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Abstract

Recent developments in quantum annealing have shown promising results in logistics, life sciences, machine
learning and more. However, in the field of geophysical sciences the applications have been limited. A
quantum annealing application was developed for residual statics estimation. Residual statics estimation is
a highly non-linear problem in geophysical subsurface imaging. The problem is run on a quantum annealer
as well as on a hybrid solver. Quantum annealers solve binary quadratic models, which are a specific
type of NP-Hard problem. The hybrid solver uses quantum annealers together with classical computers to
solve optimisation problems. Two binary quadratic models were developed for the purpose of residual statics
estimation, one based on the one-hot encoding and the other on standard binary encoding. These two models
were theoretically analysed and subsequently implemented and tested. Tests with synthetic data were done
using the quantum annealer. The solutions found with quantum annealing were often only a few bit-flips
away from the global optimum. Therefore, the results were further improved by post-processing of the data
with the steepest descent method. It was found that the one-hot encoding with steepest descent performed
superior to the other methods. As a final test the hybrid solver was used to solve a business-sized and
realistically difficult problem. The hybrid solver outperformed a current industry standard cross-correlation
solver.
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1 | Introduction

Quantum computing is a fast developing field with increasing relevance for different disciplines. The idea was
first coined in 1980 by Paul Benioff, when he described a quantum machine model of the Turing machine [1].
The proposed machine would use key concepts from quantum physics to aid in the computation and make
tasks feasible that could be computed on a classical computer. Quantum computers have a wide range of
implementations, of which the gate based quantum computers [2] and quantum annealers [3] have gained the
most attention. Quantum annealers use properties from quantum physics to find approximate solutions of
NP-Hard optimisation problems [4]. NP-Hard problems frequently occur in real life applications. Therefore,
it is not surprising that quantum annealers have already been shown to have promising results in a wide va-
riety of fields such as logistics [5–7], life sciences [8,9] and machine learning [10,11]. Despite these promising
applications, only a few proof-of-principle studies have been done in the field of geophysical imaging of the
subsurface [12–14]

Subsurface imaging is a process which produces an image that captures the different layers of the Earth
and has a wide variety of applications. Applications include geothermal energy explorations, CO2 storage, oil
and gas exploration, localising mineral deposits and aquifers, and determining foundations for large buildings
in hard to build environments such as deserts or marsh. For all these applications, high resolution images are
a key factor in reducing operational risk and cost. The process of making high resolution subsurface images
consists of many steps, most of which are well understood. However, in the presence of large near surface
anomalies, the step of residual statics estimation remains challenging.

Residual statics estimation corrects for errors caused by near-surface anomalies. Frequently used solvers,
like the cross-correlation solver, try to solve the residual statics estimation problem by modelling the prob-
lem as a linear inversion problem. As the inversion problem is highly non-linear, these methods fail in the
presence of large near-surface anomalies [15]. A different approach is the more robust stack power optimi-
sation method introduced by Ronen and Claerbout [16]. However, the objective function of the stack power
optimisation method is highly multimodal. Therefore, the true global maximum is usually not found in
reasonable time, even with state of the art global solvers [17]. Residual statics estimation by stack power
maximisation can be formulated as a combinatorial optimisation problem. This, taken together with the
multimodal nature of the objective function, makes quantum annealing a promising candidate to solve this
computationally complex problem.

The quantum computing company D-Wave currently has the most advanced quantum annealers [10]. Re-
cently D-Wave released the Advantage system, a quantum annealer which was used for purposes of solving
the problem presented in this thesis. Furthermore, before the end of 2024 the Advantage 2 system is expected
to be launched [18], which promises solutions to even larger problems. Many of the pioneering applications
that are developed now, will therefore be able to solve more complex problems in the future. As the current
quantum annealers were not able to solve an industry sized problem, another approach needed to be taken
For this purpose the D-Wave Hybrid solver was used. The Hybrid Solver combines quantum annealing with
classical computing to allow quantum aided computations for problems with up to 20,000 or 1,000,000 vari-
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8 CHAPTER 1. INTRODUCTION

ables, depending on the structure of the problem [19].

In this research, the application of quantum annealers for residual statics estimations was studied. To
use the quantum annealers and Hybrid solver, the residual statics estimation problem had to be converted
to a binary quadratic model, which is a specific type of NP-Hard problem. To this end, two different binary
quadratic models were developed. These two models were both theoretically analysed and tested with syn-
thetic data on the quantum annealers and the Hybrid solver. Finally, the steepest descent method was used
as a post-processing step to improve some of the quantum annealer solutions.

This thesis is structured as follows: First, we give an introduction into subsurface imaging and the residual
statics estimation problem in Chapter 2, followed by a brief discussion of some classical approaches and
their shortcomings in Chapter 3. Thereafter, we give an introduction of the quantum annealing paradigm
in Chapter 4. Next, we derive two binary quadratic models in Chapter 5, which are subsequently theoret-
ically analysed in Chapter 6. In Chapter 7, we present the results of both quantum annealing directly on
the Advantage system as well as the Hybrid solver. Finally, we conclude the thesis with a conclusion and
outlook.



2 | Introduction to Seismic Data Ac-
quisition and Processing

Beneath the surface, the Earth consists out of many layers. Each layer has its own properties, like thickness,
strength, fluid content and more. Knowledge of these layers allows for detailed planning of subsurface work,
decreasing operational costs and risks. Subsurface imaging is a process where knowledge of these layers is
acquired by sending waves through the subsurface and processing the resulting signals. However, the most
shallow layers, the near-surface layers, are often very irregular. These near-surface anomalies cause timing
delays in the recording of waves used to produce a subsurface image. Consequently, the timing delays cause
misalignment of recordings, which either misposition the structure or lower the resolution of the final image.
Important timing delays are statics, which are constant shifts of the whole signal. By field measurement
and other methods these statics can be (partially) corrected. However, not all statics are corrected by these
methods, the statics that remain after corrections of other methods are called residual statics. Finding a
correction for these residual statics is the focus of this thesis.

To discuss residual statics and their estimation methods, first seismic data acquisition will be discussed when
no near-surface anomalies are present. Next, the effect of the near-surface will be discussed together with
strategies to counteract the problems that arise because of near-surface anomalies. Thereafter, a mathemat-
ical model describing the residual statics will be presented. More specifically, the residual statics estimation
problem is formulated as an optimisation problem.

2.1 Seismic Data Acquisition and Pre-processing

A seismic image starts with a seismic experiment, where waves are sent into the subsurface and are subse-
quently recorded. In Figure 2.1a the layout of such a seismic experiment is shown. In a seismic experiment,
sources and receivers are placed on the surface of the Earth. The sources send vibrations through the Earth
and waves start propagating through the subsurface. When the waves reach a point where two subsurface
layers meet, called a subsurface interface, the waves are partially reflected and partially transmitted accord-
ing to Snell’s law. The reflected waves are collected by the receivers. Figure 2.1a shows the paths of the
dominant waves and Figure 2.1b shows an example recording of these waves, which is called a trace. The
vertical axis of the trace is the time axis, which increases when going downwards. This reversed vertical
axis was chosen, because it gives an immediate visual aid for examining the subsurface. Note that for each
subsurface interface in Figure 2.1a, there is a wavelet in Figure 2.1b.

The depth of the Earth is in the distance domain, whereas the recorded data, the traces, are in the time
domain. Therefore the traces must be transformed from the time domain to the distance domain. To achieve
this, the velocity is estimated at different times, such that the conversion from the time domain to the
distance domain can be performed. Just like the structure of the subsurface, the velocity is also unknown
and a velocity model must therefore be made. The building of velocity models is a well-established but
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10 CHAPTER 2. INTRODUCTION TO SEISMIC DATA ACQUISITION AND PROCESSING
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Figure 2.1: (a) Shows a seismic experiment. A source excites the Earth and waves start to propagate through
the subsurface. Upon a subsurface interface, the waves either reflect or are transmitted and go deeper. The
waves are collected by the receiver. (b) An example trace of the seismic experiment of (a).

complicated procedure. It is outside the scope of this thesis to discuss velocity models in detail, but the
interested reader is referred to [20]. It is important to point out that the velocity models have low resolution.
The low resolution of the velocity models is problematic for modelling the most shallow layers, which are
called the near-surface layers. The near-surface layers behave differently from the other subsurface layers,
because of their exposure to the atmosphere. In these layers, the velocity changes very rapidly. These rapid
velocity changes are caused by the the fact that there are substantial velocity differences for each of the layers.
Moreover, also in a single layer there can be large differences. These differences can be caused through near-
surface anomalies such as caves and underground rivers. In this thesis we wish to estimate these effects of
the near-surface. The modelled waves in a seismic experiment with the near-surface taken into account is
shown in Figure 2.2.

The more detailed effects of the near-surface will be discussed using the simplified drawing shown in Fig-
ure 2.2. As can be seen in Figure 2.2, the dominant waves are modelled to propagate vertically through the
near-surface. The wave propagation is modelled vertically, due to the effects of refraction caused by the low
velocity at which the waves propagate through the near-surface [16]. Below the near-surface, the waves are
modelled to propagate the same way as they did when no near-surface was present. As demonstrated in
Figure 2.2, the effect of the near-surface is twofold. The near-surface affects the waves when they propagate
downwards, directly beneath the source, and when they propagate upwards again, directly beneath the re-
ceivers. The effect the near-surface has on the traces is modelled to be a shift in time over the whole trace.
Because the effect is the constant over the whole time domain of the traces, this effect is called a static. Some
of these statics can be estimated by measurements of the surface. Such statics are called field statics. After
removing the field statics, some effects of the near-surface anomalies still remain. These effects are called the
residual statics, which we wish to estimate in this thesis. At first glance, the effects of residual statics might
seem like small errors. However, in the presence of large near surface anomalies, the errors caused by the
residual statics can be substantial.

For the purpose of residual statics estimation, common midpoint gathers will be introduced. In general,
a seismic experiment will have many sources and receivers. This causes a lot of redundancy in the data,
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Figure 2.2: Seismic experiment with 1 source and 3 receivers. In this simplified cross section of the Earth, the
effects of an exaggerated near-surface are drawn, which causes the dominant waves to propagate vertically.

which can be used to improve the quality of the final subsurface image. This redundancy becomes evident
in the common midpoint gather. Figure 2.3 illustrates the idea behind such a common midpoint gather.

Sources
Receivers

(a) All transmission paths of the seismic experiment

Sources
Receivers

(b) Common midpoint gather

Figure 2.3: Both figures show seismic experiments with 3 sources and 3 receivers. In (a) the transmission
paths of all traces are shown. (b) shows the subset of the traces in (a) which have a common midpoint.

Figure 2.3a shows a seismic experiment with 3 sources and 3 receivers. Each source sends vibrations through
the Earth, waves propagate through the subsurface, reflect and are subsequently recorded by each receiver.
Figure 2.3b shows three traces of this seismic experiment which have the same midpoint. That is, the source
and receiver of these traces have the same horizontal midpoint. As depicted in Figure 2.3b, these three traces
also have the same reflection point beneath the ground. This is true under the assumption that the Earth is
horizontally layered, but it is also a good approximation for layers at a slight angle [15, 21, 22]. This idea of
the same reflection point will be the main arguments for the method used in this thesis. Because each signal
in the common midpoint gather has the same reflection point, this reflection point should be visible in each
trace in the common midpoint gather. Hence, every trace in the common midpoint gather should be identical,
except for the effects of the statics and the different travelling times in the sub-surface due to the different
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paths. The different travelling times in the subsurface can be accounted for by normal moveout correction [23].

The general idea of normal moveout correction is shown in Figure 2.4. Figure 2.4 shows 10 example traces
from a central midpoint gather in the simplified case that no near surface anomalies are present. Because
of the different paths the waves take, the distance between the wavelets is different for each trace. Normal
moveout correction is performed to correct for these different paths. An example result is shown in Fig-
ure 2.4b. All traces are perfectly aligned and the relative distance between wavelets is constant. This is what
we would expect to see, because in the central midpoint gather, the traces reflect from the same point.
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(c) With normal moveout correction
and near-surface anomalies

Figure 2.4

When large near-surface anomalies are present, this behaviour changes. Examples of the effects of near-
surface anomalies are shown in Figure 2.4c. The relative distances within each trace remain constant, but
the traces are shifted relative to each other. Note that the distances between the wavelets remain constant
between all traces. These relative shifts are the residual statics. Therefore, if the shifts can be determined
such that the traces are aligned as in Figure 2.4b, we have an estimation of the residual statics. This is the
basis of the residual statics estimation method used in this thesis.

2.2 Mathematical Model for Residual Statics Estimation

To perform residual statics estimation, it will be necessary to define a measure for the quality of the residual
statics estimations. Therefore, we present a mathematical model to describe the traces and the quality of the
estimated statics. Let us assume we have a stack of M traces, which have been normal moveout corrected.
Let di ∈ RN be a vector representing the amplitudes of the traces i = 1, . . . ,M (the data), each containing
N datapoints. Let τi ∈ R be a possible shift, then di(τi) denotes trace i, which is shifted by a static of τi.
A common midpoint stack gives important insight of the quality of the statics. A midpoint stack is the sum
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over all the traces, thus the stack is

M∑
i=1

di(τi). (2.1)

Figure 2.5 shows example stacks of the traces shown in Figure 2.4. Figure 2.5a shows the stack when
near-surface anomalies are present, but no statics are applied. Figure 2.5b shows the same traces, but
corrected with statics such that the traces were aligned as in Figure 2.4b. Note how the amplitudes of the
wavelets in Figure 2.5a are much smaller and the wavelets are more smeared out as compared to the wavelets
in Figure 2.5b. These higher amplitudes are caused by the high amount of constructive interference that
happens when the traces are perfectly aligned. Hence, constructive interference is what we want to maximise.
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(a) Stacked traces of Figure 2.4c.
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(b) Stack of traces of Figure 2.4c after statics correction.

Figure 2.5: Common midpoint stacks of the traces shown in Figure 2.4c before (a) and after (b) statics
correction.

Traditionally, maximising the constructive interference was done by creating a reference trace and calculating
the cross-correlation with the reference trace for each trace. However, unless a perfect reference trace is
created (which is as difficult as solving the problem), the true solution is often not found. A more robust
method, stack power maximisation, was first proposed by Ronen and Claerbout [16]. They noticed that the
Euclidean norm emphasises large amplitudes and thus promotes large constructive interference. Hence, they
proposed to maximise the Euclidean norm of the stack, which they called the stack power. To simplify the
computations, the Euclidean norm is squared. Thus, the residual statics can be estimated by solving the
following maximisation problem:

max
τ∈S⊂Rn

∥∥∥∥∥
M∑
i=1

di(τi)

∥∥∥∥∥
2

2

. (2.2)

Note that there is no reference trace present and all the data is collected in this one objective function. In this
representation the whole gather can be shifted by a constant to produce the same optimal value. Therefore,
there are an infinite amount of statics that solve the problem. This can be solved by keeping the static of
one trace fixed, or by reducing the search space.
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2.3 Difficulties of Stack Power Maximisation

At first glance, stack power maximisation might seem like a simple problem. However, maximisation of stack
power is a highly multimodal problem. To illustrate this, let us consider a small example of stack power
maximisation. Figure 2.6a shows a fixed trace d0 together with two traces d1 and d2, each containing 401
datapoints. The statics of d1 and d2 relative to d0 are 10 and 30 respectively, these are the statics we wish
to estimate by maximising the stack power. Let τ1 be a shift of d1 and τ2 be a shift of d2. Maximising the
stack power for this problem is the same as

max
τ1,τ2
‖d0 + d1(τ1) + d2(τ2)‖22. (2.3)

The objective function of Equation (2.3) is visualised in Figure 2.6b. Note that even though the global
maximum is obtained at τ1 = 10 and τ2 = 30, there are many local maxima near it with almost equal
stack power. It is a challenging task to maximise the stack power, because of the steepness of the local
maxima and the highly multimodal nature of the stack power objective function. Any local solver will almost
certainly get trapped in a local maximum, whereas global optimisers run the risk of stopping prematurely
when encountering a steep maximum.
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(a) Reference trace d0 and 2 traces d1 and d2 with stat-
ics of 10 and 30 respectively. Each trace contains 401
datapoints.
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Figure 2.6: Example of 3 traces and their corresponding stack power landscape.
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Residual statics estimation is a difficult aspect of subsurface imaging. Nonetheless, residual statics are crucial
for making high resolution subsurface images in the presence of large near-surface anomalies. Therefore,
multiple approaches have been tried to solve this problem. The most relevant classical approaches will be
discussed in this chapter, together with some of the drawbacks of their implementation. First, a deterministic
solver will be discussed. This solver does not work with stack power maximisation, but maximises the overlap
with a reference trace. Although this gives less accurate results compared to stack power maximisation, its low
computational complexity and ease of implementation have made it an industry standard. Next, simulated
annealing will be discussed, which was first used in [15] to optimise the stack power objective function. Lastly,
two state of the art global solvers will be discussed in the context of stack power maximisation: the Firefly
Algorithm and Whale Swarm Optimisation.

3.1 Deterministic Cross-Correlation Solver

The deterministic cross-correlation solver estimates the residual statics by calculating the cross-correlation
between each trace and a chosen reference trace and subsequently maximising it. The cross-correlation
between two traces d1 and d2, denoted d1 ?d2, is a function describing the overlap of two traces for different
shifts. More precisely, the cross-correlation between two traces is a function (d1 ? d2) : R→ R defined by

(d1 ? d2)(τ) = 〈d1,d2(τ)〉. (3.1)

When there is a high amount of overlap for a certain shift, the resulting cross-correlation is a positive number
and relatively high. On the other hand, when there is only little overlap for a certain shift, the resulting
cross-correlation is small or even negative. The idea is to make a reference trace, which is often the average
of the stack, and maximise the cross-correlation between each trace and the reference trace. Hence, for every
trace the following maximisation problem is solved:

max
τ∈R

(dr ? di)(τ). (3.2)

For discrete input, like the traces used in this thesis, the cross-correlation can be efficiently computed with
the Fast Fourier Transform. Therefore, computing the cross-correlation has a computational complexity of
O(N log2N) for each trace.

For each iteration, the solver exactly maximises the cross-correlation trace by trace with the use of the
Fast Fourier Transform. Next the reference trace is updated accordingly and a new iteration starts. The
iterations are repeated until some stopping criterion is met, which is usually a maximum number of iterations.
The basic outline of the algorithm is shown in Algorithm 1.

In practice, the Cross-Correlation solver is often used with only one iteration, as it is an extraordinarily fast
and easy-to-implement algorithm. Therefore, it is still an industry standard today. However, as it solves

15



16 CHAPTER 3. CLASSICAL SOLVER

Algorithm 1: Deterministic Cross-Correlation Solver

input : Normal-moveout corrected traces d1, . . . ,dM
output: Estimation of the residual statics τ1, . . . , τM

1 Set reference trace dr ← 1
M

∑M
i=1 di;

2 Set initial statics τ1, . . . , τM ← 0;
3 repeat
4 for m← 1 to M do
5 τi ← arg max(dr ? di);

6 dr ←
∑M
i=1 di(τi);

7 until stopping criterion;

Equation (3.2) trace by trace and not the whole problem of Equation (2.2), the optimum found often differs
from the true global optimum, which can have substantial consequences for the final subsurface image.

3.2 Simulated Annealing

Simulated annealing is named after a process in metallurgy called annealing. Annealing is a process where
a material is cooled down slowly to change its structural properties. Slowly cooling the material results in a
material where the average energy across the molecules in the material is lower as compared to the energy of
the same material cooled quickly [24]. The key observation Kirkpatrick, et al. [24] made, was that the search
for lower energy in the annealing process is similar to searching for lower output of the objective function
of an minimisation problem. Therefore, the mathematical description of the process could be used to solve
general optimisation problems.

The simulated annealing algorithm is outlined in its most basic form in Algorithm 2. It works by start-
ing with an initial solution x0 and an initial temperature T0. Then, the current optimal solution x∗ and
temperature T are set to x0 and T0 respectively. Next, a process starts in which the following steps are re-
peated iteratively. In the first step, a neighbouring solution x from a set of neighbours of the current optimal
solution N(x∗) is generated. In the second step, the difference in objective functions of both solutions is cal-
culated E = f(x)−f(x∗). If E ≤ 0, the new solution is better or equal, and it is accepted. If E > 0, the new
solution is worse and is accepted with a probability p = exp

(−E
T

)
, depending on the current temperature.

At the end of each iteration, the temperature is lowered according to a cooling schedule T (k, T0) and the new
temperature and current optimal solution are used for the next iteration.

Although Algorithm 2 takes only the initial guess x0 and initial temperature T0 as input, the user must
make many choices in the implementations. This includes a function to generate neighbours, a cooling
schedule, a stopping criterion and a repetition counter for each temperature. All these choices influence the
performance of the algorithm significantly [27]. However, there are no criteria for ‘good’ choices which is
considered a downside of the algorithm [26].

The computational complexity of simulated annealing is relatively low. As can be seen from Algorithm
2, the computational complexity is O(kmMN), where k is the number of outer cycles and m the number of
inner cycles per outer cycle. Furthermore, Geman and Geman [28] proved that simulated annealing converges
to the global optimum when a logarithmic (very slow) annealing schedule is used. However, in practice, log-
arithmic annealing schedules cool too slow to find any meaningful results of larger system in an acceptable
amount of time.
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Algorithm 2: Pseudo-code for simulated annealing. Adapted from [25] and [26]

input : Initial state x0 ∈ X
Initial temperature T0 > 0

output: Approximate global optimal value x∗.

1 Set optimal value x∗ ← x0;
2 Set temperature T ← T0;
3 repeat
4 for m← 0 to Mk do
5 Generate a neighbour x ∈ N(x∗);
6 Calculate E = f(x)− f(x∗);
7 if E ≤ 0 then
8 x∗ ← x;
9 else if E > 0 then

10 x∗ ← x with probability p = exp
(−E
T

)
;

11 k ← k + 1;
12 Cool T ← T (k, T0);

13 until stopping criterion;

3.3 State of the Art Solvers

In a recent study [17], new developments in global optimisers were put to the test to solve the residual statics
estimation by maximising stack power. Of these global optimisers, the nature inspired meta-heuristic Firefly
Algorithm and Whale Swarm Optimisation techniques seem to be the most promising. They find the global
maximum more consistently as compared to other techniques and find the highest stack power on average.

Both of these algorithms are based on the so-called ‘particle swarm technique’ and resemble some aspects
of the behaviour of a specific animal. In the case of the Firefly Algorithm the behaviour is based on the
mating patterns of fireflies, whereas for the Whale Swarm Optimisation the rules are based on echo-locating
behaviour of Sperm Whales. Stripped down to their essence, the algorithms can be explained in a few simple
steps. First, some initial guesses are made, where each initial guess represents an animal. Then the animals
move in each iteration based on a set of bioinspired rules. These rules use both the objective function and
the distance to the other animals. Finally, after the set convergence criteria are met, the best found solution
is returned.

The computational complexity of both the nature inspired global solver is again relatively low. Let n denote
the number of animals in the swarm and let k denote the number of iterations (movements), then the com-
putational complexity of the nature inspired solver is O(kMNn log2 n) [29, 30]. For both solvers there is no
proof of convergence to the global optimum for arbitrary objective functions. Thus, while nature inspired
solvers are fast and find relatively good local optima quickly, they have no way to guarantee that the global
optimum will be found.
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4 | Quantum Annealing

In the 80s of the last century Richard Feynman proposed a new type of computing, better equipped to
simulate the complexities of nature [31]. He challenged the computer scientists of his time to develop a
computer based on the principles of quantum mechanics, crucially providing them with the idea of the so-
called CNOT gate. The first physical quantum computer came into existence when Y. Yamamoto and K.
Igeta realised the first physical implementation of a gate-based Quantum Computer using Feynman’s CNOT
gate [32]. Now, almost forty years later, multiple different types of quantum computing principles have
withstood the test of time and gained significant popularity: the gate based quantum computers and the
annealing based quantum computers. In this chapter both types of quantum computing will be explored,
but focus will be laid on the latter as all simulations for this thesis have been conducted with a quantum
annealer.

4.1 Qubits

At the heart of all quantum computing methods lies the qubit. The analogy to bits as used in classical
computers are often made due to their apparent similarities. Classical bits can be manipulated to perform
computations by changing their state from 0 to 1 or vice versa; they can exclusively be 1 or 0 referring to
the presence or absence of a current. Qubits on the other hand are a linear combination of two quantum
states, often denoted as |0〉 and |1〉, which might refer to the quantum physical spin up or spin down. This
means that although the state can only be measured to be in one of two states, the qubits are in a so-called
superposition before they are measured. This superposition is a linear combination of the form

|ψ〉 = α|0〉+ β|1〉, (4.1)

where α, β ∈ C and |α|2 + |β|2 = 1.

The probability that the outcome of a measurement on a qubit will be |0〉 or |1〉 is |α|2 or |β|2 respectively.
Therefore, contrary to the deterministic classical computer, quantum computers behave probabilistically.
Although this gives rise to more complexities, this probabilistic nature can also be exploited to speed up
specific types of computations. Another property of qubits that distinguish them from the classical bits is
a property called entanglement. This means that if two qubits are entangled, the measurement of one them
influences the state of the other.

These two properties, superposition and entanglement, shed some light on the differences between classical
and quantum computing. It also sheds some light on how it is possible that quantum computing can speed
up certain tasks significantly [4]. However, it must be noted that quantum computing is not a replacement
for classical computing. Instead, the two different types of computing are good at solving different problems.
As the field quantum computing applications is still a relatively young and unexplored field, much research
remains to be done to find out which specific types of problems benefit most from this new computational
approach.
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4.2 Gate Based Quantum Computing

In the field of gate based quantum computing, unitary transformations are performed on qubits that are
prepared in a state that is known beforehand. A unitary transformation means that the inner product of
a qubit is preserved when performing the operation. These unitary transformations are called gates. The
gates are used to design circuits in such a way that the resulting qubits at the end of the circuit refer to a
meaningful answer at the end of the computation. However, due to the probabilistic nature of such a device,
some algorithms require multiple runs need to deduce what is the most likely answer to the question posed.

Gate-based quantum computing has continued developing up until this day and age. Some promising al-
gorithms have been proposed for this type of quantum computer already. Nonetheless, all of the experiments
described in this thesis were done with another type of quantum computing; quantum annealing, which will
be described in more detail in the next section. The interested reader is referred to [2], [33] or [34] for more
information about gate-based quantum computing.

4.3 Quantum Annealing

The quantum computing technique used for this research study is quantum annealing. Quantum annealing
algorithms are well-fit for solving optimisation problems and are therefore of interest for this study. The
strategy used in quantum annealing is based upon the workings of the metaheuristic global optimisation
method of simulated annealing described in Section 3.2. Crucially, Kadowaki and Nishimori [35] recognised
that there is a similarity between thermal fluctuations and quantum fluctuations. Similar to the thermal
fluctuations that are used in simulated annealing, quantum fluctuations cause transitions of states. It was
this shared property that served as the basis for the development of quantum annealing. In both methods a
solution is sought by traversing a solution landscape to find the global minimum. Analogous to the thermal
fluctuations that are modulated in simulated annealing, quantum fluctuations can be tuned as well. How-
ever, instead of lowering the temperature gradually like in simulated annealing, a transverse field coefficient
is modulated that is slowly lowered in its strength over the course of the simulation. It is by modulating
this coefficient that the traversibility of the solution landscape is altered and an extensive exploration of the
solution landscape can be done to find the optimal solution.

The operator that describes the transverse field is often called the tunnelling Hamiltonian [36]. The term
tunnelling refers to a quantum mechanical phenomenon where a particle goes through an energy barrier,
while not having enough energy to go over the barrier. This process is called tunnelling, because such an
energy barrier is often depicted as a mountain. A schematic drawing of this concept is depicted in Figure 4.1.
The quantum annealing path is more efficient as compared to the thermal jump, which results in a more
efficient way to search the solution space.

There are other differences between the two optimisation methods, that become apparent when comparing
the two methods side by side.

1. In simulated annealing the energy function directly represents the objective function of the problem.
In quantum annealing, the objective function must first be translated to a pseudo-Boolean objective
function, such that a problem specific magnetic field can be prepared. This pseudo-Boolean objective
function will be described in more detail in the next section.

2. In simulated annealing the algorithm starts with an initial guess for the optimal point, quantum an-
nealing starts with a superposition state that is realised by applying a transverse field.

3. In simulated annealing the initial ‘temperature’ of the system is high and slowly cooled down. Similarly,
the strength of the transverse field, that causes the quantum fluctuations and processes like tunnelling
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Figure 4.1: A cost function is shown in black and the cyan coloured dot is a possible configuration. The
system moves towards the lowest cost (lowest energy). In red the path of a thermal annealing jump toward the
lowest possible energy is shown, whereas the cyan coloured path shows the quantum annealing path.

to happen, is lowered. The strength of the magnetic field that describes the objective function is
increased simultaneously.

Like simulated annealing, quantum annealing is probabilistic in nature. There is always a non-zero and
sometimes high probability that the optimal solution is not found [4]. In the current systems, the initialisa-
tion times of the problem specific field are high relative to the time it takes to perform the annealing and
measurement procedure [4]. Therefore, it is advised to repeat the annealing process multiple times.

4.4 The Binary Quadratic Model

During quantum annealing, a problem specific magnetic field is turned on, which slowly increases in strength
during the annealing process. Hence, some methodologies must be used to encode the problem into such a
magnetic field. To this end, the problem must be written into the form of a very specific type: the binary
quadratic model. The binary quadratic model describes both the ferromagnetic Ising model and its binary
equivalent QUBO model, which both belong to the class of NP-Hard problems [10].

The binary quadratic model describes the energy of a system in the form of a polynomial where the variables
are either 0 or 1 (or equivalently −1 or 1) and the degree of the polynomial is at most 2. However, we will
only concern ourselves with the binary quadratic model with variables in the set B = {0, 1}. Furthermore,
the binary quadratic model does not allow for any constraints imposed on the variables (other than that they
are binary). This gives the following form:

E(x) =

N∑
i=1

aixi +

N∑
i=1

N∑
j=i+1

bijxixj + c, (4.2)

where xi ∈ B for all i = 1, . . . , N and ai, bij and c are real valued constants.
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For many problems in the class of NP-Hard problems, equivalent binary quadratic models are readily avail-
able [37, 38]. For other problems, like the stack power maximisation problem, there exist well-established
techniques to transform them to the binary quadratic model [37]. In this thesis, two of these techniques
will be of importance: (1) including linear equality constraints into the objective function and (2) degree
reduction of higher order binary polynomials.

4.4.1 Including Linear Equality Constraints

The binary quadratic model does not allow for constraints, therefore they must be included into the binary
quadratic model itself. This is done by adding a penalty term (also known as a Lagrange multiplier) to the
objective function. This penalty term is constructed in such a way that the objective function will favour
solutions where no constraints are violated. This can be done for both equality constraints and inequality
constraints. However, for the topics discussed in this thesis, only linear equality constraints are of interest.
Let xi be binary variables, a linear equality constraint has the following form:

N∑
i=1

aixi = b, (4.3)

where ai and b are real constants. A penalty term for this constraint is then:(
N∑
i=1

aixi − b
)2

. (4.4)

Equation (4.4) is zero if and only if the constraint of Equation (4.3) is met. When this constraint is violated
it is always larger than zero. The term of Equation (4.4) is scaled with a penalty parameter p and added
to the objective function. The exact value of p is important for the performance of the quantum annealing
algorithm. However, other than the general rule of thumb that p should be roughly the magnitude of the
largest constant of the binary quadratic model, there are no hard rules for the optimal values [6].

4.4.2 Degree Reduction

The binary quadratic model only allows for polynomials of at most degree two. When the degree is higher,
the higher order model must be reduced to a binary quadratic model. This is done by adding auxiliary
variables, such that the optimal point of the reduction, without any auxiliary variables, is the same as the
optimal point of the higher order model. In other words, if h(x) is the objective function of the higher order
model and f(x, y) is the objective function of the reduction, then

max
x

h(x) = max
x,y

f(x, y). (4.5)

A variety of different degree reduction methods exists [4]. However, because of the limited number of qubits,
methods that require the least amount of auxiliary variables are of interest. These methods are

• The Freedman method [39]

• The Ishikawa method [40]

• Pairwise substitution [41,42]

The Freedman and Ishikawa methods only work on mononomials and not the whole structure of the problem.
On the other hand, pairwise degree reduction reduces the degree of pairs of variables that are used the most
in the whole polynomial, not just mononomials.
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The Freedman method works exclusively for binary mononomials with a negative coefficient and it only
requires one auxiliary variable. The Freedman method exploits the fact that negative binary mononomials
are almost always zero, except when all variables in the mononomial are 1, then the outcome is −1. Hence,
for any binary mononomial of degree d we have the following identity:

−
d∏
i=1

xi = min
y∈B

y

(
d− 1−

d∑
i=1

xi

)
. (4.6)

The identity shown in Equation (4.6) is then substituted into the original objective function.

The Ishikawa method works only for positive binary mononomials of degree d. However, the Ishikawa method
adds k = bd−1

2 c auxiliary variables. For any binary mononomial of degree d we have the following identity:

d∏
i=1

xi =



d∑
i=1

d∑
j=i+1

xixj + min
y∈Bk

 k∑
i=1

(4i− 1)yi − 2

k∑
i=1

d∑
j=1

yixj

 if d is even,

d∑
i=1

d∑
j=i+1

xixj + min
y∈Bk

[
k∑
i=1

(4i− 1)yi − 2

d∑
i=1

k∑
i=1

xiyj + yk

(
1− d+

d∑
i=1

xi

)]
if d is odd.

(4.7)
This is then substituted in the original objective function.

The pairwise substitution method searches for the pairs of variables that are used in the higher order terms
most often. When these are found, they are substituted throughout the whole objective function by a new
auxiliary variable and a penalty term is added to ensure that the auxiliary variable gives the same result.
Just like the penalty term in the previous section, this penalty term greatly influences the performance of
the quantum annealing algorithm. Moreover, just like for the other penalty term, no hard rules are yet found
for determining the optimal penalty term p, except for the rule of thumb that p should be in the order of
magnitude of the largest coefficient of the binary quadratic model.

4.5 Minor-Embedding

The D-Wave Quantum annealers are designed to solve binary quadratic models. This is done by representing
both the binary quadratic model and the topology of the QPU as a graph and then finding a mapping be-
tween the two graphs. First, the binary quadratic model will be represented as a graph. Let GP = (VP , EP )
denote a graph of the binary quadratic model, the problem, where VP is the set of vertices and EP is the set
of edges. Let ai be weights on the vertices and bij the weights on the edges. Next, the QPU topology will
be described in terms of a graph. Let GT = (VT , ET ) denote a graph describing the topology of the QPU.
The set of vertices VT represents the qubits and the set of edges ET represents the couplers between the qubits.

The goal is to find a mapping from GP with weights ai and bij to GT that is both injective and struc-
ture preserving. Such a mapping is called an embedding. The QPU topology is not fully connected, thus it
is often the case that the degree of the vertices in the binary quadratic model graph are larger compared
to those available in the topology graph of the QPU. Therefore, weights on edges on the problem graph are
mapped to weights on edges on the topology graph, but weights on vertices are mapped to weights on vertices
of trees in the topology graph. They must act as one variable. This is done by mapping a new parameter
chain strength to the edges of the trees.

The chain strength parameter must be sufficiently large, to ensure that the tree acts as one variable. Edges
and vertices in the topology graph that are not used are assigned a weight of 0. The resulting weighted
topology graph has the binary quadratic graph as a minor graph , which can be produced by deleting all



24 CHAPTER 4. QUANTUM ANNEALING

edges and nodes with weight 0 and by contracting edges of the trees. The aforementioned embedding is
therefore called a minor-embedding. The quality of a minor-embedding is described in terms of the chain
length, which is the size of the largest chain.

Another important parameter that has a great influence on the performance of the quantum annealing algo-
rithm, is the chain strength of the minor-embedding. It must be large enough such that the nodes of a tree
act as one variable. However, it cannot be too large, because then it will interfere with the other qubits [43].
In this thesis sufficiently large chain strengths were calculated using the uniform torque compensation func-
tionality of D-Wave.

4.5.1 Example Embedding

Consider the embedding of a small problem onto the unit cell of the Chimera topology, which is a type of
QPU topology. Even though the Chimera topology is no longer the state of the art topology for quantum
annealers, as it is replaced by the next generation Pegasus topology, it is still good for an example. The
Chimera unit cell, depicted in Figure 4.2a, is a complete bipartite graph with two vertex sets containing 4
vertices, denoted K4,4. Even though the degree of each node is 4, there are no odd cycles possible. This
is because the graph is bipartite and bipartite graphs cannot contain odd cycles. Even a simple 3-cycle (a
triangle) does not exist on the Chimera unit cell and must therefore be embedded.

Suppose we want to embed the problem shown in Figure 4.2b, where the nodes and edges correspond to
the ai and bij coefficients of equation Equation (4.2) respectively. Because the problem graph is not bipar-
tite, it is not possible to map every node of the problem graph to a node on the Chimera unit cell. To
correct this, nodes from the binary quadratic model are mapped to trees in the Chimera unit cell which are
connected with a chain with a certain chain strength. An example embedding is shown in Figure 4.2c. The
green node with weight 5 appears twice in the embedding and is connected with the cyan chain with a chain
strength of Cs. Note that by deleting the unused edges and nodes and by contracting the cyan edge, the
binary quadratic model graph is retrieved.
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Figure 4.2: Embedding of an binary quadratic model problem onto the unit cell of the chimera topology.
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4.6 The D-Wave Hybrid Solver

The amount of qubits available in the current quantum annealers is still limited. Moreover, the number of
couplers is also rather limited, giving rise to large minor-embeddings and consequently even more usage of
the limited number of qubits. Hence, solving large problems directly on the quantum annealers is still out of
reach for the current quantum annealers. For these larger problems the D-Wave Hyrbid Solver was developed.
The D-Wave hybrid solver tries to combine the best both classical computing and quantum annealing.

When using the hybrid solver a binary quadratic model together with a maximum runtime is sent to the
D-Wave machines. There, multiple subproblems are made of the original problem which are sent to the
quantum annealers. The results of the quantum annealers are combined with a classical algorithm to search
for the global minimum of the problem.
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5 | Two Binary Quadratic Models for
Residual Statics Estimation

In this chapter the stack power optimisation problem will be written as a binary quadratic model, such that
it can be solved by the D-Wave Advantage quantum annealer and the Hybrid solver. To this end, the stack
power problem will be rewritten such that the shift operator and Euclidean norm are removed from the
variables. Next, this new formulation will be encoded in two ways: (1) a ‘one-hot’ encoding model and (2) a
‘binary’ encoding model. Lastly, a workflow for using these models is presented.

5.1 Removing the Shift Operator and Euclidean Norm from the
Variables

To solve the stack power maximisation problem with the D-Wave quantum annealers, Equation (2.2) must
be written into the binary quadratic model format. Therefore, the objective function must be transformed
to a quadratic polynomial and the real search space must be changed to a binary search space. For any given
quantum annealer, there is fixed number of qubits and couplers, which directly influence the maximum size
of the binary search space. Therefore, the binary search space must be kept sufficiently small, i.e. there is a
maximum number of shifts that can be implemented for a given set of traces.

The search space S will therefore be defined more precisely as a discrete solution space, which will be
enforced by two different encodings in the following sections. As mentioned at the end of Section 2.2, there
can be an infinite amount of solutions for Equation (2.2). This problem can be resolved by either keeping
the static of one trace fixed, or by reducing the search space. Keeping one static fixed can have drastic
consequences for the size of the search space needed to find the optimal solution. This is best illustrated with
an example.

Some example traces are shown in Figure 5.1. The traces in Figure 5.1 are the same traces as shown in
Section 2.3. Thus, the misalignment with respect to d0 are 10 ms and 30 ms for d1 and d1 respectively. If
d1 is fixed, then the largest shift to reach perfect alignment is 20 ms. On the other hand, when either d0 or
d2 is fixed, then the largest shift needed is 30 ms. So, to find the optimal solution when either d0 or d2 are
fixed, the search space must be 50 % larger compared to the search space then when d1 is fixed. As the size
of the search space is limited by the number of qubits and couplers of the quantum annealer, it is important
to find the best trace to fix. Otherwise, it can quickly happen that the optimal solution will not be present
in the search space. This would lead to a result that is not the global optimum of the complete problem. In
general it is difficult to find the best trace to fix, as it requires preexisting knowledge of the optimal solution.
To keep the search space small, it should therefore be preferred to abstain from fixing a trace when using
quantum annealing methods.

27



28 CHAPTER 5. TWO BINARY QUADRATIC MODELS FOR RESIDUAL STATICS ESTIMATION

d0 d1 d2

0

100

200

300

400

Traces

T
im

e
[m

s]

Input Traces

Figure 5.1: Three example traces. The misalignment with respect to d0 are 10 ms and 30 ms for d1 and d2

respectively.

To define the search space more precisely, let SK consist of K equidistant discrete timesteps, which are
exactly the same for each trace, i.e.

SK = {t1, t2, . . . , tK}M , (5.1)

such that |ti−ti+1| = c for all i = 1, . . . ,K−1. By using the Kronecker delta, denoted δxa, the shift operators
can be made independent of the variables. Note that for any trace d and any integer x ∈ {1, 2, . . . ,K} the
following identity holds true

d(tx) =

K∑
a=1

δxad(ta). (5.2)

Substituting the identity presented in Equation (5.2) into Equation (2.2) together with the identity ‖x‖22 =
〈x,x〉, where 〈·, ·〉 denotes the standard inner product, results in the following equivalent optimisation prob-
lem:

max
x∈{1,2,...,K}M

〈
M∑
i=1

K∑
a=1

δxiadi(ta),

M∑
j=1

K∑
b=1

δxjbdj(tb)

〉
. (5.3)

Using the bilinearity of the inner product and the property that δxiaδxib = 0 whenever a 6= b then gives

max
x∈{1,2,...,K}M

M∑
i=1

K∑
a=1

(δxia)
2 〈di(ta),di(ta)〉+ 2

M∑
i=1

M∑
j=i+1

K∑
a=1

K∑
b=1

δxiaδxjb〈di(ta),dj(tb)〉. (5.4)

Note that di(ta) is just a shift of di and therefore does not alter the Euclidean norm. Therefore, we have
that ‖di‖22 = 〈di(ta),di(ta)〉 for all ta ∈ SK . Using this together with the property of the Kronecker delta
that

∑
i δijci = cj we get:

max
x∈{1,2,...,K}M

M∑
i=1

‖di‖22 + 2

M∑
i=1

M∑
j=i+1

K∑
a=1

K∑
b=1

δxiaδxjb〈di(ta),dj(tb)〉. (5.5)
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Note that the first term in Equation (5.5) is constant. Furthermore, the inner products have become coef-
ficients, which must be calculated before the optimisation procedure. Moreover, the variables in Equation
(5.5) only alter the Kronecker delta, which will be encoded by binary variables in the next two sections.

5.2 The ‘One-Hot’ Encoding

The easiest way to encode the Kronecker deltas, is by replacing them with binary variables. In other words,
introduce binary variables xia such that

xia =

{
1 , if trace i and shift a are selected,
0 , otherwise.

(5.6)

and demanding that every trace can only be selected exactly once. The latter will be enforced with a con-
straint. Mathematically this constraint can be formulated as

∑K
a=1 xia = 1, for all i = 1, . . . ,M . Therefore,

the maximisation problem shown in Equation (5.5) becomes

max
x∈BMK

M∑
i=1

‖di‖22 + 2

M∑
i=1

M∑
j=i+1

K∑
a=1

K∑
b=1

xiaxjb〈di(ta),dj(tb)〉,

such that

K∑
a=1

xia = 1 for all i = 1, . . . ,M.

(5.7)

The objective function of Equation (5.7) is already in the binary quadratic model format. However, the M
constraints are not allowed. Therefore, the technique shown in Equation (4.3) to add a penalty term to the
objective function, such that the objective function will favour solutions where these constraints are met, will
be used. Using the property that x2 = x for any x ∈ B, we have(

K∑
a=1

xia − 1

)2

= 2

K∑
a=1

K∑
b=a+1

xiaxib −
K∑
a=1

xia + 1. (5.8)

The penalty term given by Equation (5.8) must be added for each of the M traces. The resulting binary
quadratic model is then

max
x∈BMK

M∑
i=1

‖di‖22 + 2

M∑
i=1

M∑
j=i+1

K∑
a=1

K∑
b=1

xiaxjb〈di(ta),dj(tb)〉

− p
(

2

M∑
i=1

K∑
a=1

K∑
b=a+1

xiaxib −
M∑
i=1

K∑
a=1

xia +M

)
(5.9)

The use of binary variables as described in this section, where there is one bit used for every possible outcome,
is called the ‘one-hot’ encoding. Therefore, the binary quadratic model described in Equation (5.9) will be
called the one-hot encoding model.

5.3 The ‘Binary’ Encoding

In classical computing, binary representations are used to encode 2k combinations with just k bits. To reduce
the amount of used variables, the idea is to use a similar kind of binary encoding to encode the possibilities of
the Kronecker delta. Hence, we want to find some sort of function ca : Bk → B which encodes the behaviour
of the Kronecker delta. For this purpose, the function bin : V = {1, . . . , 2k} → Bk such that bin(a) is a k
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dimensional binary vector representing the binary number of a − 1. Using bin(a) we can define ca as the
function which behaves according to

ca(x) =

{
1 , if bin(a) = x,
0 , otherwise.

(5.10)

In other words, ca is a binary function with 2k − 1 roots. Hence, Equation (5.5) becomes

max
x∈BMK

M∑
i=1

‖di‖22 + 2

M∑
i=1

M∑
j=i+1

2k∑
a=1

2k∑
b=1

ca(xi)cb(xj)〈di(ta),dj(tb)〉. (5.11)

To compute the binary quadratic model of Equation (5.11), an explicit polynomial form of Equation (5.11)
must be found. Therefore, the functions ca must be represented as a polynomial. To shorten the notation, let
bin(a) =

[
a1 a2 · · · ak

]ᵀ
= a. Furthermore, it will be necessary to introduce a concept from information

theory: the Hamming Weight [44]. The Hamming Weight of a vector counts the number of nonzero entries
and is denoted w(x), where x ∈ Bk. For example, for x =

[
1 0 0 1 0

]ᵀ
, the Hamming Weight is

w(x) = 2. Let P(V ) denote the powerset of V , then ca(x) can be explicitly written as

ca(x) =
∑

A∈P(V )

(−1)w(a)+|A|
∏
i∈Ac

āi
∏
i∈A

xi, (5.12)

if we set
∏
i∈∅ ai = 1. Therefore the product ca(x)cb(y) becomes

ca(x)cb(y) =
∑

A∈P(V )

∑
A∈P(V )

(−1)w(a)+w(b)+|A|+|B|
∏
i∈Ac

∏
j∈Bc

āib̄j
∏
i∈A

∏
j∈B

xiyj . (5.13)

A useful and easily verified property of the Hamming Weight is w(a) + w(b) = w(a ⊕ b) + 2〈a, b〉, where ⊕
denotes the XOR operation. Using this property together with the identity |A| + |B| = |A∆B| + 2|A ∩ B|,
where ∆ denotes the symmetric difference of two sets, simplifies Equation (5.13) to

ca(x)cb(y) =
∑

A∈P(V )

∑
B∈P(V )

(−1)w(a⊕b)+|A∆B|
∏
i∈Ac

∏
j∈Bc

āib̄j
∏
i∈A

∏
j∈B

xiyj . (5.14)

5.3.1 Final ‘Binary’ Encoding Model

Substitution of the results of Equation (5.13) into Equation (5.11) gives the following explicit form:

max
x∈BMk

M∑
i=1

‖di‖22

+ 2

M∑
i=1

M∑
j=i+1

K∑
a=1

K∑
b=1

∑
A∈P(V )

∑
B∈P(V )

(−1)w(a⊕b)+|A∆B|
∏
n∈Ac

∏
m∈Bc

ānb̄m
∏
n∈A

∏
m∈B

x
(n)
i x

(m)
j 〈di(ta),dj(tb)〉.

(5.15)

Note that this is not yet a binary quadratic model, but a higher order binary model. However, this explicit
form of the objective function can be quadratised using built-in D-Wave functionalities, like make quadratic.
Because the Kronecker delta was encoded with a standard binary encoding, the model presented in this
section is called the binary encoding model.
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5.4 Workflow for the Two Models

In this section the workflow for using the binary quadratic models presented in Section 5.2 and Section 5.3
will be given. The general outline for both models is depicted in Figure 5.2, together with the places in the
workflow where user input must be given. Note that only the fourth level of the flowchart (QA) actually uses
the quantum annealer, the rest is either pre-processing or post-processing.

One-Hot User Input Binary

Compute in-
ner products

Distribute inner prod-
ucts over the BQM

Add the penalty term

QA

Post-processing

Interpretation

Choose SK

Choose penalty weight

Choose QA settings

Optional

Compute in-
ner products

Distribute inner
products over

higher order model

Degree reduction

QA

Post-processing

Interpretation

Figure 5.2: Flowchart of the workflow of the one-hot encoding model (left) and the binary encoding model
(right). The cyan outlined squares in the middle represent the user input at the different levels.

5.4.1 One-Hot Encoding Workflow

First, the workflow of the one-hot encoding model will be discussed. To solve the residual statics estimation
problem, the coefficients of the binary quadratic model shown in Equation (5.9) must be computed. This
computation is done on a classical computer. To this end, ‖di‖22 must be calculated for i = 1, . . . ,M and
〈di(ta), dj(tb)〉 must be calculated for all i, j = 1, · · · ,M and all ta, tb ∈ SK . Hence, the first user input that
must be considered is what to choose for SK . In the case of a synthetic set of which the solution is known,
an appropriate size is easily chosen. In the case that the solution is not known, visual inspection can aid in
choosing SK . Once SK is chosen and the inner products are computed, the inner products can be distributed
over the variables as shown in Equation (5.9).
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After the distribution, the penalty term can be added and therefore the weight of the penalty p must be
determined. As a general rule of thumb, the weight should be in the same order of magnitude as the largest
absolute coefficient, which is max 2 |〈di(ta), dj(tb)〉|. The size of the penalty term can have great effect on
the performance of the quantum annealing process [6]. Therefore, fine-tuning it beyond just the order of
magnitude can greatly enhance the quality of the solutions returned by the quantum annealer. As simulated
annealing often gives similar types of results, the weight of the penalty term was fine-tuned using fast runs
of a simulated annealing algorithm provided by D-Wave.

After adding the penalty term, the binary quadratic model is complete and can be solved by a quantum
annealer or Hybrid solver. Both also require some extra parameters. During this master thesis research,
it was often found that results returned by the quantum annealer were not in local minima (and thus cer-
tainly not in the global minimum). To counteract this, the local search algorithm of steepest descent can
be added to improve the results. In this binary case, steepest descent means that we greedily search for the
bit-flip that improves the energy the most, repeating until no improvements can be made. After the optional
post-processing step the results can be interpreted.

5.4.2 Binary Encoding Workflow

The workflow for the binary encoding model is very similar. First, the coefficients of the higher model
must be calculated, for which we again need the inner products 〈di(ta), dj(tb)〉 and Euclidean norms ‖di‖22.
Hence, we need to choose SK for which we assume K = 2k. Note that this limits the size of SK to powers
of 2. Thereafter, the coefficients must be distributed over the higher order model according to Equation
(5.15). Next, degree reduction provided by D-Wave is used to reduce the degree to be quadratic. The degree
reduction uses a combination of the three methods discussed in subsection 4.4.2. Therefore, a penalty term
is applied for which the weight must be determined. This weight was determined similarly to the one-hot
encoding model with some fast runs of simulated annealing. It must be stressed that this penalty term is
different as it ensures that the auxiliary variables have the right values, wheres for the one-hot encoding there
are no auxiliary variables. After quadratisation the binary encoding model can be solved by the quantum
annealer and Hybrid solver. Optionally, steepest descent can be added in post-processing to further improve
the results after which the results can be interpreted.



6 | Theoretical Analysis of the Binary
Quadratic Models

In this chapter the binary quadratic models will be theoretically analysed. First, the pre-processing steps
will be analysed, which are computed on a classical computer. Thereafter, the ‘quantum costs’ are discussed
to give insight into the scalability (in terms of number of traces and number of shifts) of the one-hot and
binary encoding models. Furthermore, a note is made on how we interpret the two different models.

6.1 Complexity Analysis of the Pre-processing Steps

The pre-processing steps for both models consist out of three steps. First, the inner products must be cal-
culated for both of the models . Next, the inner products must be distributed over the quadratic and higher
order model for the one-hot model and binary model respectively. Lastly, for the one-hot model the penalty
term must be added, while for the binary model degree reduction must be applied. In this section, the
computational cost of each of these steps will be analysed using asymptotic analysis.

The fist step in the pre-processing for both models is the computation of the inner product. The inner
product can be calculated in two ways: (1) directly or (2) using the Fast Fourier Transform. Calculating the
inner product of two N dimensional traces directly is of computational complexity of O(N). It is assumed
that all shifts defined in Equation (5.1) are equidistant. Therefore, there M(M − 1)(2K − 1) inner product
must be calculated in total. Hence, the computational complexity of this pre-processing step using the direct
method is O(M2NK). Another way to calculate the inner products is by calculating the cross-correlation be-
tween all traces, since the cross-correlation consists of all the inner products and shift combinations between
two traces. Cross-correlation methods frequently utilise the Fast Fourier Transform, therefore calculating the
cross-correlation between two traces is of complexity O(N log2N). Hence, computing all the needed inner
products using the cross-correlation method has a computational cost of O(M2N log2N). Because K is much
smaller relative to N and because of the simplicity of its implementation, in this thesis the aforementioned
direct method will be used.

Next, the cross-correlation must be distributed to calculate the binary quadratic model and the higher
order model of the one-hot model and binary model respectively. For the binary quadratic model of the
one-hot encoding, as presented in Equation (5.9), there is an inner product present in the coefficient of the
quadratic terms between two different traces for each possible shift. Therefore, the complexity of distributing
the inner products over the coefficients has a computational complexity of O(M2K2). On the other hand,
the penalty term is distributed over every shift combination for every trace separately and therefore does
not add any additional computational complexity. Therefore, calculating the binary quadratic model of the
one-hot encoding using pre-calculated inner products is of complexity O(M2K2). For the higher order model
of the binary encoding model presented in Equation (5.15), there is an inner product present in the six sums.
The first two sums are over all the M traces , the next two over all the K shifts and the last two over all
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the subsets of V . Since |V | = k, we have P(V ) = 2k = K. Lastly, calculating the products is of complexity
O(k). Therefore, calculating the higher order model of the binary encoding model is of complexityO(M2K4k)

Calculating the quadratisation of the binary encoding is theoretically estimated to be bounded by a com-
plexity O(M2K2k) for each of the methods discussed in subsection 4.4.2. The D-Wave method used in this
thesis uses a combination of the three methods to find even smaller quadratisations. However, this comes at
the cost of a significant increase in computation time with an unknown scaling.

The results of this section are summarised in Table 6.1. From Table 6.1 it becomes clear that computa-
tional complexity of the pre-processing of the binary encoding model are much larger compared to those of
the one-hot encoding model.

One-Hot Binary

Compute inner products O(M2NK) O(M2NK)
Distributing inner products O(M2K2) O(M2K4k)
Add penalty term O(MK2) -
Degree reduction - Larger than O(M2K4k)

Table 6.1: Complexity scaling of different parts of pre-processing for the one-hot and binary encoding model.

6.2 Quantum Cost

In this section, the number of variables and number of quadratic terms of both the models will be estimated.
The number of variables and quadratic terms of a binary quadratic model give a lower bound on the number
of qubits and couplers a quantum annealer would need to be able to handle the binary quadratic model.
Together, these will be called the ‘quantum cost’ of the two models. Keep in mind that even if a binary
quadratic model has the same or smaller number of variables and quadratic interactions as the QPU topology,
then a minor-embedding might still be necessary. However, it does shed some light on the scaling possibilities
of both the one-hot encoding model and binary encoding model.

For the one-hot encoding model, a variable is introduced for each trace and shift combination. There-
fore, there are a total of MK variables. Furthermore, there is a quadratic interaction between every variable,
which results in 1

2MK(MK − 1) quadratic interactions.

For the binary encoding model it is more challenging to count the number of variables and quadratic com-
binations. Before quadratisation, the higher order model consists of Mk variables, where K = 2k (Equation
(5.15)). Quadratisation is done using the D-Wave ‘make quadratic’ function, which uses a combination of
the methods discussed in subsection 4.4.2. The exact implementation of this quadratisation is not disclosed
by D-Wave. Looking at the theoretical bounds, the number of variables is bounded by a complexity of
O(M2K2k) as this is the order of mononomials in the higher order model. However, empirical testing seems
to indicate a much better scaling in the number of variables of roughly (1 − 2−k)MK. Furthermore, based
on empirical testing, the number of quadratic terms seems to be roughly 1

2M
2Kk for k = 1, 2, 3 growing to

1
2MK(MK − 1) for larger k.

The results of this section are summarised in Table 6.2. From Table 6.2 it can be seen that for a smaller
number of shifts, the binary encoding model uses less variables and has a smaller number of quadratic terms.
Hence, when the number of shifts is low, the binary encoding model allows for a larger number of traces
compared to the one-hot encoding model. However, this difference becomes negligible as the number of shifts
increases. Thus, in terms of the number of shifts used, the two models scale the same.
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One-hot Binary

Number of variables MK (1− 2−k)MK
Number of quadratic terms 1

2MK(MK − 1) 1
2M

2Kk up to 1
2MK(MK − 1)

Table 6.2: Number of variables and number of quadratic terms for the one-hot and binary encoding models.
The numbers for the one-hot encoding model are exact, whereas the numbers for the binary encoding model are
based on empirical testing.

6.3 Maximum Allowed Problem Size on the Advantage System

The results presented in Section 6.2 are purely theoretical and assume that the number of variables and
quadratic terms is directly related to the number of qubits and couplers respectively. However, the QPU
topology also plays an important role, as this ultimately determines whether a minor-embedding is needed.
The cost of the minor-embedding step is important, but as the topology of the QPUs are constantly improv-
ing over time, it is impossible to take it into account.

On the other hand, the current maximum problem size that can be solved on the current state of the
art D-Wave Advantage System can be estimated. Two parameters that influence the problems size are the
number of traces M and the number of possible shifts K. What we want to know is the maximum value
of K given a certain number of traces M . The maximum problem size was determined by trying to find
minor-embeddings for the Advantage system. First, one-hot encoding models and binary encoding models
were made with a given K and M . Next, the D-Wave minor−miner was used to find an embedding; if one
was found M was increased and the process was repeated. This was done for K up 64, as from this point on
the number of traces for which a minor-embedding could be found was too small to be relevant. The results
are shown in Figure 6.1.
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Figure 6.1: Maximum Problem Size on the Advantage System. This was found empirically by searching for a
maximum M for which an embedding could be found given a K.

In Figure 6.1 we can see that the binary encoding model allows for a larger number of traces as compared to
the one-hot encoding model. However, this is only the case for K ≤ 8. For a larger number of possible shifts
K there is no distinction between the binary encoding model and the one-hot encoding model in terms of
maximum problem size. This is in line with the results of Section 6.2, because when K becomes larger, the
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number of variables and quadratic terms is approximately equal for both the models.

6.4 Interpretation of the Results

Both the one-hot encoding model and the binary encoding model introduce a penalty term to let the objective
function favour solutions where certain constraints are met. When all constraints are met, the interpretation
is the same for the two models, as the energy represents the additive inverse of the stack power. When
the weight of the penalty term is sufficiently large, a violation of the constraints implies that the solution
is not yet optimal. In these cases, the energy has no meaningful interpretation. However, this is where the
similarities in the interpretations for the two models end.

In the case of the one-hot encoding model, the constraints ensure that a trace can be selected exactly
once. Hence, a violation of a constraints can have two causes. Either, there is a trace which was not selected
at all, or a trace was selected with multiple shifts at once. In either case, the shift of such a trace remains
unknown and therefore the results are not directly usable. On the other hand, for the binary encoding model,
the constraints ensure that the auxiliary variables added in the quadratisation have the right value. Hence, a
violation of the constraints means that an auxiliary variable is not yet coinciding with the variables it should
represent. However, since it is an auxiliary variable, they can cautiously be ignored, resulting in a possible
direct interpretation of the results.



7 | Results and Discussion: Quantum
Annealing and Hybrid Solver

The theoretical analysis reveals a lot about the interpretation of the results, the scalability and the largest
cases of the two models presented in this thesis. However, it provides little information about the quality
of the solutions of the actual implementation. Therefore, in this chapter, residual statics of synthetic data
will be estimated. This will be done directly on the quantum annealer, as well as with the use of the Hybrid
solver.

7.1 Quantum Annealing with the D-Wave Advantage System

To test the performance of the quantum annealer, a set of problems that could run directly on the quantum
annealer was made. In this section, the results of these experiments will be shown and the performance of
the quantum annealer will be discussed. For all the results that will be shown in this chapter the default
quantum annealing settings of the Advantage System of 2021 were used , with the exception of the annealing
time. To get an idea of how the annealing time influences the probability of finding the optimal solution
different annealing times of 10, 20, 40, 80, 160, 320, 640, 1280 and 1998 µs were used. Finally, for each
experiment the number of reads was set to 500.

7.1.1 Proof of Concept: Small Sized Problem

To illustrate the type of results and the way to interpret them, a small proof of concept is shown. This
small test problem consists out of 4 traces containing just one wavelet. The gather of the 4 traces is shown
in Figure 7.1. The gather of a set of traces shows a ‘top view’ of the input traces. More specifically, the
colour coding of this picture represents the amplitude of parts of the wave. The lighter the colour is, the the
more positive the amplitude is. Conversely, the darker the colour the more negative the amplitude is. The
maximum positive amplitudes of the wave are thus white, whereas the maximum negative amplitudes are
black. This visualisation style makes it easier to detect small shifts such as statics, because you can see at a
glance whether the traces are aligned or not by looking at the continuation of the colours.

The traces shown in Figure 7.1 have a temporal discretisation of 0.004 s. With respect to trace 1, the traces
2, 3 and 4 are shifted by 0.004 s, 0.008 s and 0.012 s respectively. First, an appropriate set SK must be chosen.
As this experiment serves as a proof of concept, we want only one optimal solution when choosing the set SK .
The smallest set SK that has one and only one optimal solution is the set SK = {0, 0.004, 0.008, 0.012}.
Hence, we have M = 4 and K = 4. With this SK the binary quadratic model for both the one-hot encoding
and the binary encoding were made, after which they were sent to the quantum annealers.

Figure 7.2 shows a summary of the results. The gather shown in Figure 7.2a represents the gather, where the
residual statics of the best solutions are corrected for by shifting the traces correspondingly. These statics,
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Figure 7.1: Four traces containing one wavelet. The temporal discretisation is 0.004 s and with respect to the
first trace the shifts are 0.004 s, 0.008 s and 0.012 s for the second, third and fourth trace respectively.

that are shown in the gather, were found with both models when using an annealing time of 1998µs. Fig-
ure 7.2a shows perfect alignment of all the traces. Hence, the quantum annealer found the optimal solution
using either of the two models.

Figure 7.2b shows the energy for different annealing times when the one-hot encoding model was used.
The orange line represents the optimal solution, which is the lowest energy that can be attained. The black
line shows the median energy of the 500 readouts and the red shaded area shows the area between the first
and third quartiles (Q1 and Q3). The cyan line shows the minimum energy of the 500 readouts. When
the annealing times increases, the median energy, first quartile and third quartile do not appear to change
convincingly, which suggests that longer annealing times do not improve the quality of the solution in this
experiment. Furthermore, the minimum of energies found was not equal to the solution energy when the
annealing time was 10, 80, or 1280µs. Thus, no convincing correlation between the annealing time and
solution quality were found in this experiment.

In Figure 7.2c a histogram of the number of occurrences of violated and met constraints is shown for different
energies that were found with the one-hot encoding model. This histogram represents the energy distribution
at the longest annealing time of 1998µs. In the majority of the readouts, the constraints were violated.
Moreover, the lowest energy solutions occurred when all constraints were met, showing that the objective
function with the added penalty term does indeed favour solutions where constraints were met.

Figure 7.2d shows the energy versus the different annealing times for the binary encoding model. For all
annealing times, the minimum energy of the readout is equal to the optimal solution. The median decreases
only slightly for larger annealing times. However, the first quartile goes down significantly when the annealing
times become larger, suggesting improvement of the solutions for larger annealing times.

The energy histogram of the binary encoding model with the longest annealing time of 1998µs is shown
in Figure 7.2e. In most cases the constraints were met and again the lowest energies correspond with cases
where all constraints were met.
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(a) Gather of the best solution at 1998µs. It was found with both models.
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(b) Energy versus anneal time one-hot.
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(c) Energy histogram at 1998µs for one-hot.
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(d) Energy versus anneal time binary.
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(e) Energy histogram at 1998µs for binary.

Figure 7.2: Results of Quantum Annealing with both the one-hot and binary encoding model.
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Thus in Figure 7.2 it can be seen that in the case of 4 traces and 4 shifts the binary encoding model
outperforms the one-hot encoding model. This is because the optimal solution was found at least once for
every annealing time with the binary encoding model, as opposed to the one-hot encoding model, where it
was not found at all for the annealing times of 10, 80, or 1280µs. Furthermore, with the binary encoding
model, the energy distribution starts to favour lower energy solutions for longer annealing times. This implies
that we can increase the chance of finding the optimal solution by increasing the annealing time in the case
of the binary encoding model. For the one-hot encoding model this relationship between the annealing time
and the solution quality was not found. The energy distribution of the readouts did not change consistently
for longer annealing times. Lastly, the one-hot encoding model violates more constraints compared to the
binary encoding model, which makes interpreting results more difficult.

7.1.2 More Traces

Next, a more difficult problem with 16 traces is presented to examine if and how the results of the two models
change. The gather of the 16 traces is shown in Figure 7.3. All traces have a temporal discretisation of 0.004 s,
which is the same as in the previous section. However, the traces now contain many wavelets instead of just
one. Every trace is an exact copy of the first trace, except for a relative shift, which are the statics we wish
to estimate. The relative shifts with respect to the first trace are all either 0 s, 0.004 s, 0.008 s or 0.012 s.
Therefore, the set SK will be the same as in the previous section, i.e. SK = {0, 0.004, 0.008, 0.012}. Thus
for the binary quadratic models shown in this section we have M = 16 and K = 4. With SK chosen, the
binary quadratic model can be made for both the one-hot encoding and the binary encoding.

Figure 7.3: Gather of 16 traces with multiple wavelets. Each trace has a temporal discretisation of 0.004 s.
With respect to the first trace, the shifts are 0 s, 0.004 s, 0.008 s or 0.012 s.

In the results of subsection 7.1.1, where 4 traces and 4 shifts were used, many readouts violated at least one
constraint. When constraints are violated, the results are harder to interpret or sometimes not useful at all.
Therefore, to ensure that more constraints are met, a post-processing step of steepest descent was added
to the experiment of this section. Therefore, the discussion of the results has the following structure: First
the results of the one-hot model without steepest descent are discussed. Next, results of the same readouts
will be shown, but with the addition of the steepest descent post-processing step. Thereafter, the results are
shown for the binary encoding model without steepest descent, followed by a discussing of the results where
steepest descent was added in post-processing.



7.1. QUANTUM ANNEALING WITH THE D-WAVE ADVANTAGE SYSTEM 41

(a) Gather of the best solution at 1998µs.
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(b) Energy versus anneal time.
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(c) Energy histogram at 1998µs.

Figure 7.4: Results with the one-hot model without steepest descent in post-processing.

Figure 7.4 shows the results for the one-hot encoding model when no steepest descent was applied during
post-processing. Figure 7.4a shows the best solution of all of the readouts. This solution was found with
an annealing time of 1998µs. Although most of the traces are aligned, the optimal solution is not found, as
trace 8 is still misaligned. In Figure 7.4b, we can clearly see that the optimal solution is indeed not found
as the minimum found energy does not reach the same energy as the optimal solution. The minimum found
energy, as well as the median, first quartile and third quartile, all decrease in energy for larger annealing
times. This means that we get a better energy distribution for larger annealing times. Lastly, Figure 7.4c
shows the energy histogram. It can be seen that only a few single readouts meet the constraints. Therefore,
a post-processing step of steepest descent should be very valuable in this case.
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(a) Gather of the best solution at 1998µs.
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(c) Energy histogram at 1998µs.

Figure 7.5: Results with the one-hot model with steepest descent in post-processing.

Next, steepest descent was applied to the previous readouts of which the results are shown in Figure 7.4.
Figure 7.5a clearly shows that all traces are perfectly aligned and thus the optimal solution was found.
Furthermore,Figure 7.5b shows that the optimal solution was found for all annealing times, as the cyan line
overlaps with the solution line for all of the annealing times. Moreover, the median energy is also at the same
level as the solution energy for all the different annealing times. Therefore, the optimal solution was found
in at least 50 % of all the readouts. For annealing times larger or equal to 80µs, the third quartile also meets
the solution time and thus in these cases 75 % of all the readouts are the optimal solution. Figure 7.5c shows
the energy histogram at an annealing time of 1998µ, in which it can be seen that almost no constraints were
violated.
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(a) Gather of the best solution at 1998µs.
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(c) Energy histogram at 1998µs.

Figure 7.6: Results with the binary model without steepest descent in post-processing.

The same traces and shifts were also solved using the binary encoding model. Figure 7.6 shows the results
without the addition of the steepest descent post-processing step. Figure 7.6a shows perfect alignment, thus
the optimal solution was found. Furthermore, in Figure 7.6b we can see that the optimal solution was found
for the longer annealing times of 320µs and longer. Moreover, the minimum, median, first quartile and third
quartile all decrease in energy for longer annealing times. Hence, longer annealing times give better results
in this experiment. The energy histogram inFigure 7.6c shows that for most of the readouts the constraints
were violated. However, compared to the one-hot model without steepest descent, a lot more readouts did
not violate any constraints.
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(a) Gather of the best solution at 1998µs.
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(c) Energy histogram at 1998µs.

Figure 7.7: Results with the binary model with steepest descent in post-processing.

For the binary encoding model a post-processing step of steepest descent was added as well. The results of
these experiments are shown in Figure 7.7. Since the optimal solution was already found without steepest
descent, the perfect solution is also found when steepest descent is added to the post processing. This can
be seen by the perfect alignment shown in Figure 7.7a. Furthermore, Figure 7.7b shows that the lowest
found energy coincides with the solution for all the annealing times, showing considerable improvement.
The median showed unexpected behaviour, as it first increased in energy, but decreased again with longer
annealing times. We are unsure where this behaviour stems from. However, possible explanations are that
this behaviour is either caused by the probabilistic nature of the quantum annealing algorithm or by faulty
hardware. Nonetheless, for larger annealing times the median consistently remained at the energy of the
optimal solution. Therefore, at least 50 % of the readouts consist of the optimal solution for annealing times
larger or equal to 1280µs. Furthermore, the third quartile goes down for larger annealing times, showing
that the results increase for longer annealing times. Figure 7.7c shows that when steepest descent is applied,
the constraints are met for almost all of the readouts.
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These results show that the binary encoding model outperforms the one-hot encoding model when no steepest
descent is applied in post-processing. The binary encoding model finds the optimal solution multiple times,
whereas the one-hot encoding model does not find it at all. Furthermore, as most readouts of the one-hot
encoding model had one or more constraints violated, the interpretation of the results is rather difficult. The
situation is completely reverse when steepest descent was applied on the same readouts. In these experiments,
the one-hot encoding model clearly outperforms the binary encoding model, because for all the annealing
times more then 50 % of the readouts were the optimal solution, which only happens for the annealing times
of 320µs or more with the binary encoding model. In addition, with an annealing time of 1998µs 495 out
of the 500 reads found the optimal solution, whereas this was only 358 out of 500 for the binary encoding
model.

7.1.3 More Shifts

In this section a problem with 4 traces, but a larger set SK will be shown and discussed to examine if and how
the behaviour of both the models change when there are more shifts possible. Figure 7.8 shows the gather
of the 4 traces that were used for this experiment. The traces are the same as the traces of subsection 7.1.2,
except for a relative shift. Relative to the first trace, the second, third and fourth trace are shifted by 0.012,
0.036 and 0.06 s respectively. The number of variables used for both of the models is roughly of the size MK.
To keep the number of variables the same as in subsection 7.1.2, a set SK will be chosen such that the size K
will be exactly 16. Furthermore, SK needs to be chosen in such a way that there is only one optimal solution.
The chosen set was SK = {0, 0.004, 0.008, 0.012, 0.016, 0.02, 0.024, 0.028, 0.032, 0.036, 0.04, 0.044, 0.048,
0.052, 0.056, 0.06}. As in subsection 7.1.2, steepest descent will be applied in the post processing step and
the same structure of the discussion will be used.

Figure 7.8: Gather of 4 traces with multiple wavelets. Each trace has a temporal discretisation of 0.004 s.
With respect to the first trace, the shifts are 0.004 s, 0.008 s and 0.012 s for the second, third and fourth trace
respectively.
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(a) Gather of the best solution at 1998µs.
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(c) Energy histogram at 1998µs.

Figure 7.9: Results with the one-hot model without steepest descent in post-processing.

In Figure 7.9 the results of the one-hot model without steepest descent applied in the post-processing step
are shown. The gather of the best found statics are shown in Figure 7.9a. This happened at 1998µs and as
can be seen the solution was not found. Although trace 2 and 4 are almost aligned, the other traces are not
aligned at all. Figure 7.9b also shows that the optimal solution was not found, as the minimum found energy
does not reach the energy of the optimal solution. Furthermore, the minimum, median, first quartile and
third quartile do not convincingly decrease for longer annealing times. Therefore, the quality of the results
does not improve with longer annealing times, as was also the case with the results of subsection 7.1.1. It
must be noted that even though the found minimum energy was lower for all other annealing times than
1998µs, all of these solutions violated at least one constraint. Hence, the gather shown in Figure 7.9a is
the lowest energy solution that meets the constraints, even though other solutions with lower energies were
found. This is not surprising when we take a closer look at the energy distribution shown in Figure 7.9c.
Almost all readouts violate at least one constraint. In fact, the solution shown in Figure 7.9a, shows the only
readout where all constraints are met.
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(a) Gather of the best solution at 1998µs.

24 25 26 27 28 29 210

−100

0

100

200

Anneal Time [µs]

E
n

er
gy

Solution
Median

Minimum
Q1 to Q3

(b) Energy versus anneal time.

-120 -106 -92 -78 -64 -50 -36
0

25

50

75

100

Energy

N
u

m
b

er
of

O
cc

u
rr

en
ce

s

constraints met
constraints violated

(c) Energy histogram at 1998µs.

Figure 7.10: Results with the one-hot model with steepest descent in post-processing.

Next, steepest descent was applied to the previous readouts and the results are shown in Figure 7.10. The
best gather at an annealing time of 1998µs is shown in Figure 7.10a. Clearly, all the traces are perfectly
aligned. Therefore, we can infer that the optimal solution was found. Figure 7.10b shows that for all of
the annealing times, the minimum found energy corresponds to the optimal solutions. Hence, the optimal
solution was found for all annealing times. After applying steepest descent, the minimum, median first
quartile and third quartile did not change significantly for different annealing times. Longer annealing times
did thus not improve the solution quality for this combination of traces and shifts. Figure 7.10 shows the
energy histogram at 1998µs. There are no readouts that violate constraints and we can see that the optimal
solution was found 3 times. This is considerably better than the results without the use of a steepest descent
post-processing step.
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(a) Gather of the best solution at 1998µs.
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(c) Energy histogram at 1998µs.

Figure 7.11: Results with the binary model without steepest descent in post-processing.

Figure 7.11 shows the results when the binary encoding model was used, but no steepest descent was applied
in post-processing. Figure 7.11a shows the best found gather at an annealing time of 1998µs. Trace 2 and
3 are perfectly aligned. Furthermore, the small wavelets of trace 1 are aligned with the small wavelets of
trace 2 and 3. These are the thin white lines in the figure. While the alignment is better as compared to
the one-hot model without steepest descent, it is still far off from being the optimal solution. The energy
distribution for different annealing times is visualised in Figure 7.11b. Here we can confirm that the solution
was not found as the minimum energy found did not reach the energy of the optimal solution. However, as
opposed to the one-hot encoding model, we see that the minimum, median, first quartile and third quartile
lower in energy as the annealing time increases. This suggests that the solution quality increases with the
annealing time in this experiment. The energy for an annealing time of 1998µs is further visualised with
the energy histogram in Figure 7.11c. Almost all the readouts violate at least one constraint. In fact, the
solution shown in Figure 7.11a is the only readout which does not violate a constraint.
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(a) Gather of the best solution at 1998µs.
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(c) Energy histogram at 1998µs.

Figure 7.12: Results with the binary model with steepest descent in post-processing.

Steepest descent was also applied to the readouts of the binary encoding model, of which the results are
shown in Figure 7.12. The gather of the best solution is shown in Figure 7.12a. Trace 2,3 and 4 are perfectly
aligned. Furthermore, the small wavelets of trace 1 are aligned with the small wavelets of the other traces.
Nonetheless, this is still not the optimal solution. Figure 7.12b confirms that the optimal solution was not
found for any annealing time, as the minimum found energy does not reach the solution energy for any of
the annealing times. The energy distribution steadily improved as the annealing times increased when no
steepest descent was applied. When steepest descent was applied, there was a sudden jump in the energy
after which no significant improvement can be observed. The energy histogram in Figure 7.12c shows that
roughly half of the readouts do meet all the constraints.
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From the results in this section we can conclude that the binary encoding model outperforms the one-hot
encoding model when steepest descent was not added in the post-processing step. This is illustrated by the
fact that better solutions are found with the binary encoding model and the fact that the solution quality
improves when the annealing time increases. However, when the steepest descent is added in post-processing
the one-hot encoding model outperforms the binary encoding model. It finds the optimal solution for all
annealing times, whereas the binary encoding model does not find the optimal solution at all. For both the
models it also observed that an increase in the number of traces M is easier to solve then an increase of the
number of allowed shifts K.

7.2 The D-Wave Hybrid Solver

In this section the statics of a larger gather with 108 traces will be estimated. To this end the D-Wave
Hybrid solver will be used as these problems are too large to run directly on the quantum annealers. Only
results of the one-hot encoding will be discussed, as a number of problems arose with the binary encoding
model for this experiment. First of all, the pre-processing steps took significantly longer compared to the
one-hot encoding model. For the one-hot encoding model, the pre-processing steps took only a couple of
seconds, whereas for the binary encoding model this took roughly half an hour, most of the time was used for
the quadratisation of the higher order model. This is unacceptable, as the optimisation procedure with the
Hybrid solver itself only took 10 seconds. Furthermore, the long pre-processing time made it very challenging
to determine a suitable weight for the penalty term needed for the quadratisation. Consequently, when the
Hybrid solver was used with the binary model, the output gathers that looked random and had smaller stack
power compared to the input. This implies that the output was considerably worse than the input.

7.2.1 The Arid Model

Producing realistic synthetic data with this great amount of traces is a challenging task. Therefore, an
outside source was used to gather realistic synthetic data to test the Hybrid solver. The Arid Model [45] is a
large and realistic synthetic model that is widely used for subsurface imaging. A figure of the model is shown
in Figure 7.13. In some parts of the model, large near-surface anomalies are present [45]. These anomalies
cause large residual statics and thus make signal processing a challenging task. Because these large residual
statics are exactly what we try to estimate, a selection of traces from the Arid model were used to put the
Hybrid solver to the test. Before continuing with the results, an important note must be made with regards
to the traces. Contrary to our more theoretical synthetic data of the previous sections, the Arid model gives
a more realistic idea of the inconsistent nature of the traces one would find in field experiments. Therefore,
the exact optimal solution is harder to distinguish as it is not a pixel for pixel alignment like we saw before.

Figure 7.13: 3D View of the Arid Model [45]

From the Arid model a gather of 108 traces, shown in Figure 7.14, was selected to be optimised by the
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D-Wave Hybrid Solver using the one-hot encoding model. All the traces consist of 690 datapoints and have
a temporal discretisation of 0.006 s. The gather shows significant misalignment between the traces.

Figure 7.14: Gather of 108 misaligned traces from the Arid model containing 690 datapoints.

7.2.2 Deterministic Corrected Traces

First the results of an industry standard deterministic cross-correlation solver will be discussed. For this
purpose, a single iteration of Algorithm 1 was used, where the reference trace was the average of all the
traces. Figure 7.15 shows the gather of the corrected traces. The gather shows much more alignment
compared to the input and therefore the quality of the gather improved significantly. However, some traces
are still misaligned. Nonetheless, this is an impressive result considering the simplicity of the algorithm used
and the size of the data set. The most clear misalignment is noticeable at trace 1 and 2. However, some
of the other traces also show some slight misalignments. For example, trace 53 and 92 show some minor
misalignments with the rest of the gather.

7.2.3 Hybrid Corrected Traces

The same gather was also given to the D-Wave Hybrid solver. In this case a K of 15 was chosen and
SK = {0, 0.006, 0.012, 0.018, 0.024, 0.03, 0.036, 0.042, 0.048, 0.054, 0.06, 0.066, 0.072, 0.078, 0.084}.
The penalty term was determined by performing quick runs with simulated annealing until a suitable value
was found. The gather shown in Figure 7.16 shows almost perfect alignment, indicating that the solution is
at the optimal solution or very close to it. Furthermore, no large misalignments are visible, indicating that
the solution is better than the solution found by the deterministic cross-correlation solver. Lastly, the stack
power of the gather found with the 10.7 % larger compared to the stack power found with the deterministic
solver. This indeed confirms the observation that the gather found with the Hybrid solver is of higher quality
compared to the gather of the deterministic solver.
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Figure 7.15: Gather of the 108 traces from Figure 7.14, which have been corrected using an industry standard
deterministic cross-correlation solver.

Figure 7.16: Gather of the 108 traces from Figure 7.14, which have been corrected by using the one-hot
encoding model together with the D-Wave Hybrid Solver.
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Residual statics estimation is a subproblem of geophysical subsurface imaging. With residuals statics estima-
tion the negative effects of large near-surface anomalies are estimated and corrected to produce a subsurface
image which is of higher resolution. These higher resolution images are of importance for a wide variety of
applications and therefore much research has been done to effectively estimate these residual statics with
classical computers. However, these methods have many shortcomings that can deem them ineffective. For
example, solvers can get stuck in a local minimum of a multimodal objective, the solver parameters might
be difficult to estimate or the method is simply too computationally expensive. With quantum annealing we
hope to overcome these problems.

8.1 Conclusion

In this thesis it is shown that the residual statics estimation problem can be solved using a quantum annealer
and a Hybrid solver. First, a binary quadratic model describing the residual statics estimation needed to be
formulated. For this purpose two different binary quadratic models were developed: (1) the one-hot encoding
model and (2) the binary encoding model. A summary of some of their properties is given below. Some
of the results from the one-hot encoding model are not usable, whereas the binary encoding model always
gives a meaningful result. The pre-processing of the one-hot encoding model is relatively easy to implement
and low in computational complexity, whereas the computational complexity of the binary encoding model
is much larger. Moreover, the pre-processing costs of the binary encoding model are so huge, that its current
implementation cannot be used for problems with more than 100 traces. No significant difference was found
in the scaling of the number of variables before embedding with empirical testing. However, with a smaller
number of allowed shifts, the embedding of the binary encoding model is much smaller, resulting in the ability
to solve problems with a larger amount of traces directly on the quantum annealer.

When working directly on the quantum annealer with no additional post-processing steps, the binary encod-
ing model outperforms the one-hot encoding model. The binary encoding model finds the optimal solution
more often and improves the energy distribution as the annealing time increases. However, when steepest
descent is applied in post-processing, the one-hot encoding model clearly outperforms the binary encoding
model. In all of the experiments the one-hot encoding model with steepest descent found the optimal solution
regardless of the annealing time. Furthermore, it is also observed that an increase in the number of allowed
shifts results in a more difficult problem than an increase in the number of traces, even when the binary
search space in approximately the same.

As a final test, the Arid model was used to test a large and realistically complex problem using the D-
Wave Hybrid Solver. The pre-processing cost of the binary encoding model proved too large to efficiently
estimate the residual statics. However, the one-hot encoding model found very good residual statics, even
outperforming the current industry standard deterministic cross-correlation solver.
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8.2 Outlook

The weight of the penalty term is by far the most influential parameter to determine. When it is too low,
the binary quadratic models do not correspond to the original residual statics estimation problem anymore.
On the other hand, when the weight is set too high, the quantum annealing algorithm performs poorly and
the optimal solution is not found. For this research, the weight of the penalty term was determined using
some quick runs of simulated annealing and comparing the results for different penalty weights. However,
a more robust, less subjective and less labour intensive method would be preferred. In general there is no
known way to efficiently calculate the optimal weight of the penalty term, except for the general rule of
thumb that it should be in the order of magnitude of the absolute value of the largest coefficient in the
binary quadratic model. However, during the course of this MSc research project, we observed that there
seems to be a correlation between the frequency of the wavelets and the size of the penalty terms. Smaller
frequencies seem to correlate with larger penalty terms. More research is needed to confirm this observation.
When this observation is confirmed, the preprocessing will be less labour-intensive and more can be done
more subjectively. This would be a very promising development.

The maximum problem size than can be solved directly on the current state of the art quantum anneal-
ers was estimated in Section 6.3 . However, when an extra pre-processing step is added to find the roof
duality, the maximum problem size could be larger. The roof dual of a quadratic pseudo-Boolean function
f : Bn → R is linear pseudo-Boolean function l : Bn → R which majorises f in every point of Bn [46]. Roof
duality has many applications, but as pointed out in [47], the most important are

1. Possibly dividing the binary quadratic model into multiple independent subproblems.

2. Possibly finding variables that can remain fixed at either 0 or 1.

Both can significantly reduce the number of variables in the binary quadratic model and thus allow for larger
problems to run directly on the quantum annealers. However, finding the roof dual of the binary quadratic
models is a computationally intensive task with a computational complexity of O(M3K3) [48].

In this thesis, the one-hot encoding and binary encoding were used to encode different combinations. A
recent study [49] suggests that a different encoding can increase the solution quality. The so called domain-
wall encoding was first introduced by Chancellor [50]. Next to the possible increase of solution quality, it
also offers benefits in terms of the number of variables and number of quadratic terms. Whereas the one-hot
encoding model has MK variables and 1

2MK(MK − 1) quadratic terms, the domain-wall encoding would

have M(K − 1) variables and 1
2M(K − 1)(M(K − 1) − 1 − K

M ) quadratic terms [50]. Hence, using the
domain-wall encoding would allow for the computation of even larger problem sizes, because of the lower
number of variables and quadratic terms. This new type of encoding could prove useful and is worth exploring.

In [51] it is shown how an initial solution can be encoded in the annealing scheme of the D-Wave quan-
tum annealers. When residual statics are large, initial solutions to the original residual static problems are
often of poor quality [15]. However, for the one-hot encoding model an initial guess of all zeros could be
useful, as it is always M bit flips away from the optimal solution. Hence, the annealing procedure is started
relatively close to the optimal solution. Therefore this is also an interesting idea to explore.
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