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Abstract

District heating leverages centralised, high efficiency combined heat and power (CHP) systems. It uses
waste heat to lower energy consumption and reduce greenhouse emissions. The system also supports
renewable energy sources like geothermal and biomass, providing a sustainable heating alternative.

This report examines a nonlinear network of pressure and flow challenges. It focuses on enhancing
the Newton-Raphson method and refining direct solving techniques for a single time-step. As net-
works grow in complexity, efficient and effective solutions become crucial. Various strategies to speed
up the Newton-Raphson algorithm in Gradyent’s heat network solver are discussed, where derivative
calculations are straightforward. Both direct and iterative methods to improve the algorithm’s steps
are explored. The effectiveness of these enhancements is tested and evaluated across networks of
different sizes.



Introduction to district heating

The first chapter of this report presents the district heating model and algorithm with its assumptions,
used by Gradyent. Chapter 2 presents the theory behind the Newton-Raphson method. The mathe-
matical background is explored along with the demonstration of its convergence. Multiple linear solving
methods are evaluated in chapter 3. In chapter 4, the various networks that are tested are presented
and analysed. Following up on that comes chapter 5, explaining the backbone of this research. chap-
ter 6 delves into the results applied to multiple networks. Initial conditions and potential thresholds for
reusing previous computations are explored there. Finally, chapter 8 will provide a summary of the
conclusions and offer recommendations.

For additional context, refer to the appendix. All Python codes are included in appendix A. More
information and graphics are provided in appendix B, to defend the story more thoroughly. Lastly, while
this study primarily addresses the resolution of the linear system, a chapter evaluating several methods
to improve Newton-Raphson method is included in appendix C.

1.1. Why district heating

District heating is a promising solution for providing efficient heating and cooling services to urban ar-
eas, via a network of insulated pipes. These pipes extend from a centralised generation point to end
users. Currently, traditional systems relying on fossil fuels leave a significant carbon footprint, hinder-
ing progress towards sustainability and climate goals (Gradyent, 2024).

To adapt to the evolving landscape of renewable and intelligent energy, district heating networks
must become more flexible. These networks need to handle variable flow rates, diverse supply temper-
atures, and bidirectional flows to accommodate new sources of distributed energy production. Achiev-
ing this transformation requires the use of precise and efficient thermo-hydraulic models. These models
offer accurate simulations of flow rates and temperature transients, serving as valuable tools for de-
signing, managing, and optimising thermal distribution networks.

As urban centres grow and environmental concerns become more pressing, the demand for ef-
ficient and sustainable infrastructure intensifies. District heating systems, known for their potential to
significantly reduce urban carbon footprints and enhance energy efficiency, stand at the forefront of this
transition. This research delves into advancing the design and optimisation of district heating systems
through the development and validation of sophisticated thermo-hydraulic models. These models are
intricately designed to handle the complexities of energy demands in modern urban settings, with a
particular focus on integrating fluctuating renewable energy sources and improving system flexibility to
manage variable flow rates and bidirectional flows.

Gradyent’s Digital Twin platform hence empowers businesses to be proactive players in combating
climate change, for a greener and more sustainable future. Through their real-time Digital Twin plat-
form, Gradyent facilitates the creation of a dynamic digital replica of the entire heating grid, allowing
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4 1. Introduction to district heating

users to optimise operations, simulate future scenarios, enhance performance, lower CO2 emissions,
achieve cost savings, and make informed, environmentally conscious business decisions.

1.2. District heating model

The Digital Twin (DT) serves as a virtual counterpart to the physical district heating system, capturing
real-time data and interactions to enable scenario exploration, behavior prediction, and operational op-
timisation. A robust computational framework is employed to address intricate heat transfer and fluid
flow problems, bridging the gap between the physical and digital. This is based on theory from Fred-
eriksen and Werner (2013). Typically, the network structure is divided into three main layers:

1. Individual elements within the network. District heating network elements are pairs of intercon-
nected nodes where dynamic processes occur.

2. Integration of these elements into a cohesive network, applying conservation laws and boundary
conditions. State variables such as pressure p and flow rate Q at each node define the network’s
state vector, facilitating the modeling of interactions between nodes.

3. Resolution of the network constraint function using root-finding techniques. To then solve the
system of equations governing the network, variables are organized into a vector S (Equation
1.1),

P1

_|Pn _
S = o) £(S) =0 (1.1)

Qn
initiating a large-scale system seeking a root-form solution f(S) = 0 using a variant of the Newton-

Raphson method. Newton’s method forms the core of the solution approach, aiming to achieve
a consistent solution the flow rates and pressures within the network.

A significant challenge stems from the network’s pressure losses, which depend nonlinearly on
flow rates. The equations are computed within the Gradyent software framework, implemented us-
ing Python. In the context of the Newton-Raphson method, the rapid and accurate computation of
derivatives, particularly the Jacobian matrix, is important. Gradyent employs a software structure that
effectively builds up the Jacobian, so for this report no explicit attention is given to computing that matrix
efficiently.

Furthermore, the model is based on several assumptions. The Newton-Raphson method assumes
smoothness and continuity, assured by initial simplifications. The model assumes uniform material
properties and ideal fluid behaviour, neglecting temperature variations, viscosity, compressibility, and
external factors like weather. Additionally, it assumes uniformly distributed flow, ignoring network irreg-
ularities and leakage. While simplifying, these assumptions may impact model accuracy across oper-
ational scenarios. They focus on key variables, making analysis manageable while providing valuable
insights.

This research aims to uncover any underlying sparsity within the network’s structure, which could
potentially lead to efficiency improvements. Future chapters will delve into pertinent numerical theories
and suggest approaches to enhance computational efficiency.



Numerical theory

Now that the model that Gradyent makes use of is clear, the numerical solution method can be pro-
posed. In order to find the solution of the system from chapter 1, the Newton-Raphson method is used.
The chapter explores the Newton-Raphson method, shedding light on its iterative nature and its ef-
fectiveness in refining solutions through successive approximations. In section 2.1 some necessary
numerical definitions and theorems are stated about convergence, after which the Newton Rapshon is
explored in section 2.2. In section 2.3, the practical implementation is explained. By delving into the
convergence behavior and error considerations associated with the application of the Newton-Raphson
algorithm, the chapter provides valuable insights into the robustness and reliability of Gradyent’'s mod-
eling approach in accurately capturing the dynamic behavior of district heating systems.

2.1. Numerical background

Numerical methods offer practical approximations to complex mathematical problems, especially when
exact solutions are impractical or computationally burdensome. Balancing accuracy and efficiency is
key, and crucial for practical applications. These various methods involve formulating the problem,
discretizing it, selecting appropriate algorithms, implementing them in code, iterating for convergence,
and validating the results. In order to understand the methods and techniques used, a number of defi-
nitions and theorems from Vuik et al. (2023) will be posed in this section (Vuik et al., 2023).

To approach the desired solution, achieving convergence is essential. Let's define mathematically
what that entails. Each numerical method generates a sequence {p,} = po,p1, P2, -~ Which should
converge to p, i.e., lim,_,o, pn, = p-

Definition 1 (Convergence). If there exist positive constants 1 and a satisfying

a

P=Pnr1| _ 4 2.1)

P —Dn

lim
n—oo

, then {p,,} converges to p with order a and asymptotic constant A. (definition 4.2.1 from Vuik et al.
(2023)

In general, a higher-order method converges faster than a lower-order method. The value of the
asymptotic constant, A, is less important. There are two important cases:

* a = 1: the process is linearly convergent. In this case, 1 is called the asymptotic convergence
factor.

* a = 2: the process is quadratically convergent.

In order to show convergence, the following theorems are used,;



6 2. Numerical theory

Theorem 2.1.1. Suppose that a sequence {p,} = po, 1, P2, - Satisfies |p — pn| < klp — pp_q| for
n=1,2,..,where 0 <k <1. Thenlim, ., p, = p: the sequence is convergent. (theorem 4.2.1 from
Vuik et al. (2023))

Proof. By induction,
lim |p — p,| < lim k™|p — py| = 0,
n—oo n—oo

because k < 1. Hence p,, converges to p.
O

Theorem 2.1.2 (Fixed point convergence). Suppose g € Cla,b], g(x) € [a,b] for x € [a,b], and
lg'(x)| < k < 1forx € [a,b]. Then the fixed-point iteration converges to p for each value p,y € [a, b].
(theorem 4.4.2 from Vuik et al. (2023))

Proof. Under the provided conditions, g has a unique fixed point p. From the mean-value theorem it
follows that

Ip = pnl = 19(@) = 9(@n-1 = 19" OIIP = Pn-1| < k[P = Pn-1l,
where ¢ is between p and p,,_,. From Theorem 2.1.1 it follows that p,, converges to p. O

2.2. Newton-Raphson

To discover solutions, numerous algorithms have been devised. Among them, the Newton-Raphson
method stands out as particularly renowned and widely adopted. Known for its simplicity of implemen-
tation and ease of use, this method boasts robustness, making it a preferred choice for Gradyent in
pursuit of system solutions. The Newton-Raphson method stands as one of the most well-established
numerical techniques for resolving nonlinear equations f(x) = 0, with the point x termed as a zero or
root of the function f (Chill, 2008).

F(x)

Figure 2.1: The Newton-Raphson algorithm

In figure 2.1, the iterative nature of the method is portrayed. It shows how each successive ap-
proximation is closer to the actual root than the previous one. The convergence is typically quite rapid,
especially when the initial guess is close to the actual root.

The process starts with an initial guess X,, which is an estimate of the root of the function F(x).
This is represented by the furthest right vertical dotted line dropping down to the x-axis. The value of
the function at this initial guess F(X,,) is calculated, which corresponds to the height from the x-axis up
to the function curve. A tangent line is then drawn at the point where the initial guess intersects the
function. The tangent line represents the derivative of the function at X,,, which is F'(X,,). The point
where this tangent crosses the x-axis is taken as the next approximation to the root, denoted X,, .
This is shown as the second vertical dotted line from the right.

This process is then repeated using X,,; as the new guess. A new tangent line is drawn at the
point where X, intersects the function, and where this line crosses the x-axis becomes X,,, ,, the next
approximation. As the iterations continue, the values of X,, converge to the actual root X, which is the
point on the x-axis directly below the root of the function on the curve.



2.2. Newton-Raphson 7

2.2.1. The algorithm

This section states the mathematical algorithm that Newton-Raphson is based on, explained using a
Taylor polynomial. Suppose f € C?[a,b]. Let € [a,b] be an approximation of the root p such that
f'(x) # 0, and suppose that |p — x| is small. Consider the first-degree Taylor polynomial about x:

_ N € k)
fO=fO+E-0f )+ ——f" () (2.2)

in which &(x) is between x and x. Using that f(p) = 0, equation 2.2 yields

_ = =N £ (5 (p_j)Z "
0=f®+@-0f )+ ——f"CCD. (2.3)

Because |p — x| is small, (p — %)? can be neglected, such that

0~ f(®)+ (@ —-0f (0. (2.4)
Note that the right-hand side is the formula for the tangent in (%, f (x)). Solving for p yields
. f®
X - —. 25
PRI ® (29)

In the next theorem, the Newton-Raphson iteration is considered as a fixed-point method.

Theorem 2.2.1. Let f € C?[a,b]. Ifp € [a,b] such that f(p) = 0 and f'(p) # 0, then there exists a
§ > 0, such that the Newton-Raphson method generates a sequence {p,,} converging to p for each
Po € [p — 8, p + &].(theorem 4.5.1 from Vuik et al. (2023))

Proof. In the proof, the Newton-Raphson method is considered as a fixed-point method p,, = g(pn_1)
with g(x) = x — J® |n order to use Theorem 2.1 .2, it is necessary to show that there exists a § > 0,

e

such that g satisfies the conditions of the theorem for x € [p — §,p + §].

1. Continuity of g: g is well-defined and continuous for all x in [p — &;,p + §;]. Since f'(p) # 0 and
f' is continuous, there exists a §; > 0 such that f'(x) # 0 for all x € [p — §;,p + 8;]. Therefore,

2. Derivative of g: The derivative of g is

o PP - @ f0f @
N () N AT 29

Since f € C?[a, b], it follows that g’ (x) is continuous: g(x) € C*[p—&,,p+6;]. Note that g'(p) = 0
because f(p) = 0. Since g’ is continuous, there exists a § < §; such that |g'(x)| < k < 1 for all
X€E[p—6p+94].

3. Domain and range of g: Finally, it is to show that g(x) € [p — 6,p + 8] if x € [p — 6,p + §]. Using
the mean-value theorem (for a continuous function on a closed interval, there exists at least one

point where the instantaneous rate of change equals the average rate of change over that interval
(Ross, 2013),

lgp) —g)| =19 ®)||lp — x| for some & between x and p. (2.7)

Since x € [p — §,p + 6], it follows that |[p — x| < § and |g'(¢)| < 1, and hence, |g(p) — g(x)| <
lp — x| < 6.

Using Theorem 2.1.2, the sequence {p,,} converges to p for each p, € [p — §,p + &]. This proves
the theorem. O
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2.2.2. Convergence (quadratic)
The convergence behavior of the Newton-Raphson method can be computed by making use of the
following observation:

(® — pn)?

3 ———f"(&,) for &, between p, and p. (2.8)

0=f(®) =f)+@®—p)f (n) +

The Newton-Raphson method is defined such that

0= f(Pn) + Pn+1 — Pu)f ' (Pn)- (2.9)

Subtracting expression 2.9 from 2.8 yields

2
0= pae)f o) + TP ey =0, (2.10)
such that X
P—Pn+r| _ f'Gn)
‘ P e | 2 (o) @11

From equation 2.1 it follows that the Newton-Raphson method converges quadratically, with « = 2
and

e STG) @)
e 2 () 21 ()

(2.12)

2.2.3. Newton-Raphson method in higher-dimensional systems
In this section, the theory will be extended to systems of nonlinear equations, which can be written
either in fixed-point form

g@) =p
91(p1, '---.pm) (2.13)
g = : ,
| Im (D1, ) Pm)
or in the general form
f(p) = O,
fi(p1, :--:pm) (2.14)
f(p) = : :
| fn (D1 - Pm)
These systems can be represented in matrix-vector notation as g(p) = p and f(p) = 0, respectively,
where
P1 91(P1 -+ Pm) i1, s Pm)
p=|i| 8= 5 , f(p) = : : (2.15)
Pm Im(P1, - Pm) fn (D1, -, Pm)

Similar to the scalar case, an initial estimate for the solution is used to construct a sequence of suc-
cessive approximations, {p™}, of the solution until a desired tolerance is reached. A possible stopping

criterion is ||[p™ — p™~ V|| < &, where ||x|| = /x? + ... + x4, denotes the Euclidean norm.

As in the scalar case of the Newton-Raphson method, the successive approximation is found by
linearizing function f about iterate p*~1:

0f1 f1

fi@) = AT + 5= (p<“ R (p<“ DY (o — 2 ),

0fm 0fm

@) = @+ FROO N0 =)+t ZEET G i) (216)

m
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Defining the Jacobian matrix of f(x) by

%(x) G0
Jo=| : ~ & | (2.17)
Umyy .. Umiy

0xq 0xm

the linearization can be written in the more compact form

f(p) ~ fp™ ) + I ) (p — p" V). (2.18)

The next iterate, p(™, is obtained by setting the linearization equal to zero:
fp" ) +IET )™ - p" ) =0, (2.19)

which can be rewritten as
JP™)s™ = —f(p~D), (2.20)

where s = p(™ — p(®=1)_ The new approximation equals p™® = p(*~1 4 s
A fast way to compute p™ uses equation (2.18):

p™ = p=D — g-1(p-D)f(p(n-D), (2.21)

Consider a system of n equations F(x) = 0, where x is an m-dimensional vector and F(x) is a
vector-valued function. The iteration formula becomes:

Xn+1 = Xp — J_l(xn) -F(xy), (2.22)

where J is the Jacobian matrix of F, and J~1 is its inverse.

2.2.4. Order of the error

The order of the error in the Newton-Raphson method defines how quickly the method converges to the
root of a given equation. The Newton-Raphson method exhibits quadratic convergence, which means
that, with each iteration, the number of correct digits in the approximation roughly doubles. Specifi-
cally, the error |e,,.1| at the (n + 1)-th iteration is approximately proportional to the square of the error
at the n-th iteration, represented as |e,|>. Mathematically, the quadratic convergence is expressed
as |ey+1| = Cle,|?, where C is a constant. This property makes the Newton-Raphson method highly
efficient in rapidly approaching the true root. However, it is important to note that this quadratic conver-
gence is asymptotic, and in practical scenarios, factors such as numerical precision and the behavior
of the function can influence the actual convergence rate (Dennis and Schnabel, 1983).

Numerical errors can broadly be categorized into truncation errors and round-off errors, each af-
fecting the convergence and stability of numerical solutions in distinct ways. Truncation errors arise
when an infinite process is approximated by a finite one. This type of error is inherent in methods
where continuous data is discretized or when infinite series are approximated by finite sums. For in-
stance, the Newton-Raphson method uses the derivative’s finite difference approximation, which can
introduce truncation errors. The impact of these errors is especially pronounced when assessing the
convergence behavior of the method:

fO) = fxn) + () (x = x3), (2.23)

where f'(x,,) is the derivative of f at x,,, and the higher order terms of the Taylor series are omitted.
Truncation errors can lead to a significant deviation from the actual solution, particularly when the step
size in the discretization is not sufficiently small.
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Round-off errors occur due to the finite precision with which computers represent numbers. Opera-
tions involving very small or very large numerical values can worsen these errors, leading to significant
inaccuracies in calculations. In iterative methods like the Newton-Raphson method, round-off errors
can accumulate with each iteration, potentially affecting the stability and convergence of the solution.
The iterative nature of the Newton-Raphson method often amplifies these errors, as shown in the iter-
ative update formula:

f(xn)

X. =Xn —
n+1 n f,(xn)’

where each computation of x,,,, involves finite-precision arithmetic that can introduce round-off
errors. These errors are particularly problematic when the derivatives are small, which can cause the
solution to diverge or stall. The convergence of a numerical method is critically dependent on managing
both truncation and round-off errors. The balance between these errors often determines the choice
of step size or discretization level. A smaller step size might reduce truncation errors but increase
round-off errors and computational cost. Therefore, careful error analysis and step size optimization
are essential for ensuring the robustness and accuracy of numerical solutions:

(2.24)

Errortatal = Errortruncatian + Errorround—off- (225)

An awareness of these errors and their implications is fundamental to the development and vali-
dation of numerical models. The proper handling of these errors ensures that the solutions are not
only accurate but also reliable, providing a solid foundation for decision-making based on the model
outcomes.

2.2.5. Interval of convergence

The ability of Newton-Raphson to converge rapidly in higher-dimensional systems accelerates the

solution-finding process, surpassing alternative methods. In systems behaving predictably, the quadratic
convergence ensures a significant increase in accuracy with each iteration, promoting efficient local

convergence. Moreover, when the initial guess closely approximates the actual solution, the method

exhibits high precision, making it suitable for precise calculations.

(a) (b)
[ D
Desired Found
% \
tu qrd i quE q i+
Desired
solution
=
(c) (d)
[ D

A a iiﬁ'f'

v \ g™ qq q q

Desired
solution

Figure 2.2: Newton-Raphson failing to converge (Flores, Paulo et al., 2016)

In the context of district heating networks, situations of non-convergence can arise. This method
requires a good initial guess and relies on the system’s Jacobian matrix being non-singular and well-
conditioned throughout the iteration process. Non-convergence typically occurs under several scenar-
ios. There could be multiple solution to the system, shown in figure 2.2 (b). Also, if the starting point
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is too far from the true root, the method may diverge or oscillate indefinitely without converging to a
solution, seen in (c) of figure 2.2. Additionally, an extreme value could imply a root, when it is not a root,
seen in (d). Moreover, the method requires the inversion of the Jacobian matrix at each iteration. If the
Jacobian becomes singular or nearly singular, the inverse becomes very large or undefined, leading to
large or unbounded updates in the solution vector, which prevents convergence.

Also, the method assumes that the function whose roots are being sought is smooth and continuous.
Discontinuities, sharp corners, or discontinuities in the function or its derivatives can lead to situations
where the method fails to converge. Generally speaking for the dynamic interactions between mul-
tiple inputs and outputs of district heating networks, governed by complex boundary conditions and
variable external conditions (such as flow rates), can lead to a highly non-linear system. These non-
linearities, if not properly managed or approximated, can result in a Jacobian matrix with poor properties
for convergence. Operational constraints like fixed temperatures or pressures at certain nodes intro-
duce additional challenges, as these can make the system of equations stiff, another factor contributing
to potential non-convergence (Frederiksen and Werner, 2013).

2.2.6. Newton-Raphson compared to other methods

In the field of numerical analysis, the Newton-Raphson method stands out for its fast convergence and
reliability, especially when the initial estimate is close to the actual solution. It typically outperforms
methods like the Bisection or Secant methods, which converge linearly (Dennis and Schnabel, 1983).
However, its reliance on derivative calculations can be a drawback when derivatives are computation-
ally expensive or hard to obtain analytically.

In contrast, methods like the Secant method and Broyden’s method, a quasi-Newton method that
iteratively approximates the Jacobian matrix, do not need explicit derivatives, potentially saving compu-
tation time in systems where derivative evaluations are costly. Because the Newton-Raphson method
relies on derivatives, it is more sensitive to the initial estimate and prone to divergence if the function
behaves poorly, such as near inflection points or where derivatives approach zero. Thus, while the
Newton-Raphson method offers significant benefits in terms of speed and accuracy under favorable
conditions, its use should be carefully weighed against these potential drawbacks, especially in systems
with complex or poorly understood derivative structures.

2.3. Newton-Raphson’s algorithm in practice

Understanding the theoretical basis of Newton’s method, its practical implementation can now be eval-
uated. The version of Newton’s method utilized is fairly straightforward: first calculate the Jacobian J;
at the current S, and solve (directly) for the step that will give a linear solution at that point. Then repeat.
The stopping criterion is when the max-norm of the right hand side is below a certain threshold (e.g.
10~7). There has been experimentation with calculating smart preconditioners and using an iterative
linear solver (especially over multiple time-steps in a timeseries), but nothing stable yet. Gradyent does
make use of the time-series continuity by using the previous time-step as an initial condition for the next.

In order to compute the calculations, the first two terms of the Taylor series are utilized. The algo-
rithm Gradyent uses consists of the following steps:

1. Initialization: This step typically involves setting initial values for variables, which is computa-
tionally trivial. Negligible time is spent on initialization. No specific optimization is needed for this
step. Optimizing the initial guess is crucial for iterative equation-solving methods. It sets the start-
ing point for iteration, affecting convergence and efficiency. Refining it iteratively can enhance
optimization, leading to faster convergence, reduced computational load, and accurate solutions.
In this study, a constant initial guess is used to avoid external influences.

2. lteration: The iteration itself involves simple arithmetic operations and function evaluations,
which are computationally straightforward. The time consumption depends on the number of
iterations required for convergence and the complexity of the functions being evaluated. Employ-
ing efficient algorithms for function evaluation and arithmetic operations can help reduce time.
Additionally, parallelisation techniques can be utilized to perform multiple iterations concurrently,
speeding up the process. These distribute computational tasks across multiple processors or
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cores to improve efficiency and speed up the execution of programs (Virtanen et al., 2020). Those
techniques however exceed the scope of this report.

(a) Jacobian and Function evaluation: Evaluating the Jacobian matrix and the function in-
volves computing partial derivatives and evaluating functions at given points, which can be
computationally intensive for complex functions. Gradyent makes use of a software structure
that ensures derivative evaluations are performed effectively, Nevertheless, this remains rel-
atively hard to compute compared to the rest of the algorithm. Therefore, it is important to
minimize the amount of Jacobian and function evaluations as much as possible.

(b) Newton-Raphson Update: Computing the update involves matrix inversion and matrix-
vector multiplication can be computationally expensive. The time consumed in this step
depends primarily on the size of the Jacobian matrix and the efficiency of the matrix inver-
sion algorithm, but is significantly larger than all other steps. Implementing efficient matrix
inversion algorithms, such as LU decomposition or iterative methods like Gauss-Seidel, can
significantly reduce computational time (Trefenthen et al., 2022).

(c) Residual Calculation: Calculating the residual involves computing the norm of vectors,
which is computationally straightforward. The time consumed in this step is typically negli-
gible compared to other steps. The max norm, denoted as ||x||., measures the maximum
absolute value of the elements in a vector x. It is defined as ||x]| = max;<;<, |X;|- In con-
trast, the Euclidean norm, denoted as [|x]||,, measures the length of a vector in Euclidean

space. ltis defined as ||x||, = V3 + x5 + ... + x&.

The choice between max norm and Euclidean norm depends on the characteristics of the
problem athand. When dealing with systems of equations and iterative methods like Newton-
Raphson, the max norm is often preferred due to its ability to provide a balanced measure
of error across all elements of the Jacobian matrix.

Unlike the Euclidean norm, which may be dominated by the largest entries of the Jacobian
matrix, the max norm considers the largest absolute value among all entries. This ensures
that no component is neglected during the iteration process, particularly when the entries of
the Jacobian matrix vary significantly in magnitude.

(d) Convergence Check: Comparing the residual to a specified tolerance level is computation-
ally trivial. Gradyent makes use of a tolerance level of 10~7, so this report will do so as well.
This step incurs negligible time consumption, so no specific optimization is needed for this
step.

3. Update: Updating the current guess involves simple arithmetic operations and assignment oper-
ations. Time consumption in this step is typically low compared to others. No specific optimization
is needed for this step.

Furthermore, Newton-Raphson is robust but scales inefficiently. Improving computational efficiency
becomes critical, particularly when the algorithm must be executed frequently or in real-time or on larger
networks (Trefenthen et al., 2022).

Besides computational considerations, the Newton-Raphson method faces limitations in specific
scenarios within one-dimensional problems (Vuik et al., 2023). Firstly, the algorithm fails when the
initial guess (x,) aligns with the inflection point of the function, indicated by " (x,) = 0. Secondly, it be-
comes ineffective when the initial guess (x,) or any iterative value of the function reaches a horizontal
extension, represented by f'(x) = 0. Lastly, if the initial guess (x,) lies between a local maximum or
minimum of the function, the algorithm faces challenges. Similar limitations in convergence and effec-
tiveness persist in a multi-dimensional system. Consequently, strategies to mitigate these limitations
remain pertinent in both one-dimensional and multi-dimensional applications of the Newton-Raphson
method.

In the upcoming chapters, rapid techniques for addressing this root-finding problem will be intro-
duced and extensively analyzed.



Methods for improving the linear solve

This chapter focuses on the solving linear systems within district heating network simulations, essential
for accurate and efficient model predictions.

Direct solvers aim to solve the linear system within the Newton-Raphson. They typically involve
decomposing the matrix into more manageable forms (e.g., LU, Cholesky, see section 3.1) from which
the solution can be directly derived. Sparse direct solvers are a subtype of direct solvers, optimised
for matrices where the majority of elements are zeros (sparse matrices). They exploit the sparsity
to reduce computational cost and memory usage. Techniques include efficient storage formats and
specialised algorithms for matrix decomposition that avoid operations on zero elements.

Unlike direct solvers, iterative methods approach the solution gradually by improving an initial guess
based on a predefined procedure. These methods are valuable when the matrix is large and sparse,
where direct methods become computationally expensive. Sparse iterative solvers are specifically
designed to handle sparse matrices efficiently. They often require less memory and are faster for very
large systems compared to their dense counterparts. They typically use preconditioners to improve
convergence rates.

Dense solvers are used when the matrix is dense, i.e., most of the matrix elements are non-zero.
They can be either direct or iterative but are not optimised for sparsity. Their use is limited to smaller
matrices or those where the dense structure significantly simplifies the solution process. Understand-
ing these distinctions is crucial for selecting the appropriate solver based on the matrix characteristics
and the computational resources available. Each type has its own set of advantages and limitations,
affecting their applicability to different types of problems.

Linear solving techniques are fundamental in iterative solutions of nonlinear equations. Efficiently
solving these linear systems directly impacts computational load and solution stability. Section 3.1
proposes methods of decomposing the matrix in an efficient way in section 3.1, for example an LU
decomposition. Subsequently, section 3.2 examines iterative methods, followed up by the Conjugate
Gradient method, GMRES, and Bi-CGSTAB, crucial for large-scale district heating networks where
direct methods may be impractical. These Krylov Subspace Methods approximate solutions iteratively,
making them effective for sparse systems. The chapter concludes by providing an overview of linear
solving techniques in section 3.3.

3.1. Direct methods for the linear solve

Most obvious in order to decrease the computational time and effort of solving a linear system are the
direct methods. In this section the LU- and Cholesky decomposition are portrayed, as these methods
are the cornerstones of sparse matrix solvers. They are extracted from Trefenthen et al. (2022).

One crucial concept in numerical linear algebra is the concept of sparsity, commonly found in matrix
structures. It refers to the abundance of zero elements within a matrix. These matrices, characterised
by their abundance of zero entries, offer advantages in terms of storage efficiency and computational
complexity. Hence, considerable acceleration in direct solving methods for systems of linear equations
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can be achieved. Most of the subsequent methods are, to some extent, founded on this sparsity.

3.1.1. LU Decomposition

LU decomposition is a method in numerical analysis to break down a matrix into the product of two other
matrices, a lower triangular matrix (L) and an upper triangular matrix (U), such that A = LU. Consider
a square matrix A of size n X n. The objective of LU decomposition is to express A as:

A=LU
where:
* L is an n x n lower triangular matrix with ones on the diagonal.
* U is an n X n upper triangular matrix.
The procedure for LU decomposition proceeds as follows:

1. Initialization: Start with the first element of 4, a;,, and assume an L and U such that:

I @3.1)
by e o 1
and
Ugr Uz 0 Uip
u=|7 M2 T e (3.2)
0 0 o up

2. First Column of L and First Row of U: Determine the first column of L and the first row of U using
the first column and row of A.

3. Forward Elimination: Use the first column of A to eliminate all entries below a,;.

4. Continuing the Process: Apply the same process to the submatrix A’ obtained by deleting the first
row and column of A.

5. lterating: Repeat the process for each submatrix A”, A", etc., working your way along the diago-
nals of the matrix.

6. Continue this process until L and U have been fully populated.
Once A is decomposed into L and U, solving a linear system Ax = b becomes a two-step process:
1. Solve Ly = b for y using forward substitution.

2. Solve Ux = y for x using backward substitution.

In practise, partial pivoting is often used to improve numerical stability. This involves interchanging
rows of A to make sure that the largest element in each column of A gets placed on the diagonal of
U. The LU decomposition converts a complex problem of matrix inversion or solution of linear systems
into a much simpler one, exploiting the triangular structure of the matrices involved and allowing for
efficient and numerically stable computations.
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3.1.2. Cholesky Decomposition

Cholesky decomposition is a method to decompose a symmetric positive definite matrix A into the
product of a lower triangular matrix L and its conjugate transpose, LT, such that A = LLT. The process
is as follows;

1. Initialization: Start with the first element of A, a4, and assume a lower triangular matrix L such

that:
liy 0 - 0
p=fl 2o 0 (3.3)
lnl lnz lnn

2. Diagonal Elements of L: Compute the diagonal elements of L using the square root of the corre-
sponding diagonal elements of A:

lig = ay; (3.4)
3. Off-diagonal Elements of L: Compute the off-diagonal elements of L using the formula:

-1
a;j — =1 licljx
L= T (3.5)

4. Completion: Continue this process until all elements of L have been computed.
Once A is decomposed into L, solving a linear system Ax = b becomes a two-step process:

1. Solve Ly = b for y using forward substitution.

2. Solve LTx =y for x using backward substitution.

Cholesky decomposition is more efficient than LU decomposition for solving systems of linear equa-
tions, especially when dealing with symmetric positive definite matrices. It provides a numerically stable
and efficient method for solving linear least squares problems. If A is positive definite, the Cholesky
decomposition is unique.

3.2. Iterative methods for linear system solving

Now that some direct methods are proposed and building blocks for iterative methods are given, this
following section dives into iterative methods. See Axelsson (1996) for more details (Axelsson, 1996).
Multigrid methods are presented first, after which preconditioning follows. Finally, Krylov subspace
methods such as the Conjugate Gradient method and the Generalised Minimum Residual Method are
proposed.

3.2.1. Multigrid methods

Multigrid methods are particularly effective for problems with grids or meshes, where the underlying
structure can be exploited to accelerate convergence. Multigrid methods offer a hierarchical approach
to solving linear systems, achieving efficiency by operating on multiple scales of the problem. They ef-
fectively capture both the fine and rough level details, accelerating the convergence rate significantly.
By smoothing out errors at various levels, multigrid methods can often outperform traditional solvers,
especially for problems with hierarchical or multiscale structures.

Despite their notable advantages, multigrid methods come with certain drawbacks. Their imple-
mentation can be complex, requiring substantial computational resources and memory. Moreover,
challenges arise when dealing with nonsymmetric or indefinite matrices, which are central to this re-
search. Hence, multigrid methods are not pursued as the primary focus of this study. Preconditioning
however is an important building block for handling nonsymmetric matrices, and is covered next.
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3.2.2. Preconditioning

Preconditioning is a technique employed to improve the convergence properties of iterative solvers,
both for nonlinear systems like those addressed by the Newton-Raphson method and for linear sys-
tems solved by iterative linear solvers. The following section is based on information from Chen (2005).
Preconditioning is applied to this linear system to improve the performance and convergence of the
linear solver used at this step. It transforms the system into a form that simpler to solve. Hence, pre-
conditioning contributes to a more efficient convergence by optimising the linear problem solved during
each iteration.

It improves the condition number of the matrix, which is a measure of how well-suited a matrix is
for numerical computations. A better-conditioned matrix leads to faster convergence of the iterative
solver.

Diagonal preconditioning

Diagonal preconditioning is a basic preconditioning technique. Itinvolves scaling each row of the coeffi-
cient matrix by a scalar, typically chosen as the reciprocal of the diagonal element in the corresponding
row. This operation transforms the original linear system into a more well-conditioned form, thereby
enhancing the convergence properties of iterative solvers. The process of diagonal preconditioning
can be summarized as follows:

1. Scaling by Diagonal Elements: Given a linear system represented by the matrix A and vector b,
the diagonal preconditioner matrix M is formed by taking the reciprocal of the diagonal elements
of A. Thus, M;; = 1/4;;, where i represents the row and column index.

2. Preconditioned System: The preconditioned system is represented by M~1Ax = M~1b, where M
is the diagonal preconditioner matrix.

3. Solution Process: Instead of solving the original linear system Ax = b, we solve the precon-
ditioned system M~14Ax = M~1p using an iterative solver such as Conjugate Gradient (CG) or
Generalised Minimal Residual (GMRES).

4. Back Transformation: Once the solution x is obtained for the preconditioned system, it can be
transformed back to the original solution x" of the original system using x’ = Mx.

Diagonal preconditioning is computationally inexpensive as it involves only forming the diagonal of
the coefficient matrix and scaling it. However, its effectiveness may vary depending on the problem
characteristics and matrix properties. Several specific variants of diagonal preconditioning exist, includ-
ing Jacobi preconditioning. Block Jacobi preconditioning extends the idea of Jacobi preconditioning to
block matrices, where diagonal blocks are inverted separately to form the preconditioner.

ILU preconditioning

The Incomplete LU (ILU) factorization is another widely used technique in numerical linear algebra for
solving large sparse linear systems. It involves decomposing a matrix into lower and upper triangular
matrices, where certain elements are omitted or approximated to reduce fill-in and storage require-
ments while preserving the sparsity pattern of the original matrix.

ILU upholds the sparsity pattern of the original matrix, thus enabling efficient storage and computa-
tion for large sparse systems. Furthermore, ILU’s capacity to diminish fill-in contributes to decreased
computational expenses when solving linear systems, in contrast to direct methods such as LU de-
composition. Additionally, ILU’s flexibility is evident through its ability to tailor the level of fill-in and
precision, rendering it adaptable to diverse problem properties and computational environments.
However, ILU has its limitations. The approximation errors that arise from incomplete factorization can
affect solution accuracy compared to exact LU decomposition. Additionally, the effectiveness of ILU
depends on choosing an appropriate preconditioner and understanding the specific characteristics of
the problem in iterative methods. Finally, the complexity of implementing ILU effectively, particularly for
systems with irregular sparsity patterns, presents a challenge. In incomplete Cholesky preconditioning,
the preconditioner matrix is formed using an incomplete Cholesky factorization method, which is more
sophisticated than simple diagonal scaling.
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Alternative preconditioners

There exit many more preconditioning techniques. For instance, the Schur Complement Precondi-
tioners operate on the Schur complement matrix of the original problem, which is often smaller and
better conditioned than the original matrix A. Examples include the FETI (Finite Element Tearing and
Interconnecting) preconditioner and the BDDC (Balancing Domain Decomposition by Constraints) pre-
conditioner.

Alternatively, Domain and Range Decomposition Preconditioners divide the problem into several
subdomains and solve each subproblem separately, exchanging information between the subdomains
to improve the solution. Examples include the Schwarz methods and the Additive Schwarz precondi-
tioner. The matrix A is divided into blocks, then a preconditioner is applied to each block. This method
is effective for problems with a natural block structure.

Preconditioners are a valuable tool for solving linear problems involving nonsymmetric sparse ma-
trices. However, they come with some trade-offs. While convergence rates are enhanced, they require
extra computations for their construction and application. Moreover, the effectiveness is closely tied to
the complexity of their implementations.

3.2.3. Krylov Subspace methods

Krylov subspace methods, such as the Conjugate Gradient (CG) Method and the Generalised Minimum
Residual Method (GMRES), can efficiently handle the nonsymmetry and indefiniteness that may occur
in district heating system matrices (Axelsson, 1996). They consist of constructing a sequence of or-
thogonal vectors within the Krylov subspace that converges towards the solution. These methods can
provide faster convergence compared to traditional iterative methods, especially for large-scale sys-
tems where direct factorization is impractical. Implementation of Krylov subspace methods requires
mathematical understanding and careful selection of parameters, such as restart values and stopping
criteria, to ensure numerical stability and convergence. Once these parameters are properly config-
ured, the methods prove highly beneficial for solving linear systems.

Generalised Minimum Residual Method (GMRES) GMRES operates within a Krylov subspace,
denoted as K, (4,1y), solving the linear system Ax = b. r, denotes the initial residual vector r, =
b — Ax,, with x, being an initial estimate for the solution. GMRES orchestrates the construction of an
orthonormal basis for the Krylov subspace via the Arnoldi iteration. This process creates a succession
of n orthogonal vectors q4, g4, ..., g, and an upper Hessenberg matrix H,, of dimensions n X n,(a square
matrix where all elements below the first subdiagonal are zero). The number n is the amount of edges
and nodes added.

1. Initialization: Commence with an initial estimate x, and compute the initial residual ry = b — Ax,.

2. Armnoldi Ilteration: Generate q4, q,, ..., g, and H,, via the Arnoldi iteration. This is an iterative method
used to approximate eigenvalues and eigenvectors of large sparse matrices. It constructs an
orthogonal basis for the Krylov subspace iteratively, providing an approximation to the dominant
eigenpairs of the matrix.

3. Minimization of Residual: Determine the x within the subspace K, (4, r,) that minimises the resid-
ual ||b — Ax||, through the least squares method, akin to solving a small n X n linear least squares
problem.

4. Update of Solution: Update the solution x utilising the minimiser identified in the preceding step.

5. lteration: Recur the process until convergence criteria are satisfied or a maximum iteration limit
is attained.

GMRES achieves convergence when the residual ||b — Ax||, decreases adequately or when it
reaches the predefined tolerance threshold. Convergence depends on factors such as the condition
of the matrix A and the choice of the initial estimate. The computational burden of GMRES arises
from the Arnoldi iteration, which requires matrix-vector multiplications with A and orthogonalisations.
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Although each iteration adds computational overhead, GMRES often converges more quickly than di-
rect methods for large, sparse matrices. Unlike direct methods, which often require extensive matrix
factorization and storage, GMRES iteratively constructs a solution that minimizes the residual error.
This iterative approach is advantageous for large sparse matrices because it avoids the computational
overhead associated with dense factorizations. Additionally, GMRES can exploit the sparsity of the
matrix, making it more efficient for large systems where direct methods may become impractical or
even infeasible due to memory constraints.

Bi-Conjugate Gradient Method (BiCG)

The Bi-Conjugate Gradient Method (BiCG) extends the Conjugate Gradient method to handle non-
symmetric linear systems, crucial for applications such as district heating systems. Like the Gener-
alised Minimum Residual Method (GMRES), BiCG constructs solutions within a Krylov subspace, but
it uniquely utilizes two such subspaces: K, (4,1,) for the matrix A and K, (AT, {) for its transpose AT.
This approach allows BiCG to manage the challenges of non-symmetry more effectively by minimizing
the residuals ||b — Ax||, and ||b— AT x||, simultaneously, enhancing both stability and convergence. The
method iterates until convergence criteria are met, much like GMRES, but with the added complexity
of maintaining two orthogonal projection processes.

3.3. Conclusion on linear solve improving methods

This chapter has investigated a range of advanced methods for enhancing the efficiency of linear solve
steps in numerical solvers utilised in district heating network simulations, emphasizing a strategic bal-
ance between computational efficiency and solution accuracy. Direct solving methods, like LU and
Cholesky decomposition, offer robust solutions by decomposing matrices into convenient forms for
easier computations. Iterative methods are examined next.

This chapter has explored various methods for improving the efficiency and accuracy of linear sys-
tem solving within district heating network simulations. Direct methods such as LU decomposition and
Cholesky decomposition provide robust solutions by decomposing matrices into convenient forms for
easier computations. However, their applicability may be limited by computational resources and the
sparsity pattern of the matrix. In contrast, iterative methods offer flexibility and efficiency for large,
sparse systems. Preconditioning techniques enhance the convergence properties of iterative solvers
by transforming the original linear system into a more well-conditioned form. Krylov subspace methods
such as GMRES and BiCG efficiently handle nonsymmetric matrices.

3.3.1. Linear solving techniques compared

Each linear solve technique discussed in this chapter offers distinct advantages for district heating
network simulations, yet they also come with limitations that must be carefully managed to optimise
performance. The LU Decomposition offers a reliable solution path for systems prioritizing stability and
precision, particularly suitable for smaller matrices. There also exist various alternatives tailored for
symmetric and positive definite matrices such as the Cholesky Decomposition, but these are not useful
for this report.

The LU Decomposition faces challenges as system size increases, leading to significant compu-
tational and memory requirements, potentially limiting its applicability in large-scale settings due to
the 0(n®) complexity (Trefenthen et al., 2022). Additionally, this decomposition is less adaptable to
changes in the system matrix.

Multigrid methods are extremely efficient at reducing all frequencies of the error and provide faster
convergence than traditional iterative methods, making them ideal for multi-dimensional and multi-scale
problems found in fluid dynamics and complex simulations. However, nonsymmetric matrices are not
handled as well.

Preconditioning has become a fundamental method for enhancing the efficiency of iterative ap-
proaches. Techniques like Diagonal Preconditioning, Incomplete LU (ILU), and Algebraic Multigrid
(AMG) aim to optimise the condition number of the system matrix, resulting in faster and more reliable
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convergence. However, the effectiveness of these techniques can vary significantly depending on the
properties of the matrix.

Other iterative methods, such as the Krylov subspace techniques, provide flexibility and efficiency,
particularly suited for large-scale problems where direct methods are impractical. These are also more
memory efficient than direct methods.

3.3.2. Future research in linear solving methods

While the methods discussed significantly enhance solver capabilities, they come with challenges as
mentioned. lterative methods, particularly multigrid and Krylov subspace techniques, demand complex
implementation and robust preconditioning to effectively manage the intricacies of large-scale simula-
tions. The success of iterative methods heavily relies on the effective application of preconditioners,
which must be carefully matched to specific matrix characteristics to avoid performance degradation.

As computational demands increase with larger and more complex network models, optimising the
linear solve step becomes even more crucial. It is evident that while improving the iterative algorithm
can improve performance, significant gains come from focusing on optimising this critical step. Tech-
niques such as preconditioning and certain decomposition methods can drastically enhance solver
efficiency and robustness.

Considering the constraints observed, future research directions may include a combined solving
methods that integrate the strengths of both direct and iterative approaches. Potentially even hybrid
preconditioning approaches that combine multiple preconditioning strategies could be investigated to
harness their collective strengths. This approach promises not only to enhance solver efficiency and
scalability, but also to ensure the robustness necessary for modeling complex networks effectively. By
understanding these strengths and limitations, one can more effectively choose and apply the appro-
priate linear solve techniques to meet the needs of district heating network simulations.



The networks

This chapter aims to offer a thorough analysis of structure of the networks. Section 4.1 presents and
assesses the structure of all Jacobian matrices. Following up on that, section 4.2 elaborates on the
eigenvalues and their mathematical implications. Section 4.3 delves into the condition numbers of the
different networks. By synthesising these properties, a deliberate decision will be made in section 4.4,
regarding the most promising method.

4.1. Structure of the networks

In the networks, nodes represent pivotal points where flow characteristics change, while edges sym-
bolize the physical pipes connecting these nodes, enabling the transfer of heat and fluids. Due to
their nature, edges can only link to two nodes, imposing a limit on their number. However, nodes are
not subject to such constraints, allowing for potentially unlimited expansion (Frederiksen and Werner,
2013).

Through the analysis of networks with varying dimensions, insights are sought into the behaviour
across different scales. The specific sizes are displayed in table 4.1. This facilitates the evaluation of
the method’s scalability, computational efficiency and effectiveness across a range of network sizes.

So [ Si 1S, | My [ My | L, | L, | XL,
Nodes | 34 | 81 | 105 | 474 | 524 | 1112 | 839 | 2190
Edges | 37 | 82 | 105 | 506 | 654 | 1153 | 948 | 2554

Table 4.1: Number of nodes and edges

Figures 4.1, 4.3, 4.4 and 4.5 illustrate the Jacobian matrices. These matrices serve as fundamental
descriptors of the network topology, necessary to understand the structural and connectivity charac-
teristics.

4.1.1. Small networks S, S;
The Jacobians of the small networks are presented in figure 4.1. To improve the visualisation of these
plots, it is observed that many values approach zero, particularly in the lower-left region. To address
this, a threshold close to zero (specifically, 10~2 yielded optimal results) is established. Subsequently,
all values below this threshold are scaled by the reciprocal of the threshold. This approach effectively
enhances the visibility of all data points, ensuring a more accurate representation of the plotted values.
The plot of the Jacobian matrices S, and S; show a rather sparse structure. The majority of the matrix
entries are zero or near zero and the non-zero entries appear to form a diagonal band from the top left
to the bottom right of the matrix and another diagonal in the lower left. This pattern suggests that the
system equations are mostly local, with each equation depending on a subset of all variables.

The bandwidth of the matrix — the width of the band around the diagonal where non-zero entries
are located — has implications for the efficiency of solving linear systems. A smaller bandwidth typically
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Figure 4.1: Jacobians of small networks S, and S; .

leads to less computational effort in matrix factorization steps of direct solvers or in the multiplication
steps of iterative solvers. From the plot, it is not possible to determine if the matrix is diagonally dom-
inant, which would be the case if the absolute values of the diagonal entries are larger than the sums
of the absolute values of the non-diagonal entries in each row. Diagonal dominance would imply that
the system is well-conditioned and that iterative methods are likely to converge (Trefenthen et al., 2022).

Furthermore, the given Jacobian matrix can be thought of as being composed of four submatrices,
which is denoted as A, B, C and D. This structure could well be of use for increasing computational
speed. The sizes are determined by the number of edges and nodes. In this example there are 37
edges and 34 nodes. The amount of edges will always be greater than the number of nodes. Therefore,
the upper left submatrix will always be of equal size as the lower right or larger.

Figure 4.2 displays the subdivision of the Jacobian. Each of these submatrices corresponds to
different derivatives of the system functions with respect to the system variables:

» Submatrix A (Upper Left): This submatrix is associated with the derivatives of the flow equations
with respect to flow variables. It is square in shape and corresponds to the interactions between
edges in the network. The size of this block is determined by the number of edges in the network.

» Submatrix B (Upper Right): This submatrix represents the derivatives of the flow equations with
respect to the pressure variables. This part of the Jacobian is almost filled with zeroes only. There
is however always one point in this submatrix, since solving the system requires one set pressure
value. That implies that the flow rates can never be independent of the pressures at the nodes.

» Submatrix C (Lower Left): This part captures the derivatives of the pressure equations with re-
spect to flow variables. It often includes values calculated using Ohm’s law for flow through the
network’s edges, similar to the current-voltage relationship in electrical circuits. This submatrix
is supposably always diagonal, representing the direct relationship between pressure drop and
flow in individual network elements.

» Submatrix D (Lower Right): This submatrix contains the derivatives of the pressure equations with
respect to pressure variables. It’s typically sparse, reflecting the relationship between pressures
at different nodes. The non-zero entries indicate how the pressure at one node is affected by
changes in pressure at another.

The structure of the Jacobian matrix mirrors the network’s complexity in practise. Diagonal dom-
inance in submatrices A and D suggests that local parameters significantly affect nearby variables.
Although sparser, submatrices B and C illustrate how different variables across the network are inter-
related. When a pressure is fixed at a node, it adds non-zero entries to submatrix B, ensuring system
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Figure 4.2: Block decomposition of the Jacobian of S,.

determinacy. Similarly, entries in submatrix C show how edge values influence pressure equations.
This breakdown helps understand system behaviour and makes it easier to apply numerical methods,
particularly with sparse matrix techniques or parallel computation, improving solution efficiency.

Given that the upper right block contains essential data points necessary for determining pressure
values, none of the matrices within the system can be considered empty. Nevertheless, an interesting
avenue for further investigation lies in comparing the outcomes obtained when neglecting the values
in the upper right matrix. One could explore solving the upper left matrix with the given vector and
subsequently integrating this solution into the lower two submatrices. Such an analysis, however, falls
beyond the current scope of this thesis.

4.1.2. Medium sized network M,

In the case of M;, the structure of the network does not display clearly when plotted (see appendix
B). While some degree of sparsity is evident, However, for a more detailed understanding, a deeper
examination of the underlying problem is necessary. Clipping is a useful method for improving visual-
isation by restricting value ranges within plots. This helps uncover the inherent structure of matrices.
By setting lower and upper bounds, clipping focuses attention on the relevant value range, reducing
the impact of extreme outliers and making the matrix structure clearer. This technique limits extreme
values within specified intervals, such as [—1,1] or [-1077,1077], as shown in Figure 4.3.
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Jacobian Matrix M1
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Figure 4.3: Jacobian of medium sized network M,

Notably, while clipping is useful for the visualisation, the actual computations rely on unclipped, raw
data.

4.1.3. Large networks L, and XL,

The provided large network is clipped similarly in figure 4.4 and the extra large in figure 4.5. The
Jacobian matrix L;’s sparse and banded structure suggests that computational efficiency is achievable
with appropriate numerical techniques tailored to exploit these properties.

Jacobian Matrix L1
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Figure 4.4: Jacobian of a large sized network, clipped
Figures 4.4 and 4.5 display that the structure of larger matrices remain similar.

4.1.4. Jacobians at the final Newton iteration

The Jacobian matrices exhibit similar structures when evaluated at the final iteration of the Newton
method, as demonstrated in appendix B. However, absolute convergence may not be attained due to
various factors associated with Newton’s method.
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Jacobian Matrix XL1
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Figure 4.5: Jacobian of an extra large network, clipped

There are certain reasons for the Jacobian to be different at the final iteration versus the initial input.
Newton’s method iteratively refines root estimates until a convergence criterion is met, leading to vary-
ing convergence behaviour based on initial guesses and criteria. Consequently, Jacobian matrices
evaluated at different converged roots may show slight differences. Additionally, numerical approx-
imations in Newton’s method introduce small perturbations during Jacobian computation, potentially
accumulating over iterations and causing deviations from the original structure. Moreover, linearization
around root estimates may compromise accuracy in highly nonlinear regions, contributing to differences
between Jacobian matrices at converged roots and the original. Apart from these slight perturbations,
the main structure of a Jacobian is likely to remain similar.

4.2. Eigenvalues

Eigenvalues play a pivotal role in various mathematical and computational contexts, particularly in lin-
ear algebra and numerical analysis. For systems of linear equations, eigenvalues can provide crucial
insights into the behaviour and structure of the problem (Trefenthen et al., 2022). Specifically, the
eigenvalues of a matrix can indicate its properties, such as its condition number and definiteness. This
information guides the selection of appropriate numerical algorithms for solving the system efficiently.
For instance, matrices with well-conditioned eigenvalues often lend themselves to accelerate direct
solving methods, such as LU decomposition or Cholesky factorization. Thus, understanding the eigen-
value structure of a matrix is essential for devising and implementing effective direct solving strategies.

Figure 4.6 presents the eigenvalues of the network XL;. Consequently, the convergence properties
of the Newton-Raphson rootfinding method can be deduced. The eigenvalue plots of the other net-
works are supplied in appendix B.

The range of eigenvalue magnitudes indicates varying rates of change across different parts of
the solution space. Smaller eigenvalues suggest slower transitions, while larger ones signify quicker
changes along specific directions. The broad spectrum of eigenvalues signifies a system with intricate
dynamics, which can complicate convergence patterns for numerical solution methods.

The real parts of eigenvalues play a crucial role in determining the stability and convergence be-
haviour of iterative methods. Negative real parts indicate stable directions, where convergence towards
the solution is likely. Conversely, positive real parts suggest unstable directions, potentially leading to
divergence unless effectively addressed. Eigenvalues with real parts close to zero often pose chal-
lenges to convergence, resulting in slower rates or stagnation.
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Eigenvalues XL1
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Figure 4.6: Eigenvalues of the XL, network.

Moreover, eigenvalues with non-zero imaginary parts introduce oscillatory dynamics into the sys-
tem. These oscillations can alternate between convergence and divergence during iteration. The
magnitude of the imaginary parts determines the frequency of oscillations, with larger values leading to
faster oscillations. In extreme cases, purely imaginary eigenvalues may cause persistent oscillations
or even chaotic behaviour within the system.

The eigenvalues of all other networks follow similar patterns (and hence behaviour), but with fewer
values since the Jacobians are smaller. The influence of eigenvalues, particularly in relation to their
real and imaginary parts, is mostly a concern for iterative solvers. These solvers rely on the properties
of the system’s matrix to guide their convergence. The eigenvalue distribution directly impacts their
performance. Direct solvers, on the other hand, generally do not depend on these dynamics as they
typically involve decomposing the matrix directly to find solutions, irrespective of the eigenvalue char-
acteristics. Thus, understanding and managing the spectrum of eigenvalues is essential primarily for
the effective application of iterative solvers in handling time-dependent complexities within large-scale
and dynamic simulations.

4.3. Condition numbers

The condition number, given in equation 4.1 measures how sensitive the solution of a linear system
is to changes in the matrix, while singularity refers to a matrix’s lack of invertibility. A high condition
number often indicates ill-conditioning, where small changes in the matrix can lead to large changes in
the solution. This ill-conditioning can result in singularity, where the matrix is not invertible and lacks a
unique solution. Hence, the condition number and singularity are related through their indication of the
stability and uniqueness of solutions in linear systems (Trefenthen et al., 2022).

() = Zmax (4.1)
Omin
The analysis of the networks reveals high condition numbers for all systems, as presented in table
4.2. They are however far from infinite, so not singular. Networks S, and S; have relatively low con-
dition numbers, indicating better numerical stability compared to the other networks. Networks L; and
XL, have high condition numbers, indicating potential numerical instability and slower convergence for
iterative methods compared to the other networks. The condition number shoul not scale,

The number of nodes and edges in each network provides insight into the complexity and connectiv-
ity of the network structure. Networks L; and XL, have significantly more nodes and edges compared to
networks S, and S;, indicating higher complexity and potentially more interconnectedness. The higher
complexity and connectivity of networks L; and XL, may contribute to their higher condition numbers



4.4. Conclusion on Jacobian properties 27

So S M, L XL,
Condition number | 6.1 x 107 | 2.8 x 10° | 5.7 x 10%° | 2.6 x 101° | 1.4 x 10

Table 4.2: Condition number of the various matrices

due to increased potential for ill-conditioning and numerical instability.

This suggests that networks S, and S; are relatively simpler and more numerically stable compared
to the larger networks. Networks L; and XL,, with higher complexity and connectivity, exhibit higher
condition numbers, indicating potential numerical instability and slower convergence for iterative meth-
ods. XL, stands out with the highest condition number, indicating potential challenges in numerical
stability and convergence when solving linear systems associated with this network.

4.4. Conclusion on Jacobian properties

In conclusion, this chapter established a foundation for numerical method selection. Since the ma-
trices are non-symmetric and non-positive definite and their eigenvalues are widely divergent, many
direct and iterative methods are not applicable. Therefore, the preference goes to a direct method that
leverages sparsity without the complexities associated with iterative solver convergence. The analysis
reveals that despite scalability challenges with large matrices, direct solving methods remain feasible

and effective for network sizes not exceeding around one million entries in the Jacobian (del hoyo Arce,
2018).

The strategic selection of direct and iterative solving methods, as outlined, will be further explored
in subsequent chapters. Robust Python software packages are evaluated from chapter 5 onwards.
These methods offer directly applicable sophisticated methods. Chapter 6 compares the efficiency of
them, along with their accuracy benefit.
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Now focusing on the linear solve, the question of its implementing arises. This chapter delves into
the practical aspects of implementing numerical methods for solving district heating network problems.
Specifically, it explores strategies for efficiently storing sparse matrices, selecting fast direct solvers
in Python, and optimising computational processes. Additionally, considerations for reusing evalua-
tions, ensuring scientific comparability, and evaluating performance metrics are discussed. The only
set threshold by Gradyent is an accuracy of 10~7, since their product should be reliable. There is no
bound on iterations and timing apart from that.

Section 5.1 highlights the disparity between CPU time and wall clock time to clarify the metrics
employed in this study. Before delving into actual computations, the potential memory overhead from
matrix storage is addressed in section 5.2, offering insights into efficient handling techniques. Subse-
quently, a survey of various software packages pertinent to rootfinding methods is conducted in section
5.3. Furthermore, to ensure equitable comparison of all outcomes, section 5.4 outlines the methodol-
ogy employed for measurements to promote fairness.

5.1. CPU time versus wall clock time

The evaluation of these various rootffinding algorithms often relies on two types of time measurements:
CPU times and wall clock times, especially in parallel computing contexts. CPU time measures the
duration of processor utilisation, while wall clock time encompasses all elapsed time, including waiting
and overhead. Wall clock time is preferred for its comprehensive view of performance, incorporating
factors like parallelization overhead (the additional time and resources required to execute parallel
tasks) and communication latency (the delay in transmitting data between computing units). It provides
a realistic assessment of algorithmic scalability and efficiency across different hardware setups. Since
this research is conducted within one environment that remains consistent, the wall clock times are
valid for comparison.

5.2. Storing the sparse matrix

Apart from optimising the solving process, it is also important to store the data wisely. Zeroes take
up unnecessary space and can be avoided. Sparse matrices can be represented in various formats,
including Compressed Sparse Row (CSR), Compressed Sparse Column (CSC), and Coordinate (COO)
formats. These formats offer efficient storage and manipulation of sparse matrices, each with its unique
benefits. Only the non-zero elements are stored along with their indices, resulting in reduced memory
usage compared to storing all elements of the matrix. Matrix-vector multiplication can be performed
more efficiently, as only the non-zero elements need to be accessed and computed (Shanaz, 2005).

* CSR (Compressed Sparse Row) Format: In CSR format, the matrix is stored row-wise. It
consists of three arrays: the values array containing the non-zero elements of the matrix, the
column indices array indicating the column indices of the non-zero elements, and the row pointer
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array specifying the starting index of each row in the values and column indices arrays. CSR
format is efficient for matrix-vector multiplication and row-wise operations.

+ CSC (Compressed Sparse Column) Format: In CSC format, the matrix is stored column-wise.
Similar to CSR format, it comprises three arrays: the values array containing the non-zero ele-
ments, the row indices array indicating the row indices of the non-zero elements, and the column
pointer array specifying the starting index of each column in the values and row indices arrays.
CSC format is advantageous for column-wise operations and matrix-vector multiplication.

* COO (Coordinate) Format: In COO format, each non-zero element is represented by its coordi-
nates (row index, column index, value). This format does not require any compression, making it
straightforward for insertion and manipulation of individual elements. However, it may consume
more memory compared to CSR and CSC formats, especially for matrices with many non-zero
elements.

Below is an example illustrating the representation of a sparse matrix in CSR, CSC and COOQO for-
mats:

Matrix =

S O O
o N o
S O WwWo
o OO

CSR Format:
Values = {1,2,3,4,5, 6}

Column Indices = {0, 1, 2,3,1, 3}
Row Pointer = {0, 1, 3,3, 5}

All non-zero values of the matrix are listed row-wise, resulting in the array {1,2,3,4,5,6}. The
column indices of each non-zero value are recorded, also row-wise. For example, the first non-zero
value 1 is in column 0, the second non-zero value 2 is in column 1, and so on. This yields the array
{0,1,2,3,1,3}. An array indicating the starting index of each row in the Values and Column Indices
arrays is maintained. For instance, row 0 starts at index 0, row 1 starts at index 1, row 2 starts at index
3, and row 3 starts at index 3. This array is {0, 1, 3, 3, 5}.

CSC Format:
Values = {1,2,5,3, 6,4}

Row Indices = {0,1,3,1, 3,2}
Column Pointer = {0,1,4,5, 6}

All non-zero values of the matrix are listed column-wise, resulting in the array {1, 2,5, 3, 6, 4}. The row
indices of each non-zero value are recorded, also column-wise. For example, the first non-zero value 1
is in row 0, the second non-zero value 2 is in row 1, and so on. This yields the array {0, 1, 3,1, 3, 2}. An
array indicating the starting index of each column in the Values and Row Indices arrays is maintained.
For instance, column 0 starts at index 0, column 1 starts at index 1, column 2 starts at index 4, and
column 3 starts at index 5. This array is {0, 1, 4,5, 6}.

COO Format:
Values ={1,2,5,3,6,4}
Row Indices = {0,1,1,2,3,3}
Column Indices = {0, 1, 2,3,1, 3}

All non-zero values of the matrix are listed, along with their respective row and column indices. For
example, the first non-zero value 1 is located at row 0, column 0, resulting in the entry (0,0,1) in the
COO format. Similarly, the second non-zero value 2 is at row 1, column 1, leading to the entry (1, 1, 2).
This process continues for all non-zero values in the matrix.
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Sparse matrix formats provide significant memory savings by storing only the non-zero elements
along with their indices, reducing memory usage compared to dense matrices. This benefit is particu-
larly valuable for large-scale problems and applications with memory constraints.

Additionally, exploiting the sparsity pattern of matrices leads to improved computational efficiency.
Sparse matrix representations enable faster matrix-vector multiplication and other operations, making
iterative solvers and numerical algorithms more efficient, especially when repeated matrix operations
are performed. The packages discussed in section 5.3 make use of these formats in their computations
as well. See appendix A for the Python code.

Comparison

In this research, all main focus lies on the Jacobians, which are square matrices. The choice between
Compressed Sparse Row (CSR) and Compressed Sparse Column (CSC) formats then may not signif-
icantly impact the performance of solvers, such as the spsolve function from pypardiso library. For
square matrices, the primary difference between CSR and CSC formats lies in their data organisation
regarding row and column indices. Both CSR and CSC formats offer distinct advantages depending on
the sparsity pattern and specific operations performed on the matrices. However, for square matrices,
the differences in performance between the two formats might be minimal. In practise, it is common to
choose the format that the solver requires.

5.3. Fast direct solvers in Python

In addition to the efficient storage and computation of matrices, it is important to consider the choice
of solver for sparse systems. With a Jacobian matrix size far under one million entries, using a direct
solver remains practical and effective. As matrix sizes increase, it may become necessary to explore
preconditioning techniques to maintain computational efficiency. This section is based on Johansson
(2015).

5.3.1. Python Packages; SciPy, PARDISO, SuperLU

The decomposition methods discussed in chapter 3 serve as the foundation for numerous software
packages. These packages are developed with considerable expertise, evident in their efficiency and
ease to use.

Scipy’s: One example is SciPy. This package relies on sparse direct solvers and iterative methods
to tackle large-scale sparse linear systems effectively. Through direct solvers like LU or Cholesky de-
composition, the scipy.spsolve function breaks down the matrix into triangular components (lower
and upper for LU, lower for Cholesky), solving efficiently through forward and backward substitution.
Moreover, for larger systems, SPSolve may utilise iterative methods like Conjugate Gradient (CG) or
Bi-CGSTAB to enhance computational efficiency (Virtanen et al., 2020).

PARDISO: Another method involves PARDISO (Parallel Direct Sparse Solver), designed for high-
performance solving of large-scale sparse linear systems. Leveraging parallelism and multithreading,
PARDISO spreads the computational load across multiple processors, substantially reducing solution
times for sizable problems. Utilising direct factorization methods such as LU or Cholesky decomposi-
tion, PARDISO adeptly decomposes the sparse matrix into triangular components, ensuring numerical
stability and accuracy (Schenk, 2024)

SuperLU: Additionally, SuperLU is examined, proficient in factoring sparse matrices via LU decom-
position with partial pivoting. Employing techniques like supernodal factorization, SuperLU optimises
computational efficiency and memory usage. By capitalising on sparse matrix representation and em-
ploying a sparse direct solver strategy, SuperLU accurately computes solutions without iterative refine-
ment, proving beneficial for applications requiring precision (Li, 2004).

Each solver —SPSolve, PARDISO, and SuperLU—has its strengths. SPSolve is well-integrated
within SciPy, making it user-friendly and readily accessible for Python users. PARDISO employs ad-
vanced algorithms and parallel computing techniques, making it particularly well-suited for sparse ma-
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trices and high-performance computing environments. SuperLU complements these by offering a bal-
ance between ease of use and efficiency, particularly in parallel environments. The choice among these
depends on the specific requirements of the problem, available computational resources, and ease of
integration into the existing workflow. As the size of the problem scales, the selection criteria might
shift towards more advanced features like parallel execution and sophisticated memory management
offered by PARDISO and SuperLU.

5.3.2. Iterative Linear Solvers options

In the context of enhancing the Newton-Raphson method for solving district heating network problems,
the integration of iterative linear solvers such as Conjugate Gradient (CG), BiConjugate Gradient Sta-
bilised (Bi-CGSTAB), and Generalized Minimal Residual (GMRES) within a Python environment offers
a robust solution framework. These solvers are particularly adept at handling the large, sparse linear
systems often encountered in such applications (Johansson, 2015).

BiConjugate Gradient Stabilised (Bi-CGSTAB) Method: The BiConjugate Gradient Stabilised
Method includes an incomplete LU factorization (scipy.sparse.linalg.spilu) as a precondi-
tioner, which approximates the matrix inverse and thus enhances its efficiency. This method is well-
suited for non-symmetric matrices. The preconditioner, using Scipy’s function LinearOperator, sig-
nificantly improves the convergence rate, particularly in systems with complex sparsity patterns (SciPy,
2022).

Generalized Minimal Residual (GMRES) Method: Similar to Bi-CGSTAB, this method employs
preconditioning, for instance through an ILu. GMRES works by minimising the residual over a Krylov
subspace formed by the matrix and the right-hand side, making it highly effective for diverse matrix
properties. The inclusion of the same preconditioner as Bi-CGSTAB facilitates a direct comparison of
how each algorithm handles the Krylov subspace differently (SciPy, 2020).

All three methods convert the Jacobian to a sparse CSC format, which is efficient for matrix-vector
operations crucial in iterative solvers. Both Bi-CGSTAB and GMRES can utilise preconditioning, crucial
for improving computational efficiency and convergence rates in large-scale problems. This approach
is beneficial in managing the computational complexity inherent in district heating networks.

However, CG is inherently different in its approach, targeting symmetric positive definite matrices,
while Bi-CGSTAB and GMRES do not have this limitation and are suitable for a broader range of prob-
lems. Bi-CGSTAB stabilises the bi-conjugate gradient method, potentially offering faster convergence
for certain types of non-symmetric matrices. GMRES, on the other hand, minimises the residual across
the entire Krylov subspace, which can be computationally intensive but robust over a wider range of
problems.

5.3.3. Library options; tolerance, fill factor, permutations

In the context of numerical methods such as Newton-Raphson, which involve nested solvers, the choice
of tolerance levels for both the main solver and the nested iterative linear solvers such as BiConjugate
Gradient Stabilised (Bi-CGSTAB) and Generalized Minimal Residual (GMRES) is crucial. This selec-
tion significantly impacts the accuracy and computational efficiency of the overall solution process.
Setting the tolerance for iterative linear solvers at 107, much smaller than the 107 tolerance for the
Newton-Raphson method, is strategic. This differential ensures that the errors introduced by the linear
solvers are significantly less than the tolerance to which the overall Newton method converges, pre-
venting these inaccuracies from impeding or limiting the convergence of the Newton-Raphson method.
If the tolerance of the linear solver were higher or comparable to that of Newton’s method, it could result
in the premature termination of the Newton-Raphson iteration due to inaccuracies propagated from the
linear solver, thus compromising the overall solution accuracy (Virtanen et al., 2020). Moreover, certain
parameters used in the construction of preconditioners like ILU (Incomplete LU) significantly impact the
performance and effectiveness of the preconditioning process:

Drop Tolerance: This parameter controls the threshold at which smaller elements of the matrix
are discarded in the ILU factorization process. A higher drop tolerance leads to more elements being
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dropped, reducing memory usage and computational time but potentially decreasing the accuracy and
stability of the preconditioner. Conversely, a lower drop tolerance retains more elements, enhancing
the effectiveness and cost of the preconditioner.

Fill Factor: Determines the maximum allowed fill-in elements in the ILU factorization relative to the
original matrix. It controls how much additional memory space is allocated for elements that fill in during
the factorization process. A higher fill factor allows more fill-in, enhancing the accuracy and robustness
of the preconditioner but at the cost of increased memory usage.

Permutation Specification: Controls the strategy for reordering the matrix before factorization to
improve matrix stability and factorization efficiency. Different strategies, such as natural ordering or
minimum degree ordering, can significantly impact the effectiveness of the factorization, particularly in
terms of reducing fill-in and enhancing numerical stability.

The detailed settings of parameters like drop tolerance, fill factor, and permutation specification
in preconditioners are crucial for optimising the performance of numerical solvers in tackling complex
systems such as district heating networks. These settings tailor the solver’s behaviour to balance com-
putational efficiency and solution accuracy effectively.

In determining whether to use Bi-CGSTAB or GMRES, consideration should be given to specific
system characteristics, such as the degree of matrix non-symmetry and the effectiveness of the pre-
conditioner. Integration of these iterative solvers into the Newton-Raphson method results in a flexible
and powerful toolkit for addressing the complexities of district heating network simulations.

5.4. Measurements, scientific comparability

In order to ensure meaningful comparisons among the results obtained from various optimization tech-
nigues aimed at enhancing the performance of solvers for district heating networks, it is essential to
establish a controlled and consistent experimental framework. This framework should cover all aspects
of the computational process, from initialisation to execution and final data analysis. In this section, the
critical components of such a framework are evaluated. The theory is based on Johansson (2015).

To start off with, it is important to ensure that all algorithms begin with identical starting values to
guarantee comparability. This uniformity includes initial guesses for system states, fixed parameters,
boundary conditions, and any other input data affecting outcomes. If not stated differently, the initial
values are randomised for every iteration with values between zero and one. The same seed value is
utilised, to increase robustness even more. Seed randomisation is the process of initialising a random
number generator with a specific value to ensure reproducibility in research, as using the same seed
value guarantees identical random sequences, enabling consistent results across different runs.

Furthermore, integrity and reproducibility are wanted. For this, maintaining hardware consistency
is necessary. All computational experiments should be conducted on the same hardware setup, com-
prising identical processors, memory configurations, and storage systems. This practice eliminates
variations arising from differences in computational power and data handling speeds. This entire re-
search has been deducted on one computer, ensuring the hardware remained the same. Secondly,
consistency in the software environment, including operating systems, programming languages, and
numerical libraries, is crucial across all experiments. The software environment of this thesis has been
established before, and not changed during this research.

Additionally, single-tasking operations should be adopted to mitigate discrepancies caused by vary-
ing CPU and memory usage. This involves dedicating the computational environment solely to the
solver each run and closing unnecessary programs and background processes that may interfere with
computational performance. In practise, that means turning off all applications outside this program.
Also, if possible, remove any unnecessary connections such as internet. These measures collectively
contribute to the reliability and consistency of computational experiments. For this research, that in-
volved shutting down all other applications on the computer. However, disabling internet connectivity
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and exclusively running the code is not possible, since internet is necessary for entering the virtual
computer that Gradyent works with.

Ensuring consistency in the core computational code across all experimental runs is crucial for re-
liable research outcomes. One should properly document any variations introduced in the functions.
Version control systems could be of use for managing code changes. For the functions examined in
this report, the code is optimised before any results reported in this document were obtained.

Lastly, establishing a predefined set of performance metrics for comparison is imperative. These
performance metrics may include solution accuracy, computational time, memory usage, and the num-
ber of iterations to convergence. Applying these metrics uniformly across all methods facilitates com-
prehensive evaluation and comparison. These practises collectively contribute to the reliability and
consistency of experimental results.

This chapter addressed the implementation of numerical methods for effectively solving district heat-
ing network problems using Python. It provides insights into handling sparse matrices, selecting optimal
solvers, and optimising computational efficiency. The exploration of time metrics, storage techniques,
and robust software packages lays a solid groundwork for executing numerical models essential for net-
work optimisation. In the subsequent chapter, these methods will be applied to the networks, enabling
comparison of their effectiveness and practical implications.



Results and analysis of various functions

This chapter delves into the various Newton methods, elucidating the theoretical foundations upon
which they are predicated and exploring their computational efficiencies. Initially, the most straight-
forward method, involving the inversion of the Jacobian matrix, is evaluated in light of its theoretical
underpinnings. Subsequently, an alternative approach, which entails solving the linear system with-
out explicitly computing the inverse, is presented. Building upon this, the chapter scrutinises different
sparse matrix solvers, including Scipy’s SPSolve, PARDISO’s SPSolve, and SuperLU, conducting a
comparative analysis to discern their respective strengths and weaknesses.

The direct methods are evaluated in sections 6.1, 6.2, 6.3, 6.4, 6.5 and compared in section 6.6.
Next, the iterative methods for the linear solve are proposed in sections 6.7 and 6.8, with a comparison
in section 6.9. Section 6.10 compares all methods to each other, and evaluates their scaling properties.
Appendix B contains additional plots for enhanced visualization. Specifically, it includes residual plots
versus iterations for all methods, including the extra networks S,, M,, and L,.

6.1. Newton’s Method; Inverting the Jacobian

The first function computes the inverse of the Jacobian matrix using and then performs matrix-vector
multiplication. While conceptually straightforward, this method may suffer from numerical instability
and increased computational complexity due to the explicit inversion of the Jacobian matrix, especially
for large matrices or those with high condition numbers.

The plots in 6.1 and results in table B.1 represent the performance and convergence of a more
efficient Newton-Raphson method applied to solve systems of equations characterised by the matrices.

S, M, Ly XL,
#iter 5 12 10 13
CPU time (ms) 14.7 x 10% | 6.17 x 103 | 34.5 x 103 | 3.62 x 10*
Wall clock time (ms) | 2.80 x 10% | 1.22 x 10® | 5.80 x 103 | 5.86 x 10*

Table 6.1: Computational time Inverse Jacobian method

The results plotted in figure 6.1 can be analysed as;

» S,: Convergence within 5 iterations with a steady decline in the residual, demonstrating efficient
performance.

* M,: Takes 12 iterations to converge, fairly smooth.
* L;: Requires 10 iterations to converge, with the residual plot showing a consistent downward

trend. This suggests that despite the larger size or complexity, the system remains numerically
stable under the Newton method which inverses the Jacobian.
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Figure 6.1: Convergence of Newton -inverting the Jacobian- applied directly, to different networks.

* XL,: The residual indicates a convergence over 13 iterations. Notably, the rate of decrease in
the logarithmic residual is less steep compared to the smaller networks, hinting at the increased
computational challenge presented by larger systems.

Table B.1 indicates the number of iterations and both CPU and wall clock times for computational
performance evaluation. The iteration count is directly correlated with the matrix size and complexity.
S: and M;, being smaller or simpler, converge faster than L, and XL,. This suggests that the larger
matrices may have more complex dynamics or may not be as well-conditioned as the smaller matrices.

« CPU time: An 0(n®) increase in CPU time with the size and complexity of the network matrices,
which is expected due to the increased operations required for larger matrix inversions.

» Wall clock time: The table shows a significant disparity from CPU time, especially for L;. This
could indicate that the computation for L, is efficiently parallelised, making good use of multi-
threading or distributed computing resources. The significant difference between CPU and wall
clock times for XL, is even more pronounced than for L, potentially indicating efficient use of
multi-threading or distributed computing environments for this complex computation.

As the size of the network (matrix) increases, so does the computational effort, as seen from the
increase in CPU and wall clock times. This reflects the larger number of floating-point operations re-
quired. A faster convergence rate, as seen in S; and M,, leads to lower computational times. The
fewer the iterations, the less work is required. Moreover, the residual plots show that the method is
numerically stable for all network sizes, but the rate of convergence slows for larger networks.

In conclusion, the Inverse Jacobian Newton-Raphson method exhibits stable and efficient conver-
gence for smaller systems. However, as the system size increases, there is a notable increase in
computational effort.
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6.2. Newton’s method; Linear Solve

To facilitate a fair and thorough comparison of upcoming methods like PARDISO and Scipy’s SPSolve,
an intermediate step is proposed here. Instead of relying on direct matrix inversion, this solver shifts
towards utilizing functions that linearly solve the system. It establishes a robust foundation for fair and
insightful evaluations of the efficiency.

The linear solving function utilises NumPy to directly solve the linear system represented by the
Jacobian. By leveraging NumPy’s computational power, known for its proficiency in solving linear
systems, the solver ensures smooth compatibility with both PARDISO and Scipy (Johansson, 2015).
Considering these factors, the linear solving method is expected to outperform the first method in terms
of computational efficiency and numerical stability. The residual plots for the Linear Solve method, dis-
played in appendix B, show a rapid decrease in residuals, indicating a fast rate of convergence. Linear
Solve maintains the efficient convergence properties of the Newton-Raphson method.

S, M, Ly XL,
#iter 5 12 10 13
CPU time (ms) 13.6 X 102 | 9.44 x 103 | 27.2 x 103 | 2.49 x 10*
Wall clock time (ms) | 2.87 x 10% | 1.70 x 10 | 4.62 x 103 | 3.88 x 10*

Table 6.2: Computational time Linear Solve method

The iteration counts for the Linear Solve method, as seen in table 6.2, are the same as those for
the Inverse Jacobian method for the networks of size up to XL,, indicating that the method’s efficiency
in reducing residuals is consistent irrespective of the approach taken for the Newton step. Notably,
the CPU time for XL, is less than that for L, which might indicate a more efficient handling of larger
systems or a difference in system conditioning.

The scalability of the Linear Solve method seems to be comparable to the first method. However,
given the reduced risk of numerical instability, Linear Solve may offer better performance for even
larger network sizes beyond those tested. The differences between CPU and wall clock times suggest
that the Linear Solve method is able to effectively utilise parallel computing resources, which becomes
increasingly important as the network size grows.

Based on the provided data, the Linear Solve method should be considered over direct Jacobian
inversion, especially for large-scale problems. The convergence behaviour of the Linear Solve method
in the XL, network underscores its suitability for larger and more intricate systems. It is recommended
that future work in solving such systems considers the use of the Linear Solve method, particularly
when dealing with large-scale networks that may benefit from enhanced numerical stability.

6.3. SciPy’s SPSolve

SPSolve from SciPy’s library is a function built for solving sparse linear systems. It converts the Jaco-
bian matrix into a Compressed Sparse Column (CSC) format, which is particularly efficient for matrix-
vector operations as seen in chapter 5. This method is expected to be more efficient than dense solvers
when dealing with sparse systems due to the optimised use of storage and computational resources.

The residual plots, in appendix B, indicate that the SPSolve method converges for all network sizes
within a comparable number of iterations to the previous methods, which implies that the change in
solving technique does again not affect the convergence properties of the Newton-Raphson method.
The plots exhibits a gradual but consistent decrease in the logarithmic residual. The XL; network’s CPU
and wall clock times for SPSolve suggest that while SPSolve maintains an advantage in computational
efficiency for sparse matrices, this may diminish as the matrix size and complexity increase.

The CPU time required by SPSolve is significantly reduced, particularly noticeable for S; and M;,
demonstrating the efficiency of sparse solvers for smaller or simpler network matrices. Appendix B
contains a table of all computational times tables combined. The other CPU times also remain lower
than those of the Linear Solve Newton method, highlighting SPSolve’s advantage for larger networks.
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S, M, L XL,
#iter 5 12 10 13

CPU time (ms) 3.12 x 10 | 20.9 x 102 | 18.3 x 103 | 2.04 x 10*

Wall clock time (ms) | 2.56 x 10! | 5.57 x 102 | 3.42 x 103 | 3.29 x 10*

Table 6.3: Computational time Linear Scipy’s SPSolve method

However, scaling from smaller to larger networks doesn’t show notably improved efficiency compared
to previous methods. The increasing gap in wall clock time for the XL, network indicates a growing
challenge in maintaining the same level of efficiency for very large and complex networks.

SPSolve maintains the stability observed in the Linear Solve method while potentially offering better
performance. There is a significant performance gain in using SPSolve for sparse matrices, as shown
by the low CPU and wall clock times, making it suitable for real-world applications with large-scale
systems. The SPSolve method is highly recommended for solving sparse systems compared to the
other methods seen up to this point, due to its efficient use of computational resources.

6.4. PARDISO

The PARDISO solver is designed to handle sparse matrices (symmetric and nonsymmetric) matrices
with high efficiency. It is particularly suited for the types of systems often encountered in finite element
simulations and other applications involving large-scale scientific computations. Itis therefore expected
that this solver outperforms the previous method of section 6.3.

S M, Ly XL,
#Hiter 5 12 10 -
CPU time (ms) 14.1 x 10* | 35.1 x 10 | 20.2 x 10* -
Wall clock time (ms) | 3.72 x 10! | 6.68 x 102 | 3.59 x 10* | -

Table 6.4: Computational time PARDISO method

Table 6.4 and figure 6.2 display that S; and M; exhibit consistent convergence, indicating PAR-
DISO’s efficiency in handling smaller and less complex systems. However, the plot for the L; net-
work displays irregularities with sharp spikes in residuals, suggesting numerical instability or an ill-
conditioned matrix. Possible causes include insufficient solver parameters or preconditioning. L,
shows similar, nonconverging behaviour, with residuals varying across several orders of magnitude.
Convertion to CSR format have similar looking plots to those of the initial, CSC, format (CSC is the
preferred format for PyPardiso). Plots are included in appendix B. Attempts to plot the residual function
for the XL, network were unsuccessful, as the program halted before reaching a solution.

The lack of convergence for the X L; network with the PARDISO solver underlines the need for further
evaluation of solver capabilities and limitations. Possible problems could consist of multiple reasons.
PARDISO relies on LU factorization, and as problem size grows, stability can diminish, especially with-
out effective management of scaling issues in pivoting strategies. Initialization is also considered as
a potential cause. Testing with various input vectors, including randomised and constant ones, yields
similar results. Although PARDISO can be sensitive to initial guesses, it seems unlikely to be the prob-
lematic point of the oscillatory behaviour. Alternatively, precision issues may arise in large networks,
leading to underflow or overflow, causing solver convergence failures. This could potentially explain
oscillating or diverging residuals.

To diagnose where in these possibilities the actual problem lies within PARDISO, the obtained roots
are examined. By employing the same initial value vector and solving the system with an alternative
method, comparison data is obtained. Given that the problem arises at L,, the focus is on solving its
Jacobian. Subtracting these vectors and computing their norm allows assessment of whether it consti-
tutes a valid solution. Since both the two-norm and the infinity norm are notably nonzero (rounded to
126 and 25, respectively), the solution provided by the PARDISO solver is not actually a root. Conse-
quently, certain settings within the solver may not be optimal yet.
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Figure 6.2: Convergence of the PARDISO Newton applied directly, to different networks.

PARDISO library option; UMFpack

The observed nonconvergence behaviour for larger networks when using PARDISO might be mitigated
by switching to UMFPACK, which is better suited for nonsymmetric and sparse systems. This function
implements an Unsymmetric MultiFrontal method, which is designed to handle sparse nonsymmetric
matrices efficiently. Theoretically, it should not exhibit the same nonconvergence behaviour as PAR-
DISO (Schenk, 2002).

Next to that, UMFPACK uses different strategies for reducing fill-in, such as column pre-ordering
to minimise the work during numerical factorization. It also applies partial pivoting to maintain stability
during the factorization, which can be crucial for larger systems that might lead to instability.

When UMFpack is implemented to be 'False’ within the PARDISO library, a standard LU decompo-
sition solver is used within the PARDISO spsolve function, which may not have the same optimization
for handling sparsity and nonsymmetry as UMFPACK. In the plots provided in appendix B, it can be
seen that the behaviour with and without UMFpack remains similar.

Further investigation is necessary to understand and potentially improve its stability. However, for
the scope of this research, PARDISO will not be taken into account any further.

6.5. SuperLU

SuperLU tackles sparse linear systems by decomposing the sparse matrix into lower and upper trian-
gular matrices. The residual plots, shown in appendix B, suggest a consistent decrease in residuals,
indicating that the method converges to the solution without any abnormal behaviour. The absence of
spikes in the residuals, as seen with the PARDISO method for the L; network, suggests better numerical
stability in this context.

The number of iterations for SuperLU is generally in line with or slightly higher than the other meth-
ods discussed, which may reflect the overhead of decomposing the matrix in each iteration. The CPU
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S M, L XL,
#iter 6 14 12 13

CPU time (ms) 7.81 x 10 | 26.4 x 102 | 21.7 x 103 | 22.3 x 103

Wall clock time (ms) | 3.01 x 10! | 6.73 x 102 | 4.12 x 103 | 3.30 x 103

Table 6.5: Computational time SuperLU method

times vary, with §; showing a fast resolution. For M;, L, and XL, the times are again reasonable given
the complexity of the networks. The wall clock times remain low. SuperLU shows good performance
scaling with increased network complexity, as indicated by the relatively low wall clock times for larger
networks (L; and XL,). The low wall clock times across the board suggest that SuperLU is very efficient
when solving sparse systems, making full use of the sparse matrix structure to optimise computation.

The SuperLU solver demonstrates effective handling of the Newton-Raphson method across differ-
ent network sizes. SuperLU shows promise as a solver that can handle a wide range of network sizes
without significant stability issues. The provided data suggests SuperLU as a robust choice for solving
sparse systems efficiently and stably, even as the size and complexity of the system increase.

6.6. Comparison of various direct methods

This section offers insights into the comparative effectiveness across various network configurations.
While the preceding sections examined running the functions once, in this section, they are executed
ten times to adequately showcase their characteristics. Their mean times are presented along with their
standard deviation, a lower standard deviation indicates more predictable performance. All durations
are presented in seconds.

Solver Method S; Mean Time S; Std. Dev. M; Mean Time M; Std. Dev.
Inverse Jacobian  4.25 x 1072 49 x 10~* 11.5x 1071 19 x 1072

Linear Solve 4,13 x 1072 79 x 107* 8.54 x 1071 8.0 x 1072

Scipy’s SPSolve 218 x1072 30x10% 623x10°! 10x1072

SuperLU 2.19 x 1072 5.0 x 107* 6.32x 1071 2.1 x 1072
Solver Method L, Mean Time L, Std. Dev. XL, Mean Time XL, Std. Dev.
Inverse Jacobian 5.44 x 10° 16 x 1072 5.35 x 101 2.7 x 10°
Linear Solve 3.83 x 10° 13 x 1072 3.68 x 10! 1.9 x 10°
Scipy’s SPSolve 328 x 10° 4.8 x 1072 3.05 x 10! 1.5 x 10°
SuperlLU 3.31 x 10° 9.3 x 1072 3.05 x 10! 1.4 x 10°

Table 6.6: Computational times for networks S;, M;, L,, and XL,, bold implies fastest method for that network

Both Scipy’s SPSolve and SuperLU demonstrate strong performance. The Inverse Jacobian method
generally lags behind other methods in terms of both speed and reliability across all network sizes.
Standard deviations tend to increase with network size, indicating greater variability in computational
times for larger networks. Both the Inverse Jacobian and the Linear Solving method generally show
higher mean times, especially as the network size increases. This indicates that larger networks re-
quire more computational resources and time to solve. The increase in mean time is more pronounced
for these methods compared to Scipy’s SPSolve and SuperlLU, suggesting that the latter two methods
are more efficient in handling larger networks. Furthermore, the standard deviation is relatively low for
all solver methods. This implies consistent performance in terms of computation time.

6.7. GMRES

With the analysis of direct iterative methods now known, more insights could be given by the itera-
tive linear system solvers. Therefore, the following sections examine the functioning of GMRES and
Bi-CGSTAB, both methods that iteratively solve the system. They are designed for ill-conditioned ma-
trices, so the expectation is that they work efficiently. All upcoming residual plots are included in the
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Figure 6.3: Computational times for various networks
appendix B.
S, M, L, XL,
#iter 4 11 10 13
CPU time (ms) 469 x 10 | 23.4 x 102 | 18.7 x 103 | 20.8 x 10*
Wall clock time (ms) | 3.01 x 10 | 6.52 x 10% | 4.07 x 103 | 3.58 x 10*

Table 6.7: Computational time GMRES method

The GMRES convergence profiles presented for the model systems S;, M;, L, and XL, demon-
strate a consistent decrease in the logarithmic residual norm, slightly slower than the SuperLU and the
Scipy. GMRES is however using slightly less iterations.

6.8. Bi-CGSTAB

Examining the convergence profiles of the Bi-CGSTAB algorithm across diverse model systems pro-
vides insights into its iterative precision and efficiency, compared to that of the GMRES method. This
shows how Bi-CGSTAB adapts to different system characteristics.

S M, Ly XL,

#iter 4 11 10 13
CPU time (ms) 7.81x 1072 | 20.2x 1071 | 18.6 x 10° | 20.8 x 10!
Wall clock time (ms) | 3.16 x 1072 | 6.62 x 10~! | 3.97 x 10° | 3.56 x 10!

Table 6.8: Computational time Bi-CGSTAB method

In the Bi-CGSTAB convergence profiles, it is seen how the algorithm progressively improves the
accuracy of the solution. For S; and M;, the convergence is steady and direct, leading to highly ac-
curate solutions quickly, highlighting Bi-CGSTAB’s efficiency. L; shows slight oscillations, typical of
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Bi-CGSTAB’s method of convergence, possibly due to adjustments in the search direction or precon-
ditioning techniques. XL, initially reduces consistently but then temporarily increases around the 6th
iteration, likely due to how the preconditioner works or the system’s matrix structure. XL, shows a
slower but continuous reduction in the residual, indicating a gradual convergence that’s effective for
large-scale systems.

6.9. Comparison of various iterative methods

Comparing the Bi-CGSTAB and GMRES methods, they exhibit very similar behaviour. Both methods
demonstrate robustness and efficacy across all of the network systems. Table 6.9 provides a compar-
ison between them.

Solver Method S; Mean Time S; Std. Dev. M; Mean Time M, Std. Dev.

GMRES 1.83x102 29x10°3 5.11x 1071 5.7 x 1072
Bi-CGSTAB 1.88 x 1072 5.0 x 1073 5.24 x 1071 6.3 x 1072
Solver Method L; Mean Time L; Std. Dev. XL, Mean Time XL, Std. Dev.
GMRES 2.75 x 10° 1.8 x 1071 392 x 10! 24 x 10°
Bi-CGSTAB 2.76 x 10° 1.8x 1071 4.02 x 10! 2.0 x 10°

Table 6.9: Computational times GMRES versus Bi-CGSTAB, bold implies fastest method for that network

GMRES shows a trend of being slightly faster in mean computational time across the board. GM-
RES also generally exhibits a lower standard deviation, suggesting it has more consistent performance
across iterations, except in the L, system where Bi-CGSTAB demonstrates slightly less variability. In
practice, their performance is fairly similar. Hence, both GMRES and Bi-CGSTAB are effective iterative
solvers.

6.10. Comparison

The analysis now extends to comparing all methods seen so far. For all networks up to the large size,
it can be noted that GMRES is the most efficient method. Table 6.10 compares the values for the L;
and XL, networks. Moving to extra large networks, the direct methods become more competitive. For
the XL, network, as seen in table 6.10, SuperLU and SPSolve appear to be the optimal solvers. While
GMRES also provides a fast solution and potentially uses less iterations, it performs slightly worse.

L, Network XL, Network
Solver Method Mean Time | Solver Method Mean Time
Inverse Jacobian  5.44 x 10° Inverse Jacobian  5.35 x 10?
Linear Solve 3.83 x 10° Linear Solve 3.68 x 10t
Scipy’s SPSolve  3.28 x 10° Scipy’s SPSolve  3.05 x 10!
SuperlLU 3.31 x 10° SuperlLU 3.05 x 10?
GMRES 2.75 x 10° GMRES 3.92 x 10!
Bi-CGSTAB 2.76 x 10° Bi-CGSTAB 4.02 x 101

Table 6.10: Computational times for the L; and XL, networks across various solver methods, with the fastest method in bold

The log-log linear fit plot of figure 6.4 shows the scaling behaviours. The data is plotted on a log-log
scale, indicating the power-law nature of the computational time scaling with network size. For dense
solvers like those in numpy . 1inalg, the plot displays an improved scaling compared to the anticipated
0(n®). However, for sparse matrix solvers, the plot indicates deviations from the expected theoretical
complexities, suggesting that factors such as matrix structure and sparsity patterns significantly influ-
ence the actual computational costs. The linear fit in a log-log scale indicates a power-law relationship
between network size and computational time, expressed mathematically as:
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Lower slopes indicate better efficiency since the computational time increases more slowly with net-
work size. The overlapping confidence intervals suggest that the performance of the solver methods
is quite similar across the range of network sizes tested. The error bars on each point represent the
variability or standard deviation of the computational times for each method. Tighter error bars imply
more consistency in the solver’s performance, whereas wider bars suggest more variability.

The slopes, detailed in Table 6.11, suggest similar growth patterns across various methods. The In-
verse Jacobian method displays a slope of 2.46, indicating moderate complexity growth with increasing
problem size. Relative to the scaling behaviour typical in methods involving matrix inversion operations
(typically with a 0(n®) scaling), they perform better. The Linear Solve method, with a slope of 2.36,
shows slightly better scalability compared to the Inverse Jacobian method. Both SPSolve and SuperLU
exhibit slopes above 2.5, implying a slightly steeper rise in computational demands with growing prob-
lem size. Conversely, the iterative GMRES and Bi-CGSTAB methods display slopes of 2.66 and 2.64,
respectively. Although these values are slightly higher, the overall differences in slope among methods
are not significantly pronounced, suggesting comparable sensitivity to increases in problem size across
the evaluated techniques.

Solver Method Slope of Log-Log Regression

Inverse Jacobian 2.464074
Linear Solve 2.357803
Scipy’s SPSolve 2.525384
SuperLU 2.522780
GMRES 2.662067
Bi-CGSTAB 2.640319

Table 6.11: Slope of Log-Log Regression for Different Solver Methods

In conclusion, the log-log regression analysis emphasises the critical role of solver selection based
on problem-specific characteristics and size. For significantly scaling matrices, methods with lower
slopes might be preferable. Conversely, for smaller or matrix property-sensitive problems, such as
sparsity or condition number, GMRES or Bi-CGSTAB could still be advantageous despite their scaling
behaviour.
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The upcoming chapter explores the role of initial conditions in the Newton-Raphson method. It exam-
ines random and strategic initialization methods in section 7.1. Additionally, the chapter investigates
whether evaluations of the Jacobian could be avoided, by using previous iterations in section 7.2. After-
wards, section 7.3 explores the potential errors of this report, and suggests how these could be omitted
in the further research.

7.1. The initial conditions

The choice of initial conditions plays a crucial role in the convergence and efficiency of Newton-Raphson’s
method. Randomly chosen initial values are often used in practical implementations of the Newton-
Raphson method. While this approach is convenient, it may not always yield satisfactory results. The
convergence of the method heavily depends on the distance of the initial guess to the actual root. Ran-
dom initialization can lead to scenarios where the initial guess is too far from the root, resulting in slow
convergence or even divergence of the algorithm.

Rather than employing randomised vectors, an alternative approach involves generating initial vec-
tors of constants. Three distinct constant vectors are examined: one where all values are set to one,
another with values of ten, and a third with values of one hundred. This strategy helps mitigate the
computational costs linked to random input vectors, which, though relatively minor, remain significant.
Additionally, using constant values eliminates the possibility of encountering outlier values.

Figure 7.1 displays the mean computational times for various solver methods when initialised with
different types of vectors. The mean time increases as the value of the constants increases, which
suggests that larger constants might be further from the actual solution. The results demonstrate that
both randomised and constant vectors, when scaled by a factor of one hundred, exhibit a notable
increase in computational time. Conversely, the disparity in computational time between scaling by a
factor of one and ten is less pronounced. Notably, the error bars associated with direct computational
methods are consistently similar and appear narrower compared to those of iterative methods. Given
the slight difference between randomised and constant input vectors, it is unlikely to yield substantial
computational efficiency gains in further research on optimizing initial values. Based on this analysis, it
is safe to conclude that choosing any vector with values below ten will suffice. Opting for a vector filled
with ones is particularly advantageous due to its simplicity of implementation.

45
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Detailed Computational Times for Each Solver Method Across Different Vector Types
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Figure 7.1: Different input vectors compared for the various methods

7.2. Freezing the Jacobian or evaluation

In the process of using Newton-Raphson, evaluating the Jacobian matrix at each iteration can be com-
putationally expensive, especially for large-scale problems. However, if the sparsity pattern of the
Jacobian matrix remains constant across iterations, it is unnecessary to recompute the entire Jacobian
matrix at every step. Instead, reusing the Jacobian can significantly accelerate the convergence of the
solver. This could make the optimization process more efficient and scalable for complex nonlinear
systems.

The function evaluation in every Newton iteration is also requires adequate computational efforts,
but is needed to be precise. Even minor changes in the function’s value can destabilise this approx-
imation, causing divergence or slowing down convergence. Thus, reevaluating the function at each
iteration is essential to uphold the accuracy of the linear model.

As seen in table 7.1, the efficiency of different solver methods varies with tolerance levels. The
values are all given in seconds, with a significant value of x10°. InvJac method starts as the least
efficient but shows a consistent decrease in mean time with increasing tolerance. Linear Solve and
SuperLU improve with higher tolerances, with SuperLU slightly better. SPSolve emerges as the most
efficient solver, particularly with looser tolerances, possibly due to its effective exploitation of system
sparsity. lterative methods like GMRES and Bi-CGSTAB also exhibit a modest decrease in mean time
with increased tolerance, indicating their robustness across different accuracy requirements.

Figures 7.2 showcases the mean computation times for various methods applied to the L; network
with standard deviation as error bars, comparing no threshold and a threshold of10~3. Similar plots for
the other thresholds are to be found in appendix B. As the tolerance becomes less strict (from 10~7 to
1073), the mean time required by each solver decreases. SPSolve and SuperLU obtain smaller error
bars across all tolerances, indicating stable performance. Conversely, Invdac shows larger error bars,
particularly at tighter tolerances, suggesting greater variability in its performance. The plots in figure
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Figure 7.2: Reusing Jacobian evaluations, (a) without threshold, (b) with a threshold of 1073
Solver Tolerance
None | 1077 10 1075 1074 1073
Inverse Jac 544+ 016 | 514+050 493+036 4.69+0.81 456+0.73 3.85+0.54
Linear Solve | 3.83+0.13 3544027 3354063 3.124+0.29 3.00+0.30 2.23+0.38
SPSolve 3.284+0.048 | 294+ 0.23 2.71+022 2444032 229+40.16 1.70+0.32
SuperLU 3.31+0.093 | 3.00+0.23 2.78+0.21 253+032 239+0.17 1.73+0.39
GMRES 275+0.18 | 2.66+0.18 251+0.18 2.12+0.18 2.294+0.18 1.66+0.18
Bi-CGSTAB 276 +0.18 | 2.68+0.18 2.52+0.18 2.14+0.18 2.29+0.18 1.66+0.18

Table 7.1: Solver Performance Comparison for Network L,

7.2 indicate that for the L; network, sparse matrix solvers like SPSolve and SuperLU offer superior per-
formance, particularly with some tolerance. Also the iterative methods demonstrate consistent strong
performance across different tolerance levels.

7.3. Potential errors of this research

While aiming for a fair comparison among all methods, factors may still influence the results, under-
scoring the importance of acknowledging and attempting to mitigate them in future research.

7.3.1. More networks
This report analysed the networks S, S,, M;, M,, L;, L, and XL;. This is a very limited number of
networks, and therefore quite bold to make strong conclusions out of the data that is obtained. The
patterns that are established are likely to also occur in the other networks, but the conclusions would
be more grounded if more networks would be examined.

In order to get an even better view on how well the methods work, the networks could potentially be
extrapolated to create more data points. That way, larger and smaller networks can be designed and
evaluated. There are many ways to do this, but they fall outside of the scope of this research.

7.3.2. Randomness
In this study, new random vectors are generated each time the Newton-Raphson method is applied.
This means that the methods are tested on similar yet different inputs. As discussed in section 7.1, the
initialization is not expected to significantly alter the outcome but is worth noting. For future research,
it is advisable to evaluate various methods using the same vectors, even if randomization is desired.
Furthermore, paying attention to the random seed is vital. In this study, random input arrays were
initially constructed with values between zero and one for the values in chapter 6. Later, the random
seed was set to 42, resulting in values that no longer fell within these boundaries, generating signif-
icantly different outcomes. Eventually, the random array was adjusted to produce entries based on
random seed 42, maintaining values between 0 and 1. Understanding the initial values is crucial and
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requires careful consideration.

7.3.3. Conversion to sparse matrix format

All functions, except for the Inverse Jacobian and the Linear Solve, operate on matrices provided in
sparse formats. As the conversion process may also consume some time, the reported time appears
higher than the actual time taken for linear solving. While this discrepancy is assumed to be minor, it
remains notable for accuracy.

7.3.4. Fill factor

In the Bi-CGSSTAB method, the fill factor in the Python implementation is set to 25. This is because a
singular matrix arised in the default settings. A larger fill factor in a computational context refers to the
increased density of non-zero elements in a matrix. However, this enlarged fill factor may also imply
longer computational times since more non-zero elements need to be stored and processed. Further
research could be to change other library parameters, as discussed in chapter 5.

7.3.5. Internet connection

As Gradyent operates on virtual machines that rely on internet connectivity to function, it wasn’t feasible
to disconnect from the internet while running the code, as the software environment resides within
the virtual machine. This limitation may have led to increased computational times. Therefore, it is
recommended to restructure the software architecture, if feasible, to allow for offline operation during
code execution.



Conclusion

This report investigates ways to enhance Gradyent’s implementation of the Newton-Raphson method
for solving rootfinding functions. It begins by highlighting the significance of the linear solving process
within the Newton iterations. By examining the structure of the networks’ Jacobian matrices, opportu-
nities for more efficient computations are identified, particularly by capitalising on their nonsymmetry
and sparsity. The report delves into strategies for smart implementation of this information.

SuperLU and Scipy emerge as the fastest solvers for the networks up to sizes of roughly (1,000 x
1,000). For larger networks, iterative methods like GMRES and Bi-CGSTAB perform better than the di-
rect linear solving methods. These methods are conveniently accessible through user-friendly Python
packages. This report also highlights the impact of initial conditions on function behaviour, recom-
mending input vectors closer to zero over those closer to one hundred. Additionally, implementing a
threshold for reusing similar Jacobian evaluations can significantly boost method performance.

However, certain challenges arise due to various reasons. The Newton-Raphson method some-
times failed to converge in scenarios where the Jacobian matrix was nearly singular or the initial guess
was distant from the true solution. Sharp function discontinuities also hindered convergence. Similarly,
the PARDISO solver exhibited non-convergence in larger network systems due to insufficient solver pa-
rameters or preconditioning, alongside stability issues in LU factorization. The effectiveness of iterative
methods like GMRES and Bi-CGSTAB was notably dependent on the application of well-tuned precon-
ditioners, suggesting a critical need for robust preconditioning strategies.

Future research could concentrate on refining method parameters and possibly crafting a hybrid
algorithm that merges a reliable iterative solver with an effective linear solving approach. This could
involve devising clever methods to leverage the fact that each edge can only connect two nodes, leading
to specific matrix structures as discussed in chapter 4. Therefore, preconditioning techniques for district
heating systems could be explored in greater depth. Additionally, parallelization techniques are crucial,
considering the observed disparity between wall and CPU times. Exploring these options has the
potential to improve computational efficiency.
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Python implementation

A.1. Packages

import time

import pickle as pkl

import joblib

import matplotlib.pyplot as plt
import numpy as np

import pypardiso

import scipy.sparse
np.random.seed(42)

A.2. Functions

def newton_raphson_solver(f, input_array, newton_method_func, max_iter=100,
Xx_n = input_array
residual_history = []
start_time = time.time ()

for i in range(max_iter):
eval = f.evaluate(x_n)
residual = np.linalg.norm(eval, ord=np.inf)

residual_history .append(residual)

if residual < tol:
print (”Converged,in_ {}_iterations”.format(i))
break

f.evaluate_jacobian(x_n)

n newton_method_func(x_n, j, eval)

X —-

time .time ()
end_time - start_time

end_time
duration

if residual >= tol:
residual_history .append(residual)

return x_n, duration, residual_history

tol=1e-7):

def THRESHOLD_ newton_raphson_solver(f, input_array, newton_method func, max_iter=100,

tol=1e-7, eval_tol=1e-3):
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A. Python implementation

def

def

def

def

def

def

X_n = input_array
residual_history = []
start_time = time.time ()
prev_j = None

prev_x_n = None

for i in range(max_iter):
eval = f.evaluate(x_n) # Always evaluate the function
if prev._.x n is not None and np.linalg.norm(x_n - prev_x_n, ord=np.inf)
< eval_tol:
j = prev_j
else:
j = f.evaluate_jacobian(x_n)

prev_j = j
prev_x_n = x_n

residual = np.linalg.norm(eval, ord=np.inf)
residual_history .append(residual)

if residual < tol:
break

x_n = newton_method_func(x_n, j, eval)
end_time = time.time ()

duration = end_time - start_time
return x_n, duration, residual_history

inverse_newton_method (x_n, jacobian, eval):
return x n - np.linalg.inv(jacobian) @ eval

linsolve_newton_method (x_n, jacobian, evaluation):
return x_n - np.linalg.solve(jacobian, evaluation)

sp_newton_method(x_n, jacobian, evaluation):
j_sparse = scipy.sparse.csc_matrix(jacobian)
return x_n - spsolve(j_sparse, evaluation)

sp_gmres_method(x_n, jacobian, evaluation, tol= 1e-9):

Mx= scipy.sparse.linalg.spilu(jacobian, fill_factor= 10).solve
M= scipy.sparse.linalg.LinearOperator(jacobian.shape, Mx)
j_sparse = scipy.sparse.csc_matrix(jacobian)

X, _ = gmres(j_sparse, evaluation, M=M, tol= tol, atol= tol)
return x_n - X

sp_bicgstab_method (x_n, jacobian, evaluation, tol=1e-9):

Mx= scipy.sparse.linalg.spilu(jacobian, fill _factor=25).solve
M= scipy.sparse.linalg.LinearOperator(jacobian.shape, Mx)
j_sparse = scipy.sparse.csc_matrix(jacobian)

X, _ = bicgstab(j_sparse, evaluation, M=M, rtol= tol, atol= tol)
return x_n - X

par_newton_method(x_n, jacobian, evaluation):
eval_np = evaluation. _value if hasattr(evaluation,
j_np = np.array(jacobian)

j_csc = scipy.sparse.csc_matrix(j_np)

return x_n - par_spsolve(j_csc, eval_np)

_value’) else evaluation
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def UMFpar_newton_method(x_n, jacobian, evaluation):
eval_np = evaluation._value if hasattr(evaluation, ’'_value’) else evaluation
j_np = np.array(jacobian)
j_csc = scipy.sparse.csc_matrix(j_np)
return x_n - par_spsolve(j_csc, eval np, use _umfpack=False)

def superlu_newton_method(x_n, jacobian, evaluation):
j_sparse = scipy.sparse.csc_matrix(jacobian)
solution = scipy.sparse.linalg.spsolve(j_sparse, evaluation)
return x_n - solution

def confidence_interval(x, y, x_fit, confidence=0.95):

, intercept, r_value, _, std_err = linregress(np.log(x), np.log(y))
_fit = np.exp(intercept + slope * np.log(x_fit))
= len(x)

scipy.stats.t.ppf((1 + confidence) /
i =t % std_err » np.sqrt(1/n + (np.log
(np.log(x) - np.log(x).mean())**2).sum(
return y fit, np.exp(np.log(y_fit) - ci)

2., n-2)

(x_fit) — np.log(x).mean())*=*2 /
))

, hp.exp(np.log(y_fit) + ci)
A.3. Program

Listing A.1: Example Python code

tolerances [10** 3, 10x%x-4, 10x%x-5, 10*%x-6, 10%%x-7]

[ , ”81 ” , ”82" , "M1” , uMzn , ”L1 ” , ” L2 ” , ”XL1 u]

networks

solvers = {
“inverse_newton_method”: inverse_newton_method,
"linsolve_newton_method”: linsolve_newton_method,
”sp_newton_method”: sp_newton_method,
"superlu_newton_method”: superlu_newton_method

gmres_method” : sp_gmres_method,
"bicgstab_method”: sp_bicgstab_method,
”par_newton_method”: par_newton_method,
"UMFpar” : UMFpar_newton_method,

}

results = []

for tol in tolerances:
for network in networks:

if network == ”"S0”:
residual_function_file_path = "test _network _residual_function_
Luuuuuuuuuuountransformed . pkl”
else:

residual_function_file_path = f”’networks/{network}/residual_function

vuuuuuuooouu _full . pkl.z

with open(residual_function_file_path, ”"rb”) as residual_function_file:
residual_function = joblib.load(residual_function_file)

input_array_shape = residual_function.args[0]. shape

random =[]

for i in range(11):
r= np.random.random(low= 0.0, high= 1.0, size= input_array_shape) = 10
residual_function.evaluate(r)
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residual_function.evaluate_jacobian(r)
random . append(r)

for i in range(1, 11): # Start from 1 to avoid initial cold start
random_input_array = random][i]
for solver_name, solver_func in solvers.items():
_, exec_time, _ = newton_raphson_solver(residual_function,
random_input_array, solver_func, tol=tol)

timesave[solver_name].append(exec_time)

timesave = {solver_name: [] for solver_name in solvers}
residualhistory = {solver_name: [] for solver_name in solvers}

for solver_name, times in timesave.items():
mean_time = np.mean(times)
std_time = np.std(times)
results .append ({
"Network” : network,
*»Solver”: solver_name,
"Tolerance”: tol,
"Mean_Time”: mean_time,
»Standard_ Deviation Time”: std_time,

)

for result in results:

print (f”Network: {result[’ Network ']} ,_.Solver: {result[’  Solver ']},
uuuuMean Time:  {result[ ' Mean_Time ']}, Standard_ Deviation Time:
uuuu{result[’ Standard_ Deviation Time ']}, Tolerance: {tolerances}”)

# Perform linear regression in log-log space and plot fit

slope, intercept, , , _ = linregress(np.log(node_sizes), np.log(mean_times))
slopes.append(slope)

# Calculate linear fit with confidence intervals

x_fit = np.linspace (min(node_sizes), max(node_sizes), 100)

y_fit, lower_bounds, upper_bounds = confidence_interval(node_sizes, mean_times,
x_fit)



Additional data

B.1. Jacobians

Figure B.1 shows that the structure of the matrix M; does not visualize great when plotted without
clipping or setting a threshold for low values.

200 +

400 A

600

800 +

T T T T
0 200 400 600 800
Figure B.1: Jacobian of medium sized network M,

In figure B.2, the Jacobians plotted after the direct Newton methods are applied are seen. The
figures include the Inverse Newton Method, the Linear Solve Newton Method, Scipy’s SPSolve Method,
PARDISO and the SuperLU method.

Figure B.3 plots the eigenvalues of the networks S,, S;, M; and L;. They show similar behaviour as
the eigenvalues of XL,, provided in the main text.

To ensure that the characteristics of the matrices remain throughout the algorithms, a comparison
is made with the eigenvalues at the last iteration. The eigenvalues presented in figure B.4 are based
on Jacobians evaluated at the approximated root of the systems. This is done for various methods, to
ensure the properties remain for them all.
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Jacobian Matrix L1 at root of Inverse Newton Method Jacobian Matrix L1 at root of Inverse Newton Method
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Figure B.2: Jacobians of L, evaluated at the final iteration of various Newton methods (Inverse Jacobian, Linear Solve, Scipy’s
SPSolve, PARDISO, SuperLU)

B.2. Residual versus iteration graphs

The following figures plot the residuals scaled against the iterations, for all sizes of networks. This is
done per function, and all graphs that are not supplied in the main text are given here. Figure B.5
represents the plots for the Linear Solve, figure B.6 for SPSolve, figure B.7 for SuperLU, figure B.10
for GMRES and lastly, figure B.11 for Bi-CGSTAB.



B.2. Residual versus iteration graphs
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S M, L XL,
#iter 5 12 10 13

CPU time (ms) 147 x 102 | 617 x 103 | 34.5x 103 | 3.62 x 10*

Wall clock time (ms) | 2.80 x 102 | 1.22x 103 | 5.80 x 103 | 5.86 x 10*
#iter 5 12 10 13

CPU time (ms) 13.6 X 102 | 9.44x 103 | 27.2 x 103 | 2.49 x 10*

Wall clock time (ms) | 2.87 x 10?2 | 1.70 x 103 | 4.62 x 103 | 3.88 x 10*
#iter 5 12 10 13

CPU time (ms) 3.12 x 10! 20.9 x 10?2 | 18.3 x 103 | 2.04 x 10*

Wall clock time (ms) | 2.56 x 10 | 557 x 102 | 3.42 x 103 | 3.29 x 10*
#iter 5 12 10 -
CPU time (ms) 14.1 x 10t 35.1 x 102 | 20.2 x 10* -
Wall clock time (ms) | 3.72 x 10' | 6.68 x 102 | 3.59 x 10* -
#iter 6 14 12 13

CPU time (ms) 7.81 x 101 26.4x10% | 21.7 x 103 | 22.3 x 103

Wall clock time (ms) | 3.01 x 10' | 6.73 x 10?2 | 4.12x 10% | 3.30 x 103
#iter 4 11 10 13

CPU time (ms) 4.69 x 10! 23.4x10% | 18.7 x 103 | 20.8 x 10*

Wall clock time (ms) | 3.01x 10! | 6.52x 102 | 4.07 x 103 | 3.58 x 10*
#iter 4 11 10 13

CPU time (ms) 7.81x 1072 | 20.2x 107! | 18.6 x 10° | 20.8 x 10!

Wall clock time (ms) | 3.16 x 1072 | 6.62 x 107! | 3.97 x 10° | 3.56 x 10!

Table B.1: Computational time Inverse Jacobian method
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Figure B.3: Eigenvalues of different networks.
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Figure B.4:
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Eigenvalues of L,, after methods Inverse Jacobian, Linear Solve, Scipy’s SPSolve, PARDISO, SuperLU
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Residual vs lterations SO Linear Solve Residual vs Iterations S1 Linear Solve
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Figure B.5: Convergence of the LinSolve applied directly, on different networks.
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B.2. Residual versus iteration graphs
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Figure B.6: Convergence of the Scipy SPSolve applied directly, on different networks.
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Residual vs lterations SO SuperLU Residual vs lterations S1 SuperLU
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Figure B.7: Convergence of the SuperLU applied directly, on different networks.
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B.2. Residual versus iteration graphs
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Figure B.8: PARDISO applied to L; and L,, but then in CSR format (CSC is default)

Residual vs Iterations L1 PARDISO (umfpack= false)
10°
107
10°
103
10!

107!
1073

Logarithmic Residual

0 15 30 45 60 75 90 105
Iteration

(a)
Residual vs Iterations L1 PARDISO (umfpack= true)

10°
107
10°
103
10t
1071
1073

Logarithmic Residual

0 15 30 45 60 75 90 105
Iteration

(c)

Residual vs Iterations L2 PARDISO (umfpack= false)

10102
10%°
1076
1093
10%°
10
1024
1011

Logarithmic Residual

o

15 30 45 60 75 90 105
Iteration

(b)
Residual vs Iterations L2 PARDISO (umfpack= true)

10102
1089
1076
1063
1050
1037
1024
1011

Logarithmic Residual

0 15 30 45 60 75 90 105
Iteration

(d)

Figure B.9: PARDISO applied to L; and L,, differentiating between UMFPACK= True and False
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B.3. Linear Regression
As discussed in Chapter 6, the linear fit of the different methods appears to be consistent. To explore the
behavior of the fit when considering the smaller networks S; and S,, Figure B.13 depicts the residuals
with these networks included. Noticeably, the error bars are less pronounced with the inclusion of more
data points. While the increased data aids accuracy, this observation is still noteworthy.

B.4. Initial values

Table B.2: Solver Performance Comparison for Networks S2, M2, and L2

Solver Method | S2Mean Time  S2 Std. Dev. | M2 Mean Time M2 Std. Dev.
inverse_newton_method | 4.66 x 1072 96.7 X 107* 14.6 x 1071 20.8x 1073
linsolve_newton_method | 4.19 x 1072 53.5x 107* 10.3x 1071 29.6 x 1073
sp_newton_method 2.43 x 1072 2.63 x 1074 7.96 x 1071 13.4 x 1073
superlu_newton_method | 240x 1072 6.10x10™% | 795x10°! 953x10°3
Solver Method | L2 Mean Time L2 Std. Dev. |

inverse_newton_method 4.24 x 10° 3.18 x 1072

linsolve_newton_method 3.62 x 10° 1.17 x 1072

sp_newton_method 268 x10° 1.21x 1072

superlu_newton_method 2.76 x 10° 1.23 x 1072

The set of figures 7.2 showcases the mean computation times for various Newton-Raphson meth-
ods applied to the L; network with standard deviation as error bars, across a range of tolerance levels

from none to 10~7.
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Figure B.10: Convergence of the GMRES applied directly, on different networks.
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Figure B.11: Convergence of the Bi-CGSTAB applied directly, on different networks.
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Figure B.12: Residual versus iterations for network solving of S,, M,, L,, for the methods Inverse Jacobian, Linear Solve, Scipy’s
SPSolve, SuperLU, GMRES and Bi-CGSTAB
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Computational Time vs Network Size by Solver Method
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Improving the iteration method of
Newton-Raphson

Now knowing the numerical mathematical background, and understanding the algorithm, we can start
to check ways in which we can improve this. The most obvious way to improve is to see whether
Newton-Raphson can be adjusted for a typical heating network. This chapter delves in to the possi-
bilities of adjusting this algorithm, and finding a more efficient way to do so. What methods can be
employed to improve its performance, and how do they function? The mathematical basis behind
these improvements is explored, along with the scenarios in which they are applicable. Following this,
Chapter 3 moves on to discussing techniques for solving linear systems.

Damping and regularization are strategies employed to enhance the stability and performance of
the Newton-Raphson algorithm, particularly in scenarios where issues like numerical instability or ill-
conditioning may arise (damping). After examining these in sections C.1 and C.2, various line search-
ing methods are exploited in section C.3, followed up by examples of accelerators in section C.3.

C.1. Damping
Damping involves introducing a damping factor to control the step size in each iteration of the Newton-
Raphson algorithm. This can be especially useful when the algorithm encounters regions with steep
slopes or sharp changes, preventing overshooting and ensuring more stable convergence. One com-
mon damping strategy is the introduction of a damping parameter, denoted as 4, where the updated
iterate is calculated asx,.; = x, — Af'(x,) " 'f(x,). Adjusting 1 allows for a balance between the
Newton step and damping, promoting smoother convergence.

Damping involves multiplying the Jacobian matrix by a damping factor to reduce the step size and
control the convergence rate. Damping is implemented as follows;

1. Introduce a damping factor, often denoted as «a, into the Newton-Raphson update equation:
Xpew = Xoig — ad1f(%q), Where ] is the Jacobian matrix.

2. The damping factor « is typically between 0 and 1. Smaller values of a lead to smaller steps,
stabilizing the iterations.

C.2. Regularization

Regularization is employed to handle ill-conditioned problems or situations where the Hessian ma-
trix is close to singular (regularization). By adding a regularization term to the Hessian matrix, the
algorithm becomes more robust, and convergence is improved. For instance, Tikhonov regulariza-
tion adds a multiple of the identity matrix to the Hessian, preventing singularities and stabilizing the
Newton-Raphson method in ill-conditioned cases. The regularized Newton step is given by x,,; =
X, — [f'(%,) + aI]71f (x,), Where « is the regularization parameter.

71
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Regularization involves adding a stabilizing term to the system of equations, typically in the form of
a penalty term. This term helps prevent divergence or oscillations in the iterations. This is how it works;

1. Modify the original equation to include a regularization term, often proportional to the norm of the
solution or its derivatives.

2. The modified equation becomes: f(x) + Ag(x) = 0, where f(x) is the original function, g(x) is
the regularization term, and 1 is a regularization parameter.

3. The regularization parameter 1 is chosen carefully to balance the trade-off between fitting the
data and controlling instability

Both damping and regularization techniques are valuable tools in the Newton-Raphson algorithm’s
toolbox, providing mechanisms to address challenges associated with steep or ill-conditioned regions.
These strategies ensure more robust convergence and extend the algorithm’s applicability to a wider
range of optimization problems.

These techniques aim to prevent overshooting and oscillations in the iterative process. Itis common
to use a combination of regularization and damping for improved stability. One can do that as follows.
First modify the Newton-Raphson update equation with both a regularization term and a damping factor:
Xnew = Xoid — @) " 1(f (xoi) + Ag(x01q)). Then adjust the damping factor and regularization parameter
to achieve the desired balance between stability and convergence.The choice of damping factor and
regularization parameter depends on the characteristics of the specific problem. Too much damping or
regularization may slow down convergence, while too little may lead to instability. Careful tuning and
experimentation are often necessary to find an optimal combination for a given application.

C.3. Line searching methods

Line-searching methods play a crucial role in enhancing the performance of optimization algorithms.
These methods focus on efficiently determining the step size along the search direction, ensuring
that each iteration moves the algorithm toward the optimal solution. They are further examined in
num-nonlin. Incorporating line search techniques in the Newton-Raphson algorithm can significantly
improve its convergence properties, particularly in cases where the step size influences the algorithm’s
stability and speed.

For instance, the Armijo-Goldstein rule is a popular line-search method that adjusts the step size based
on a sufficient decrease condition, preventing overstepping and facilitating convergence (armijo). An-
other example is the Wolfe conditions, which offer a more sophisticated set of criteria for step size ad-
justment, balancing the trade-off between speed and stability. By integrating such line-search strate-
gies, the Newton-Raphson algorithm becomes more adaptive and robust, ensuring efficient conver-
gence to the desired solution (num-nonlin).

C.3.1. Interpolated Line Search

The interpolated line search integrates the Newton-Raphson update direction (AU) with an adaptive
step size (n). Initially, one computes (AU) using the regular Newton-Raphson method. However, in-
stead of directly updating (U,,+1 = U, + AU), the optimal step size () is determined by evaluating the
residual function at various points along the direction (AU) to minimize the residual.

This approach can enhance accuracy by adjusting the step size based on the residual landscape,
adapting to local curvature and potentially accelerating convergence. While it improves accuracy, the
interpolated line search necessitates additional function evaluations to find the optimal step size, which
may increase computational cost. Implementing the interpolated line search involves interpolating the
residual function, introducing complexity compared to using a fixed step size.

C.3.2. Regula Falsi Line Search

The regula falsi (false position) line search employs a root-finding technique. One computes the func-
tion s(n) = AUR(U,, + nAU), where R represents the residual. The step size (1) is updated based on
the sign of (s(n)). If (s(n)) changes sign between two points, the interval is bisected to find the root.
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Regula falsi balances accuracy and stability, providing reasonable convergence. While it may not
be as precise as the interpolated line search, it offers a good compromise. It requires fewer function
evaluations compared to the interpolated line search, making it computationally efficient. Regula falsi
is straightforward to implement, involving root-finding techniques without additional complexities.

C.3.3. Bisection Line Search

The bisection line search maintains stability by employing fixed step sizes. The function is evaluated at
two points along (AU), and the midpoint is chosen as the new estimate. The interval is halved in each
iteration.

The bisection method maintains stability but sacrifices accuracy, leading to slower convergence
due to fixed step sizes. It is computationally inexpensive, requiring only two function evaluations per
iteration. Bisection is the simplest to implement, involving minimal additional logic beyond the basic
iteration scheme.

C.4. Accelerators

Acceleration methods efficiently update iterates or adjust step sizes to overcome convergence limita-
tions. Aitken’s method employs linear extrapolation of iterates for faster convergence, while Anderson’s
combines previous iterates with a high-order correction term for iterative refinement (accelerators2).
Steffensen’s method is another approach, avoiding derivatives. These techniques are particularly effec-
tive for slowly converging sequences or challenging optimization problems, making Newton-Raphson
more versatile and improving convergence across various scenarios (accelerators1).

C.4.1. Aitken’s Delta-squared process (Shank’s transformation)
The Shanks Transformation, also known as Aitken’s delta-squared process, is a method used to ac-
celerate the convergence of a sequence. Although not directly applicable to the Newton-Raphson
algorithm itself, it can be employed on the sequence of iterates generated by the Newton-Raphson
method to potentially improve its convergence speed (aitken).

Here’s how you can apply the Shanks Transformation to the Newton-Raphson iterates:

1. Begin with an iterative process for solving a system of equations. For simplicity, consider a system
with three equations and three unknowns, although the method can be generalized to larger
systems.

2. Generate the iterative sequence {x,,} where each x, is an approximation to the solution. This
sequence may exhibit slow convergence or divergence.

3. Apply Aitken’s Delta-squared transformation to the iterative sequence. The transformed se-
quence is given by:
(xn+1 B xn)z

=Xxp — C.1
n = Xnt2 = 2Xn41 + Xp ( )

4. Use the transformed sequence {y,} as an updated sequence for further iterations. The idea is
that this updated sequence converges faster than the original one.

5. Repeat

Repeat the iterative process using the updated sequence until convergence is achieved or until the
desired level of accuracy is reached. Applying this transformation may help accelerate the convergence
of the Newton-Raphson method. However, keep in mind that the effectiveness of the Shanks Trans-
formation depends on the characteristics of the sequence and whether the underlying assumptions are
met. It is important to test and verify the impact of such transformations on the specific problem.

Comparing Aitken’s delta-squared method with the Newton-Raphson method reveals trade-offs.
While Newton-Raphson offers quadratic convergence, it depends on derivatives, posing challenges
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when derivatives are hard to obtain. Aitken’s method, however, provides a derivative-free approach
but lacks a guaranteed convergence. Thus, while Aitken’s method accelerates convergence, especially
with slowly converging sequences, its effectiveness varies, and Newton-Raphson remains competitive,
particularly in cases of rapid convergence.

C.4.2. Anderson’s transformation

Anderson’s Acceleration is an iterative algorithm designed to accelerate the convergence of fixed-
point iterations or other iterative methods for solving nonlinear equations or optimization problems
(accelerators1). The basic iterative step in Anderson’s Acceleration is given by:

Xna = @+ ) (P ) = x0) + HOxp) c2)
k=1

where x,, is the current approximation, F(x,,) is the function value at x,,, « is a damping parameter,
ay are coefficients, and H(x,) is a high-order correction term. To use Anderson’s Acceleration, start
with an initial approximation x,, apply the iterative step until convergence is reached, and update the
coefficients and damping parameter dynamically during the iterations.

When examining Anderson’s Acceleration alongside the Newton-Raphson method, both aim to im-
prove iterative processes for solving nonlinear equations, though they take different approaches. An-
derson’s Acceleration has advantages over Newton-Raphson, particularly in significantly speeding up
convergence, especially for specific types of problems. It's widely used in electronic structure calcula-
tions and various scientific fields. However, Anderson’s Acceleration isn’t without limitations compared
to Newton-Raphson. Its effectiveness can vary depending on the problem, and it can be computation-
ally demanding due to the calculations needed for coefficients and correction terms.

While Anderson’s Acceleration shows promise for improving convergence in iterative processes, its
performance and computational requirements need careful consideration, especially when compared
to the more traditional Newton-Raphson method.

C.4.3. Richardson Extrapolation

Richardson Extrapolation is a numerical technique utilized to enhance the accuracy of approximations
obtained from iterative methods by extrapolating solutions from computations performed at multiple
step sizes or levels of refinement. The method is particularly valuable for improving convergence rates
and reducing numerical errors in iterative schemes (richardson).

The fundamental concept behind Richardson Extrapolation involves computing approximations of a
desired quantity at different levels of refinement, typically achieved by varying parameters such as step
sizes or grid resolutions. These approximations are then combined using a weighted sum or polynomial
interpolation to generate a more accurate estimate of the desired quantity. By leveraging information
from computations at different resolutions, Richardson Extrapolation can significantly enhance the ac-
curacy of numerical solutions.

When compared to standard iterative methods, Richardson Extrapolation offers notable advan-
tages in terms of accuracy improvement and convergence acceleration. However, its effectiveness
may depend on factors such as the choice of refinement levels and the behavior of the underlying
iterative scheme. Additionally, Richardson Extrapolation may introduce additional computational over-
head, particularly when performing computations at multiple resolutions.

In conclusion, Richardson Extrapolation presents a powerful technique for enhancing the accuracy
and convergence of iterative methods by leveraging computations performed at different levels of re-
finement. While offering significant benefits, its application requires careful consideration of factors
such as computational cost and convergence behavior to ensure optimal performance.
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C.5. Conclusion on methods for non-linear system

This chapter has examined various iterative methods and techniques aimed at optimizing the perfor-
mance of numerical solvers in district heating network simulations.

C.5.1. Iterative methods compared

This chapter has explored a range of iterative methods designed to optimize the performance of numer-
ical solvers in district heating network simulations, focusing on achieving a delicate balance between
stability and accuracy. Damping and regularization techniques are fundamental for enhancing solver
stability, controlling update steps through damping to prevent overshoot, and modifying the problem
via regularization to introduce stability, although this may introduce a slight bias. Similarly, line search
methods dynamically optimize step sizes to ensure meaningful contributions toward convergence with
each iteration, crucial for achieving precise solutions in complex simulations. Accelerators also en-
hance convergence rates, but their success is dependent on accurate prior knowledge of system char-
acteristics, with inaccurate estimations potentially leading to poor convergence or increased computa-
tional demands.

Integrating these methods—damping, regularization, line search, and accelerators—typically yields
the best results. This integrated approach not only addresses the varied challenges posed by differ-
ent network configurations but also maximizes the strengths of each method to enhance overall solver
performance. Effective selection and implementation of these iterative methods necessitate a nuanced
understanding of the mathematical properties of the problem and the practical constraints of the avail-
able computational resources.

C.5.2. Moving forward
While refining the overall iterative steps of the method can yield incremental benefits, substantial gains
are realized through optimizing the linear solve step, which is typically the most computationally de-
manding part of the iteration.

Optimizing the linear solve step is crucial because it consumes considerable computational re-
sources, especially in large-scale systems. By enhancing the efficiency of this step, there is a reduc-
tion in both time and computational power needed to achieve a solution. The performance of the linear
solver is often the limiting factor in the speed of convergence; efficient linear solvers can drastically
decrease the number of iterations required by enabling better step changes with each iteration. Such
techniques can significantly improve the method’s overall efficiency and speed.

Furthermore, the accuracy and stability of the solutions from the Newton-Raphson method heavily
depend on the precision of the linear solve step. Inadequate solving can introduce errors that propa-
gate through iterations, potentially causing divergence. As network size and complexity grow, focusing
on this step is essential to develop scalable solutions that can manage increased matrix sizes and
complexity without performance loss, particularly using scalable linear solvers that efficiently handle
sparse matrices typical in such applications.

In conclusion, while iterative improvements are valuable, the optimization of the linear solve step
is critical. This approach not only boosts the efficiency and speed of the numerical method but also
ensures the scalability and robustness necessary for modeling complex district heating networks ef-
fectively. This research advances the state of the art in the simulation and optimization of thermal
networks by focusing efforts on refining the linear solve step.

C.5.3. Future research iterative methods

Based on the observed limitations, the following future research directions are proposed to further ad-
vance the field of numerical optimization in district heating systems. Research could be done into adap-
tive methods that automatically adjust damping and regularization parameters in response to changing
conditions within the solver could provide a more dynamic and effective approach to managing stability
and convergence issues. Developing more efficient line search algorithms that minimize the number
of required function evaluations could reduce the computational costs while retaining the benefits of
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dynamic step sizing. These suggested directions not only aim to tackle the inherent limitations of the
current iterative methods but also open new avenues for robust, efficient, and adaptable solutions in
the optimization of district heating networks.
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