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Abstract

Globally, the impacts of climate change can vary across different regions. This

study uses a probability framework to evaluate recent historical (1976–2016)
and near-future projected (until 2049) climate change across Europe using Cli-

mate Research Unit and ensemble climate model datasets (under RCPs 2.6

and 8.5). A historical assessment shows that although the east and west of the

domain experienced the largest and smallest increase in temperature, changes

in precipitation are not as smooth as temperature. Results indicate that the

maximum changes between distributions of the variables (temperature and

precipitation) mainly occur at extreme percentiles (e.g., 10% and 90%). A group

analysis of four subregions of Europe, namely east (G1), north (G2), west/

south (G3), and UK/Ireland (G4), shows that G1 and G4 are expected to have

the largest increase in temperature and precipitation extremes, respectively.

Although maximum increases in temperature in G3 and G4 occur at larger

percentiles, G1 and G2 experience maximum increases at both large and small

percentiles. The maximum increase of precipitation over the study domain,

however, occurs mainly at larger extremes. To quantify changes in the distri-

bution of projection (2020–2049) relative to the historical reference (1976–
2005), two measures are defined, namely a change in occurrences (KS statistic)

and intensities at different quantiles (Δ). Results confirm that the temperature

distribution tends to shift to higher temperatures. Changes in distribution and

extremes of precipitation are spatially variable. Furthermore, extremes are

expected to be intensified under RCP 8.5. The quantile analysis and defined

measures reveal changes in the entire probability distribution, reflecting possi-

ble climate changes in the future.

KEYWORD S

climate change, climate indicators, extreme weather events, impact assessment,
probabilistic framework, quantile analysis

1 | INTRODUCTION

Many regions of the world have recently experienced the
effects of climate change, albeit at different levels of
severity. Climate change is a long-term change in the
state of the climate, which can be defined by climatologi-
cal variables such as air temperature and precipitation

(IPCC, 2007). Climate change affects weather patterns
and the hydrological cycle and can increase the fre-
quency or intensity of extreme weather events such as
heat waves and droughts (van der Wiel et al., 2017; Philip
et al., 2018, 2019). The World Meteorological Organiza-
tion (WMO) pointed out significant climate change
impacts including wildfires, sea level rise, ice decline,
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increase in heat content, and acidity of the ocean during
2015–2019, known as the warmest period on record
(WMO, 2019). Many studies used different statistics of
temperature and precipitation, such as changes in
extreme values and number of hot/cold days/nights, to
characterize climate change (e.g., Jeong et al., 2016; Wu
et al., 2017; Solomon et al., 2007; Ye and Cohen, 2013;
Cohen et al., 2015, among many others). Karl et al. (2008)
showed that the number of hot days-nights has been
increasing in most regions of North America, while the
number of cold days-nights has been decreasing. To spec-
ify climate change and its impact, a proper set of mea-
sures and indicators is required, which can be defined
based on climate change causes and effects (e.g., Climate
Change Index, 2013). Sheikh et al. (2015) used indices
based on temperature and precipitation observations to
evaluate climate extremes over South Asia. Their results
show that, generally, the warm and cold extremes are
expected to increase and decrease, respectively. Similar
changes are expected to occur in Australia (Alexander
and Arblaster, 2017). Alexander and Arblaster (2017)
used CMIP5 simulations to show an increase and
decrease in the number of warm and cold temperature
extremes by 2,100, respectively. In addition, their results
indicated that the projections of the precipitation
extremes tend to increase (e.g., more heavy rain and lon-
ger drought). Dosio (2017) analysed temperature and
heat wave indices from Regional Climate Models
(COordinated Regional climate Downscaling Experiment,
CORDEX) over Africa. Results revealed an increase in
temperature up to 6�C under RCP 8.5 in many parts of
the continent, such as Northern Africa and the Sahara.
Their findings indicated an increase not only in the num-
ber of the warm days and nights, but also in the length of
the heat waves.

As in many other regions around the globe, warming
of climate has accelerated in Europe (van der Schrier
et al., 2013). Changes in mean temperature and precipita-
tion have already led to changing patterns in evapotrans-
piration and streamflow across the continent (Teuling
et al., 2019). van den Besselaar et al. (2013) analysed the
trends in the frequency of 1-day and 5-day precipitation
amounts with 5-, 10-, and 20-year return periods over
north and south Europe. Their results showed that the
frequency of those extreme events increased during
1951–2010. Climate change (e.g., temperature increase
and precipitation decrease) is associated with extreme
events, such as the severe flood and drought
(Teuling, 2018), wildfires, and heat waves that occurred
in southern Europe in 2017 (Kew et al., 2019). Lhotka
et al. (2018) used E-OBS and regional climate model
(RCM) data to evaluate heat waves and temperature
changes in Central Europe. They stated that more severe

heat waves are projected to occur in the future, while
they found an overestimation of the heat waves' fre-
quency simulated by the RCM at spatial resolution of
25 and 50 km. Although models can confirm that global
warming increases extreme weather events, they are
unable to correctly represent main characteristics
(e.g., frequency and intensity) of the events (Min
et al., 2013; Sippel et al., 2016; Kew et al., 2019).

Assessment of climate change includes accounting for
uncertainties. One of the main frameworks to consider
uncertainties and provide a wide range of changes is the
probabilistic approach (Jahangir and Moghim, 2019;
Moghim, 2021). Watterson (2008) used pattern scaling to
estimate projected probability distribution functions
(PDFs) of temperature and precipitation in Australia
under the A1B scenario. Results showed a possible range
of regional warming based on constructed PDFs in south-
ern Australia. In addition, their findings indicated that
the projected winter rainfall in the centre of Australia
varies from a large decrease to a modest increase. Dessai
et al. (2005) used a probabilistic energy balance model to
assess various uncertainties in climate change probabili-
ties. Their results showed that uncertainties in emission
scenarios and climate sensitivity are important at the
9fifth and fifth percentiles of the temperature distribu-
tions, respectively. However, the impact of uncertainties
in emissions, climate sensitivity, carbon cycle, ocean
mixing, and aerosol forcing on percentiles of precipita-
tion distributions varies in time and location (Dessai
et al., 2005). The impact of climate change on extreme
hydrometeorological values (small and large quantiles of
the distribution) is more remarkable than average ones
in many regions (e.g., Lausier and Jain, 2018,
Moghim, 2018, among many others). Different quantile
analysis methods (e.g., the quantile regression method)
can evaluate changes not only in the mean but also in
other percentiles of the distribution (Koenker, 2005).
Dhakal and Tharu (2018) used a linear quantile regres-
sion approach to evaluate the effect of North Atlantic
tropical cyclones on extreme precipitation across 107 sites
in the southeastern United States. Their results showed
an increasing trend of upper quantiles in most sites,
which can be due to the tropical cyclones. This extreme
analysis is invaluable for water resources and disaster/
crisis management. Richardson et al. (2020) used weather
patterns (WPs) and the upper end of the precipitation dis-
tribution to define flood events due to extreme precipita-
tion in the UK. The relationship between WP and
extreme precipitation is used for flood forecasting, which
is a valuable resource for managers to decrease the risk of
flood events. van der Wiel et al. (2017) defined extreme
precipitation and examined the impact of anthropogenic
forcing on the likelihood of extreme precipitation in the
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Gulf Coast region. In addition, they assessed flood events
in southern Louisiana. Their results show an increase in
extreme precipitation since 1900. Ganguli and Ganguly
(2016) used the persistence probability of drought to evalu-
ate the spatial patterns of mean and extreme droughts over
the Contiguous United States. Their results showed that the
spatial coverage of the recent extreme drought (after 2010)
is larger than that of the previous droughts (e.g., the 1930s
and 1950s), while the persistence of the drought has been
stationary during the last half of the century.

Although many studies attempt to link climate
change to an increase in the occurrence and severity of
hydrological extremes, the limited number of recorded
occurrences increases the uncertainty of the analysis.
This asks for a more robust assessment (Stott, 2016). Fur-
thermore, many studies are unable to demonstrate a clear
trend in climate change signals due to a lack of proper
climate change indicators (Kossin, 2018; Blöschl
et al., 2019; Moon et al., 2019). Inconsistent results of cli-
matic signals in Europe and many other regions indicate
a necessity for more studies and analyses of climate
change impacts. In addition, although evidence can
clearly point out some signs of global warming, such as a
dramatic decline in Arctic ice mass (Witze, 2019), climate
change effects are not easily detectable in all regions. To
elucidate climate change signals, a proper set of statistical
measures is required. The skill of such measures to high-
light climate change may vary in different locations.
Here, we aim to analyse recently and projected climate
change across Europe using a probabilistic framework,
with a particular focus on changes in extremes of (air)
temperature and precipitation (as the two main indica-
tors of the climate change).

2 | DATASETS

To assess climate change in Europe, this study evaluates
the historical changes using CRU (Climate Research
Unit) data and projections of future climate change using
climate models.

2.1 | Climate research unit (CRU)
gridded data

CRU product is one of the most common datasets that
are widely used in hydro-climatic studies (e.g., Moghim
and Bras, 2017, 2019; Li et al., 2010; Sheffield et al.,
2006, among many others). This gridded dataset is pre-
pared by the School of Environmental Sciences and the
Tyndall Centre at the University of the East Anglia,
United Kingdom (data are publicly available at http://

www.cru.uea.ac.uk/data). This long record of data that is
compiled from global weather stations is validated by cli-
matologies. The dataset is in 0.5

�
monthly resolution

from 1901 to 2016 (Harris et al., 2014). The CRU temper-
ature and precipitation records (the two main climatolog-
ical variables of interest) are used for the historical
overview of climate change. To assess the changes, these
monthly data are divided into two periods, namely 1976–
2005 (Per1) and 2006–2016 (Per2), in order to analyse
recent changes from the observational records. The dif-
ference of the domain average of the variables (tempera-
ture and precipitation) between two periods and the
empirical cumulative distribution functions (ECDF) of
the variables are used to evaluate historical climate
change.

2.2 | Ensemble climate model
projections, coupled model
Intercomparison project phase 5 (CMIP5)

General circulation models (GCMs) are the advanced
numerical models that simulate physical processes and
various feedbacks of the global climate system under differ-
ent scenarios (Nakicenovic et al., 2000; Moss et al., 2008;
Moss, 2010). These scenarios are defined by the Intergov-
ernmental Panel on Climate Change (IPCC) based on
greenhouse gas (GHG) concentration pathways. GCMs are
the main tool to project climate changes and study the
long-term effects of climate change. The Canadian Centre
for climate modelling and analysis provided Coupled Model
Intercomparison Project Phase 5 (CMIP5)-gridded data. In
addition, this Centre used 29 models of the CMIP5 to pro-
vide an ensemble product at 1

�
monthly resolution (data

are publicly available at http://climate-scenarios.canada.ca).
We found this ensemble product to be more consistent with
the observation (smaller error in temperature and precipita-
tion relative to the CRU data) over the study domain com-
pared to individual GCMs, thus this study uses this
ensemble climate data (hereafter called ensemble) under
two different RCPs (Representative Concentration Path-
ways), namely RCP 2.6 and RCP 8.5 for climate change pro-
jections. These RCPs show pathways of the radiative
forcing up to 2,100. RCP 2.6 comprises storylines to limit
global mean temperature rise to 2�C and represents the
best-case scenario (Rapid Emissions Reductions); RCP 8.5,
on the other hand, accounts for the highest GHG emissions
and represents the worst-case scenario (Continued Emis-
sions Increases). Thus, future projections under RCP 2.6
and RCP 8.5 cover the range of projected changes (mini-
mum and maximum values, respectively). To assess projec-
tions of future climate change, the model outputs (namely
temperature and precipitation) under historical, RCP 2.6,

MOGHIM ET AL. 3

http://www.cru.uea.ac.uk/data
http://www.cru.uea.ac.uk/data
http://climate-scenarios.canada.ca/index.php?page=gridded-data


and RCP 8.5 scenarios are used (data are publicly available
at http://climate-scenarios.canada.ca). Monthly temperature
and precipitation data are divided into two 30-year periods,
namely the baseline (1976–2005) and the projection
(2020–2049).

3 | METHODOLOGY

The perceived level of climate change depends on how
changes are assessed. A proper and comprehensive analy-
sis can clarify changes. This study uses (air) temperature
and precipitation as two important hydroclimatological
variables to assess climate change over Europe, for differ-
ent subdomains, and for each individual pixel. Although
climate change can affect the first moment (mean) of the
variables, its effect varies at different percentiles of the
probability distributions of monthly temperature and pre-
cipitation. In addition, the impact of climate change on
the distribution at different quantiles varies between
locations. To quantify distribution changes, differences
between monthly temperature and precipitation distribu-
tions of the two periods at various percentiles, comprising
the 10th, 50th, and 90th percentile (median and extremes),
are calculated.

Furthermore, the larger and smaller quantiles of the
variables (extremes) are evaluated probabilistically to
include uncertainty of the results. To further evaluate distri-
bution changes, probabilities of the values corresponding to
the specific quantiles in period 1 are obtained from distribu-
tions of period 2 for each pixel (Figure 1a).

Changes in the probability at different quantiles can
also translate to the actual values of the
hydroclimatological variables. To illustrate the incremen-
tal changes in the variables, the difference between two
distributions of periods 2 and 1 at specific quantiles is cal-
culated (Δ, see red solid line in Figure 1b).

Climate studies can refer to the past and future; For
instance, historical evidence and analysis to show that
climate has been changing or climate change projections
to show possible changes in the future using climate
models under different scenarios. This study uses CRU
data (see Section 2.1) for Part 1 (historical assessment)
and ensemble climate model projections (see Section 2.2)
under two scenarios (RCP 2.6 and RCP 8.5) for Part
2 (projection). For the model-observation comparisons,
data are bilinearly regridded to a common grid. To esti-
mate historical climate change, we calculate average
changes in precipitation and temperature in Per2 (2006–
2016) relative to Per1 (1976–2005). To consider uncer-
tainties and a different length of Per1 compared to Per2,
for a 95% confidence interval, we use the bootstrap
method and randomly resample 10 years from 30 years of
Per1 (1976–2005) with 5,000 replicates. The average dif-
ferences between each set of 10-year sampled data (aver-
age temperature and precipitation) in Per1 and Per2 at
the 95% confidence level are calculated and presented for
each pixel. Similarly, for an estimate of projected changes
in temperature and precipitation, we randomly sample
sets of 10 years from the projection (2020–2049) and base-
line (1976–2005) periods under two scenarios (RCP 2.6
and RCP 8.5). The average differences between sets of
temperature and precipitation in two periods at the 95%
confidence level are calculated and presented for all
pixels. Similarly, to assess seasonal changes, the average
differences between random samples of seasonal temper-
ature and precipitation in the two periods (baseline and
projection) are obtained. Although the average changes
of the variables in period 2 and projection relative to the
baseline over the entire domain can provide an integrated
view of the observed or projected climate change, average
changes cannot illustrate large increases or decreases that
occur over different subdomains. Thus, Europe is divided
into different subregions (groups of countries) for a

FIGURE 1 Illustration of the distribution assessment. (a) Based on the probability changes and (b) based on the actual values at specific

quantiles [Colour figure can be viewed at wileyonlinelibrary.com]
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cluster analysis. This analysis can assess climatic changes
at an appropriate scale and point out dominant changes
in each subregion, which indicates that people in differ-
ent regions should be prepared for different types of pos-
sible changes in the future. Indeed, different scenarios of
climate change need to be considered to assess potential
damages and losses, based on a plausible range of future
outcomes. To analyse projected quantiles, changes in the
probability distributions of the ensemble data (tempera-
ture and precipitation) for the projection (2020–2049) rel-
ative to the baseline (1976–2005) period are evaluated. In
addition, due to different projected changes in distribu-
tions of the variables (temperature and precipitation)
within the domain, we calculate the incremental distance
between the projected and historical distributions at dif-
ferent percentiles for each subregion with a significance
level of 0.05. To construct empirical CDFs for the base-
line and the projection, we use 30 years of monthly
ensemble data (temperature and precipitation) from
future (2020–2049) and historical (1976–2005) periods,
respectively. The Δ (incremental distance) between CDFs
of the two periods (projection and baseline) is calculated
at median and extremes (i.e., 50th, 10th, and 90th percen-
tile). To evaluate possible changes in extremes, empirical
CDFs of monthly temperature and precipitation are con-
structed for Per1 (1976–2005) at each pixel (ECDF1). To
establish ECDF1, we randomly select 10 years from Per1
(1976–2005) for 5,000 times. To find extreme values in
Per1, the 10th and 90th percentile of the constructed
ECDF1 for the temperature and precipitation are obtained
(T10% of Per1 and T90% of Per1 for temperature; P10% of Per1 and
P90% of Per1 for precipitation). Then, we calculate the proba-
bility that each pixel in Per2 (2006–2016) has average
monthly temperature or precipitation smaller/larger than
the extreme percentiles (10th/90th) of the ECDF1 of the
corresponding variables (hereafter called Prext). In other
words, the Prext is calculated as the probability of having
average monthly temperature or precipitation in Per2
smaller than T10% of Per1/P10% of Per1 or larger than T90% of

Per1/P90% of Per1 for temperature/precipitation. This assess-
ment can help identify hazards of the extreme events in dif-
ferent subregions. Changes at large and small quantiles can
illustrate the tendency of the regions to have more rain
(floods) and less rain (droughts), which is useful for
water resources management plans and impact assess-
ment. For instance, larger changes in smaller/larger
quantiles can be considered for drought management/
flood control.

Climate studies need measures and indicators to illus-
trate and monitor changes. Since the future is uncertain,
probabilistic measures are appropriate indicators of cli-
mate change. Thus, this study focuses on two such proba-
bilistic measures, the KS statistic and Δ, which can

reflect changes in the distribution of the projection
(future) relative to the historical period. The two largest
“vertical” (KS) and “horizontal” (Δ) differences between
two distributions highlight the distribution changes and
extremes. The KS (Kolmogorov–Smirnov) test statistic,
which can be interpreted as a change in occurrences, is
the largest distance between two cumulative distribution
functions (CDFs) measured along the probability axis,
defined as

KS=max
x

FProj xð Þ−FHis xð Þ� � ð1Þ

In this study, FProj and FHis are empirical CDFs of the
variable x (monthly temperature or precipitation) in the
projection and historical periods, respectively (see
Figure 1a). Similar to ECDF1, empirical CDFs for projec-
tion are constructed from 30 years (2020–2049) of
monthly ensemble temperature and precipitation
(ECDFProj). The KS measure has been used to show the
performance skill of a model in a probability framework
(Moghim and Bras, 2017, 2019). The second measure, Δ
(see Figure 1b), can be interpreted as a change in intensi-
ties (value associated with a given percentile). To obtain
Δ, the difference between values of the variables (temper-
ature and precipitation) in two distributions (historical
and projected) are calculated at median and extremes
(i.e., 50%, 10%, and 90%). The increment Δ can be used to
correct the biases of the climate models (Moghim
et al., 2016). To evaluate the variability of the changes at
different percentiles, mean (μ) and standard deviation (σ)
of the Δ are calculated.

The defined indicators, which reflect changes in the
entire distribution, are employed to highlight the effects
of climate change (in terms of temperature and precipita-
tion) over different regions. A significance level of 0.05
(α = 0.05) is used for the results in this paper that are sta-
tistically significant.

4 | ASSESSMENT OF HISTORICAL
CLIMATE CHANGE IN THE 20TH
CENTURY

The historical change of temperature and precipitation
based on average differences between sampled 10-year
sets of data in Per2 (2006–2016) and Per1 (1976–2005) is
shown in Figure 2 (first row). Results indicate that all
regions have experienced an increase in annual mean
temperature since Per1. This increase is most prominent
over the eastern part of Europe (the maximum and mini-
mum increases are found in Ukraine and Ireland, respec-
tively). Results show that the spatial change (increase
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and decrease) of precipitation is more variable than tem-
perature. For instance, the maximum increase and
decrease of precipitation occurs at close pixels. The spa-
tial variability of changes in precipitation, including a
decrease in average precipitation under climate change
in parts of Southern Europe, is consistent with the results
obtained by van den Besselaar et al. (2013), Casanueva
et al. (2014), and Jacob et al. (2014). The maximum
increase and decrease of annual mean precipitation
occurred in Norway and Italy, respectively. Note that
results presented for all pixels are in the 95% confidence
level.

Although the domain-average analysis showed that
temperature and precipitation have changed, the average
assessment is not able to highlight significant changes in

different regions. Indeed, the impact of climate change
can be more noticeable on extremes (maximum and min-
imum). To assess extreme changes, the exceedance prob-
ability of monthly air temperature and precipitation in
Per2 (2006–2016) at the 10th and 90th percentile of
ECDF1 (ECDF for Per1) is calculated (Prext) for each pixel
(Figure 3).

Figure 3 shows the probability in each pixel that aver-
age monthly temperature or precipitation in Per2 (2006–
2016) is smaller/larger than the extreme percentiles
(10th/90th) of the ECDF1 of the corresponding variables.
Results show an increase in occurrence of cold tempera-
ture extremes (below percentile 10) in some northern
parts of the study domain (see blue colour in Figure 3a).
In other words, these regions tend to have smaller

FIGURE 2 Spatial changes in the observed and projected temperature (�C) in the left column and precipitation (mm�Mon−1) in the

right column. Spatial average changes between two periods (Per2: 2006–2016 and Per1: 1976–2005) from CRU [his (CRU) in first row] and

the ensemble model [his (Ens) in second row]. Spatial average changes between two periods (projection: 2020–2049 and baseline: 1976–
2005) from ensemble model under RCP 2.6 (third row) and RCP 8.5 (fourth row) [Colour figure can be viewed at wileyonlinelibrary.com]
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minimum temperature in 2006–2016 compared to their
baseline period (1976–2005). The central part of the
domain has experienced a greater increase in extreme
temperature, above 90% (see red colour in Figure 3b).
The reddish/bluish colour in the second row of Figure 3
(Figure 3c,d) shows regions that are more likely to have
extremes (minimum/maximum) in precipitation.

5 | ASSESSMENT OF CLIMATE
CHANGE PROJECTIONS

The analysis of the CRU-gridded data (observations) con-
firms the variation trends of temperature and precipita-
tion. The second row in Figure 2 shows the average
differences of sampled 10-year sets of temperature and
precipitation of the ensemble product in Per2 (2006–
2016) and Per1 (1976–2005). Results show that the model
underestimates temperature and precipitation changes in
almost all pixels, which is consistent with the IPCC
assessments. Collins et al. (2013) claimed that although

model averages can be considered as best estimates, the
averages can lead to underestimations. The third and
fourth rows of Figure 2 show the projected average
changes in mean annual temperature and precipitation
in (2020–2049) relative to the baseline (1976–2005) under
two scenarios (RCP 2.6 and RCP 8.5). Results confirm
that temperature tends to increase in the eastern part of
Europe, particularly in the northeast. The pattern of pre-
cipitation changes is more complex and uncertain than
temperature due to the complexity of the precipitation
process. Figure 2e,g show that all regions are expected to
experience a temperature rise, with the largest increase
over the northeast of Europe. For precipitation, the maxi-
mum change is almost 10 times as large as the average
spatial change, which confirms larger variability in pre-
cipitation than temperature. RCP8.5 shows an intensifi-
cation of the spatial pattern of changes in average
precipitation and temperature. This leads to higher maxi-
mum/minimum changes in average temperature and a
rise in maximum increase/decrease in average precipita-
tion, compared to RCP2.6 (third and fourth rows of

FIGURE 3 Changes in probability of observed extremes. Extremes are calculated for Per2 relative to Per1; probability of average

monthly (a) temperature in Per2 being smaller than 10th percentile of temperature in Per1, (b) temperature in Per2 larger than 90th

percentile of temperature in Per1, (c) precipitation in Per2 smaller than 10th percentile of precipitation in Per1, and (d) precipitation in Per2

larger than 90th percentile of precipitation in Per1 (Per1: 1976–2005 and Per2: 2006–2016) [Colour figure can be viewed at

wileyonlinelibrary.com]
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Figure 2). Note that results presented for all pixels are at
the 95% confidence level.

Annual average changes can hide a balance between
increases in winter and decreases in summer. Indeed, the
characteristics of climate change can have significant sea-
sonal dependencies. Figure 4 shows seasonal changes of
the ensemble temperature and precipitation between pro-
jection and baseline periods under two scenarios.

Results confirm that the pattern of changes in each
season is different. The maximum changes in seasonal
temperature occur in winter mainly in the northeast to
north of the domain (Russia to Finland). Although the
pattern of temperature changes in winter, spring, and fall
follows the pattern of the mean annual changes
(Figure 2), the pattern of increase in summer tempera-
ture is almost uniform over the domain under both sce-
narios. In RCP 8.5, the large increase in temperature
extends from the northeast to the north and to the centre
in winter and spring, while most of the pixels experience
a large increase in temperature in summer and fall.
Although the temperature of most pixels increases about
2� in summer, the centre of the domain (e.g., Romania

and Serbia) experiences the largest increase of about 2.5�

in RCP 8.5. For precipitation, most pixels in the north/
south of the domain experience an increase/decrease in
precipitation, while a marked contrast between increases
and decreases is evident in summer and fall. In general,
85%, 80%, 53%, and 77% of the domain pixels experience an
increase in precipitation in winter, spring, summer, and fall,
respectively. Note that results presented for all pixels are at
the 95% confidence level. Changes (both increase and
decrease) in seasonal precipitation are larger under RCP
8.5, which can indicate that we need to expect more
extreme hydrological events like floods and droughts in the
future.

The analysis of the CRU-gridded temperature and
precipitation (observations) confirms that climate change
affects various percentiles of the distributions differently.
To analyse projected quantiles, the Δ (see Figure 1b)
between CDFs of the 2020–2049 and 1976–2005 (projec-
tion and baseline) at different percentiles are calculated.
The maximum difference between distributions of the
two periods at those percentiles occurs at 10% and 90%
for temperature and precipitation. Therefore, we use

FIGURE 4 Average seasonal changes between two periods (projection: 2020–2049 and baseline: 1976–2005) from ensemble data. Spatial

average changes for (a) temperature (T) under RCP 2.6, (b) temperature (T) under RCP 8.5, (c) precipitation (P) under RCP 2.6, and (d)

precipitation (P) under RCP 8.5 [Colour figure can be viewed at wileyonlinelibrary.com]
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those percentiles for a probabilistic assessment of climate
change with a significance level of 0.05 (α = 0.05).

To illustrate the temperature and precipitation
changes at the tails of the distributions, the absolute
values of the variables (temperature and precipitation)
and the incremental differences (Δ in Figure 1b) between
the distributions of the projection and baseline at 10%
and 90% for temperature and precipitation are shown in
Figure 5. The first column in Figure 5 shows temperature
and precipitation at the tails of the projected distributions
(corresponding to the 10th and 90th percentiles of the
ECDFProj in 2020–2049) and the second column shows
the difference between projected and baseline distribu-
tions (Δ) at the 10th and 90th percentile under RCP 2.6.

Although the actual values of temperature at 10% are
generally larger over the southwest/south of the domain,
the difference between the distributions of the two
periods (2020–2049 and 1976–2005) at 10% is more signif-
icant over the northeast (first row in Figure 5). This large
difference indicates that the projected minimum temper-
atures increase relative to the minimum values in the
baseline. For the 90th percentile, the larger actual values
and the greater difference between the distributions of
the temperature occur mainly in the southern part of the

domain (second row in Figure 5). For precipitation, the
minimum values (at 10%) increase mainly over the north-
ern part of the domain (third row in Figure 5). Although
many parts of the domain experience an increase in max-
imum values of precipitation (at 90%), the pattern of
changes in precipitation at 90% is more complex than
that at 10%. For instance, there are nearby pixels that
experienced both an increase and a decrease in precipita-
tion at 90% (fourth row in Figure 5). In addition, the pro-
jected extreme precipitation at 90% decreases mainly in
southwest of the domain (e.g., Portugal and Spain). Note
that differences between the distributions in the two
periods (2020–2049 and 1976–2005) increase under RCP
8.5 (figure is not shown). Although the results concerning
the extremes (Figures 3 and 5) can mainly be related to
winter or summer, the lower (e.g., at 10%) and the upper
(e.g., at 90%) end of the temperature distribution can be
related to winter or fall and summer or spring as well,
since climate change is also projected to affect these sea-
sons (e.g., colder fall or warmer spring).

To evaluate climate change for different regions, four
different subregions, namely East (G1), North (G2),
West/South (G3), and UK/Ireland (G4), are considered
(see Figure 6). The maximum increases in temperature

FIGURE 5 Extremes and their

changes under RCP 2.6. Left column

(from top to bottom): Temperature

(�C) at 10% and 90% of the

temperature distribution

corresponding to each pixel in

projection, precipitation (mm�Mon−1)

at 10% and 90% of the precipitation

distribution in projection. Right

column: The difference between

distributions of the two periods for

(from top to bottom) temperature

(�C) at 10% and 90%, precipitation

(mm�Mon−1) at 10% and 90%

(baseline: 1976–2005 and projection:

2020–2049) [Colour figure can be

viewed at wileyonlinelibrary.com]
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occur in G1, not only for the mean but also at extreme
percentiles of the distribution. On the other hand, the
maximum changes in precipitation, both in the mean
and in extreme percentiles, occur in G4 and G2. Each
region (pixel) can have the maximum changes between
two periods at different quantiles. To illustrate quantiles
that exhibit the largest change in each subregion, temper-
ature and precipitation differences between the projec-
tion (2020–2049) and the historical (1976–2005) period
are calculated (Δ) at median and extreme percentiles
(50%, 10%, and 90%). The largest of the percentile-specific
changes is then selected, and plotted in Figure 6 as
“Max Δ”.

This quantile analysis helps to illustrate the tendency
of the regions towards wet/dry and hot/cold weather,

which is useful information for adaptation and mitigation
plans. Since this work attempts to highlight the extremes,
dark colours including dark blue and dark pink in the
second columns of Figure 6a and b show the 10th and
90th percentile, respectively. The light colours including
light blue and light pink show small (e.g., 15th–25th) and
large (e.g., 75th–85th) percentiles. Results show that the
maximum difference between temperature distributions
of the two periods (Max Δ in Figure 6) occurs in the
northeast of the domain (in G1) at smaller percentiles
(e.g., 10%). In general, regions above latitude 50�N in G1
experience the maximum difference at smaller extremes
(dark blue colour in second column) and regions below
50�N experience the maximum difference at larger
extremes (dark pink colour in second column). For G2,

FIGURE 6 Maximum differences (max Δ) between projection (2020–2049) and historical (1976–2005) period at different percentiles

including 10th, 50th, 90th percentiles (median and extremes) for temperature in four subregions. (top-bottom) subregions G1, G2, G3, and

G4 in panel (a) for RCP 2.6 and panel (b) for RCP 8.5. Max Δ is shown in the first columns of the panels. The second columns of the panels

show the percentiles (10%, 50%, and 90%, shown at top) at which “max Δ” occurs. Numbers 1, 2, 3, and 4 refer to four subregions (G1, G2,

G3, and G4, respectively) [Colour figure can be viewed at wileyonlinelibrary.com]
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most changes (Max Δ) occur at smaller extreme, while
the maximum differences in G3 and G4 occur at larger
extremes. For RCP 8.5, Max Δ not only increases in all
subregions but also occurs generally at larger quantiles
compared to those in RCP 2.6.

Similar to temperature, the pattern of percentile
changes in precipitation for each subregion is illustrated
in Figure 7.

Results illustrate that maximum differences (Max Δ)
in the precipitation distribution mainly tend to occur at
larger percentiles (second column), excluding small
regions in G1, G2, and G3 (see the yellow and blue colour
in the first, second, and third rows of the second column
in Figure 7), where the maximum differences are more

likely to occur at median and smaller percentiles. RCP
8.5 can cause both an increase in heavy precipitation and
a decrease in light precipitation relative to RCP 2.6.

These results confirm that climate is projected to
change and that to quantify these changes, measures,
and indicators are required. Two measures of distribution
changes, namely KS (see Equation 1) and Δ, are calcu-
lated for precipitation and temperature. The KS statistic
applies to the projected (2020–2049) and historical (1976–
2005) distributions on a pixel by pixel basis (Figure 8).

Figure 8 shows that on average the maximum KS
(in terms of its absolute value) for temperature mainly
occurs in the west and south of the domain. Negative
values of KS indicate that the CDF of the projection is

FIGURE 7 Maximum differences (max Δ) between projection (2020–2049) and historical (1976–2005) period at different percentiles

including 10th, 50th, 90th percentiles (median and extremes) for precipitation in four subregions. (top-bottom) subregions G1, G2, G3, and

G4 in panel (a) for RCP 2.6 and panel (b) for RCP 8.5. Max Δ is shown in the first columns of the panels. The second columns of the panels

show the percentiles (10%, 50%, and 90%, shown at top) at which “max Δ” occurs. Numbers 1, 2, 3, and 4 refer to four subregions (G1, G2,

G3, and G4, respectively) [Colour figure can be viewed at wileyonlinelibrary.com]
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located below the CDF of the historical period. For pre-
cipitation, the maximum KS mainly occurs in the east
and north of the domain, extending to the centre. In gen-
eral, subregions G3 and G4 have the larger KS for tem-
perature, while G1 and G2 have the larger KS values for
precipitation. RCP 8.5 leads to increasing KS for both
temperature and precipitation. For KS statistics, all pixels
experience significant changes (α = 0.05) excluding two
pixels that are shown with the red star in Figure 8.

To assess the average and variability changes in the
probability distributions of the projection compared to
the historical baseline at different percentiles, the mean
(μ) and standard deviation (σ) of the Δ at different per-
centiles is illustrated in Figure 9.

Figure 9 (μ in first row) shows that the average
changes of temperature at different percentiles in most

pixels of the domain are about 1.5�C and the maximum
average changes occur over the northeast of the domain
(about 2�C) for RCP2.6. These average changes of the
temperature at different percentiles increase for RCP 8.5.
The smallest average changes between the two distribu-
tions for the baseline and the projection at different per-
centiles occur in UK under both scenarios. The positive
values of μ show that the distribution of the projection
tends to be on the right-hand side of the historical distri-
bution (e.g., larger values at extremes). The variability of
the changes at different percentiles is larger in the north-
east and south of the domain (σ in first row), which indi-
cates that differences between the two distributions
(baseline and projection) at different percentiles are
spread out across a larger range. The average changes in
precipitation at different percentiles are positive/negative

FIGURE 8 The largest vertical

distances between projected and

historical distributions (KS) for each

pixel. (from top to bottom)

Kolmogorov–Smirnov test statistic

(KS) in temperature and precipitation

under RCP 2.6 (left column) and RCP

8.5 (right column). Stars show pixels

that are not statistically significant

[Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 9 The mean (μ) and standard deviation (σ) of incremental differences (Δ) at different percentiles under RCP 2.6 and RCP 8.5

over the domain [Colour figure can be viewed at wileyonlinelibrary.com]
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mainly above/below latitude 50�N for RCP 2.6 (μ in second
row). The positive/negative values show that projected
precipitation increases/decreases at different percentiles.
The maximum average changes occur in the north of the
domain. The absolute averages of the changes are larger
for RCP 8.5, which can indicate that projected precipita-
tion at different percentiles gets further away from the
baseline precipitation. The variability of precipitation
changes at different percentiles is larger in France, UK,
and the southern parts of the domain for RCP 2.6 (σ in
second row), which increases for RCP 8.5. The spatial
pattern of precipitation differences between the two dis-
tributions (baseline and projection) is not as smooth as
for temperature. This is a reflection of the complex and
highly nonlinear process of precipitation, which is consis-
tent with the results obtained by Moghim and Bras (2017,
2019).

6 | DISCUSSION AND
CONCLUDING REMARKS

The impact of climate change on different moments of
the distributions of the relevant climatological variables
(i.e., temperature and precipitation) varies among differ-
ent locations. To quantify these changes, appropriate
measures and indicators are required. Indeed, different
indices can provide different types of information and
can indicate different levels of change. To evaluate histor-
ical and projected hydrometeorological changes, CRU
and ensemble climate model datasets have been used.
Since effects of climate change can vary between different
percentiles (e.g., extremes), distribution changes at
median and extremes (i.e., 50%, 10%, and 90%) have been
calculated. The historical and projected assessment of cli-
mate change using CRU and ensemble data shows that,
although temperature and precipitation averages have
been increasing over Europe, the maximum differences
between the distributions of the two historical and pro-
jection periods, generally, occur at the extremes (e.g., 10%
and 90%).

Climate change and related studies include many
uncertainties. To account for these, this study used a
probability framework for the analysis. Results show that
the probabilities of the occurrence of temperature
extremes are increasing. The projected distribution is
more likely to shift to larger temperatures. Results are
consistent with the studies by Christidis et al., 2015 and
Stott et al. (2016), which showed an increase in the prob-
ability of extreme temperature events since 2003.
Increased temperature affected magnitude and frequency
of the temperature-related extreme phenomena in
Europe such as heat waves and wildfires (Stott

et al., 2016; NASA, 2019), which caused a large number
of deaths and severe losses (Schar and Jendtrizky, 2004;
Stott et al., 2004; Kron et al., 2019; Weilnhammer
et al., 2019). For precipitation, the largest extreme values
(e.g., at the 90th percentile) are more likely to increase in
many pixels of the domain. Results highlighted the non-
uniform nature of climate change over different parts of
the domain. IPCC (2014) also used a multi-model ensem-
ble to show spatial heterogeneity of climate change. This
variability and changes can be more notable in the
future. The changes can be caused by the large-scale
atmosphere–ocean circulation and multidecadal climate
variability in the North Atlantic (O'Reilly et al., 2017).
The impact of the Atlantic Multidecadal Oscillation
(AMO) on the climate of Europe varies in different loca-
tions and seasons. For instance, the warm phase of the
Atlantic Multidecadal Oscillation (AMO) in summer can
lead to warmer temperatures and more precipitation in
most parts of Europe and in the northwest of the conti-
nent, respectively (Knight et al., 2006). The warmer fall
and spring seasons occur in northern and Western
Europe, respectively (Sutton and Dong, 2012). Indeed,
there can be seasonal contrasts in the temperature
response, due to factors such as reduced westerly advec-
tion from sea to land in summer, the effects of drying
soils (important in summer but not in winter), or albedo
feedbacks (important in winter but not in summer).

Although spatial averages of temparature and precipi-
tation show that climate has been changing, a pixel by
pixel assessment of historical changes reveals that the
central part of the study domain is more probable to
experience precipitation extremes (i.e., Poland, Germany,
Hungary, and Bulgaria) and the largest extreme tempera-
tures (i.e., Ukraine, Hungary, Serbia, Croatia, and
Austria). Similar to other studies (e.g., Pfeifer et al., 2019;
Kjellström et al., 2018), our results confirmed that the
largest increase in extreme temperature has mainly
occurred over southern part of the study domain, while
for precipitation large increases can be observed in differ-
ent parts of the domain. Indeed, the maximum increase
and decrease in extreme precipitation can occur at nearby
pixels, which can confirm highly variabile precipitation
events.

To assess climate change in the near future, tempera-
ture and precipitation outputs from an ensemble model
projection under two scenarios (RCP 2.6 and RCP 8.5)
are used. The average seasonal changes of the data show
that, although temperature increases in summer nearly
everywhere, the largest increase occurs in winter, which
can affect the precipitation type (i.e., the snow-rain tran-
sition phase). Regions above (below) latitude 50�N can
expect an increase (decrease) in precipitation particularly
in summer. These changes are projected to be intensified
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under RCP 8.5. Assessment of historical and projected cli-
mate change indicates that the largest changes in the pre-
cipitation and temperature distributions occur at larger
(e.g., 90th) and smaller (e.g., 10th) percentiles. The
increase of temperature over the northeast of the domain
during the historical period extends to the east, centre,
and north of Europe under RCP 2.6 and 8.5.

Greenhouse gas (GHG) emission is the main anthro-
pogenic driver of climate change. The average CO2 level
during the baseline period (1976–2005) is 395 ppm, which
on average increases with 98 and 172 ppm under RCP 2.6
and 8.5, respectively (Riahi et al., 2007; van Vuuren
et al., 2007; Meinshausen et al., 2011). An increase of
atmospheric CO2 (e.g., in RCP 8.5) leads to a temperature
rise, which can affect the magnitude and frequency of the
extreme weather events. Results suggest that extreme
weather events are closely tied to increasing rates of CO2

emissions.
Climate change has different impacts depending on

the region. Changes in temperature and precipitation dis-
tributions over four subregions within Europe, namely
East (G1), North (G2), West/South (G3), and UK/Ireland
(G4), are evaluated. Results revealed that the East of the
study domain (G1) and UK/Ireland (G4) will experience
the largest increases in extremes of temperature and pre-
cipitation, respectively. Indeed, the quantile evaluation
provides valuable information for adaptation and mitiga-
tion plans to be prepared for possible effects of projected
climate change such as floods and droughts (Kaspersen
and Halsnæs, 2017; Tabari, 2021). Projected increased
temperature in east and north of Europe and an increase
in heavy precipitation is also shown by previous studies
(Anders et al., 2014; Nolan et al., 2017). The maximum
changes in temperature and precipitation in each subre-
gion occur at different quantiles. For instance, the maxi-
mum temperature changes in East occur at smaller
(larger) quantiles above (below) 50�N. Although the max-
imum changes of temperature occur at smaller quantiles
in the north of the domain, regions in West/South
(G3) and UK/Ireland (G4) experience the maximum
changes at larger quantiles. In RCP 8.5, differences
between projection and historical period increases partic-
ularly at larger quantiles, which can lead to more severe
extremes. The maximum precipitation changes mainly
occur at larger quantiles in all subregions, which indi-
cates that the frequency of heavy rain events tends to
increase.

A complete assessment and analysis of climate
change need proper measures and indicators. To evaluate
climate change at different percentiles, two indicators
including the KS statistic and Δ are used to quantify
changes based on differences between the projected dis-
tributions of precipitation and temperature (2020–2049)

and the historical ones (1976–2005). The larger KS for
temperature mainly occurs in west/south (G3) and
UK/Ireland (G4), while east (G1) and north (G2) exhibit
the larger KS in precipitation. The KS statistic increases
under RCP 8.5. The Δ measure between the two distribu-
tions at different percentiles is used to calculate spatial
mean and variability of the differences between future
(2020–2049) and historical (1976–2005) distributions at
different percentiles. Results show that the maximum
variability (σ) for temperature Δ-values occurs over the
west, south, and a small part in the north of the study
domain, which can indicate the larger dispersion of these
values at different percentiles around the mean.
Although the projected temperatures are larger than the
historical ones at different percentiles in all pixels, pre-
cipitation is projected to increase or decrease at different
percentiles in different regions (positive or negative μ).
The mean and variability of the projected temperature
and precipitation increase under RCP 8.5, which can
illustrate an intensification of the extreme events
(e.g., strong floods or droughts). The larger mean of the
Δ-values for RCP 8.5 occurs because the difference
between the projected and historical distributions is
greater than that for RCP 2.6. The large spatial variability
of the precipitation can reflect the highly nonlinear pro-
cess of precipitation, with a high level of uncertainty.
These indicators can illustrate different aspects of the
projected changes in the distribution of the climatological
variables (temperature and precipitation). Note that
biases in the climate model influence the results. In addi-
tion, different scenarios (RCPs) can affect the extremes
values in temperature and precipitation. The probability
framework and indicators can be used for multi-models
to show projected ranges of the extremes and changes at
different percentiles.

Climate change affects magnitude and variability of
the climatological variables at different quantiles and
boosts extreme weather events (i.e., droughts, wildfires,
heavy rains, and floods). A complete assessment and
proper statistical measures can provide valuable overview
and insights, which are required for adaptation and miti-
gation plans. Since future is uncertain, we need to con-
sider a wide range of possible changes in order to reduce
damage and losses. Analysis of projected changes in the
probabilistic framework is crucial for impact assessment
and risk management.
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