

Delft University of Technology

Shaken, Not Stirred
How Developers Like Their Amplified Tests
Brandt, Carolin; Khatami, Ali; Wessel, Mairieli; Zaidman, Andy

DOI
10.1109/TSE.2024.3381015
Publication date
2024
Document Version
Final published version
Published in
IEEE Transactions on Software Engineering

Citation (APA)
Brandt, C., Khatami, A., Wessel, M., & Zaidman, A. (2024). Shaken, Not Stirred: How Developers Like Their
Amplified Tests. IEEE Transactions on Software Engineering, 50(5), 1264-1280.
https://doi.org/10.1109/TSE.2024.3381015

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TSE.2024.3381015
https://doi.org/10.1109/TSE.2024.3381015

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

1264 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

Shaken, Not Stirred: How Developers Like
Their Amplified Tests

Carolin Brandt , Graduate Student Member, IEEE, Ali Khatami , Graduate Student Member, IEEE,
Mairieli Wessel , and Andy Zaidman

Abstract—Test amplification makes systematic changes to
existing, manually written tests to provide tests complementary
to an automated test suite. We consider developer-centric test
amplification, where the developer explores, judges and edits the
amplified tests before adding them to their maintained test suite.
However, it is as yet unclear which kind of selection and editing
steps developers take before including an amplified test into the
test suite. In this paper we conduct an open source contribution
study, amplifying tests of open source Java projects from GitHub.
We report which deficiencies we observe in the amplified tests
while manually filtering and editing them to open 39 pull requests
with amplified tests. We present a detailed analysis of the
maintainer’s feedback regarding proposed changes, requested
information, and expressed judgment. Our observations provide a
basis for practitioners to take an informed decision on whether to
adopt developer-centric test amplification. As several of the edits
we observe are based on the developer’s understanding of the
amplified test, we conjecture that developer-centric test amplifi-
cation should invest in supporting the developer to understand
the amplified tests.

Index Terms—Software testing, automatic test generation,
developer-centric test amplification.

I. INTRODUCTION

AUTOMATED testing has become central to ensure a high
quality during software development [1], [2], [3]. Never-

theless, writing tests is seen as a tedious and time-consuming
task [4], [5], [6]. This is where automatic test generation comes
in by supporting developers and relieving them of the burden
of writing tests [7], [8], [9], [10], [11].

State-of-the-art test generation tools are powerful in protect-
ing against regressions [12], finding crashes [13], and repro-
ducing crashes [14], [15]. However, they are rather difficult to
adopt in day-to-day software engineering, in part due to the
difficulty to understand the generated test scenarios [16], [17].
For developers it is crucial to understand a test when it fails and
they have to localize the underlying fault [18], [19].

Manuscript received 23 October 2023; revised 13 February 2024; accepted
17 March 2024. Date of publication 22 March 2024; date of current version
16 May 2024. This work was supported by Dutch Science Foundation NWO
through the Vici “TestShift” under Grant VI.C.182.032. Recommended for
acceptance by T. Hall. (Corresponding author: Carolin Brandt.)

Carolin Brandt, Ali Khatami, and Andy Zaidman are with Delft
University of Technology, Delft 2628 CD, The Netherlands (e-mail:
c.e.brandt@tudelft.nl).

Mairieli Wessel is with Radboud University, Nijmegen 6525 XZ, The
Netherlands.

Digital Object Identifier 10.1109/TSE.2024.3381015

This is where test amplification shows promise: instead
of generating completely new tests, e.g., with genetic algo-
rithms (e.g., EvoSuite [9]), test amplification makes systematic
changes to existing, manually written tests with the intent to
provide tests that are complementary to the existing test suite
[20]. In contrast to generated tests that are stored separately
from manually written tests, e.g., when tests are regenerated
after software evolution [21], [22], our focus is on developer-
centric amplified tests. Developer-centric test amplification is
a concept we coined in our previous work [23]. It proposes
that developers adopt the amplified tests into their main test
suite, potentially after manually adjusting the amplified tests.
Developer-centric test amplification means (1) developers ben-
efit from only having to validate amplified tests, instead of
writing these tests manually, and (2) understanding the tests
should be easier because they originate from manually written
tests. To illustrate this more vividly we introduce an example
use case of developer-centric test amplification:

Adriana is a software developer in a project that is strug-
gling with automated testing, as pressure for new features
makes it hard to find time to write tests. She has some
time left this sprint and decides to invest it into testing. To
be quicker, she uses a developer-centric test amplification
tool which generates compiling and passing tests that cover
code that is not covered by the test suite. Adriana browses
through the proposed tests, inspecting their behavior and
new coverage contribution to judge which ones to include in
the test suite. Whenever she decides to keep a test, she takes
a look at its code and does some adjustment to make them
easier to understand for her colleagues and fit better to their
project’s style and quality. After adding several new tests
into the test suite of her project, she commits them all and
prepares a merge request that describes the improvements
to the test suite.

While several studies have investigated the shortcomings of
generated and amplified tests from the developer’s perspective
[16], [23], [24], little is known about which kind of adjustments
developers would make to an amplified test before including it
in the test suite. Therefore, the goal of this paper is to better
understand the effort that developers need to go through when
(1) deciding whether to add an amplified test to the test suite,
and (2) adjusting the amplified test before it can be added.
To this end, we conduct a qualitative open-source contribution
study [25], [26]: We amplify tests for 52 open-source projects

0098-5589 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 07:24:13 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7623-1970
https://orcid.org/0000-0002-2212-2311
https://orcid.org/0000-0001-8619-726X
https://orcid.org/0000-0003-2413-3935
mailto:c.e.brandt@tudelft.nl

BRANDT et al.: SHAKEN, NOT STIRRED: HOW DEVELOPERS LIKE THEIR AMPLIFIED TESTS 1265

and open 39 pull requests to contribute the amplified tests back
to the projects. For the test amplification, we employ DSpot,
which is the original, arche implementation of test amplifica-
tion for Java created by Danglot et al. [20], [25]. Our qual-
itative investigation in this paper is steered by the following
research questions:

RQ1: What deficiencies do we observe in DSpot amplified
tests when preparing them for a pull request?

RQ1.1: On which criteria do we select a candidate test
to include in the test suite?

RQ1.2: Which manual edits do we perform to improve
the tests before submission?

RQ2: What feedback do we receive from the maintainers
on the DSpot amplified tests?

RQ2.1: Which changes are proposed during the pull re-
quest discussion?

RQ2.2: What kind of information is requested by the
maintainers during the pull request discussion?

RQ2.3: How do the maintainers justify their judgment
over the amplified tests during the pull request
discussion?

Based on an existing dataset of buildable Java repositories
[27], we try to amplify tests for 312 open source projects. We
employ the developer-centric test amplification of DSpot [23],
[28], together with a new automatic post-processing module
that filters and simplifies the amplified tests. For each of the
52 projects where the test amplification succeeds, we manually
select a candidate test to submit in a pull request. The criteria
that emerge during this selection process answer RQ1.1. We
manually edit the candidate tests to improve their quality before
opening a pull request. Based on our experiences in this phase,
we build a checklist of edits to expect, the answer to RQ1.2.
To validate whether these edits would also be proposed by
open source maintainers, we omit the manual editing for half of
the projects.

We open pull requests for 39 projects with one amplified
test each. To clarify our contribution to the project maintainers,
we provide an automatically generated textual description of
the amplified test. During the discussion, we incorporate any
proposed changes and answer arising questions. 19 pull requests
were accepted and 13 closed. We analyze the discussions on the
completed pull requests to elicit the changes that the maintain-
ers propose (RQ2.1), the information they request to understand
the amplified tests (RQ2.2), and how they justified their judg-
ment over the amplified tests (RQ2.3). As we manually selected
which amplified tests to submit and manually edited half of
them to improve their quality before submitting, the results for
the second set of research questions more closely represent what
amplified test are capable of with human intervention, or with
automation advancing might be capable of in the future.

II. DEVELOPER-CENTRIC TEST AMPLIFICATION

The technique of test amplification generates new tests by
modifying test that were written by developers [20]. Our work

Fig. 1. Test generated by EvoSuite for apache/commons-io.

is based on the developer-centric test amplification of DSpot
[23], [25], which we introduce in this section.

To explore new behavior, DSpot mutates the setup and action
phase of an existing test, called the original test, by changing
the values of literals and removing or adding method calls to the
objects under test. The old assertions are removed and replaced
by new assertions. For the oracle, DSpot uses the current be-
havior of the system: it executes the test and observes returned
values, which it uses as the expected value of the new assertion.
This leads to all generated tests passing. The developer-centric
variant of DSpot aims at generating concise and simple tests, so
it adds one setup mutation and one assertion per test it generates.
Lastly, only tests that execute instructions not yet covered by
the test suite are kept and shown to the developers1.

As the next step in developer-centric test amplification, a
developer browses and inspects the new, amplified tests. They
judge whether a test is valuable to include into their test suite,
e.g., because of the additional coverage it provides. The de-
veloper can also edit the tests where they see fit, like adding
meaningful names or explanatory comments. The goal is that
they include the selected and edited tests into their test suite and
keep maintaining them in the future.

Developer-centric test amplification is one instance of a vari-
ety of approaches to automatically generate xUnit tests. In com-
parison to, e.g., the widely studied search-based test generation
of EvoSuite [9], it differs in these central points:

1) EvoSuite generally works without input of manually writ-
ten tests, while DSpot mutates existing, manually written
tests [25]. This introduces the assumption of more read-
able tests from the outset.

2) EvoSuite generally aims to generate a whole test suite
at once [29], while DSpot’s approach is closer to test
augmentation: Complementing an already existing test
suite with matching additional tests [30], [31].

3) The developer-centric variant of DSpot sees the developer
judging and editing a test as a central component before
adding the test to a maintained test suite. That is why it
should always be combined with additional information
and approaches to facilitate the communication between
the test generation and the developer [23].

Fig. 1 and Fig. 2 illustrate the difference of tests generated
by EvoSuite and developer-centric DSpot, respectively.

1DSpot can select tests based on mutation score, the developer-centric
variant selects on added instruction coverage for its easier explainability and
better performance.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 07:24:13 UTC from IEEE Xplore. Restrictions apply.

1266 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

Fig. 2. Test generated by developer-centric DSpot.

Recently, Roslan et al. [32] extended EvoSuite to support test
amplification in combination with EvoSuite’s powerful search-
based test optimization. While they reported anecdotal evidence
of less readability than DSpot-generated tests, all previous
developer-involving studies with EvoSuite do not consider the
test amplification approach. In Section VII we connect and
contrast our findings with those of the previous user studies
of EvoSuite.

Another approach that can be related to test amplification
and search-based test generation is fuzzing, where random, but
valid inputs are generated and iteratively mutated to test the
robustness of a software system [33]. While the techniques
overlap in their use of mutation and aim to improve the quality
of the software under test, there are significant differences that
make it difficult to apply the findings of developer-centered
fuzzing studies [34], [35] to our work. Fuzzing focusses on
highly structured test inputs and requires the use of fuzzing
harnesses to call the system under test [36]. In comparison, test
amplification and search-based test generation produce ready
to use test structures leveraging xUnit frameworks [37], which
developer-written tests also use. Furthermore, fuzzing primarily
targets robustness, aiming to uncover crashes or unintended exe-
ceptions in the software under test [33]. Because of this, fuzzing
is often used to address security and reliability concerns, where
any fuzzer output that leads to an undesirable crash is relevant
to be addressed [38]. In comparison, developer tests like the
ones produced by test amplification typically have a functional
oracle or assertion that checks that the code under test behaves
as expected. Therefore, the tests generated by amplification and
search-based approaches improve the quality of the functional
test suite, which in turn improves the confidence in the correct
behavior of the code under test. Beyond that, the developer
test suite can also serve as documentation [3], [39], [40] and a
starting point for developers to localize the root cause of a test
failure [18], [19], two use cases where the understandability of
the tests is crucial.

III. AUTOMATIC POST-PROCESSING FOR DEVELOPER-CENTRIC

TEST AMPLIFICATION

We previously conducted an exploratory study to evaluate
a test amplification plugin for the IntelliJ IDE [23]. The de-
velopers we interviewed mentioned several aspects they would
change before accepting the amplified tests into their test suite.
For example, removing unnecessary statements or changing
cryptic identifiers to meaningful ones. The participants also
pointed to methods that they found not relevant to test, e.g.,

simple getters. To automate these already known points, we
design an automatic post-processing tool for developer-centric
amplified tests: the prettifier. The prettifier is based on an exist-
ing module in DSpot and is run after the amplification described
in Section II. The aim of the prettifier is to make the resulting
tests: (1) more concise, (2) easier to read, and (3) more relevant
to developers.

The participants of the previous study spent a lot of their
time understanding the behavior of an amplified test [23]. This
understanding was the basis for their judgment on whether to
accept a test into their test suite. Previous studies have shown
that a natural language description helps developers to under-
stand generated tests [18], [41]. To reduce the effort required by
developers to understand an amplified test, we generate natural
language descriptions of the behavior and impact of the test
compared to the rest of the test suite.

In this section we will present our design for the prettifier
and the description generation for amplified tests.

A. Prettifier Module

To automate several of the post-processing steps indicated
by our previous study [23], we extend Danglot et al.’s prettifier
module for DSpot [28]. Our approach takes three steps: (1) min-
imizing the tests to make them faster to read, (2) renaming vari-
ables and the test methods to make them less cryptic and more
expressive, and (3) filtering and prioritizing the tests according
to their relevance to the developer.

1) Minimizer: To remove statements that were part of the
original test, but are not relevant for the amplified test, we adopt
Oosterbroek et al.’s approach [42]. They minimize amplified
tests, while retaining the provided additional coverage. The
approach works in increasingly conservative steps: a) remove
all statements except the assertion and the ones needed for the
code to compile, b) remove all statements that do not directly
interact with the assertion, i.e., by setting variables used in there,
or c) remove all statements that do not (in)directly interact with
the assertion, i.e., by calling a method on the object involved
in the assertion. When a step decreases the coverage or causes
the test to fail, the next step is tried.

We also activate two existing minimizers of DSpot. One in-
lines single use variables created by the DSpot amplification,
the other removes redundant casts included by the amplification
for safety.

2) Test and Variable Renamer: To make the tests easier to
read and understand, we implement a simple variable renamer
that hides DSpot’s intermediate variable names (__DSPOT_
path_696) with less cryptic, simple names (String2, pat-
tern: <Type><N>). Further, we generate meaningful names
for the amplified tests based on the additional coverage they pro-
vide using the NATIC approach [43]. NATIC identifies in which
unique methods a test covers additional instructions, compared
to the other amplified tests and the existing test suite. Similar to
Daka et al.’s approach [17], we rank the methods according
to how much additional coverage they contain, concatenate up
to two of the method names and generate a unique test name
such as “testGetFileAndHasLength”.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 07:24:13 UTC from IEEE Xplore. Restrictions apply.

BRANDT et al.: SHAKEN, NOT STIRRED: HOW DEVELOPERS LIKE THEIR AMPLIFIED TESTS 1267

Fig. 3. The basis template for our description of amplified tests.

Fig. 4. An example amplified test and its generated description. The original
test and the name of the changed parameter are not visible.

3) Filter and Prioritize: One issue with automatic test gen-
eration can be the large number of tests produced. Specifically
with developer-centric test amplification, some generated tests
target methods that developers find irrelevant to test, such as
simple getters, or hashCode. To reduce the number of tests
not relevant to developers, we included a developer-centric filter
in the prettifier. It removes tests that only contribute coverage
in simple getters or setters, i.e., one line methods starting with
“get” or “set”. The filter also removes tests that only add cover-
age in Java’s hashCode method. Because exception handling
code is commonly under-tested [44], [45], we explicitly keep
any test that checks for an exception. The prettifier puts the test
with the most additionally covered instructions first, so that the
developers inspect the most impactful amplified test first.

B. Descriptions for Amplified Tests

In our previous study [23], we saw that a major step for
the developers was understanding the behavior and intent of
an amplified test. The developers studied the code of the test,
compared it to the original test and inspected the newly covered
code under test. To support the understanding of amplified
tests, we design an approach for an automatically generated,
natural language description for amplified tests. The description
surfaces the behavior and impact of the test compared to the
existing test suite. It is meant to be informative for the developer
without having to read the code, e.g., as a description in a pull
request that proposes an amplified test.

Similar to previous test description generators [18], [41], we
use a template-based approach. It consists of four components,
as presented in Fig. 3: (1) Describing the assertion, (2) de-
scribing the change to the setup of the test, (3) describing the
additional coverage that is contributed, and (4) pointing to the
original test. We fill these components based on information
collected during the amplification process. Fig. 4 shows an
example test and its corresponding description. In this case,
the assertion is an expected exception, the change made by
the amplification was to set the value of a literal method call
parameter to an empty string. The description indicates that

additional coverage is situated in the method BuilderFac-
tory.build, and that the original test was buildDouble.
The full templates and our implementation are open-source and
shared as part of our replication package [46].

IV. OPEN SOURCE CONTRIBUTION STUDY

The goal of this paper is to gain a clearer understanding of the
changes that developers would make to amplified tests before
including them into their test suite. To this end, we conduct a
qualitative open source contribution study [25], [26], utilizing
DSpot’s developer-centric test amplification, our improved pret-
tifier, and the automatically generated descriptions for amplified
tests. The central step of the contribution study is to open pull
requests with amplified tests to open source projects. However,
it was crucial to us to not antagonize the project maintainers
against us or the research community [26], [47]. Thus, we first
carefully selected amplified tests that we believe are a valuable
contribution to the project, and only opened a pull request
if we found any. We document the criteria that arose during
this selection process, including how often we applied each
of them (RQ1.1). We also received feedback on the value of
the submitted tests during the pull request reviews, which we
analyze to answer RQ2.3.

As the maintainers of a software project are responsible to
update the tests when the software evolves, their feedback is
invaluable to understand which changes are necessary before
including an amplified test in a maintained test suite. This is
why analyzing the changes proposed during the pull requests
is a central part of our study (RQ2.1). To keep the burden on
the open source developers as minimal as possible, we manually
edited and improved the amplified tests for half of the projects
before submitting the pull requests. The other half we submitted
without editing, to validate whether the edits we choose would
also be proposed by a maintainer. To lead our editing, we
created and continuously updated a checklist of potential edits,
which we use to answer RQ1.2.

Another ambition of our study is to evaluate whether the
automatically generated textual descriptions are helpful for un-
derstanding the behavior and value of amplified tests. There-
fore, for a third of the projects we submitted the pull request
with the generated description. For another third, we submitted
the description and a question on whether the explanation was
helpful, and for a third of the projects we submitted the pull
request without any explanation of the amplified test. When
analyzing the pull request discussions, we study what kind of
information the maintainers requested, and the connection to
whether an explanation was provided initially (RQ2.2).

Our qualitative study consists of five steps: First, (1) we select
candidate projects for our study. Next, (2) we use the developer-
centric test amplification of DSpot and our prettifier to generate
the amplified tests and their descriptions. Then, (3) we manu-
ally select and improve the amplified tests, documenting our
emerging criteria. After this, (4) we open pull requests with the
amplified tests. Finally, (5) we analyze the feedback from the
project maintainers during the pull request discussions. In the
following, we will detail the separate steps of our study.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 07:24:13 UTC from IEEE Xplore. Restrictions apply.

1268 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

A. Repository Selection

Our first step is to find GitHub projects that are suitable for
applying DSpot’s test amplification. As our approach requires
building Java projects, and selecting coverage-improving tests
with the JaCoCo2 tool, we use Khatami and Zaidman’s dataset
[27], [48]. They tried to automatically build and calculate the
code coverage of 1454 popular Java GitHub projects. We con-
sider the 312 projects for which JaCoCo could successfully
measure code coverage, and select one module per project3.

B. Running the Test Amplification

We run DSpot on all selected project modules with a budget
of 30 minutes on a desktop PC. For the exact configuration of
DSpot and the hardware specification, we refer to our repli-
cation package [46]. We collect all test classes generated by
DSpot. We also kept partial results, so if the amplification of
all test classes would take longer than 30 minutes we consider
all test classes that were completed within 30 minutes. Next,
we apply the prettifier to simplify and filter the amplified tests
and generate matching descriptions.

C. Manual Selection and Editing

We analyzed all amplified tests and created two checklists:
• How we select the best test to submit to the project.
• Which aspects we manually edit to improve the tests be-

fore proposing them to a project.
The first two authors reviewed all, the other authors a subset

of the tests. Then we met up to come to a negotiated agreement
[49] on the points for both checklists. During the selection and
editing process of the study, performed by the first author, new
points emerged. We validated them through discussions with
other authors to mitigate bias and increase the reliability of the
checklists [49].

For each project we selected one test to contribute in a pull
request: a test we found the most valuable for the project, or a
test where we were curious about the maintainer’s reaction. For
one half of the projects we manually edited the tests with the
help of our checklist and own software engineering experience.
To validate if such edits are necessary, and understand which
edits are important to developers, we left the tests for the other
half of the projects unedited. One goal of this study is to con-
tribute to the open source community while learning from their
feedback. It was crucial to us to only ask for the community’s
reviewing effort if we think a test is valuable for the project.
If we did not find a test that seemed valuable, we excluded the
project from the rest of the study.

D. Contributing Back the Tests

We opened pull requests for the resulting tests. The pull
request description mentions that we want to add a test and
the generated description. As Fig. 5 shows, we modified each

2https://www.jacoco.org/jacoco/index.html, visited August 2022.
3Alphabetically the first. In trials we saw that the amplification not suc-

ceeding in one module of a project often means the same for other modules.

Fig. 5. An example pull request description from P14-PDM.

mention of a method in the “Coverage” and “Original Test”
parts to be a clickable link to the corresponding code on GitHub.
The description contains a note that this pull request was part of
a research study. However, we did not reveal that the tests were
partially automatically generated. This is because we wanted
to avoid negative backlash based on biases against automatic
test generation. Before opening the pull request, we studied the
contribution guidelines of the project and followed them, e.g.,
validating that a linter passes, or applying an auto-formatter.
After opening the pull requests, we answered all questions by
the maintainers and incorporated any changes they requested.

E. Data Analysis

We performed open and axial coding procedures [50] on
the pull request discussions completed as of 19-02-2023. The
first author analyzed the discussions by inductively applying
open coding, wherein they identified discussion points on code
changes, requests for information, judgment statements over
the tests, and other possibly relevant characteristics of the pull
request. They then performed an initial analysis to group the
open codes, employing constant comparison [51] to the pull
request discussions to validate our interpretation. To increase
the reliability of the results and mitigate bias, the first and
second authors refined the code set by merging codes together,
updating code names, and identifying a different granularity
level for a code. The authors discussed the emergent codes
together with the original data and modified the codes until they
reached a negotiated agreement [49]. The outcome was a set
of higher-level categories as cataloged in our codebook [46].
The resulting higher-level categories are structuring the answers
to our research questions in the following section, marked in
bold. The lower-level codes captured the details that we use to
illustrate the presented categories by giving concrete examples
from the pull request discussions.

V. RESULTS

In this section we discuss the results of our study: the test
amplification, the manual preparation for the pull request, and
our analysis of the discussions with the maintainers. To clarify
in which projects each observation occurred, we use shorthand
references in the style P[n]-(E|P)(D|N)(M|C|O|D).
The number uniquely identifies each project in our study,

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 07:24:13 UTC from IEEE Xplore. Restrictions apply.

BRANDT et al.: SHAKEN, NOT STIRRED: HOW DEVELOPERS LIKE THEIR AMPLIFIED TESTS 1269

TABLE I
THE OPEN SOURCE PROJECTS USED IN OUR STUDY, INCLUDING METRICS TO SHOW THEIR SIZE, ACTIVITY AND AGE. METRICS WERE COLLECTED

THROUGH THE SEART GITHUB SEARCH [52] ON 2023-09-14. EACH PULL REQUEST CAN BE ACCESSED BY THE HYPERLINK

IN THE THIRD COLUMN, OR VIA https://github.com/<project>/pull/<prnumber>

ID Project O
ur

Pu
ll

R
eq

ue
st

L
in

es
of

C
od

e

C
om

m
its

C
on

tr
ib

ut
or

s

Pu
ll

R
eq

ue
st

s

C
re

at
io

n
Y

ea
r

P1-EDC apache/commons-io #358 55k 4.323 97 478 2009
P2-EDC apache/curator #418 57k 2.817 114 478 2014
P3-PDC apache/guacamole-client #731 118k 6.616 80 909 2016
P4-EDM apache/httpcomponents-core #349 82k 3.742 65 424 2009
P5-ENM apache/unomi #436 78k 2.608 44 645 2015
P6-N– apache/zookeeper – 182k 2.511 191 2.056 2009
P7-EDM authme/authmereloaded #2562 69k 4.131 111 740 2013
P8-PDM axonframework/

axonframework
#2244 158k 10.281 154 1.679 2011

P9-EDM cloudbees-oss/
zendesk-java-client

#480 15k 953 62 425 2013

P10-EDM decorators-squad/eo-yaml #504 15k 944 20 240 2016
P11-N– dependencytrack/

dependency-track
– 314k 3.946 94 963 2013

P12-PNC digitalpebble/storm-crawler #974 51k 1.815 39 344 2013
P13-N– dius/java-faker – 62k 834 83 515 2011
P14-PDM eclipse/lemminx #1228 511k 1.305 38 824 2018
P15-PNM ff4j/ff4j #571 71k 1.413 80 367 2013
P16-N– firebase/firebase-admin-java – 85k 447 42 610 2017
P17-EDC gitlab4j/gitlab4j-api #852 50k 2.169 145 362 2014
P18-ENC glyptodon/guacamole-client #470 118k 6.608 79 471 2013
P19-N– hangarmc/hangar – 66k 2.874 41 860 2020
P20-N– hibernate/hibernate-tools – 51k 3.177 16 4.415 2011
P21-EDM hyperledger/

fabric-chaincode-java
#244 17k 490 35 282 2017

P22-N– jenkinsci/email-ext-plugin – 21k 1.748 95 484 2010
P23-N– jenkinsci/jira-plugin – 15k 1.481 79 546 2010
P24-PNC jqno/equalsverifier #654 36k 2.884 31 542 2015
P25-ENM jsqlparser/jsqlparser #1568 52k 2.030 112 420 2011
P26-ENO jtablesaw/tablesaw #1124 1.182k 2.514 80 467 2016
P27-ENM lukas-krecan/jsonunit #530 14k 1.549 39 461 2012

ID Project O
ur

Pu
ll

R
eq

ue
st

L
in

es
of

C
od

e

C
om

m
its

C
on

tr
ib

ut
or

s

Pu
ll

R
eq

ue
st

s

C
re

at
io

n
Y

ea
r

P28-PNO maven-nar/
nar-maven-plugin

#389 42k 1.277 71 213 2009

P29-N– mcmmo-dev/mcmmo – 56k 6.627 165 631 2012
P30-EDM miso-lims/miso-lims #2680 342k 4.801 20 2.596 2012
P31-PDC moquette-io/moquette #680 20k 1.394 41 316 2014
P32-N– mybatis/guice – 16k 1.809 25 520 2013
P33-ENM nats-io/nats.java #663 56k 1.578 48 591 2015
P34-ENO netflix/zuul #1265 26k 1.512 54 1.080 2013
P35-PDC nlpchina/elasticsearch-sql #1179 145k 1.010 30 250 2014
P36-PDM oblac/jodd #788 36k 5.364 57 267 2012
P37-N– open-metadata/

openmetadata
– 639k 7.322 176 7.347 2021

P38-ENC openhft/chronicle-queue #1115 41k 7.516 58 705 2013
P39-PND perwendel/spark #1257 12k 1.067 124 528 2011
P40-N– pwm-project/pwm – 186k 3.063 41 293 2015
P41-EDO qos-ch/logback #574 74k 4.451 113 644 2009
P42-PDM redis/jedis #3019 70k 2.269 188 1.680 2010
P43-N– redouane59/twittered – 47k 701 24 278 2020
P44-EDO rickfast/consul-client #461 11k 556 72 255 2014
P45-PDM rubenlagus/telegrambots #1070 33k 1.050 91 474 2016
P46-EDO spotify/dbeam #486 6k 821 14 645 2017
P47-ENC spring-projects/

spring-data-couchbase
#1461 40k 1.210 48 589 2013

P48-EDM synthetichealth/synthea #1082 1.015k 4.662 68 728 2016
P49-PDC teamnewpipe/

newpipeextractor
#850 155k 2.479 64 642 2017

P50-PDM wikidata/wikidata-toolkit #691 44k 1.891 28 553 2014
P51-PDC xerial/sqlite-jdbc #741 30k 1.521 110 383 2014
P52-EDM zsmartsystems/

com.zsmartsystems.zigbee
#1333 165k 1.180 29 1.080 2017

while the last three characters give a concise overview on
the central dependent variables for the pull requests: (1)
was the test Edited or Plain from the amplification tool,
(2) did we provide the generated Description or Not, (3)
the outcome of the pull request: Merged, Closed, nO re-
action yet, under Discussion. Projects where we did not
select any test to contribute are indicated as P[n]-N--.
Table I gives an overview of all open source projects in our
study, including the number of our pull request. We also report
the project’s size, total number of commits, number of con-
tributors, number of pull requests, and the year the repository
was created, showing that our study includes a diverse set
of projects.

A. Running the Test Amplification

The base dataset [27] identified 312 repositories with in total
1821 Java modules that JaCoCo can automatically calculate
coverage for. After selecting one module per repository, we in
total tried to generate amplified tests for 312 modules. From the
DSpot amplification, we obtained 238 classes with generated
tests for 62 projects. For the other projects, DSpot crashed

during the execution or could not produce any tests that improve
the instruction coverage within the budget of 30 minutes. To
these tests we apply the prettifier, resulting in 190 classes with
1297 generated tests for 52 projects. For the gap of 10 projects,
all amplified tests were filtered out according to the criteria we
explained in Section III-A3. Many projects only have a few tests
generated (less than 5 generated test in 25 out of 52 projects),
with a few large outliers (P51-PDC: 618 tests, P50-PDM: 123,
P10-EDM: 96).

B. RQ1.1: On Which Criteria Do We Select a Candidate Test
to Include in the Test Suite?

For each project that we generated amplified tests for, we
explored the new tests to choose a candidate test for the pull
request. Initial exploration showed that there was a consid-
erable number of unsuitable tests that could not be submit-
ted for a variety of reasons. To transparently show the effort
required to select the amplified tests in our study, we docu-
ment our process of identifying the candidate test extensively.
Through this process arose two checklists: one with negative

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 07:24:13 UTC from IEEE Xplore. Restrictions apply.

https://github.com/<project>/pull/<pr number>

1270 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

selection criteria and one with positive selection criteria. With
the negative criteria we identify tests that are not worth con-
tinuing with, e.g., because they would take so much effort to
improve, that writing a new test from scratch felt easier. As we
only submit one test per project, we used the positive criteria
to pick which test of multiple possible candidates to choose for
this study.

1) Negative Selection Criteria: We excluded amplified tests
for the following reasons:
Coverage False Positive (P22-N–, P29-N–, P32-N–, P13-
N–, P34-ENO, P43-N–): Appearing in six projects, the most-
prevalent criterion to reject a test was a coverage false positive,
i.e., tests where inspection revealed no additional coverage over
existing tests. For example, the method calls leading to the
additional coverage were in code taken over from the original
test, that was not influenced by the amplified change (P22-N–,
P29-N–, P32-N–). In three other cases, we browsed through
the existing tests for the same object and found tests that are
already calling the instructions the amplified test claims to
newly cover (P13-N–, P34-ENO, P43-N–). We found that in
three false positive cases mocking was used (P13-N–, P29-N–,
P32-N–), pointing to missing support for mocks in DSpot’s
coverage calculation.
Simple Getters and Setters with Non-Standard Names
(P11-N–): Tests only contribute coverage in simple getters and
setters with non-standard names (not starting with ‘get’or ‘set’),
which should have been filtered by the prettifier.
Could Not Find Class (P37-N–, P40-N–): We could not find
the test class and the class under test (P37-N–), or the class with
additional coverage (P40-N–).
Test Did Not Pass (P2-EDC): A test did not pass because the
expected exception was not thrown. This and the last issue could
be caused by the time difference between the commit at which
we amplified the tests and the commit on which our pull request
was based.
Assertion Unrelated to New Coverage (P20-N–,
P22-N–, P29-N–, P32-N–): In four projects, we found
tests where the generated assertion does not check the behavior
of the newly covered code. For example, the assertion is
generated at a location before the call to the newly covered code
(P20-N–), or the checked value is not influenced by the newly
covered code (P23-N–, P42-PDM, P48-EDM). In both cases,
while the test covers the code, we cannot claim that it tests
the code.
No Explicitly Thrown Exception (P17-EDC, P19-N–,
P23-N–, P24-PNC): In four projects, we found tests for
RuntimeExceptions implicitly caused, e.g., in an unpro-
tected call on a parameter that was set to null during ampli-
fication. As these exceptions did not seem to be part of the
developer-intended behavior, we excluded these tests.
Change Unrelated to Assertion or New Coverage (P6-N–):
We excluded tests where the amplified change did not influence
the asserted value nor the additional coverage. The amplifica-
tion process should check whether the amplified change is nec-
essary for the additional coverage an amplified test is providing.
Readability and Understandability (P6-N–, P23-N–, P25-
ENM, P38-ENC): A further negative selection criterion we used
in four projects was that tests were not good to understand or not

readable, because parts of them were cryptic, long, or verbose.
For example, in P23-N– the original tests already contained
complex configuration of mock behavior.
Unclear Connection between Test and Additional Coverage
(P13-N–, P16-N–, P20-N–): In three projects, we encountered
tests where it was unclear how the amplified change or the
generated assertion leads to the new coverage reported by the
amplification. In contrast to the coverage false positives, we did
not find a test executing the same instructions, but we could not
trace how the method calls in the new test would lead to execute
the covered instructions.

2) Positive Selection Criteria: The positive selection criteria
are divided into two groups: selecting the most valuable test,
or one that we were curious about for our study. In seven
projects, we did not need to apply any positive criteria, as there
was only one test generated (P3-PDC, P9-EDM, P18-ENC,
P21-EDM, P44-EDO, P47-ENC, P49-PDC). In 13 projects, the
negative selection criteria already excluded all generated tests,
we excluded these projects from the rest of our study (P6-N–,
P11-N–, P13-N–, P16-N–, P19-N–, P20-N–, P22-N–, P23-N–,
P29-N–, P32-N–, P37-N–, P40-N–, P43-N–).

We used the following criteria for the positive selection:
Most Additional Coverage (P3-PDC, P9-EDM, P18-ENC,
P21-EDM, P44-EDO, P47-ENC, P49-PDC): In six projects, the
test we selected covered the most additional instructions. This
takes little effort, as the tests in each class are already sorted
according to their additional coverage contribution.
Understandability (P12-PNC, P15-PNM, P25-ENM,
P26-ENO, P28-PNO, P39-PND, P41-EDO, P46-EDO): In nine
projects, we selected tests based on their understandability,
as we expect an easy to understand test to more likely be
accepted. For this, three criteria emerged that we used in
conjunction: a) the coverage improvement is local to a few,
closely related methods, b) the connection from the test to the
additionally covered methods is clear from the methods called
in the test, and c) the test is small and simple.

On several occasions, we choose a candidate test because
we were curious about the developer’s reaction. In all these
cases, we still only considered tests we believe to be a valuable
contribution to the project. Non-valuable tests are identified by
the negative selection criteria discussed before.
Exception Test (P10-EDM, P17-EDC, P24-PNC, P30-EDM,
P34-ENO, P35-PDC, P38-ENC, P42-PDM, P51-PDC): In nine
projects, we selected a test that checks for an exception.
Could Be Considered Not Worth Testing (P7-EDM,
P8-PDM, P31-PDC, P36-PDM, P45-PDM, P52-EDM): In six
projects, the test was contributing coverage in methods that de-
velopers could consider not valuable to test, such as a complex
setters, toString, or equals.
Documentation Mismatch (P27-ENM): In P27-ENM we se-
lected a test whose behavior did not match with the documen-
tation of the method under test.
Improve Assertion Manually (P33-ENM): For P33-ENM, we
were curious if we can improve an assertion that is not checking
the newly covered code.
Uncommonly Large Coverage Increase (P50-PDM): In P50-
PDM, one small method call lead to a lot of new coverage, more
than what we saw throughout the study.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 07:24:13 UTC from IEEE Xplore. Restrictions apply.

BRANDT et al.: SHAKEN, NOT STIRRED: HOW DEVELOPERS LIKE THEIR AMPLIFIED TESTS 1271

Answer to RQ1.1: When selecting tests for the pull re-
quests, we mainly excluded coverage false positives, tests
with assertions that do not check the newly covered code,
or tests that check for unintended runtime exceptions.

C. RQ1.2: Which Manual Edits Do We Perform to Improve
the Tests Before Submission?

In this section we present the checklist that we created to
guide our manual editing step before opening pull requests.
Align Assertion Style (P4-EDM, P5-ENM, P7-EDM, P9-
EDM, P10-EDM, P17-EDC, P25-ENM, P26-ENO, P27-ENM,
P30-EDM, P33-ENM, P34-ENO, P38-ENC, P41-EDO, P44-
EDO, P47-ENC, P52-EDM): The edit we performed in the
largest number of projects (17) was to align the assertion style
with the other tests. Examples include: statically importing
assertEquals, and unifying the assertion framework, e.g.,
transforming plain JUnit assertions to their Hamcrest versions.
DSpot did not remove Hamcrest assertions, so we had to remove
old, no longer matching assertions.
Remove Unnecessary Code (P2-EDC, P4-EDM, P5-ENM,
P7-EDM, P10-EDM, P26-ENO, P34-ENO, P38-ENC, P41-
EDO, P44-EDO, P47-ENC, P48-EDM, P52-EDM): The second
most prevalent edit (13 projects) was to remove variables and
statements that were not relevant for the asserted behavior of
the amplified test. These are left over from the original test,
or temporary variables created by the test amplification and
missed during their intended removal. In rare cases we also had
to remove unnecessary casts or parentheses, introduced by the
test generation for safety.
Adapt To Match Other Edits (P5-ENM, P7-EDM, P18-ENC,
P21-EDM, P33-ENM): In five projects, we had to adapt the
description of the test to match our manual edits. In P5-ENM
we also adapted the test name and the expected value of the
assertion to match the behavior that changed during our edits.
Apply IDE Recommendation (P2-EDC, P17-EDC, P52-
EDM): In three projects, IntelliJ proposed a simplification
through static analysis, e.g., reducing an always true condition.
Resolve Formatting and Linters (P8-PDM, P10-EDM,
P26-ENO, P46-EDO): The contribution guidelines of projects
sometimes state to apply auto-formatting (P8-PDM, P10-EDM,
P46-EDO) or resolve all linter warnings (P10-EDM) before
finalizing a pull request. In P26-ENO, we added line breaks to
long lines to improve the readability.
Change Test Name (P25-ENM, P34-ENO, P52-EDM): We
changed the test name to avoid duplication with existing tests
(P25-ENM, P52-EDM), or make the test name fit the conven-
tion of the other test names in the class (P34-ENO).
Resolve Unrelated Amplified Change, Additional Coverage
or Generated Assertion (P5-ENM, P21-EDM, P33-ENM):
We encountered tests where the amplified change, additional
coverage, or generated assertion were unrelated. In two cases,
we changed the assertion to check the behavior of the newly
covered code (P21-EDM, P33-ENM). In P5-ENM and P33-
ENM the amplified change and the new assertion provided
additional coverage, but they were not related to each other. We
selected one test goal and adapted the rest of the test.

Move Test (P1-EDC, P7-EDM, P10-EDM, P52-EDM): In two
cases (P1-EDC, P10-EDM), the object under test and the addi-
tional coverage were not related to the test class of the original
test. We moved the tests to a better fitting class. In two other
projects (P7-EDM, P52-EDM), we added our tests below other
tests that were targeting the same method.
Simplify Literals (P7-EDM, P21-EDM, P46-EDO): For three
tests, we simplified literal values in the test setup. For example,
we removed extra clauses from a constructed SQL query that
were not relevant for the new test (P46-EDO).
Make Compile (P17-EDC, P25-ENM): In two projects, we
found parameters that no longer fit the signature of the called
method. We adapted them, e.g., by copying over variable ini-
tializations from other tests (P25-ENM).

Answer to RQ1.2: When manually editing the amplified
tests, we most often aligned the assertions’ style to the test
class and removed code unnecessary for the test scenario.

D. RQ2.1: Which Changes Are Proposed During the Pull
Request Discussion?

Here we present the changes discussed by the maintainers
on the pull requests with amplified tests, structured along the
categories that emerged from our analysis.
Code Style Conventions (P1-EDC, P8-PDM, P14-PDM,
P33-ENM, P42-PDM, P47-ENC, P50-PDM, P51-PDC): Most
frequently, the maintainers proposed changes to let the code
adhere to style conventions [53], [54], [55], [56]. This regarded
aligning the static import of assertion methods (P1-EDC, P8-
PDM, P14-PDM, P50-PDM) or used constants (P42-PDM) to
the rest of the class, adding a blank line at the end of the file
(P33-ENM), or listing our name among the authors of the file
in the comment block (P47-ENC), resolving linter warnings
(P1-EDC) to make the CI pass (P51-PDC), or adhering to
variable naming conventions (P1-EDC). While these seem like
conventions of the project, they were not explicitly stated in the
contribution guidelines we examined before each pull request.
Remove Unnecessary Code (P12-PNC, P14-PDM, P49-PDC,
P50-PDM): The next most frequently discussed change was
removing unnecessary code. Three maintainers pointed to un-
used variables (P12-PNC, P49-PDC, P50-PDM). The test in
P14-PDM saved the return value of a relevant method call in
an unused variable. In P12-PNC the maintainer criticized a
statement that had no impact on the test result, and in P49-PDC
the reviewer pointed to unnecessary parentheses.
Change Test Name (P4-EDM, P8-PDM, P10-EDM, P14-
PDM): In four pull requests the reviewers suggested changing
the test name. The proposed names described the scenario of
the method calls in the test (P4-EDM, P8-PDM, P10-EDM), or
the exception expected by the assertion (P14-PDM). For P10-
EDM, the maintainer explained their naming convention: “all
test names should follow the pattern xDoesSomething”.
Practice Defensive Programming (P1-EDC, P4-EDM, P49-
PDC): Over three projects we got five proposals related to
defensive programming. The maintainer of P49-PDC suggested
to not check for the complete message of an exception, which

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 07:24:13 UTC from IEEE Xplore. Restrictions apply.

1272 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

could fail if the code under test is refactored. The same reviewer
asked to use interfaces instead of concrete implementations
and to set variables as final where possible. The review of P4-
EDM proposed to assert the return value of an intermediate
call. The reviewer of P1-EDC advised to use the specialized
try-with-resources when writing to an InputStream within a
try environment.
Simplify Setup (P1-EDC, P8-PDM, P10-EDM, P14-PDM):
The maintainers of four projects proposed to simplify the test
setup. For example, in P8-PDM, we replaced a multiple times
modified object with a fitting default instance. The reviewer of
P14-PDM recognized that another call than one under test could
throw the expected exception and proposed a change to avoid
the tests passing because of the earlier thrown exception.
Choose More Powerful Assertion (P8-PDM, P10-EDM, P49-
PDC): Three maintainers pointed to the benefit of using a
stronger assertion method. For example, in P8-PDM they en-
dorsed a change from assertFalse(...equals()) to
assertNotEquals(..).
Merge or Extend Test (P3-PDC, P42-PDM, P48-EDM): Three
projects discussed merging the contributed test with other tests
for the same method. P3-PDC and P42-PDM pointed to moving
the assertion to an existing test. The maintainer for P48-EDM
proposed to add an assertion to test a second scenario in the
method under test and was open to keep both in the same test
or split them up into two unit tests.
Use Meaningful Scenario (P7-EDM, P25-ENM, P47-ENC):
Three maintainers proposed changing the test setup to a more
meaningful scenario. For example, the test for P25-ENM used
default initializations for SQL queries. The reviewer of P25-
ENM criticized that the queries were not meaningful, and asked
to “craft an actual valid expression.”
Move Test (P12-PNC, P50-PDM, P47-ENC): Three reviews
asked to move the test to another class as it tested a different
object than the original test modified by the amplification.
Change Assertion Message (P42-PDM, P30-EDM): The
maintainers of P42-PDM and P30-EDM both proposed to
change the assertion message to explain why the code throws
the exception that is expected by the test case.
Move Test Data (P1-EDC): For P1-EDC we moved the ampli-
fied test to another class, including globally defined test data.
The maintainer asked us to move the test data into the test itself,
as it was the only test using the data.
Test All Scenarios (P48-EDM): In P48-EDM the reviewer
proposed to add a second assertion, to let the resulting test check
for both the succeeding and failing scenario.

Answer to RQ2.1: The majority of changes proposed
during the pull request reviews were focused on adhering
to code style conventions and removing unnecessary code.

Fig. 6 looks closer at the connection between whether we
manually edited a test and whether changes were proposed
during the review. We observe that for both edited and not edited
tests the maintainers were more often proposing changes
than not. Three tests without edits were merged without any
further changes, while in six projects the pull requests were

Fig. 6. Flow of editing tests, changes proposed during the pull request and
pull request outcome.

Fig. 7. Flow of description provided, information requested during the pull
request and pull request outcome.

closed even when changes were discussed. The latter happened,
e.g., because through the discussion it became clear that the test
is redundant to existing tests (P1-EDC), or the maintainers pro-
vided feedback on the code even though they already concluded
to not accept the test (P49-PDC).

E. RQ2.2: What Kind of Information Is Requested by the
Maintainers During the Pull Request Discussion?

Next to proposing changes, the maintainers also requested
different kinds of information during the discussions:
Purpose of the Pull Request / Test (P3-PDC, P12-PNC, P25-
ENM, P27-ENM): Four reviewers asked to explain the purpose
of the pull request or the test, such as “I’m unsure what issue
this is targeting at resolving” (P3-PDC), or “what problem
exactly will this PR solve?” (P25-ENM).
Added Value (P2-EDC, P25-ENM, P27-ENM, P51-PDC): In
four cases, we were asked about the added value that the test
is providing.
Coverage Increase (P1-EDC): One maintainer included a cov-
erage tool, checking the coverage increased.
Description about the Test (P33-ENM): For P33-ENM we did
not include the textual description at first, but we were asked
to add a description about our test into the pull request.
Contribution Compared to Existing Tests (P1-EDC): The
maintainer of P1-EDC asked what our test checks in compari-
son to existing tests for the same method.
Curiosity (P7-EDM, P14-PDM, P24-PNC, P50-PDM): Three
reviewers asked questions out of curiosity, such as “how [our
tool] generated the parameter input” (P7-EDM), which IDE and
formatter we used (P14-PDM), and how we came to writing a
test for this specific method (P24-PNC, P50-PDM).

Fig. 7 presents a closer analysis of the relationship between
whether we provided a description in the initial pull request
(such as in Fig. 5) and whether additional information was
requested by the reviewers (excluding curious questions). We
can see that questions appeared just as often whether we
provided the generated description or not (4 projects each),
and two pull requests without description were merged without
requests for more information. In contrast, curious questions
on the details of our process were mainly asked for pull

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 07:24:13 UTC from IEEE Xplore. Restrictions apply.

BRANDT et al.: SHAKEN, NOT STIRRED: HOW DEVELOPERS LIKE THEIR AMPLIFIED TESTS 1273

requests with a description. When we provided a descrip-
tion, giving additional information never lead to a merged pull
request (4 projects), while the majority of pull requests with a
description were merged without further requests for clarifica-
tion (14 projects).

Answer to RQ2.2: The maintainers mostly asked for
more information regarding the purpose and value of the
contributed test.

F. RQ2.3: How Do the Maintainers Justify Their Judgment
Over the Amplified Tests During the Pull Request Discussion?

Another aspect we analyzed were the reasons that reviewers
accepted or rejected our pull requests.
Completeness of Contribution (P3-PDC, P5-ENM, P31-PDC,
P47-ENC, P49-PDC): Three reviews pointed out that the contri-
bution was not complete enough. This was because all possible
outcomes of a method should be tested (P31-PDC, P49-PDC),
only a more comprehensive set of changes would be worth
merging (P3-PDC), or an issue tracker entry (P5-ENM) needs to
exist, and a discussion should happen before including a patch
(P3-PDC).
Would Not Test (P2-EDC, P9-EDM, P49-PDC, P51-PDC):
Three maintainers pointed out that the test was targeting meth-
ods they would not test, such as simple methods (P2-EDC, P49-
PDC), classes taken from libraries (P51-PDC), or toString
as it is used for debugging only (P9-EDM).
Test Untested Scenarios (P1-EDC, P9-EDM, P24-PNC, P27-
ENM, P52-EDM): It was important to the reviewers that the
proposed tests were testing yet untested scenarios. In P52-EDM
and P9-EDM this was the rationale to merge the pull request,
in P1-EDC and P24-PNC this was the reason to close the
pull requests as the maintainers found other tests for the same
scenarios. The reviewer of P27-ENM pointed out that “ideally
there should be some intention behind each test.”
Clear Test Scenario (P25-ENM, P27-ENM, P38-ENC): Three
maintainers mentioned a meaningful scenario (P25-ENM) and
clarity about what the test is testing (P27-ENM, P38-ENC).
Code Quality (P1-EDC, P31-PDC:) The reviewer of P1-EDC
pointed out that the code should pass the linter. The maintainer
of P31-PDC criticized that some code in the test is irrelevant
for the method under test.

In several cases, we have no indication of the rationale for
accepting or rejecting the pull request: Four projects merged
(P15-PNM, P21-EDM, P36-PDM, P45-PDM) and two closed
(P35-PDC, P17-EDC) our pull request without any comment.

Answer to RQ2.3: When verbalizing a rationale for their
judgment on the amplified tests, the project maintainers
mentioned the need for a comprehensive contribution of
tests for meaningful, untested scenarios.

VI. DISCUSSION

In the previous section, we reported on the selection and
manual edits we conducted before submitting the tests in pull

requests, as well as the reactions of the maintainers concerning
proposed changes, requested information, and rationale for their
decisions to accept or reject the proposed tests. To connect our
observations, we summarize the guidelines for developers to
select and edit amplified tests in Table II. Further in this section,
we discuss the implications of our findings for developers that
consider using developer-centric test amplification, and for test
amplification researchers and tool designers. We also present
threats to the validity of our study.

A. Guidelines for Developers to Select and Edit Amplified
Tests

A strong take-away from our study is that the tests created by
state-of-the-art test amplification tools still needed selection and
editing efforts before they are incorporated into a maintained
test suite. To summarize and connect the observations we made
for our five research questions, we present guidelines for de-
velopers on what aspects they should consider when reviewing
an amplified test. Here, selection and editing are put together
and the decision which action to take is left to the developer.
If an issue is too large, or it it is unclear how to resolve it, the
developer might choose to exclude the test entirely. If they see
an easy change to address the issue, they might choose to edit
the test and include it in their maintained test suite. Table II
gives an overview and explanation of each of our guidelines, as
well as the observations from our study that it is based on.

We recommend, that a developer using developer-centric test
amplification, should review each test individually and con-
sider whether:

• the newly covered code is indeed not yet covered by any
other test,

• the newly covered code or scenario is relevant to be tested
in their maintained test suite,

• the test only contains code necessary for its behavior or
understandability,

• the assertion in the test validates the behavior of the newly
covered code,

• the test behavior and its impact on the test suite is under-
standable to them and their colleagues,

• the code style is adequate and adheres to their coding
guidelines,

• the test is at an appropriate location and whether it should
be merged or extended with another test.

B. Relation to existing Literature

Several of the edits to amplified tests we observed in our
study are related to existing knowledge about high-quality tests
and shortcomings in automatically generated tests. This section
illustrates how each of our guidelines is supported by existing
literature. However, to our knowledge, there is no research look-
ing at what changes developers concretely make to generated
or amplified tests before including them in a test suite.

1) Valid Coverage Improvement: Our first guideline is that
the targeted code should not be covered by another test that
might not have been considered by the coverage data used by the
test amplification process. We observed something similar in

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 07:24:13 UTC from IEEE Xplore. Restrictions apply.

1274 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

TABLE II
GUIDELINES TO SELECT AND EDIT AMPLIFIED TESTS

Concern in Ampli-
fied Test

Connected Codes / Observations (Source RQ) Explanation

Valid Coverage
Improvement

Test Untested Scenarios (2.3) Check that the targeted code is not tested
by another test
(which might not be considered by amplifi-
cation tool or coverage data)

Added Value, Coverage Increase, Contribution Compared to Existing Tests (2.2)
Coverage False Positive (1.1)

Tests Relevant
Code/Scenario in
Project

Use Meaningful Scenario (2.1) Check that the new coverage provided by
the test covers code that is relevant to test
with your test suite

Would Not Test (2.3)
No Explicitly Thrown Exception (1.1)

Only Necessary
Code

Change Unrelated to Assertion or New Coverage (1.1) Check that all code in the test is
relevant for the test’s execution or
understandability

Remove Unnecessary Code (1.2, 2.1)
Resolve Unrelated Amplified Change, Additional Coverage or Generated Asser-
tion (1.2)

Checks Behavior of
Newly Covered Code

Assertion Unrelated to New Coverage (1.1) Check that the assertion of the test actually
validates the behavior of the additionally
covered code

Resolve Unrelated Amplified Change, Additional Coverage or Generated Asser-
tion (1.2)

Test Scenario and
Impact are
Understandable

Readability and Understandability (1.1)

Check that you can / your colleagues could
understand the test and what it is testing

Simplify Literals (1.2)
Simplify Setup (2.1)
Change Assertion Message (2.1)
Unclear Connection between Test and Additional Coverage (1.1)
Clear Test Scenario (2.3)
Change Test Name (1.2, 2.1)

Good Code Style,
Adhering to
Guidelines

Code Style Conventions (2.1)

Check that the code is well written and
adheres to your guidelines

Align Assertion Style (1.2)
Apply IDE Recommendation (1.2)
Resolve Formatting and Linters (1.2)
Change Test Name (1.2, 2.1)
Practice Defensive Programming (2.1)
Choose More Powerful Assertion (2.1)
Code Quality (2.3)

Appropriate Scope
and Location

Move Test (1.2, 2.1)
Check that the test is at an appropri-
ate location and has the right granu-
larity (move/merge/extend with other test
otherwise)

Merge or Extend Test (2.1)
Change Test Name (1.2, 2.1)
Move Test Data (2.1)
Test All Scenarios (2.1)

an industrial study where developers considered code that was
accounted for in other quality assurance practices or test suites
to be not as relevant to test with a regression test [57]. In the
concrete cases, the code blocks were covered by fuzzing, so the
developers might have seen this robustness testing as sufficient.
While improving an engineering goal such as coverage or mu-
tation score is at the heart of the definition of test amplification
[20], we see in this study that in practice we cannot always
rely on the coverage data that test amplification tools use. This
data might exclude other tests, higher-level test suites or other
quality assurance practices.

2) Tests Relevant Code/Scenario in Project: When testing
software, developers need to decide which code is worth testing
with automated tests [58]. In other studies we conducted, we
observed that not all code is relevant for developers to cover
with regression tests [23], [57]. This is in line with the common
recommendation to not aim for 100% code coverage [59], [60].
In interviews with developers, Kochhar et al. found that the
judgment what to test is subjective, as participants disagreed
whether it is useful to test simple things [40]. There can also be
behaviors of code that should not be tested. Galindo-Guiterrez
et al. identified checking for NullPointerExceptions

that are not explicitly thrown in the code under test as an
undesirable behavior of EvoSuite-generated tests.

3) Only Necessary Code: Our third guideline recommends
removing all code that is not necessary for the execution of the
test. This code might be left over from the original test that
was amplified or no longer needed after other changes to the
test. Similarly, the test smell “General Fixture” [61] is based
on unnecessary code in test setup methdos, and unnecessary
code is also a problem in production code [62]. Panichella et al.
[63] propose to use optimization heuristics like purification
[64], carving [65] or slicing [66] to improve generated tests by
focussing them on one, semantically coherent scenario.

4) Checks Behavior of Newly Covered Code: Our next
guideline concerns the assertions of the amplified tests, which
should check the behavior of the newly covered code. It is well
known that structural coverage can give an indication whether
a test suite is bad, but does not indicate error detection and
prevention strength [40], [67], [68]. The ability to reveal faults
in the targeted production code is a criterion in Grano et al.’s
quality factors for unit tests [69]. A miss-match between the
act and assert phase of a test was one of the quality issues
Galindo-Gutierrez et al. detected in tests generated by EvoSuite

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 07:24:13 UTC from IEEE Xplore. Restrictions apply.

BRANDT et al.: SHAKEN, NOT STIRRED: HOW DEVELOPERS LIKE THEIR AMPLIFIED TESTS 1275

[70]. To address these issues, we could employ more refined
metrics to select the amplified tests, such as checked coverage
[71], oracle adequacy [72], or mutation score [73]. However,
one must way the trade-offs reagarding runtime, because such
stronger metrics are generally more expensive to compute [74].
For mutation score, limiting the mutants to relevant lines [75],
i.e., the additionally covered lines, could be an option to speed
up computation. On the other hand, Zhang et al. [67] found that
human-written assertions are stronger at detecting seeded faults
than assertions generated by the tool Randoop [76].

5) Test Scenario and Impact Are Understandable: The un-
derstandability of tests, or lack thereof, is mentioned in several
user-involving studies on automatic test generation [16], [18],
[24]. Code reviewers are concerned with the understandability
of test that are contributed [77]. The understandability of a test
is impacted by test names [17], [43], [78], variable identifiers
[41], [79], [80], meaningful comments or summaries [18], [41],
and the test data [81], [82], [83], [84], [85]. Lin et al. showed
that the quality of identifier names is low in manually written
and especially automatically generated tests [79]. The con-
cern with readability of generated tests is a central motivation
for the development of language model based test generation
approaches [86], [87]. However, it was also shown that the
judgment how readable a test is differs per developer [85],
and that experience influences the test comprehension process
[82]. Daka et al. observed that developer-given test names could
contain abstract knowledge about the test intent or scenarios,
which was not the case for their generated names that focused
on covered methods and asserted values [17].

6) Good Code Style, Adhering to Guidelines: Our guideline
to ensure that the amplified tests have a good code style and ad-
here to the coding guidelines of a project, can also be observed
in more general code review practices that require consistency
of code style [88], [89]. Specifically for assertions, Zamprogno
et al. found that developers prefer assertion statements that
are consistent with the code style of the test suite [90]. While
explicit guidelines on how to contribute to open source projects
are more and more common [91], these documents often do
not sufficiently reflect the whole process [92], [93] and es-
pecially lack information about not automatically checkable
guidelines [94].

7) Appropriate Scope and Location: The final guideline in
our list is to ensure that an amplified test has an appropriate
scope and is in the right location within the code base. A too
large scope, i.e., too much tested in one method, can be the test
smell “Eager Test” [61] or a sign of lacking semantic coherence
[63]. It also can make the test long, which negatively impacts
understandability [40], [80]. Existing literature recommends
that test code should be well-modularized and structured [40],
[81]. Duplication of test setups over multiple tests is an indica-
tion of code clones hindering the maintainability of test code
[70], which can be the motivation to merge an amplified test
with an existing test from the test suite.

C. Implications for Practitioners

In this paper, we characterized the selection and editing steps
developers are likely to conduct before incorporating amplified

tests into their maintained test suite. For software developers
and project managers, our results can be the basis to take an
informed decision on whether to adopt developer-centric
test amplification, by providing a realistic view on the kind of
adjustments required by developers. We divide these efforts into
two groups: (1) actions that could be automated by customizing
the test amplification to a project, and (2) actions that highly
benefit from the developer’s comprehension.

To the first category, we count the coverage false positives,
additional coverage in not-test-worthy methods, adhering to
code style guidelines, and using defensive programming con-
structs. If a software developer applies test amplification out
of the box, without any further customization, they would run
into these issues, such as we did during our study. However, if
the project would commit to a longer use and invest the time
in configuring and customizing the amplification tool for their
project, such efforts can potentially be automated.

The other set of efforts require the software developers to
understand the amplified test—which they aim for already be-
fore accepting the test. These efforts are about changing the
scenario of the test to be simpler or more meaningful, removing
left over code, moving or merging the test, or adding a clearer
test name. With these, the test becomes easier to understand,
therefore easier to maintain and more helpful when trying to
locate the fault when the test fails. These changes have a large
impact on the quality of the resulting test, addressing commonly
observed shortcomings of automatically generated tests [16],
[24], [80].

D. Implications for Researchers and Tool Designers

Previous user studies on test generation and amplification
have shown that software developers find it important to un-
derstand the produced tests [10], [16], [23]. Understanding the
tests was also necessary for us when selecting and editing the
amplified tests, just as for the maintainers, who asked for addi-
tional clarification when the test or the pull request description
were not clear enough. During this study, we elicited several
adjustments to amplified tests that require an understanding of
the behavior of the test. We conjecture, that such edits are much
easier for developers to perform than for an automated tool.
The next step for researchers would be to investigate whether
test amplification collaborating with the developer for
changes that require understanding is an effective alternative
to automating them.

Because understanding is a prerequisite for the developer’s
manual edits, we conjecture that it is crucial for developer-
centric test amplification tools to provide the information
that developers need to understand and modify the am-
plified tests. As we saw in Section V-E, the descriptions we
generate are one component that contributes here, pointing to
the amplified changes and the additionally provided coverage.
However, throughout our study we experienced that further
information support is necessary. For example, visually con-
necting the methods called in the test with the additional cov-
erage could help developers understand how the amplified test
provides this coverage [95]. Developers would also benefit from
knowing which other tests cover the same method [18], [96],

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 07:24:13 UTC from IEEE Xplore. Restrictions apply.

1276 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

to determine the difference to these tests, or to validate if all
scenarios of a method are tested. When we performed changes
to the test scenario, we were at times not sure whether the cov-
erage reported by the test amplification tool is still provided. We
hypothesize that a close integration of test amplification and
manual editing would let the developer verify their changes in
the terms of the test amplification tool.

While we plead to leverage the developer’s understanding
and expertise to collaboratively produce valuable tests, our re-
sults also point to possible improvements of the automatic am-
plification process. During our selection we encountered tests
where the generated assertion was not checking the behavior
of the newly covered code. One could apply local mutation
analysis to verify that an assertion is really checking the
additionally covered code, similar to Ma et al.’s commit-aware
mutation testing [75]. This means applying mutations only to
the newly covered code and evaluating whether they cause
the amplified test to fail. This approach would have a better
performance than selecting amplified tests on mutation score
directly, and we could still use the more widely understood
instruction coverage when communicating the value of a test
to the developer [97].

We encountered amplified tests that are based on complex,
manually written tests whereas their tested scenario did not need
this complexity. We propose to improve test amplification by
smartly selecting the original test to modify, starting from
simple tests and continuing to more complex ones. This way,
the simple cases that can be tested through test amplification
are caught with simple original tests, and the more complex
original tests are only used if the amplification covers scenarios
that need this complexity.

In the edits we conducted ourselves, as well as the ones pro-
posed by maintainers, we moved tests to other classes, because
the test target of the amplified test was no longer the same as the
target of the original test. Clearly identifying the target of an
amplified test would empower amplification tools to propose
a better location for the produced test, and to communicate the
intended impact of the amplified test clearer to the developer.
From our observations, the tests were moved to test classes that
are related to the additionally covered methods, or related to the
methods directly called in the test.

E. Threats to Validity

There are several threats to the validity of our results:
1) Reliability of Results: To ensure the consistency and reli-

ability of our qualitative analysis’ findings, the first two authors
revised the emergent codes throughout discussions until they
reached a negotiated agreement [49]. We also employed con-
stant comparison [51], whereby each interpretation and finding
is compared with existing findings as it emerges from the data
analysis to increase the construct validity. Especially for the
manual selection and edits we conducted ourselves (adressing
RQ1), the background of the researchers might have influenced
which issues we identified in the amplified tests. Present are the
threats of confirmation bias and experimenter bias, where our
previous experience of issues with amplified tests leads to us

overly focussing on these issues. Independent evaluators with a
different background with regards to test generation might have
identified other issues. Even when considering the presence
of these biases, we deemed the manual selection and editing
necessary to avoid antagonizing the open source maintainers
by submitting tests that are clearly not ready to be merged. To
mitigate the impact of our background, we carefully structured
and documented our selection and editing process through the
checklists that form the answers to RQ1.1 and RQ1.2 and
invite other researchers and software engineering practitioners
to replicate our study and compare their findings.

2) Construct Validity: The deficiencies we observed in the
amplified tests are closely related to the current state of the test
amplification tool DSpot. It is the state-of-the-art for test am-
plification in Java, and the archetypical implementation of test
amplification that other tools are based on [32], [98], [99]. Still,
the selection and edit efforts will change when the automation
improves in the future. If efforts we observed are automated,
developers might be willing to make new kinds of changes to
improve the amplified tests. Because we manually selected the
amplified tests to submit in pull requests and edited half of
them to improve their quality before submitting, the results to
RQ2 do not directly reflect current amplified tests, but rather
what test amplification might be capable of in the future. To
mitigate this, we carefully document and report the selection
and editing checklists we used in the answers to RQ1 and pull
our take-away recommendations on both our manual efforts and
the maintainers’ feedback in the pull request discussions.

3) Participant Bias: We did not reveal that the tests were
at least partially automatically generated, and the maintainers’
feedback might change if they were aware of this. The main-
tainers could also face a social desirability bias, answering in
a way that they expect us or their surroundings to prefer. To
mitigate this we did not reveal our exact research questions to
them, and conducted the study in their familiar environment of
pull request discussions.

4) Internal Validity: In most of the pull request discussions
the maintainers did not communicate their rationale for ac-
cepting or rejecting the pull request. We hypothesize that such
a judgment is based on a plethora of factors, e.g., the code
quality or the coverage contribution. As visible in Table I, our
study includes a diverse set of projects, whose individual size,
contributors, or general interaction with pull requests, might
influence the acceptance of a pull request. To mitigate the
threat of inferring too much from the pull request outcome, we
focused our analysis on the concrete discussion comments from
the project maintainers.

5) Generalizability: The threat of internal generalizability
concerns whether the sampled study objects are representative
of our population of interest: open-source Java projects. We
only considered projects where DSpot did not fail during ex-
ecution, and produced amplified tests within 30 minutes. Other
software projects might need a considerably higher up-front
effort to adapt the test amplification tool before they can apply
it and show a different set of deficiencies in the produced
tests. Projects that need more than 30 minutes to build or use
external tools that cannot be set up with DSpot’s plain Maven

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 07:24:13 UTC from IEEE Xplore. Restrictions apply.

BRANDT et al.: SHAKEN, NOT STIRRED: HOW DEVELOPERS LIKE THEIR AMPLIFIED TESTS 1277

or Gradle support, might show a unique set of selection criteria
and change wishes from the developers. To mitigate this threat,
we focus on providing an overview of the possible selection and
change efforts that developers can encounter. While we specify
how often each of them occurred in our study, we refrain from
hypothesizing how likely they would appear in any project.

With respect to external generalizability and external validity,
we acknowledge the need for replication studies with other
programming languages, test frameworks or project settings.
The feedback from maintainers of less active projects could
differ, and industrial projects could have different requirements
for automated tests.

VII. RELATED WORK

In another open source contribution study [25], Danglot et
al. showed that DSpot is able to provide valuable additions to
existing test suites by amplifying tests. They amplified 40 test
classes of 10 projects and opened 19 pull requests of which
13 were accepted. Compared to their study, we focus on com-
prehensively documenting which kind of manual adjustments
are necessary before submitting an amplified test, conduct our
study on a larger number of repositories and pull requests,
and present a detailed analysis of the feedback from the open
source maintainers. We previously conducted an exploratory
study evaluating an IntelliJ plugin to facilitate developer-centric
test amplification from within the developer’s IDE [23]. While
we gathered a broad variety of feedback through interviews
with developers, this work focuses on the concrete changes that
maintainers and code owners would make to the amplified tests,
independently of IDE tooling.

There have been several studies of search-based test gener-
ation with EvoSuite that involved users [10], [16], [24]. Our
findings corroborate several results from these studies, such
as the importance of readability for the developers [16], [24],
that the quality of a test is strongly connected to how easy
it is to elicit its behavior [24], and a diversity of preferences
for tests between different developers [24]. Daka et al. [80]
established identifiers, line length and constructor and method
calls as important features of the readability of a test. We go
further into analyzing what a developer would change to obtain
a satisfactory test from a, potentially less readable, generated
one. Similar to us, Almasi et al. [16] asked the participants
of their industrial case study what they would change in the
generated tests to keep them. Our findings corroborate their
results that developers would change the test data, or scenario,
and the assertions to more meaningful ones. In contrast to their
study, our open source contribution study spreads over a larger
variety of projects. We point to a greater diversity of concrete
changes that were important to the projects we contributed to,
such as aligning with code style conventions, or moving and
merging tests.

In a large-scale, manual study of EvoSuite generated tests,
Galindo-Gutierrez et al. [70] identified 13 new quality issues
in automatically generated test cases, which are not covered by
the previous definitions of test smells [61], [63], [100]. While
our study is based on a different test generation approach and

tool, several of their quality issues coincide with the deficiencies
we observe in DSpot amplified tests, and which we recommend
developers to consider when selecting and editing amplified
tests. They name three quality issues concerning a mismatch
between the act and assert sections of the test case, which
correspond to our observations of unrelated amplified change,
additional coverage or generated assertion (RQ1). Our filter
criterion “No Explicitly Thrown Exception” is also present in
their list of quality issues. A set of their collected issues does
not apply to the approach of test amplification, where one test is
generated and then integrated into an existing test suite. These
issues concern code and test scenarios that are redundant be-
tween the many tests EvoSuite generates, or violate the stricter
unit testing paradigm aimed at by EvoSuite, i.e., only testing
behavior directly in the class under test.

Incorporating the developer’s expertise into the test ampli-
fication process, is also central in interactive search-based test
generation [101], [102], [103]. In contrast to this field, we do
not ask the developer to provide specific types of judgments
to improve the search process, but instead they customize the
amplified test to its final state for their test suite.

Several previous works investigated generating descriptions
for automatically generated [18], [41], [104] and manually writ-
ten tests [105], [106] and have shown that these descriptions
help developers understand the tests [18], [41], [106]. Similar
to us, these approaches leverage the called and covered methods
to describe the intention of the test case. Our description is spe-
cialized for amplified tests, focussing on the amplified change
and new assertion, while referring to the original test, leading
to a shorter description.

VIII. CONCLUSION

In this paper, we manually analyzed the amplified tests of 52
projects, and discussed them through 39 pull requests with their
open source maintainers. In a nutshell, we contribute:

• Insights into the selection and manual editing we per-
formed to prepare the amplified tests for a pull request.

• Insights into the proposed changes, requested informa-
tion and judgment of open source maintainers towards
developer-centric amplified tests.

• Improvements to the test suites of 19 open source projects
through our accepted pull requests.

Throughout the whole study we repeatedly observed that
amplified tests need to be understood by developers before they
consider including the tests into their maintained test suite.
This understanding was also the basis for several kinds of edits
we made and changes that were proposed by the maintainers,
opening up a fundamental question for researchers working on
developer-centric test amplification:

Should we focus on further automating test amplification
or focus on supporting developers in understanding the
amplified tests, leaving some edits to them?

Therefore, the next steps in this line of research are to inves-
tigate this tradeoff and to develop tools that support developers

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 07:24:13 UTC from IEEE Xplore. Restrictions apply.

1278 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

with information and actionable recommendations while edit-
ing amplified tests. Further, we want to improve the state-of-the-
art of test amplification by automating the now manual efforts
and by sharpening the quality of the amplified tests through
local mutation analysis. We encourage researchers to validate
whether our results hold for other programming languages and
test generation tools.

REFERENCES

[1] K. L. Beck, Test-Driven Development by Example (The Addison-
Wesley Signature Series). Reading, MA, USA: Addison-Wesley, 2003.

[2] M. Aniche, C. Treude, and A. Zaidman, “How developers engineer
test cases: An observational study,” IEEE Trans. Softw. Eng., vol. 48,
no. 12, pp. 4925–4946, Dec. 2022.

[3] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman, “Test code
quality and its relation to issue handling performance,” IEEE Trans.
Softw. Eng., vol. 40, no. 11, pp. 1100–1125, Nov. 2014.

[4] M. Beller, G. Gousios, and A. Zaidman, “How (much) do developers
test?” in Proc. IEEE/ACM Int. Conf. Softw. Eng. (ICSE), Los Alamitos,
CA, USA: IEEE Comput. Soc. Press, 2015, pp. 559–562.

[5] M. Beller, G. Gousios, A. Panichella, and A. Zaidman, “When, how,
and why developers (do not) test in their IDEs,” in Proc. Joint Meeting
Found. Softw. Eng. (ESEC/FSE), New York, NY, USA: ACM, 2015,
pp. 179–190.

[6] M. Beller, G. Gousios, A. Panichella, S. Proksch, S. Amann, and
A. Zaidman, “Developer testing in the IDE: Patterns, beliefs, and
behavior,” IEEE Trans. Softw. Eng., vol. 45, no. 3, pp. 261–
284, 2019.

[7] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege,
“A systematic review of the application and empirical investigation of
search-based test case generation,” IEEE Trans. Softw. Eng., vol. 36,
no. 6, pp. 742–762, Nov./Dec. 2010.

[8] L. Baresi and M. Miraz, “TestFul: Automatic unit-test generation
for Java classes,” in Proc. IEEE/ACM Int. Conf. Softw. Eng. (ICSE),
New York, NY, USA: ACM, 2010, pp. 281–284.

[9] G. Fraser and A. Arcuri, “EvoSuite: Automatic test suite generation
for object-oriented software,” in Proc. ACM SIGSOFT Symp. Found.
Softw. Eng. (FSE)/Eur. Softw. Eng. Conf. (ESEC), New York, NY, USA:
ACM, 2011, pp. 416–419.

[10] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg, “Does
automated unit test generation really help software testers? A controlled
empirical study,” ACM Trans. Softw. Eng. Methodol., vol. 24, no. 4,
pp. 23:1–23:49, 2015.

[11] M. Swillus and A. Zaidman, “Sentiment overflow in the testing stack:
Analysing software testing posts on stack overflow,” J. Syst. Softw.,
vol. 205, 2023, Art. no. 111804.

[12] B. Robinson, M. D. Ernst, J. H. Perkins, V. Augustine, and N.
Li, “Scaling up automated test generation: Automatically generating
maintainable regression unit tests for programs,” in Proc. IEEE/ACM
Int. Conf. Automated Softw. Eng. (ASE), Los Alamitos, CA, USA: IEEE
Comput. Soc. Press, 2011, pp. 23—32.

[13] C. Csallner and Y. Smaragdakis, “JCrasher: An automatic robustness
tester for Java,” Softw. Pract. Exp., vol. 34, no. 11, pp. 1025–
1050, 2004.

[14] P. Derakhshanfar, X. Devroey, A. Panichella, A. Zaidman, and A. van
Deursen, “Botsing, a search-based crash reproduction framework for
Java,” in Proc. IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE),
Piscataway, NJ, USA: IEEE Press, 2020, pp. 1278–1282.

[15] P. Derakhshanfar, X. Devroey, A. Zaidman, A. van Deursen, and
A. Panichella, “Good things come in threes: Improving search-based
crash reproduction with helper objectives,” in Proc. IEEE/ACM Int.
Conf. Automated Softw. Eng. (ASE), Piscataway, NJ, USA: IEEE Press,
2020, pp. 211–223.

[16] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds,
“An industrial evaluation of unit test generation: Finding real faults in a
financial application,” in Proc. IEEE/ACM Int. Conf. Softw. Eng./Softw.
Eng. Pract. (ICSE-SEIP), Los Alamitos, CA, USA: IEEE Comput. Soc.
Press, 2017, pp. 263–272.

[17] E. Daka, J. M. Rojas, and G. Fraser, “Generating unit tests with de-
scriptive names or: Would you name your children thing1 and thing2?”
in Proc. ACM SIGSOFT Int. Symp. Softw. Testing Anal. (ISSTA),
New York, NY, USA: ACM, 2017, pp. 57–67.

[18] S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H. C. Gall,
“The impact of test case summaries on bug fixing performance: An
empirical investigation,” in Proc. IEEE/ACM Int. Conf. Softw. Eng.
(ICSE), New York, NY, USA: ACM, 2016, pp. 547–558.

[19] A. Zeller, Why Programs Fail: A Guide to Systematic Debugging.
Amsterdam, The Netherlands, 2009.

[20] B. Danglot, O. Vera-Perez, Z. Yu, A. Zaidman, M. Monperrus, and
B. Baudry, “A snowballing literature study on test amplification,” J.
Syst. Softw., vol. 157, 2019, Art. no. 110398.

[21] M. Nassif, A. Hernandez, A. Sridharan, and M. P. Robillard, “Gener-
ating unit tests for documentation,” IEEE Trans. Softw. Eng., vol. 48,
no. 9, pp. 3268–3279, Sep. 2022.

[22] STAMP “Use cases validation report v3,” GitHub. Accessed:
Apr. 4, 2024. [Online]. Available: https://github.com/STAMP-project/
docs-forum/blob/master/docs/

[23] C. Brandt and A. Zaidman, “Developer-centric test amplification,”
Empirical Softw. Eng., vol. 27, no. 4, 2022, Art. no. 96.

[24] J. M. Rojas, G. Fraser, and A. Arcuri, “Automated unit test generation
during software development: A controlled experiment and think-
aloud observations,” in Proc. Int. Symp. Softw. Testing Anal. (ISSTA),
New York, NY, USA: ACM, 2015, pp. 338–349.

[25] B. Danglot, O. L. Vera-Pérez, B. Baudry, and M. Monperrus, “Auto-
matic test improvement with DSpot: A study with ten mature open-
source projects,” Empirical Softw. Eng., vol. 24, no. 4, pp. 2603–
2635, 2019.

[26] C. Brown and C. Parnin, “Sorry to bother you: Designing bots for
effective recommendations,” in Proc. Int. Workshop Bots Softw. Eng.
(BotSE), Piscataway, NJ, USA: IEEE Press, 2019, pp. 54–58.

[27] A. Khatami and A. Zaidman, “State-of-the-practice in quality assurance
in open source software development—Replication package,” Zenodo,
Dec. 6, 2022, doi: 10.5281/zenodo.6563549.

[28] B. Danglot, M. Monperrus, W. Rudametkin, and B. Baudry, “An
approach and benchmark to detect behavioral changes of commits in
continuous integration,” Empirical Softw. Eng., vol. 25, no. 4, pp. 2379–
2415, 2020.

[29] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Trans.
Softw. Eng., vol. 39, no. 2, pp. 276–291, Feb. 2013.

[30] R. Bloem, R. Koenighofer, F. Röck, and M. Tautschnig, “Automating
test-suite augmentation,” in Proc. Int. Conf. Qual. Softw., Piscataway,
NJ, USA: IEEE Press, 2014, pp. 67–72.

[31] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B. Cohen, “Directed test
suite augmentation: Techniques and tradeoffs,” in Proc. ACM SIGSOFT
Int. Symp. Found. Softw. Eng. (FSE), New York, NY, USA: ACM, 2010,
pp. 257–266.

[32] M. F. Roslan, J. M. Rojas, and P. McMinn, “An empirical comparison
of EvoSuite and DSpot for improving developer-written test suites with
respect to mutation score,” in Proc. Int. Symp. Search-Based Softw. Eng.
(SSBSE), in LNCS, vol. 13711, New York, NY, USA: Springer-Verlag,
2022, pp. 19–34.

[33] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler, The
Fuzzing Book. CISPA Helmholtz Center for Information Security, 2023.
[Online]. Available: https://www.fuzzingbook.org/

[34] O. Nourry, Y. Kashiwa, B. Lin, G. Bavota, M. Lanza, and Y. Kamei,
“The human side of fuzzing: Challenges faced by developers during
fuzzing activities,” ACM Trans. Softw. Eng. Methodol., vol. 33, no. 1,
pp. 1–26, Nov. 2023.

[35] S. Plöger, M. Meier, and M. Smith, “A usability evaluation of AFL and
libFuzzer with CS students,” in Proc. Conf. Human Factors Comput.
Syst. (CHI), New York, NY, USA: ACM, 2023, pp. 186:1–186:18.

[36] B. Jeon et al., “Utopia: Automatic generation of fuzz driver us-
ing unit tests,” in Proc. 44th IEEE Symp. Secur. Privacy (SP),
San Francisco, CA, USA. Piscataway, NJ, USA: IEEE Press, 2023,
pp. 2676–2692.

[37] M. Olsthoorn, A. van Deursen, and A. Panichella, “Generating
highly-structured input data by combining search-based testing and
grammar-based fuzzing,” in Proc. IEEE/ACM Int. Conf. Auto-
mated Softw. Eng. (ASE), Piscataway, NJ, USA: IEEE Press, 2020,
pp. 1224–1228.

[38] M. Böhme, C. Cadar, and A. Roychoudhury, “Fuzzing: Challenges and
reflections,” IEEE Softw., vol. 38, no. 3, pp. 79–86, May/Jun. 2021.

[39] D. Hoffman and P. Strooper, “API documentation with executable
examples,” J. Syst. Softw., vol. 66, no. 2, pp. 143–156, 2003.

[40] P. S. Kochhar, X. Xia, and D. Lo, “Practitioners’ views on good
software testing practices,” in Proc. IEEE/ACM Int. Conf. Softw. Eng.
/Softw. Eng. Pract. (ICSE-SEIP), Piscataway, NJ, USA: IEEE Press,
2019, pp. 61–70.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 07:24:13 UTC from IEEE Xplore. Restrictions apply.

https://github.com/STAMP-project/docs-forum/blob/master/docs/
https://github.com/STAMP-project/docs-forum/blob/master/docs/
http://dx.doi.org/10.5281/zenodo.6563549.
https://www.fuzzingbook.org/

BRANDT et al.: SHAKEN, NOT STIRRED: HOW DEVELOPERS LIKE THEIR AMPLIFIED TESTS 1279

[41] D. Roy et al., “DeepTC-Enhancer: Improving the readability of au-
tomatically generated tests,” in Proc. IEEE/ACM Int. Conf. Auto-
mated Softw. Eng. (ASE), Piscataway, NJ, USA: IEEE Press, 2020,
pp. 287–298.

[42] W. Oosterbroek, C. Brandt, and A. Zaidman, “Removing redundant
statements in amplified test cases,” in Proc. IEEE Int. Work. Conf.
Source Code Anal. Manipulation (SCAM), Piscataway, NJ, USA: IEEE
Press, 2021, pp. 242–246.

[43] N. Nijkamp, C. Brandt, and A. Zaidman, “Naming amplified tests based
on improved coverage,” in Proc. IEEE Int. Work. Conf. Source Code
Anal. Manipulation (SCAM), Piscataway, NJ, USA: IEEE Press, 2021,
pp. 237–241.

[44] F. Ebert, F. Castor, and A. Serebrenik, “An exploratory study on
exception handling bugs in Java programs,” J. Syst. Softw., vol. 106,
pp. 82–101, 2015.

[45] S. Sinha and M. J. Harrold, “Criteria for testing exception-handling
constructs in Java programs,” in Proc. Int. Conf. Softw. Mainte-
nance (ICSM), Los Alamitos, CA, USA: IEEE Comput. Soc. Press,
1999, p. 265.

[46] Anonymous Authors, “Shaken, Not Stirred. How Developers Like Their
Amplified Tests: Replication Package,” Zenodo, Feb. 28, 2023, doi:
10.5281/zenodo.7034924.

[47] R. Lakshmanan, “Minnesota university apologizes for contributing
malicious code to the Linux project,” The Hacker News, Apr. 2021.
Accessed: Apr. 4, 2024. [Online]. Available: https://thehackernews.
com/2021/04/minnesota-university-apologizes-for.html

[48] A. Khatami and A. Zaidman, “State-of-the-practice in quality assur-
ance in Java-based open source software development,” Softw: Pract.
Experience (SP&E), 2024, submitted for publication.

[49] D. R. Garrison, M. Cleveland-Innes, M. Koole, and J. Kappelman,
“Revisiting methodological issues in transcript analysis: Negotiated
coding and reliability,” Internet Higher Educ., vol. 9, no. 1, pp. 1–
8, 2006.

[50] A. L. Strauss and J. M. Corbin, “Basics of qualitative research:
Techniques and procedures for developing grounded theory,” Newbury
Park, CA, USA: Sage, 1998.

[51] B. G. Glaser and A. L. Strauss, Discovery of Grounded Theory:
Strategies for Qualitative Research. Evanston, IL, USA: Routledge,
2017.

[52] O. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in
GitHub for MSR studies,” in Proc. IEEE/ACM Int. Conf. Mining
Softw. Repositories (MSR), Piscataway, NJ, USA: IEEE Press, 2021,
pp. 560–564.

[53] G. Gousios, A. Zaidman, M. D. Storey, and A. van Deursen, “Work
practices and challenges in pull-based development: The integrator’s
perspective,” in Proc. IEEE/ACM Int. Conf. Softw. Eng. (ICSE), Los
Alamitos, CA, USA: IEEE Comput. Soc. Press, 2015, pp. 358–368.

[54] M. V. Mäntylä and C. Lassenius, “What types of defects are really
discovered in code reviews?” IEEE Trans. Softw. Eng., vol. 35, no. 3,
pp. 430–448, May/Jun. 2009.

[55] M. Beller, A. Bacchelli, A. Zaidman, and E. Jürgens, “Modern code
reviews in open-source projects: Which problems do they fix?” in Proc.
Work. Conf. Mining Softw. Repositories (MSR), New York, NY, USA:
ACM, 2014, pp. 202–211.

[56] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proc. IEEE/ACM Int. Conf. Softw. Eng.
(ICSE), Los Alamitos, CA, USA: IEEE Comput. Soc. Press, 2013,
pp. 712–721.

[57] C. Brandt, M. Castelluccio, C. Holler, J. Kratzer, A. Zaidman, and
A. Bacchelli, “Mind the gap: What working with developers on fuzz
tests taught us about coverage gaps,” in Proc. IEEE/ACM Int. Conf.
Softw. Eng./Softw. Eng. Pract. (ICSE-SEIP), 2024.

[58] M. Aniche, Effective Software Testing: A Developer’s Guide. New
York, NY, USA: Simon and Schuster, 2022.

[59] M. Gittens, K. Romanufa, D. Godwin, and J. Racicot, “All code cover-
age is not created equal: A case study in prioritized code coverage,” in
Proc. Conf. Centre Adv. Stud. Collaborative Res., Toronto, ON, Canada:
IBM, 2006, pp. 131–145.

[60] B. Marick, J. Smith, and M. Jones, “How to misuse code coverage,”
in Proc. Int. Conf. Testing Comput. Softw., 1999, pp. 16–18.

[61] A. van Deursen, L. Moonen, A. van den Bergh, and G. Kok, “Refactor-
ing test code,” in Proc. Int. Conf. Extreme Program. Flexible Processes
Softw. Eng. (XP), 2001, pp. 92–95.

[62] S. Eder, M. Junker, E. Jürgens, B. Hauptmann, R. Vaas, and
K. Prommer, “How much does unused code matter for maintenance?”

in Proc. Int. Conf. Softw. Eng. (ICSE), Los Alamitos, CA, USA: IEEE
Comput. Soc. Press, 2012, pp. 1102–1111.

[63] A. Panichella, S. Panichella, G. Fraser, A. A. Sawant, and V. J.
Hellendoorn, “Test smells 20 years later: Detectability, validity, and
reliability,” Empirical Softw. Eng., vol. 27, no. 7, 2022, Art. no. 170.

[64] J. Xuan and M. Monperrus, “Test case purification for improving fault
localization,” in Proc. ACM SIGSOFT Int. Symp. Found. Softw. Eng.
(FSE), New York, NY, USA: ACM, 2014, pp. 52–63.

[65] S. G. Elbaum, H. N. Chin, M. B. Dwyer, and M. Jorde, “Carving
and replaying differential unit test cases from system test cases,” IEEE
Trans. Softw. Eng., vol. 35, no. 1, pp. 29–45, Jan./Feb. 2009.

[66] S. Messaoudi, D. Shin, A. Panichella, D. Bianculli, and L. C. Briand,
“Log-based slicing for system-level test cases,” in Proc. ACM SIGSOFT
Int. Symp. Softw. Testing Anal. (ISSTA), New York, NY, USA: ACM,
2021, pp. 517–528.

[67] Y. Zhang and A. Mesbah, “Assertions are strongly correlated with
test suite effectiveness,” in Proc. Joint Meeting Found. Softw. Eng.
(ESEC/FSE), New York, NY, USA: ACM, 2015, pp. 214–224.

[68] P. S. Kochhar, D. Lo, J. Lawall, and N. Nagappan, “Code coverage
and postrelease defects: A large-scale study on open source projects,”
IEEE Trans. Reliab., vol. 66, no. 4, pp. 1213–1228, Dec. 2017.

[69] G. Grano, C. D. Iaco, F. Palomba, and H. C. Gall, “Pizza versus pinsa:
On the perception and measurability of unit test code quality,” in Proc.
IEEE Int. Conf. Softw. Maintenance Evolution (ICSME), Piscataway,
NJ, USA: IEEE Press, 2020, pp. 336–347.

[70] G. Galindo-Gutierrez, M. N. Carvajal, A. F. Blanco, N. Anquetil,
and J. P. S. Alcocer, “A manual categorization of new quality issues
on automatically-generated tests,” in Proc. IEEE Int. Conf. Softw.
Maintenance Evolution (ICSME), 2023, pp. 271–281.

[71] D. Schuler and A. Zeller, “Assessing Oracle quality with checked cov-
erage,” in Proc. IEEE Int. Conf. Softw. Testing, Verification Validation
(ICST), Los Alamitos, CA, USA: IEEE Comput. Soc. Press, 2011,
pp. 90–99.

[72] M. Staats, M. W. Whalen, and M. P. E. Heimdahl, “Programs, tests,
and Oracles: The foundations of testing revisited,” in Proc. Int. Conf.
Softw. Eng. (ICSE), New York, NY, USA: ACM, 2011, pp. 391–400.

[73] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appro-
priate tool for testing experiments?” in Proc. Int. Conf. Softw. Eng.
(ICSE), New York, NY, USA: ACM, 2005, pp. 402–411.

[74] C. Brandt, D. Wang, and A. Zaidman, “When to let the developer guide:
Trade-offs between open and guided test amplification,” in Proc. IEEE
Int. Work. Conf. Source Code Anal. Manipulation (SCAM), Piscataway,
NJ, USA: IEEE Press, 2023, pp. 231–241.

[75] W. Ma, T. Laurent, M. Ojdanic, T. T. Chekam, A. Ventresque, and
M. Papadakis, “Commit-aware mutation testing,” in Proc. IEEE Int.
Conf. Softw. Maintenance Evolution (ICSME), Piscataway, NJ, USA:
IEEE Press, 2020, pp. 394–405.

[76] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in Proc. IEEE/ACM Int. Conf. Softw. Eng.
(ICSE), Los Alamitos, CA, USA: IEEE Comput. Soc. Press, 2007,
pp. 75–84.

[77] D. Spadini, M. F. Aniche, M. D. Storey, M. Bruntink, and A. Bacchelli,
“When testing meets code review: Why and how developers review
tests,” in Proc. IEEE/ACM Int. Conf. Softw. Eng. (ICSE), New York,
NY, USA: ACM, 2018, pp. 677–687.

[78] B. Zhang, E. Hill, and J. Clause, “Towards automatically generating
descriptive names for unit tests,” in Proc. IEEE/ACM Int. Conf.
Automated Softw. Eng. (ASE), New York, NY, USA: ACM, 2016,
pp. 625–636.

[79] B. Lin, C. Nagy, G. Bavota, A. Marcus, and M. Lanza, “On the quality
of identifiers in test code,” in Proc. Int. Work. Conf. Source Code
Anal. Manipulation (SCAM), Piscataway, NJ, USA: IEEE Press, 2019,
pp. 204–215.

[80] E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer, “Mod-
eling readability to improve unit tests,” in Proc. Joint Meeting
Found. Softw. Eng. (ESEC/FSE), New York, NY, USA: ACM, 2015,
pp. 107–118.

[81] D. Winkler, P. Urbanke, and R. Ramler, “What do we know about
readability of test code?—A systematic mapping study,” in Proc. IEEE
Int. Conf. Softw. Anal., Evolution Reengineering (SANER), Piscataway,
NJ, USA: IEEE Press, 2022, pp. 1167–1174.

[82] C. S. Yu, C. Treude, and M. F. Aniche, “Comprehending test
code: An empirical study,” in Proc. IEEE Int. Conf. Softw. Mainte-
nance Evolution (ICSME), Piscataway, NJ, USA: IEEE Press, 2019,
pp. 501–512.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 07:24:13 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.5281/zenodo.7034924
https://thehackernews.com/2021/04/minnesota-university-apologizes-for.html
https://thehackernews.com/2021/04/minnesota-university-apologizes-for.html

1280 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 5, MAY 2024

[83] A. Deljouyi and A. Zaidman, “Generating understandable unit tests
through end-to-end test scenario carving,” in Proc. Int. Work. Conf.
Source Code Anal. Manipulation (SCAM), Piscataway, NJ, USA: IEEE
Press, 2023, pp. 107–118.

[84] A. Alsharif, G. M. Kapfhammer, and P. McMinn, “What factors
make SQL test cases understandable for testers? A human study of
automated test data generation techniques,” in Proc. IEEE Int. Conf.
Softw. Maintenance Evolution (ICSME), Piscataway, NJ, USA: IEEE
Press, 2019, pp. 437–448.

[85] P. Delgado-Pérez, A. Ramírez, K. J. Valle-Gómez, I. Medina-Bulo, and
J. R. Romero, “InterEvo-TR: Interactive evolutionary test generation
with readability assessment,” IEEE Trans. Softw. Eng., vol. 49, no. 4,
pp. 2580–2596, Apr. 2023.

[86] N. Rao, K. Jain, U. Alon, C. L. Goues, and V. J. Hellendoorn, “CAT-
LM training language models on aligned code and tests,” in Proc.
IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Piscataway, NJ,
USA: IEEE Press, 2023, pp. 409–420.

[87] M. Tufano, D. Drain, A. Svyatkovskiy, S. K. Deng, and N. Sundaresan,
“Unit test case generation with transformers and focal context,” 2020,
arXiv:2009.05617.

[88] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli,
“Modern code review: A case study at Google,” in Proc. 40th Int. Conf.
Softw. Eng./Softw. Eng. Pract. (ICSE-SEIP), Gothenburg, Sweden. New
York, NY, USA: ACM, 2018, pp. 181–190.

[89] W. Zou, J. Xuan, X. Xie, Z. Chen, and B. Xu, “How does code style
inconsistency affect pull request integration? An exploratory study on
117 GitHub projects,” Empirical Softw. Eng., vol. 24, no. 6, pp. 3871–
3903, 2019.

[90] L. Zamprogno, B. Hall, R. Holmes, and J. M. Atlee, “Dynamic human-
in-the-loop assertion generation,” IEEE Trans. Softw. Eng., vol. 49,
no. 4, pp. 2337–2351, Apr. 2023.

[91] A. Khatami and A. Zaidman, “Quality assurance awareness in open
source software projects on GitHub,” in Proc. IEEE Int. Work. Conf.
Source Code Anal. Manipulation (SCAM), Piscataway, NJ, USA: IEEE
Press, 2023, pp. 174–185.

[92] M. Guizani et al., “The long road ahead: Ongoing challenges in
contributing to large OSS organizations and what to do,” Proc. ACM
Human Comput. Interact., vol. 5, no. CSCW2, pp. 407:1–407:30, 2021.

[93] Z. Zhang, O. Sievi-Korte, U. Virta, H. Järvinen, and D. Taibi, “An
investigation on the availability of contribution information in open-
source projects,” in Proc. 47th Euromicro Conf. Softw. Eng. Adv.
Appl. (SEAA), Palermo, Italy. Piscataway, NJ, USA: IEEE Press, 2021,
pp. 86–90.

[94] O. Elazhary, M. D. Storey, N. A. Ernst, and A. Zaidman, “Do as
I do, not as I say: Do contribution guidelines match the GitHub
contribution process?” in Proc. IEEE Int. Conf. Softw. Mainte-
nance Evolution (ICSME), Piscataway, NJ, USA: IEEE Press, 2019,
pp. 286–290.

[95] C. Brandt and A. Zaidman, “How does this new developer test fit in? A
visualization to understand amplified test cases,” in Proc. Work. Conf.
Softw. Visualization (VISSOFT), Piscataway, NJ, USA: IEEE Press,
2022, pp. 17–28.

[96] V. Hurdugaci and A. Zaidman, “Aiding software developers to main-
tain developer tests,” in Proc. Eur. Conf. Softw. Maintenance Reeng.
(CSMR), Los Alamitos, CA, USA: IEEE Comput. Soc. Press, 2012,
pp. 11–20.

[97] A. Arcuri, “An experience report on applying software testing aca-
demic results in industry: We need usable automated test generation,”
Empirical Softw. Eng., vol. 23, no. 4, pp. 1959–1981, 2018.

[98] M. Abdi, H. Rocha, S. Demeyer, and A. Bergel, “Small-amp: Test
amplification in a dynamically typed language,” Empirical Softw. Eng.,
vol. 27, no. 6, 2022, Art. no. 128.

[99] E. Schoofs, M. Abdi, and S. Demeyer, “AmPyfier: Test amplification
in Python,” J. Softw. Evol. Process., vol. 34, no. 11, p. e2490, 2022.

[100] L. Moonen, A. van Deursen, A. Zaidman, and M. Bruntink, “On the
interplay between software testing and evolution and its effect on
program comprehension,” in Software Evolution. New York, NY, USA:
Springer-Verlag, 2008, pp. 173–202.

[101] B. Marculescu, R. Feldt, R. Torkar, and S. M. Poulding, “Transferring
interactive search-based software testing to industry,” J. Syst. Softw.,
vol. 142, pp. 156–170, 2018.

[102] A. Ramírez, J. R. Romero, and C. L. Simons, “A systematic review of
interaction in search-based software engineering,” IEEE Trans. Softw.
Eng., vol. 45, no. 8, pp. 760–781, Aug. 2019.

[103] A. Ramírez, P. Delgado-Pérez, K. J. Valle-Gómez, I. Medina-Bulo,
and J. R. Romero, “Interactivity in the generation of test cases with
evolutionary computation,” in Proc. IEEE Congr. Evol. Comput. (CEC),
Piscataway, NJ, USA: IEEE Press, 2021, pp. 2395–2402.

[104] M. Kamimura and G. C. Murphy, “Towards generating human-oriented
summaries of unit test cases,” in Proc. IEEE Int. Conf. Program
Comprehension (ICPC), Los Alamitos, CA, USA: IEEE Comput. Soc.
Press, 2013, pp. 215–218.

[105] D. Gaston and J. Clause, “A method for finding missing unit tests,”
in Proc. IEEE Int. Conf. Softw. Maintenance Evolution (ICSME),
Piscataway, NJ, USA: IEEE Press, 2020, pp. 92–103.

[106] B. Li, C. Vendome, M. L. Vásquez, D. Poshyvanyk, and N. A. Kraft,
“Automatically documenting unit test cases,” in Proc. IEEE Int. Conf.
Softw. Testing, Verification Validation (ICST), Los Alamitos, CA, USA:
IEEE Comput. Soc. Press, 2016, pp. 341–352.

Carolin Brandt (Graduate Student Member, IEEE)
received the bachelor’s degree from the Techni-
cal University of Munich and completed the Elite
Graduate Program Software Engineering with the
Technical University of Munich, the University of
Augsburg and the Ludwigs-Maximilians-University
of Munich, in 2020. She is currently working toward
the Ph.D. degree with the Software Engineering Re-
search Group, Delft University of Technology. Her
research interests include interaction of software
developers with automated tools that are designed

to support their work. Her goal is to embed the developer’s expertise into
automatic test generation tools to create test cases that the developers can
directly use to improve their test suites and the quality of their software.

Ali Khatami (Graduate Student Member, IEEE)
received the M.Sc. degree in software engineering
from Sharif University of Technology, in 2021. She
is currently working toward the Ph.D. degree with
the Software Engineering Research Group, Delft
University of Technology, the Netherlands. Cur-
rently, he is a part of the TestShift Project under the
supervision of Andy Zaidman. His research interests
include intersection of software quality assurance
(QA) practices and software analytics, conducting
both quantitative and qualitative research in this

area, with a focus on software engineers’ awareness of QA within their
projects and exploring ways to improve QA in open-source software projects.

Mairieli Wessel received the Ph.D. degree in com-
puter science from the University of São Paulo,
Brazil, in 2021. He is an Assistant Professor with
the Department of Software Science, Radboud Uni-
versity, the Netherlands. His research interests in-
clude software engineering and computer-supported
cooperative work, focused on software bots and
open source development.

Andy Zaidman received the M.Sc. and Ph.D. de-
grees in computer science from the University of
Antwerp, Belgium, in 2002 and 2006, respectively.
He is a Full Professor in software engineering with
the Delft University of Technology, the Netherlands.
His research interests include software evolution,
program comprehension, mining software reposi-
tories, software quality, and software testing. He
is an Active Member of the research community
and involved in the organization of numerous con-
ferences (WCRE’08, WCRE’09, VISSOFT’14 and

MSR’18). In 2013, he was the laureate of a Prestigious Vidi Mid-Career Grant,
while in 2019 he received the most Prestigious Vici Career Grant from Dutch
Science Foundation NWO.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 30,2024 at 07:24:13 UTC from IEEE Xplore. Restrictions apply.

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

