
Dynamic analysis of Android applications to extract spam caller IDs

Christiaan van Luik
Supervisor(s): Apostolis Zarras, Yury Zhauniarovich

EEMCS, Delft University of Technology, The Netherlands

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering



Abstract
Spam calls are becoming an increasing problem,
with people receiving multiple spam calls per
month on average. Multiple Android applications
exist that are able to detect spam calls and display
a warning or block such calls. Little is known how-
ever on how these applications work and what num-
bers they block.
In this research, the following question is investi-
gated: Can we do a brute force dynamic analysis on
Android spam call blocking apps, to extract caller
ID information from apps that cannot be or is not
extracted through static analysis? A tool is created
that is capable of doing such a dynamic analysis, by
installing such an app on an emulator, sending emu-
lated phone calls to the emulator, and using screen-
shot comparison techniques to determine whether
the call is classified as allowed or blocked by the
respective app. The tool developed in this research
can, fully automated, test caller IDs on 8 different
Android apps. Apart from a number of initial setup
steps to install and configure the apps in the emula-
tor, the tool takes about 1.5 seconds on average to
analyze 1 caller IDs on one app.

1 Introduction
1.1 Background
Many people receive multiple spam or scam calls per month.
The research by Hiya [8] shows that people in the USA re-
ceive 16 spam calls per month on average. Multiple smart-
phone applications exist to detect spam calls and block them.
Currently, there is no insight or research on how these appli-
cations work technically. The existing research of Sherman et
al [9] focusses on the user experience perspective. However,
research into extracting blocked caller IDs has not been done
yet.

Finding out how these applications block spam calls, is
useful in order to be able to compare effectiveness of multiple
methods and to determine what would be the ideal technique
or combination of techniques to combat spam calls.

1.2 Research Question
This research will focus on the possibility of extracting caller
IDs from Android Applications in real-time. The main re-
search question will be: Can we do a brute force dynamic
analysis on Android spam call blocking apps, to extract caller
ID information from apps that cannot be or is not extracted
through static analysis?

Additionally, the following sub-questions will be ad-
dressed: How long does this analysis take and how can it
be speed up? and Can we include other information, apart
from caller IDs, that is used to determine if a call is blocked
or not in the analysis?

2 Methodology
This section focuses on the methodology of this research.
First, the used software will be listed, followed by an expla-

nation how these tools were used to do the research.

2.1 Tools
Android Debug Bridge (ADB)
Android Debug Bridge [1] is a command line developer tool
that enables communication with an android device or emu-
lator. It allows you to execute certain device actions and also
provides a shell for running commands on the device. In the
context of this research, its most used feature is ADB’s ability
to send a simulated phone call to a device.

Android UI Automator
Android UI Automator [6] is a UI testing framework for
Android-wide UI testing and automation. It allows interac-
tion with various elements on screen as well as executing
specific device actions. It provides various ways to find el-
ements. In this project, UI Automator is mainly used for au-
tomating the different steps to set up individual apps, steps
like accepting the terms and conditions and granting the re-
quired permissions.

Appium
Appium [3] is an open source test automation framework.
It serves as an interface to different vendor-specific test au-
tomation frameworks. It wraps these frameworks into one
API using the webdriver protocol. You can then use a client
in any programming language to send the appropriate HTTP
requests to the appium server. The Appium server runs lo-
cally, and interacts with the locally running emulators. In this
project, the Appium Client is used to be able to easily write
automation code which uses both ADB and UI Automator
under the hood.

Appium Inspector
Appium Inspector [2] is a graphical tool, which loads the
Android layout XML file, and displays it next to the screen-
shot. It can be used to find out how a layout is built up and
to find the right IDs or XPATH for selecting an element. In
this project, Appium Inspector is used to determine the right
resource-ids that actions, like clicks and text input, are ap-
plied to in automating the different app setup processes.

OpenCV
OpenCV [4] is an open source machine learning and com-
puter vision library that includes a wide variety of tools
and algorithms related to computer vision. In this project,
OpenCV is used for checking if a subimage is part of a larger
image, in our case a reference subimage with a visual indica-
tion of the blocked or allowed status, which is compared to
the full screenshot taken.

2.2 App selection
The first step in answering the research question is deciding
on which apps to test. We decided on testing 10 apps, which
fits the size of this research project and allows for enough
variety in the apps under test.

For selecting these apps, the following criteria must be met:

• Android App, preferably in the Google Play Store
• App has a significant number of downloads, in order for

the research to be relevant.



• App is free
• App uses a database or algorithm to decide whether a

call is a spam call. App should not only use a user-
defined blocklist.

Based on these criteria the following 10 apps were se-
lected:

• Call Control - SMS/Call Blocker. Block Spam Calls!
(com.flexaspect.android.everycallcontrol)

• CallApp: Caller ID & Recording (com.callapp.contacts)
• Call Blocker - Stop spam calls

(com.unknownphone.callblocker)
• Caller ID, Phone Dialer, Block (com.callerid.block)
• Should I Answer? (org.mistergroup.shouldianswer)
• Showcaller: Caller ID & Block (com.allinone.callerid)
• Stop Calling Me - Call Blocker (com.mglab.scm)
• Spam Call Blocker - telGuarder (com.telguarder)
• Truecaller: Caller ID & Block (com.truecaller)
• Hiya - Call Blocker, Fraud Detection & Caller ID

(com.webascender.callerid)

These apps were then downloaded in APK format from ap-
kcombo.com to use in the analysis.

2.3 Short overview of automated analysis
To do this research, a piece of software has been written that
automates testing whether certain caller IDs are allowed or
blocked. This is done for 10 applications. In short, the soft-
ware works as follows:

As input, the tool requires a list of caller IDs (phone num-
bers) to be tested. The tool already comes bundled with the
apks of the 10 Android apps as well as the required reference
images used for image comparison, 2 or 3 per app, depending
on which statuses the app differentiates.

Then, in short, the following automated actions are
executed:
The tool first loops over the 10 apps, for each app:

• The app is installed and setup on an emulator (see sec-
tion 2.4)

• For each number in the input list of numbers:

– The device screen is locked (turned off)
– A call is simulated
– The tool continuously takes screenshots until an oc-

curence of either an allow, caution (if applicable) or
block reference image is present, in which case we
can decide on the status of the call.

– The simulated call is cancelled.
– The number combined with the found status (either

allow or block) is saved.
• The app is uninstalled
In the sections below, the above short overview is explained

in more detail.

2.4 Automating app installation and setup
Although installing an APK file on an Android device or em-
ulator is easy to do with a single ADB command, this turned
out not to be enough. After installing the apk and granting all
permissions that the app requests via ADB, more steps need
to be taken before the installed app can be used for the ac-
tual analysis. All apps require the user to go through some
other initial steps before you can use its functions. These
steps differ per app, but generally include actions like accept-
ing the terms and conditions, granting permission to have the
app run in the background, and registering or logging in with
an account. These steps have all been automated for each
individual app using Android UI Automator.

2.5 Testing provided phone numbers
When running the tool, the 10 apps are tested one by one.
Each time an app is installed and setup as described above,
after which the real analysis starts. For each number in the
provided list of numbers to test, the following automated ac-
tions are executed.

First, a simulated phone call from the number to be tested is
sent to the emulator. Then, in a continuous loop, a screenshot
of the emulator screen is taken. This screenshot is compared
with the allow, caution (if applicable) and block reference im-
ages, so see if the reference image occurs in the screenshot.
If that is the case, we can decide on the status (either allow or
block) of the number under test. We also measure and save
the time it took for the app’s status popup to appear.

This continuous loop and measurement of the time it takes
until the status is shown is done because not all apps display
information equally fast. It takes some time for the allow,
caution or block popup to appear on the screen, which is why
the script loops until this app popup is present on the screen.

2.6 Reference image comparison
In order to detect if a call gets blocked or allowed by a certain
app, we make use of image comparison. Using the OpenCV
library, we check if the allow, caution or block reference im-
age is part of the larger screenshot.

Figure 1: Reference images of ShouldIAnswer app, for respectively
the allow, caution and block statuses.

For each app, there are two reference images, one for al-
low and one for block. In some cases, the spam call block
apps also distinguish a third category, a caution status. In that
case, a third reference image for this status is added. These
reference images are partial screenshots of the popup that be-
comes visible with the status of the number. For example, the
reference image for allow might be a small, cropped green
phone icon that is distinctive for the non-spam status, while
the block reference image might be a small image of a red



icon that is only visible when the tested app regards a num-
ber as spam. As an example, the reference images for the
ShouldIAnswer app can be seen in figure 1.

For comparing the screenshot and the reference image,
OpenCV’s Template Matching [5] functionality is used. It
allows to check if a smaller image occurs in a larger image.
This works if the image to be found is a subset of the screen-
shot.

Figure 2: Example screenshot
of allowed call

Figure 3: Example screenshot
of spam call

Figure 4: Reference image for
allow status

Figure 5: Reference image for
block status

3 Experimental Setup
In this section, the methodology covered in section 2 will be
explained in more detail, and some of the particularities en-
countered during this research will be explained. In general,
this information serves as an addition to the content in sec-
tion 2. The source code created in this research is available in
this GitHub repository: https://github.com/cvl01/spam-call-
analysis.

3.1 General setup
The tool built in this research project is built in Python, using
the Appium Python Client to send the required commands to
Appium, which then will execute these actions on the emula-
tor.

When simulating a call, it is important to first lock the
screen, as the app popups with information might differ based

on whether the device is locked or unlocked. To make sure the
reference images match the screenshot and to guarantee con-
sistency, the testing always happens in the locked mode. The
incoming call screen then appears fullscreen and the spam
call blocking app’s popup displays on top of the native An-
droid incoming call screen.

The tool outputs the results to a CSV file, where each line
contains the package name of the tested app, caller ID, status,
and time it took to detect.

3.2 Creation of reference images
Reference images are created manually, by taking screenshots
of respectively allowed incoming call screens and blocked in-
coming call screens, like can be seen in figures 2 and 3. These
screenshots are then cropped to only show a small, distinctive
part of the popup that can be used to determine whether a call
is labelled as spam or not.

3.3 Automating app installation and setup
Each individual app requires you to do different steps and ac-
tions before the app’s functionality can be used, like logging
in with a Google account, or setting the app as default caller
ID app. Since these steps and also the application layout dif-
fers per app, for each app a different automation script was
created. This automation script launches the app, and then
executes a series of tap, swipe, keyboard or other actions that
are required to setup the app.

To find out which buttons to tap, and how to find these pro-
grammatically, the record feature of Appium Inspector was
used. This record feature allows you to click around in an
app, and record what you are doing. These taps on the screen
are linked to a certain resource-id or XPATH for program-
matically locating the elements on the screen. Additionally,
some tweaking needs to be done, since the record feature not
always is able to generate stable code.

When needed, the option to log in with a Google account
is used, since that is most easy to automate as opposed to
creating an application-specific account.

After running this app-specific automation, the app’s func-
tionality is active and testing can begin.

4 Results
In this research, it was possible to develop a software tool
that can dynamically extract the caller ID information from
Android spam blocking apps. It is able to determine whether
a caller ID is labelled as spam or not by such an app, as well
as measure the time it takes before this information pops up
on the screen. The results that are mentioned in this section
and shown in tables 1 and 2 are obtained by running the tool
on a 100-number dataset of both US and Dutch caller IDs,
which can be found in appendix B.

4.1 Incompatible apps
Three of the ten selected apps turned out to be incompatible
with the chosen method and experimental setup. Truecaller
(com.truecaller) uses some automated number verification in
the app, before you can start using it. This fails on an em-
ulator, likely because there is no actual number / SIM card



Package Name Avg. of delta Min. of delta Max. of delta Min. of acc. Avg. of acc.
com.allinone.callerid 1,26 1,17 1,46 100% 100%
com.callapp.contacts 3,14 1,79 7,69 96% 100%
com.callerid.block 1,33 1,22 2,01 100% 100%
com.flexaspect.android.everycallcontrol 1,23 0,99 7,53 100% 100%
com.mglab.scm 0,03 0,00 0,20 100% 100%
com.telguarder 1,44 1,14 3,22 100% 100%
com.webascender.callerid 1,13 1,05 1,47 98% 100%
org.mistergroup.shouldianswer 1,86 1,59 2,17 100% 100%
Total 1,42 0,00 7,69 96% 100%

Table 1: Statistics on running time (delta) per number in seconds and accuracy of the image comparison per number. Timeouts are excluded.

Package Name allowed blocked caution timeout
com.allinone.callerid 68% 32% 0% 0%
com.callapp.contacts 85% 11% 0% 4%
com.callerid.block 68% 32% 0% 0%
com.mglab.scm 74% 26% 0% 0%
com.telguarder 39% 24% 37% 0%
com.webascender.callerid 68% 32% 0% 0%
org.mistergroup.shouldianswer 12% 82% 6% 0%
Total 59% 34% 6% 1%

Table 2: Overview of percentage of allowed and blocked numbers for the 100-number test dataset.

Dutch Numbers US Numbers
Package Name allowed blocked caution allowed blocked caution
com.allinone.callerid 54% 1% 0% 14% 31% 0%
com.callapp.contacts 50% 4% 0% 35% 7% 0%
com.callerid.block 54% 1% 0% 14% 31% 0%
com.mglab.scm 55% 0% 0% 19% 26% 0%
com.telguarder 29% 16% 10% 10% 8% 27%
com.webascender.callerid 31% 24% 0% 37% 8% 0%
org.mistergroup.shouldianswer 2% 53% 0% 10% 29% 6%
Grand Total 39% 14% 1% 20% 20% 5%

Table 3: Comparison of app performance between Dutch and US caller IDs

connected to the emulator. Because of that, it was not possi-
ble to automate setting up Truecaller.

Another app, Call Blocker - Stop spam calls
(com.unknownphone.callblocker) does not show any vi-
sual indication on the incoming call screen. This app is
more intended as a community-driven number review app.
After being called by a number, in the app you can see what
messages other users wrote about this number. Because the
app does not have automatic detection features and is not
showing a visual indication on the incoming call screen, it
was not used in this research.

A third app, Call Control
(com.flexaspect.android.everycallcontrol) looks like it
will detect spam call numbers at first, but it turns out
that in order to enable this functionality, a paid premium
subscription needs to be activated.

4.2 App Comparison
Time comparison
A comparison was made between the 10 apps on time it takes
to show the allow or spam status. Results of that can be found
in table 1. As you can see, some applications definitely are
faster than others. In this table, timeouts are excluded from
the data and not part of the calculated values. Timeouts can
arise when the screen can’t be matched to a reference image,
like described in section 6.2.

Stop Calling Me (com.mglab.scm)
An app that stands out in table 1 is Stop Calling Me
(com.mglab.scm) which has very low running time. This is
because this app works a bit different from the other apps. In-
stead of showing an overlay on the incoming call screen like
other apps, it just terminates the call if it is classified as spam.
So, if the call is blocked, the call is terminated, if the call is



allowed nothing happens. The tool detects if the call is termi-
nated. As you can see in the table, this takes maximum 0.20
seconds. For the allow status there is no real timing, if after a
timeout of 2 seconds the call is not terminated we assume it
is allowed, but the time in the data is fixed at 0.0 for the al-
lowed calls. This app is the fastest when it comes to detecting
whether a call should be blocked.

Call Blocking Statistics
Table 2 gives an overview of the apps and their perfor-
mance on the 100-number dataset. From these results, one
should not draw too many conclusions, since the chosen
set of numbers can heavily influence how the apps work
and what allow and block percentages they have. How-
ever, what can be noted from these results is that 2 appli-
cations, com.allinone.callerid, com.callerid.block, both show
the same behaviour, not only are the percentages the same in
the table, but they block exactly the same numbers. Although
com.webascender.callerid has the same percentages in the ta-
ble, that is a coincidence, as this app blocks and allows differ-
ent numbers. Seeing the exact match between the behaviour
of these two apps, there is a big change that these applications
make use of the same dataset under the hood. This can how-
ever not be verified using this tool, but static analysis might
be able to give a definitive proof of this.

Dutch and US Numbers
Finally, in table 3 a comparison between the app behaviour
on Dutch and US numbers in the dataset is made. We can see
that on the same dataset, for US numbers all tested apps block
at least some numbers, while for Dutch numbers, some apps
block significantly fewer numbers than others. This might
be because some apps are optimized for the US market, and
others have more data on Dutch or maybe European numbers.

4.3 Tool Performance
A slight performance gain is can be achieved by running the
tool headless. This gives around a 10 to 15% speed increase.
The tool can be further sped up by running the analysis on
multiple threads. Using threads decreases the total runtime,
but not the time per number that is used in table 1.

4.4 Overhead
Before doing the actual analysis, the emulator needs to be
setup. These setup steps, that include installing the app, log-
ging in into a Google account (if needed), and configuring the
analysed app, are done each time the analysis runs on a clean
emulator. This setup can take up to 1 minute for a single app.
This makes, that when testing a relatively small amount of
caller IDs, the emulator and app setup takes more time than
the actual analysis.

4.5 Accuracy
The core functionality of the developed tool depends on the
image comparison that is done in order to determine if a call
is allowed or blocked.

The OpenCV Template Matching functionality that
is used gives an accuracy score, using OpenCV’s
TM CCOEFF NORMED matching method, on the ac-
curacy of the found match. In the tool, a threshold of 0.95

is set. In the results, we see that all tested numbers have
an accuracy in the range 0.96 till 1.00, indicating perfect
matches.

4.6 Comparison with other tools
Since telephony abuse and spam calling is growing, multiple
researchers have performed research related to spam calling.
Related to Android spam call blocking apps, and how these
work and combat spam calls, little research has been done.
Pandit et. al. [10] investigated multiple data sources that may
be used to construct phone blocklists. Additionally, they mea-
sured the ability and effectiveness of these blocklists in block-
ing future unwanted spam calls. Their results show that these
blocklists are capable of blocking a significant percentage of
spam calls (more than 55%) and that the false positive rate is
very low. Unfortunately, it is not possible to say whether the
datasources and blocklists analysed by Pandit et. al. are the
same datasources that are used under the hood of the analyzed
apps in our research. So, it is not possible to say whether the
findings of Pandit can be applied to our work aswell.

Other researchers have also set up different frameworks
and methods for detecting spam phone calls. But these are
new frameworks, and not an investigation in the data or
heuristics of existing spam call blocking apps.

To the best of our knowledge, this research is the first re-
search that analyses Android spam call blocking applications
by use of dynamic analysis on a device or emulator.

5 Responsible Research
5.1 Mis-use
The tool that is created as part of this research, allows the
user to test a phone number on different Android spam call
blocking applications. This poses a risk of immoral usage. In
fact, a spam caller that possesses a certain amount of phone
numbers, might use the tool to check those caller IDs, and see
which of them are blocked by which app. A spammer could
then choose a caller ID that is not yet part of the blocklists of
these applications.

It is relatively easy to run an emulator, install a spam call
blocking application on it, send an emulated phone call to
the emulator, and observe whether the caller ID is blocked.
That is why, in my opionion, the above described risk is still
present even without the tool of this research. The only dif-
ference this tool makes, is that every manual step goes a bit
faster when automated.

5.2 Reproducibility
When doing research, reproducibility is very important. This
can be achieved by publishing the source code of the automa-
tion scripts that were created in this research. It should be
noted however, that the apps that are analyzed in this re-
search will change after updates, or even be removed from
the Google Play Store. That is why one cannot guarantee that
various parts of the analysis, like the comparison of screen-
shots, will work on future versions of the apps.

Additionally, some, if not all the apps, use online, external
databases to determine whether a caller ID will be blocked or
not. These databases are constantly updated, with caller IDs



being added and being removed. That is why the behaviour
of these apps, even when using the exact same app versions,
might not always be the same. This will lead to different
results when running the analysis again on a later moment in
time.

However, detailed information on our method, combined
with the published source code, will ensure that even when
apps might visually change, other researchers should be able
to create new reference images and replicate the research us-
ing the same method that was used in this research.

6 Discussion
The results show that it is possible to do a dynamic analysis of
Android spam call blocking apps. In this section, we discuss
the effectiveness and the limitations of this work.

6.1 Effectiveness
If one tries to get insight in how certain Android spam call
blocking applications work and which caller IDs they block,
different ways of static and dynamic analysis can be applied
to extract information. When comparing the chosen approach
of this work to a static analysis in which caller IDs blocklists
are extracted from the application source code, this solution
is very costly. One would get thousands or even millions of
numbers at once when extracting a database from an appli-
cation. Testing 1 million numbers using this tool would cost
833 hours for one application.

However, not every application uses a database, databases
can be hashed or encrypted, and even when a database exists,
it can be very difficult to extract. These and other problems
that arise when doing static analysis, are not present when
doing dynamic analysis with screenshot-based comparison.
Our tool is suitable for every app that displays some visual
indicator of the allow or block status, that can be used for
image comparison. This makes it a tool that can be applied
to many applications, irrespective of how they function under
the hood. This tool is very effective as a last option to extract
data from an app, when other methods, like different forms
of static analysis, fail. However, since testing one number
takes 1.5 seconds on average, testing large datasets on multi-
ple apps requires a lot of time.

6.2 Limitations
Versions & UI changes
Because the tool uses both UI Automation for the setup and
screenshot comparison for the analysis, the tool is highly vul-
nerable for changes in the layout of either Android itself or
the tested app. Every change in the UI can lead to parts of the
tool failing. That is why reproducibility can only be guaran-
teed when using the same emulator configuration (most im-
portant: same android version, same screen size) and using
the same app versions.

Caller ID Specific Layouts
Another limitation of the tool is the inability to adapt to some
app’s changing layouts. Some apps change the layout based
on the phone number, by adding a specific profile image or
text. This is not a problem as long as part of the screen is suit-
able for our partial image comparison technique, but when the

whole screen changes this might lead to the tool being unus-
able for that specific screen. An example from the CallApp
Contacts App can be seen in figure 6. As you can see, a spe-
cific background is added compared to the regular incoming
call screen shown in figure 7. The reference image show in
figure 8 is not present in figure 6, leading to a timeout when
testing this specific number. It is not possible to find a refer-
ence image that works for both cases (fig. 6 and 7) while not
conflicting with the app’s blocked call screen layout.

Figure 6: CallApp Contacts
with specific background

Figure 7: CallApp Contacts
regular incoming call screen

Figure 8: CallApp Contacts reference image for the ’allow’ status

Threading and performance
It is possible to run the application on multiple threads and
thus on multiple emulators. However, the Android emulator
takes quite some resources. On the MacBook Pro (16-inch,
2021) with the Apple M1 Pro processor and 16GB of mem-
ory that was used for testing, stable and reliable results could
only be guaranteed with maximum 2 emulators running at
the same time. Running more than 2 emulators works, but
then the emulators may start to lag and will sometimes freeze,
which makes the process unreliable.

This issue could be resolved by running the tool with ex-
ternal emulators, on another device, for example on virtual
machines (VM) in the cloud. This would enable to distribute
more and run the analysis faster. Ofcourse, then the cost will
also increase, because more computing devices need to be set



up. The article by Bierma et. al. [7] on a Large-scale Android
Dynamic Analysis Tool gives some ideas on how to set up a
dynamic analysis on multiple VM nodes.

7 Conclusions and Future Work
In this research, a tool was developed that is capable of doing
a dynamic analysis of Android Spam Call Blocking applica-
tions, and extracting a list of statuses (allow / caution / block)
for each tested caller ID. This tool can fully automatically test
caller IDs on 8 different Android apps. Apart from a number
of initial setup steps to install and configure the apps in the
emulator, the tool takes about 1.5 seconds on average to anal-
yse 1 caller ID on one app.

Additionally, the tool was made faster by choosing an ef-
ficient image processing library (OpenCV), running the em-
ulator headless and adding the ability to run the tool using
multiple threads.

In this research, the initial second sub-question, on other
information apart from caller IDs, was not addressed. This
could be further researched in the future.

Future work
In this research, an open issue is addressing the initial second
sub-question, if it is possible to include other information,
apart from caller IDs, that is used to determine whether a call
should be blocked or not? One can think of changing the
timezone of the device, changing the location, or switching
the emulator between online and offline mode, to see if there
is any difference on how the apps under test behave when con-
ditions vary. To avoid groping in the dark and spending a lot
of testing time trying to discover which variables are part of
the app’s heuristics, one could do a static analysis of the ap-
plication code first. During that static analysis, one might find
some indications of which variables are part of the heuristics.
The hypotheses that arise from doing this static analysis can
then be further tested and proven by doing a dynamic anal-
ysis using a extended version of this tool, that will test the
apps using different setups. One will then likely be able to
find some examples that prove the hypotheses and show that
the app behaviour can vary based on the setup and conditions
the device or emulator is in.

When doing further research, it should be interesting to
compare different techniques for dynamic detection. In this
research, image / screenshot comparison was used, but it
might be possible to use alternative methods to achieve the
same functionality. One alternative might be to use Android
UI Automator to detect text on the screen, instead of detect-
ing partial images. Once this is developed, a comparison can
be made on what is the fastest and most accurate method.

References
[1] “Android Debug Bridge (adb).” [Online].

Available: https://developer.android.com/studio/
command-line/adb

[2] “Appium inspector,” original-date: 2021-04-
06T17:37:49Z. [Online]. Available: https://github.
com/appium/appium-inspector

[3] “Appium: Mobile App Automation Made Awesome.”
[Online]. Available: https://appium.io/

[4] OpenCV. [Online]. Available: https://opencv.org/
[5] “OpenCV: Template Matching.” [Online]. Avail-

able: https://docs.opencv.org/4.x/d4/dc6/tutorial py
template matching.html

[6] “Write automated tests with UI Automator.” [On-
line]. Available: https://developer.android.com/training/
testing/other-components/ui-automator

[7] M. Bierma, E. Gustafson, J. Erickson, D. Fritz, and Y. R.
Choe, “Andlantis: Large-scale android dynamic analy-
sis,” arXiv preprint arXiv:1410.7751, 2014.

[8] Hiya, “State of the phone call,” p. 9, 2019. [On-
line]. Available: https://assets.hiya.com/public/pdf/
HiyaStateOfTheCall2019H1.pdf

[9] K. M. I.N. Sherman, J. Bowers, “Are you going to an-
swer that? measuring user responses to anti-robocall ap-
plication indicators,” in NDSS, 2020.

[10] S. Pandit, R. Perdisci, M. Ahamad, and P. Gupta, “To-
wards measuring the effectiveness of telephony black-
lists.” in NDSS, 2018.

https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://github.com/appium/appium-inspector
https://github.com/appium/appium-inspector
https://appium.io/
https://opencv.org/
https://docs.opencv.org/4.x/d4/dc6/tutorial_py_template_matching.html
https://docs.opencv.org/4.x/d4/dc6/tutorial_py_template_matching.html
https://developer.android.com/training/testing/other-components/ui-automator
https://developer.android.com/training/testing/other-components/ui-automator
https://assets.hiya.com/public/pdf/HiyaStateOfTheCall2019H1.pdf
https://assets.hiya.com/public/pdf/HiyaStateOfTheCall2019H1.pdf


A List of Apps with version
A list of used apps with the used version can be found in table
4.

App name Package name Version Name Version Code
Showcaller com.allinone.callerid 2.2.8 272
CallApp Contacts com.callapp.contacts 1.962 1962
Caller ID com.callerid.block 1.7.7 184
Call Control com.flexaspect.android.everycallcontrol 2.13.5 40155
Stop Calling Me com.mglab.scm 2.3.21 382
telGuarder com.telguarder 1.1.1 791
Truecaller com.truecaller 12.30.6 1230006
Call Blocker com.unknownphone.callblocker 2.6.4 147
Hiya com.webascender.callerid 12.1.0-9677 120100
Should I Answer? org.mistergroup.shouldianswer 1.0.206 206

Table 4: List of used apps and used versions of those apps

B Test dataset of 100 Caller ids
The numbers below were used for generating the results
shown in this paper:
+18009423767, +16058844130, +18666257291,
+18003535920, +18888996650, +13132631171,
+18558440114, +18882224227, +18442069035,
+18665320423, +18558953393, +18003219637,
+18662507212, +18889346489, +18776478552,
+17204563720, +18442068573, +18554197365,
+18669145806, +18009460332, +18662423315,
+17135686986, +18553066998, +18009475096,
+18005812620, +16147582335, +15862500071,
+17189356740, +18776983261, +15052530591,
+12065390456, +18002927508, +18779473639,
+18557077328, +12012010089, +18009149244,
+12064532329, +18008068840, +18669513700,
+18102725120, +13033238692, +18335258081,
+18009378997, +18775875726, +18778235399,
+31103180406, +31103180407, +31103188856,
+31108920400, +31134634900, +31182200013,
+31202091180, +31202119920, +31202134531,
+31202265194, +31202279303, +31207060014,
+31302061014, +31307125776, +31316550003,
+31332096457, +31332096712, +31332096980,
+31332137540, +31352019505, +31402071474,
+31402291122, +31534876888, +31570768301,
+31580502130, +31612616455, +31617407181,
+31620348959, +31623197835, +31625277365,
+31627840569, +31628282952, +31628784203,
+31628877018, +31644196164, +31644677344,
+31646455395, +31682262701, +31683558391,
+31683827962, +31684776454, +31702071023,
+31702071241, +31702171046, +31742045520,
+31850501499, +31850870183, +31850870713,
+31852087866, +31857325695, +31882111460,
+31882716420, +31885016700, +31887226600,
+31887751600


	Introduction
	Background
	Research Question

	Methodology
	Tools
	Android Debug Bridge (ADB)
	Android UI Automator
	Appium
	Appium Inspector
	OpenCV

	App selection
	Short overview of automated analysis
	Automating app installation and setup
	Testing provided phone numbers
	Reference image comparison

	Experimental Setup
	General setup
	Creation of reference images
	Automating app installation and setup

	Results
	Incompatible apps
	App Comparison
	Time comparison
	Stop Calling Me (com.mglab.scm)
	Call Blocking Statistics
	Dutch and US Numbers

	Tool Performance
	Overhead
	Accuracy
	Comparison with other tools

	Responsible Research
	Mis-use
	Reproducibility

	Discussion
	Effectiveness
	Limitations
	Versions & UI changes
	Caller ID Specific Layouts
	Threading and performance


	Conclusions and Future Work
	List of Apps with version
	Test dataset of 100 Caller ids

