) capability of WPPs is such a require-
ment, the assessment of which requires a detailed dynamic simulation of the system,
a simulation that encompasses numerous cyclic dependencies between different sys-
tem components and the general maintenance of synchronism (i.e., transient and
frequency stability). As a result, FRT serves as a rigorous test for co-simulation tools
and simulation interfaces.

The main models involved in the implementation of the test case include dynamic
models of the WPP, converter controller and FRT controller. The standard IEEE-9
bus system was modified to replace the generator at bus 3 by a WPP consisting of
full converter interfaced generators. The WPP is connected to the rest of the grid at
the point of common coupling (PCC). The PCC is significant since all the important
metrics like compliance to appropriate voltage-time profiles during FRT ismonitored
and evaluated here and forms a legal boundary between the plant assets owner and
the grid operator. The controllers developed are embedded in the AC-DC converter
controller. A single-line diagram of the experimental setup can be seen in Fig. 5).

The WPP is an aggregated version of a medium to large scale onshore wind
power park. The WPP is rated at 85MVA which is cumulative rating of 32 wind
turbines, each having a power rating of 2.6 MVA. The wind turbines are assumed to
be deployed in an 8X4 array distanced by 700m each.

The converter controller is designed with two proportional-integral controllers
and one overarching current limiter. The controller is a grid following vector con-
troller, which also models the reference voltage signals to control the voltages on
both AC and DC side. The q-axis controller regulates the voltage magnitude of the
PCC, whereas the d-axis controller maintains the active power reference [6].

The FRT controller acts on the top of the converter controller as a discrete finite
state machine. It monitors the voltages on both AC and DC sides to sense fault
conditions and shifts from normal control mode to FRT control, post-FRT mode,



46 A. A. van der Meer et al.

G2

2 7 8 9 3

5 6

T2

T3

4

G1

1
T1

Load C

Load A
Load B

AC-DC 
Converter

Aggregated 
WPP (85MW)

PCC

Fig. 5 Modified IEEE 9-bus system acting as a test system for co-simulating PowerFactory with
Matlab/Simulink using the functional mock-up interface

and back to normal control accordingly. During the FRT mode, the FRT controller
increases the reactive current infeed and blocks active power flow to address the
voltage dip. In post-FRT mode, the FRT controller sets a maximum ramping rate for
restoring the active current reference back to pre-fault conditions.

5.1 Experiment Setup and Objectives

The co-simulation is set up as follows. The AC grid including the wind part array
is modelled and simulated in DIgSILENT PowerFactory. Inside PowerFactory, the
wind turbine ismodelled as aNorton equivalent source, the current injection ofwhich
can vary in time and is provided by the parameter event functionality as discussed in
Sect. 3.1.1. This can be considered as a proxymodel of the actual converter dynamics
by the converter controller and FRT controllers, which are developed in Simulink and
Matlab respectively. During runtime of the co-simulation, all FMUs are synchronised
using fixed macro time step-sizes of 10 ms.

A 3-phase short circuit event is simulated to study the FRT capability. The co-
simulation is orchestrated by a Python script, which uses the FMI++ toolbox. Even-
tually the overall system under test is split into three FMUs. The three FMUs being:
One FMU for the entire power system model in PowerFactory, one for the FRT con-
troller and one for the converter controller. The arrangement of the FMUs and the
co-simulation orchestration by Python and FMI++ is shown in Fig. 6.

The simulation itself is centred around the dynamic response of the WPP and
the IEEE 9-bus system that is subject to a self-cleared 180 ms 3-phase short circuit
starting at t = 1 s (Bus 6 of Fig. 5). The main objective is to study the FRT capability



Simulation-Based Assessment Methods 47

Fig. 6 Co-simulation Setup.
On top the Python script
using FMI++ to interface
with the functional mockup
units below. Left the FMU of
PowerFactory based on FMI
for co-simulation, in the
centre the FMU of the
converter (vector) controller
based on FMI for model
exchange. On the right the
FMU of the fault
ride-through controller based
on FMI for model exchange.
Both have an encapsulated
dedicated numerical solver

Co-Simula on with FMI++

Adapter for 
FMI-CS Adapter for 

FMI-ME
SOLVER

Adapter for 
FMI-ME
SOLVER

Adapter for 
FMI-ME
AC System

Power 
Factory

FMU
Vector 

Controller

FMU
FRT

Controller

and reactive power control of theWPP. These ensure that the voltage at the PCC does
not dip beyond the FRT voltage versus time profile, and quickly ramp the voltage to
pre-fault levels after fault clearance (i.e., grid code compliance). During the event,
theWPP shall remain connected to the grid. Adherence to these conditions during the
simulations will certify that the co-simulation tools and interfaces have performed at
their expected levels. In order to validate the co-simulation, a reference monolithic
simulation was conducted in PowerFactory, too, in which standard dynamic models
and dedicated DSL for the converter controls have been employed to duplicate the
model specification in Matlab/Simulink.

5.2 Results

Figures7 and 8 show the voltage magnitude at the PCC and active power through
the PCC respectively. Taking the monolithic (PowerFactory only) simulation as a
reference, it can be seen that the voltage sag experienced at the PCC is around 50%
of nominal, which, quickly restores after fault clearance and swings back to values
around nominal seconds after. This fast restoration is owing to the relatively strong
grid as well as the voltage-dependent reactive current injection during the voltage
dip. The presence of the active power recovery rate, engaged by the FRT controller,
can also be clearly distinguished.

Despite the rather tight coupling between the submodels of the co-simulation,
the dynamics around the PCC (red solid line) follow the reference simulation gener-
ally well. During fault ignition and clearance, a small discrepancy can be observed,
particularly in the voltage magnitude, which can be attributed to the numerical oscil-
lations caused by the serial data exchange protocol (see Fig. 4) that is applied in



48 A. A. van der Meer et al.

Fig. 7 Voltage magnitude at PCC, monolithic (red, solid) versus co-simulation (dashed, blue)

O

Fig. 8 WPP output active power, monolithic (red, solid) versus co-simulation (dashed, blue)

the master algorithm. Especially the active power, which can be considered a flow
variable, traces the monolithic simulation very similarly. This enhances the validity
of the co-simulation as a whole.

6 Conclusion

Major advancements in power electronic technology lead to its availability at all
voltage levels and a massive deployment of components and systems grid-interfaced
though power electronics. This incredibly boosts the controllability of the system as
a whole but also introduces coupling of phenomena in the time domain that could
normally be addressed separately such as power system stability. Likewise, the dig-
ital transformation drastically increased the heterogeneity of the electricity system,
transforming it from a purely physical system, showing continuous behaviour, to a
cyber-physical system also exhibiting discrete-event behaviour (non-linear, discon-
tinuous).

Simulation bases assessment is a crucial link in the testing and validation chain
of such integrated and intelligent energy systems (i.e. analysis, simulation, demon-



Simulation-Based Assessment Methods 49

stration, roll-out). The heterogeneity of the (sub-)system models, however, shall be
captured in the associated simulation tools accordingly. This is challenging as most
simulators have been numerically optimised for a well-bounded domain, sometimes
over decades. A solution for this challenge has been detailed in this chapter: co-
simulation.

Various aspects of (coupling) simulation have been discussed: an overall typology
for simulation-based assessment of CPES, the basics of co-simulation, standardised
master algorithms and interfaces, and the framework approach adopted in the ERI-
Grid project. More specifically, the ERIGrid project achieved the following additions
to the state-of-art in terms of co-simulation

• Readiness of the mosaik co-simulation framework for mutually coupled subsys-
tems in the time-domain (i.e., cyclic dependencies);

• Implementation of an FMI++ adapter in PowerFactory (RMS mode) complying
with the FMI for co-simulation specification. An application example has been
discussed in Sect. 5;

• Development of an FMI++ export package for ns-3 based on FMI for co-
simulation;

• Implementation of the FMI++MATLAB toolbox based on FMI for co-simulation;
and

• Proof-of-concept of continuous-time, discrete-event, and mixed simulator cou-
pling;

• Assessment of the scalability of the applied approaches; and
• Application of the holistic testing methodology for simulation-based assessment
methods.

Notwithstanding these innovations in terms of applications of co-simulations,
the approach is not very suitable for the day-to-day engineer yet. Parameterisation
of simulator interfaces, master algorithm configuration, distributed execution, and
harmonisation of semantics of the overall simulation are examples that require a lot of
manual work and are still subject to technological development. Once this is mature,
the benefits are unprecedented: simulation-based assessment of heterogeneous CPES
as a service.

References

1. IEEE standard for modeling and simulation (m & s) high level architecture (hla)—object model
template (omt) specification (2010)

2. Barenblatt, G.I.: Scaling. Cambridge University Press, Cambridge (2003)
3. Bhandia, R., van derMeer, A.A., Widl, E., Strasser, T.I., et al.: D-JRA2.3 Smart Grid Simulation

Environment. Deliverable D8.3, ERIGrid Consortium (2018)
4. Blochwitz, T., Otter, M., Akesson, J., Arnold, M., Clauss, C., et al.: Functional mockup interface

2.0: the standard for tool independent exchange of simulation models. In: Proceedings of the
9th International MODELICA Conference, September 3–5, 2012, Munich, Germany, 076, pp.
173–184. Linköping University Electronic Press (2012)



50 A. A. van der Meer et al.

5. Garro, A., Falcone, A.: On the integration of HLA and FMI for supporting interoperability and
reusability in distributed simulation. In: Proceedings of the Symposium on Theory of Mod-
eling and Simulation: DEVS Integrative M&S Symposium, pp. 9–16. Society for Computer
Simulation International (2015)

6. van der Meer, A.A., Bhandia, R., Widl, E., Heussen, K., Steinbrink, C., Chodura, P., Strasser,
T.I., Palensky, P.: Towards scalable FMI-based co-simulation of wind energy systems using
powerfactory. In: Proceedings of Innovative SmartGridTechnologies (ISGT)Europe.Bucharest,
Romania (2019)

7. Palensky, P., van der Meer, A.A., López, C.D., Jozeph, A., Pan, K.: Applied co-simulation of
intelligent power systems: implementation, usage, examples. IEEE Indust. Electron. Mag. 11(2)
(2017)

8. Rohjans, S., Lehnhoff, S., Schütte, S., Scherfke, S., Hussain, S.: Mosaik - a modular platform
for the evaluation of agent-based smart grid control. In: IEEE PES ISGT Europe 2013, pp. 1–5
(2013)

9. Steinbrink, C., van der Meer, A.A., Cvetkovic, M., Babazadeh, D., Rohjans, S., Palensky, P.,
Lehnhoff, S.: Smart grid co-simulation with MOSAIK and HLA: a comparison study. Comput.
Sci. - Res. Devel. 23 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	 Simulation-Based Assessment Methods
	1 Introduction to Smart Grid Modelling and Simulation
	2 Co-simulation Based Assessment
	2.1 Introduction to Co-simulation, Goals, and Challenges
	2.2 Current Co-simulation Standards and Their Functionality

	3 Co-simulation Framework for Smart-Grid Assessment
	3.1 Co-simulation Interfaces Based on FMI
	3.2 Mosaik for Scenario Development and Simulation Orchestration

	4 Scaling Considerations
	5 Fault Ride-Through of a Wind Park Example
	5.1 Experiment Setup and Objectives
	5.2 Results

	6 Conclusion
	References




