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Abstract

This thesis explores the optimization of charging station location within a one-way electric
car-sharing system, addressing the inherent challenges of demand uncertainty. We intro-
duce a novel deep learning-based stochastic programming framework (LMSP Framework)
to tackle this issue. This framework integrates two key components:

1. A deep learning model (LSTM-MLP-MDN), composed of Long Short-Term Memory
(LSTM), Multilayer Perceptron (MLP), and Mixture Density Network (MDN) archi-
tectures, which predicts the probability distribution of traffic demand using historical
data.

2. A two-stage stochastic programming model, designed to strategically optimize the
locations of charging stations and the initial number of vehicles at each station under
demand uncertainty.

The primary goal of this framework is to improve the profitability and operational efficiency
of the car-sharing system by optimizing both the location and capacity of charging stations,
effectively solving the Charging Station Location Problem (CSLP).

We validate the effectiveness, adaptability, and feasibility of our framework through a com-
prehensive case study in Manhattan, utilizing historical traffic data to ensure the reliability
of the deployment plan. Our results demonstrate that integrating deep learning techniques
with stochastic programming significantly enhances both the accuracy of demand forecast-
ing and the consistency of resource allocation in the optimization process for charging sta-
tion locations. Specifically, the LMSP Framework achieves higher operational efficiency in
the short term, as evidenced by superior metrics like Demand Satisfaction Ratio (DSR) and
Charging Station Utilization Rate (CSU) compared to traditional methods. This ensures
more balanced and efficient resource allocation across different demand scenarios. How-
ever, traditional approaches tend to perform better in short-term financial indicators, such
as profit and Return on Investment (ROI), as they employ more aggressive resource alloca-
tion strategies based on higher demand forecasts. Despite this, the LMSP Framework’s focus
on operational efficiency positions it as a more viable option for long-term profitability and
user satisfaction, offering a sustainable solution for urban mobility.

Furthermore, our analysis provides valuable recommendations for future charging station
deployments. These findings have important implications for the planning and operation of
electric car-sharing systems, potentially contributing to more sustainable and efficient urban
mobility solutions for all stakeholders involved.

Keywords: Demand Uncertainty; Charging Station Location Problem; One-way Car-sharing;
Deep learning; Stochastic Programming
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1. Introduction

1.1. Background Description

The widespread ownership of private vehicles presents a complex challenge, creating mul-
tiple interconnected issues. For instance, in the European Union (EU), road transport ac-
counts for about 20% of the EU’s total greenhouse gas emissions. Passenger cars are a major
polluter, responsible for 61% of total CO2 emissions from EU road transport. Most of these
vehicles run on conventional fuels, significantly contributing to environmental pollution and
global warming, with urban areas experiencing severe air quality degradation.

The transition to electric vehicles (EVs) serves as a practical approach to reducing these en-
vironmental concerns. Unlike conventional vehicles that run on fossil fuels, EVs produce
zero tailpipe emissions, significantly reducing air pollution and greenhouse gas emissions.
According to the International Energy Agency, the CO2 emissions from EVs can be over 50%
lower than those from internal combustion engine vehicles, even when accounting for the
emissions from electricity generation [International Energy Agency, 2022]. Furthermore, the
development of smart grid technologies and energy storage solutions enhances the sustain-
ability of electric vehicles. The United Nations recognizes the potential of electric mobility
in achieving global environmental goals. Through the Global Electric Mobility Programme,
the UN supports over 50 low- and middle-income countries in transitioning from fossil fuels
to electric vehicles [United Nations Environment Programme, 2024]. The shift to electric ve-
hicles is critical in addressing these environmental concerns, reducing our reliance on fossil
fuels, and mitigating climate change impacts.

Figure 1.1.: One-way Car-sharing System

Car-sharing offers a sustainable alternative to private car ownership by providing flexible,
short-term vehicle access, which can reduce urban congestion, parking demand, and envi-
ronmental impacts (see [Ke et al., 2019; Baptista et al., 2014; Glotz-Richter, 2016]). Users
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1. Introduction

Figure 1.2.: Electric Car-Sharing Service in Los Angeles

can locate and reserve vehicles through mobile apps, paying only for the duration of use.
Traditionally, car-sharing models can be divided into three types: two-way station-based
model (see [Strobel and Pruckner, 2022]), one-way station-based model (see [Shaheen et al.,
2015; Febbraro et al., 2019; Nourinejad and Roorda, 2015]), and free-floating model. In
one-way systems, users can pick up a car from one location and drop it off at another. In
two-way systems, users must return the car to the same location from which they picked
it up [Nourinejad and Roorda, 2015]. The free-floating model differs significantly from the
station-based models by allowing users to pick up and drop off vehicles at any legal parking
spot within a predefined operational area (see [Firnkorn and Müller, 2011; Formentin et al.,
2015; Cocca et al., 2019]). This research focuses on a one-way system due to its flexibility and
convenience for users. For example, consider a commuter who uses a one-way car-sharing
service to drive from a suburban home to a downtown office in the morning, then parks the
vehicle at a charging station for other users, and later takes another car to return home in
the evening (see Figure 1.1). This flexibility not only saves time but also reduces the need
for parking spaces at the user’s destination. However, one-way systems require more vehi-
cles to be available at different locations, leading to operational challenges in balancing the
distribution of cars across the service area.

Combining electric vehicles with car-sharing services can amplify the benefits of both tech-
nologies, extending beyond environmental impacts. It provides users with the flexibility
and convenience of traditional car-sharing while also reducing emissions and dependency
on fossil fuels [Clewlow, 2016]. Major cities worldwide have adopted electric car-sharing
programs to promote sustainable transportation. For example, in the United States, cities
such as Los Angeles and Denver have embraced electric car-sharing with a focus on eq-
uity. In China, Didi Chuxing, the leading ride-hailing company, has launched an electric
car-sharing service in partnership with major automakers like Renault-Nissan-Mitsubishi.
This program includes a large fleet of electric vehicles and aims to significantly expand the
availability of electric vehicles across Chinese cities. The electric car-sharing market is ex-
pected to thrive, driven by a combination of stringent government regulations, increasing
environmental awareness, and technological advancements.

However, one of the significant challenges in the operation of one-way electric car-sharing
systems is demand uncertainty. Predicting when and where users will need cars and charg-

3



1. Introduction

ing stations can be complex due to varying factors such as time of day, season, weather
conditions, traffic conditions, and local events. This unpredictability makes it difficult to
determine optimal locations for charging stations [Giménez-Gaydou et al., 2016]. The oper-
ational consequences of this uncertainty are significant: overestimating demand can lead to
resource oversupply and inflated costs, while underestimating demand may cause service
disruptions and lead to dissatisfied customers. Although traditional approaches have at-
tempted to address this issue, they often fail to capture the complexity and dynamic nature
of traffic demand patterns in urban environments. This highlights the pressing need for
more advanced, data-driven approaches that can more effectively handle demand fluctua-
tions and optimize the location of charging stations in electric car-sharing systems.

1.2. Objectives and Research Scope

1.2.1. Research Objectives

This research introduces a novel framework, termed the LMSP Framework, which integrates
advanced deep learning techniques—Long Short-Term Memory (LSTM), Multilayer Percep-
tron (MLP), and Mixture Density Networks (MDN)—with stochastic programming. This
innovative approach tackles the critical challenge of optimizing charging station locations
and the allocation of initial vehicle resources under demand uncertainty. By applying the
predictive power of machine learning and the robustness of stochastic optimization, we aim
to create a more adaptive and effective solution to the Charging Station Location Problem
(CSLP). The primary objectives are outlined as follows:

• Develop and optimize the LMSP Framework: Design and optimize the LMSP frame-
work to address the Charging Station Location Problem (CSLP). This framework will
integrate an LSTM-MLP-MDN deep learning model to predict traffic demand probabil-
ity distributions and incorporate these predictions into a two-stage stochastic program-
ming model to optimize the locations of charging stations and initial vehicle resources.

• Predict a more accurate traffic demand probability distribution: Utilize deep learning
techniques to predict a more precise traffic demand probability distribution based on
historical traffic data. This will generate a realistic set of traffic demand scenarios along
with their corresponding probabilities, which will be incorporated into a stochastic
programming model to more effectively manage demand uncertainty and provide a
solid foundation for charging infrastructure deployment.

• Validate the effectiveness, adaptability, and feasibility of the LMSP Framework in
similar urban settings: Through a comprehensive case study in a real urban environ-
ment, validate the proposed LMSP Framework’s effectiveness, adaptability in dealing
with demand uncertainty, and feasibility in similar high-density urban settings.

• Support sustainable urban transportation through infrastructure planning: This re-
search is committed to providing a method that enhances the planning of electric
car-sharing infrastructure to support sustainable urban transportation goals. By op-
timizing resource allocation and infrastructure utilization, we aim to alleviate urban
congestion, reduce environmental pollution, and promote more sustainable urban de-
velopment.
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1. Introduction

1.2.2. Research Scope

The scope of the research primarily includes the following aspects:

• One-way Car-sharing System: This research focuses on addressing the CSLP in a one-
way car-sharing system, and may not be directly applicable to two-way or flee-floating
car-sharing models.

• Key Decision: This research focuses on charging station location and the allocation of
vehicle resources. It does not include operational decisions such as rebalancing [Guo
and Kang, 2022], charging scheduling [Xie et al., 2020], or price strategies [Wang et al.,
2021].

• Demand Uncertainty: Demand uncertainty is the only uncertainty parameter con-
sidered in this research, while other potential uncertainties, such as driving range
uncertainty and vehicle arrival time uncertainty (see 2.1.3), are not taken into account.
Furthermore, dynamic factors such as economic conditions and policy changes [Zhang
et al., 2018][Guo et al., 2021][Wang et al., 2019b], which may affect the model’s real-
world performance, are also excluded.

• Demand Pattern Temporal Focus: This research focuses on short-term demand pat-
terns. Specifically, we analyze hourly fluctuations in traffic demand.

• Applicability to urban environments: This research selects Manhattan as the case city,
as it represents a typical high-density urban area characterized by highly representative
traffic patterns and demand features. Therefore, the research is mainly applicable to
similar high-density, high-traffic demand urban areas, and its relevance to low-density
cities or rural regions may be limited.

By establishing these clear research scopes, we aim to provide a focused and in-depth analy-
sis of the CSLP within the context of one-way car-sharing systems in high-density urban en-
vironments, while acknowledging the potential for future research to address more broadly
issues related to EV charging station deployment.

1.3. Research Questions

Main Research Question

How can a novel deep learning-based stochastic programming framework (LMSP Frame-
work) be developed and applied to optimize the Charging Station Location Problem (CSLP)
in a one-way electric car-sharing system under conditions of traffic demand uncertainty?

Sub Research Questions

1. How does the integration of stochastic programming help in accommodating demand
uncertainty when optimizing the location and initial number of cars at charging sta-
tions?

2. How can advanced deep learning techniques, particularly the LSTM-MLP-MDN model,
be employed to accurately forecast the probability distribution of traffic demand in a
one-way electric car-sharing system?

5
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3. How does the integration of advanced demand prediction techniques, such as LSTM-
MLP-MDN, enhance the performance of stochastic programming models addressing
the CSLP compared to traditional forecasting methods, and what added value does it
bring?

4. What insights can be drawn from the application of the proposed LMSP Framework
in a real-world case study (Manhattan)?

5. How do the results of the case study validate the effectiveness, adaptability, and feasi-
bility of the proposed LMSP Framework?

6. How can the findings from this research enhance the planning and operation of electric
car-sharing systems, and what are the potential implications for sustainable urban
mobility?

1.4. Thesis Outline

The remainder of this paper is organized as follows:

Chapter 2 presents a review of related works in the literature. This review establishes the
theoretical foundation for our research and identifies the gaps in current knowledge that our
research aims to address.

Chapter 3 provides a detailed description of the research problem and formulates the two-
stage stochastic programming mathematical model related to the Charging Station Location
Problem (CSLP).

Chapter 4 introduces the LMSP Framework and provides a detailed explanation of the deep
learning model used.

Chapter 5 presents a case study in Manhattan to validate the LMSP Framework.

Chapter 6 provides a discussion on the results, including the effectiveness of the LMSP
Framework and the analysis of deployment strategy. It then addresses the assumptions and
limitations of this research.

Chapter 7 concludes by summarizing the key findings, addressing all the research questions,
and offering insights into potential directions for future research.
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2. Literature review

This chapter provides a detailed review of the existing literature related to this research.
Firstly, the review explores the Charging Station Location Problem (CSLP) (see section 2.1)
in a one-way car-sharing system, discussing various optimization methods, including tradi-
tional approaches, robust optimization, and stochastic programming. Furthermore, methods
for traffic demand prediction are examined (see section 2.2), highlighting both classical tech-
niques and deep learning approaches. Lastly, section 2.3 shows the research gaps in the
existing literature and summarizes the main contributions of this thesis.

2.1. Charging Station Location Problem in One-Way
Car-Sharing Systems

The CSLP in a one-way car-sharing system is a critical problem due to the increasing adop-
tion of EVs and the need for accessible, efficient charging infrastructure. Various optimiza-
tion methods have been applied to address this problem, including traditional methods,
robust optimization, and stochastic programming. Among these, robust optimization and
stochastic programming explicitly consider uncertainties such as fluctuating traffic demand.
Robust optimization seeks solutions that perform well under various scenarios without as-
suming specific probability distributions, while stochastic programming incorporates prob-
abilistic models of uncertainty. These approaches offer more resilient solutions compared
to traditional methods that often assume deterministic conditions. In this section, we will
classify and review relevant literature based on the optimization methods employed.

2.1.1. Traditional Methods

Traditional optimization methods are often the first approach applied to charging station
location problems, using deterministic models and simpler mathematical formulations. A
widely used method is Mixed-Integer Linear Programming (MILP), which provides exact
solutions by formulating the problem through a set of linear equations and integer con-
straints. For example, Deza et al. [2018] applied MILP to optimize the placement of charging
stations, enhancing vehicle flow balance and reducing relocation needs using a column gen-
eration technique to increase computational efficiency. Another powerful technique is the
Continuum Approximation (CA) model, which is particularly effective in large-scale urban
systems. Li et al. [2016] used a CA model to minimize costs related to station construction
and vehicle relocation, solving NP-hard problems by decomposing large areas into manage-
able neighborhoods. An analytical approach was explored by Bayram and Bayhan [2020],
who developed a theoretical framework using a traffic assignment technique with Stochas-
tic User Equilibrium (SUE) to optimize the location of EV charging stations. Furthermore,
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game theory has also been utilized to optimize the location of charging stations by con-
sidering the strategic interactions between multiple stakeholders, such as station operators
and EV users. Meng and Kai [2011] introduced a game-theoretic approach to enhance the
decision-making process in station location planning. Their model considers the competitive
environment, providing a more rational and scientifically sound framework for optimizing
station locations. Multi-Objective Optimization methods are widely applied in this field.
For instance, Chen et al. [2018] developed a Multi-Objective Particle Swarm Optimization
(MOPSO) method that considers factors like land price, service distance, and installation ca-
pacity to minimize total costs while maximizing service capacity. Their approach effectively
accounts for population density and land costs, making it a robust method for addressing
the location-allocation problem for charging stations. Another traditional approach involves
Genetic Algorithms (GA), which are frequently used for their ability to handle complex
optimization problems. Vazifeh et al. [2015] applied a GA to optimize the deployment of
EV charging stations in Boston. Their model significantly reduced drivers’ excess driving
distance to charging stations, energy overhead, and the number of stations required, demon-
strating the practical effectiveness of genetic algorithms in real-world scenarios.

2.1.2. Robust Optimization (RO)

Robust optimization is used to handle the uncertainties in optimization problems by finding
solutions that remain effective under various scenarios. This method is particularly effective
in addressing the challenges posed by fluctuating demand, variability in energy supply, and
the stochastic nature of traffic patterns, which traditional optimization methods often fail
to handle adequately. Robust Optimization is designed to create feasible solutions under a
wide range of uncertain scenarios. Baron et al. [2011] applied RO to a multi-period facility
location problem, incorporating uncertainties in demand within bounded and symmetric
multi-dimensional spaces. Their study demonstrated that different uncertainty models (box
and ellipsoidal) lead to varying solution typologies, with RO providing more resilient solu-
tions compared to deterministic approaches. In the context of EV charging stations, Li et al.
[2022] developed a robust optimization model that integrates renewable energy sources and
energy storage systems (ESS) into the planning of charging stations. The model accounts
for uncertainties in both EV charging demand and renewable energy output. By using ker-
nel density estimation, they addressed the issue of over-conservatism often associated with
robust optimization, resulting in a more balanced and cost-effective infrastructure plan. A
significant application of RO is seen in the work of Wang et al. [2019a], who proposed a hy-
brid model combining flow-refueling location modeling (FRLM) with robust optimization.
This model effectively considers the uncertainty in charging demand and integrates queuing
theory to optimize both the location and number of EV charging stations. The results in-
dicated that the robust optimization approach, combined with queuing theory, significantly
reduces the costs and enhances the efficiency of EV infrastructure deployment under un-
certain demand conditions. Another approach was introduced by Deb et al. [2021], who
developed a two-stage robust planning model that addresses the placement of charging sta-
tions while considering road traffic uncertainties. Their model utilizes a Bayesian network
to model traffic randomness and applies a hybrid optimization algorithm to achieve an op-
timal balance between cost, voltage stability, and accessibility. This method ensures that the
charging station network is resilient to fluctuations in traffic and demand.

9



2. Literature review

2.1.3. Stochastic Programming

Stochastic programming addresses uncertainty in parameters such as demand and driving
range in the CSLP by considering different possible scenarios, making the system more
adaptable to real-world changes. Unlike robust optimization, which focuses on finding
solutions that work well in the worst-case scenario, stochastic programming balances per-
formance across all possible situations. In the following sections, we will first examine the
uncertainty parameters, followed by the uncertainty modeling approaches, and finally, the
stochastic programming approaches. This will help illustrate how stochastic programming
effectively resolves uncertainty issues in the CSLP.

Uncertain parameters

The uncertainties addressed by stochastic programming primarily include the following as-
pects:

• Demand Uncertainty: This arises from fluctuations in EV charging demand across
different time periods and locations. This variability in demand makes it challenging
to predict how much charging infrastructure is required at specific locations. This is a
common type of uncertainty considered in many types (see [Brandstätter et al., 2017],
[Çalık and Fortz, 2019], [Hua et al., 2019], [Kim et al., 2021], [MirHassani et al., 2020]).

• Driving Range uncertainty: This refers to the variability in how far an EV can travel
before getting a full charge. This type of uncertainty is influenced by various factors,
such as battery conditions, road conditions, driving habits, and weather (see [Boujelben
and Gicquel, 2019], [Wu and Sioshansi, 2017], [Jiao et al., 2017]).

• Vehicle arrival time uncertainty: This uncertainty concerns when EVs will arrive at
charging stations, which affects station utilization and the planning of charging sched-
ules. Variations in traffic, driving patterns, and user preferences lead to unpredictabil-
ity in vehicle arrival times [Faridimehr et al., 2017].

• State of charge uncertainty: Variability in the battery levels of EVs arriving at charg-
ing stations, which affects the time and resources needed to recharge the vehicles
[Faridimehr et al., 2017].

• Charging behavior uncertainty: Users’ charging preferences and habits, such as when
and where they choose to charge their vehicles. This behavioral uncertainty influences
the utilization rates of charging stations and the overall demand patterns [Kim et al.,
2021].

Uncertainty Modelling Approaches:

Uncertainty modeling plays a pivotal role in ensuring that decisions remain robust across
various possible future scenarios. This process includes scenario generation and the assign-
ment of probability distributions.

Scenario generation: This is one of the most prevalent approaches for modeling uncertainty
in stochastic programming. In this method, multiple future scenarios are created based on
different realizations of uncertain parameters. Each scenario represents a distinct possible
future, and the goal is to optimize decisions that perform well across all scenarios (see
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[Faridimehr et al., 2017], [Boujelben and Gicquel, 2019], [Brandstätter et al., 2017], [Çalık
and Fortz, 2019], [Kim et al., 2021], [Fan, 2014]). This approach captures the variability in
uncertain parameters in a structured way, making it easier to test solutions against a range
of possible futures.

Probability Distributions: This approach is to model uncertainties using probability dis-
tributions. This method involves assigning probabilities to different outcomes for uncertain
parameters. Decisions are then optimized by considering the expected values of these ran-
dom variables. For example, Faridimehr et al. [2017] used probability distributions to model
uncertainties in vehicle arrival times and state of charge. This approach provides a more di-
rect and probabilistic understanding of the uncertainties, however, accurately estimating the
probability distributions for certain uncertainties can be difficult, especially when historical
data is limited.

Stochastic Decision Frameworks

A critical aspect of stochastic programming is the decision-making framework employed,
which determines how uncertainty is incorporated into the model and how decisions are
structured over time. From the perspective of decision-making stages, there are primarily
two types of stochastic decision frameworks used in EV charging station planning: Two-
Stage Stochastic Programming and Multi-Stage Stochastic Programming.

Two-Stage Stochastic Programming: This is a commonly used framework in the literature.
Decisions are divided into two stages: in the first stage, strategic decisions such as the
location of EV charging stations are made, while the second stage deals with operational ad-
justments after uncertainties are revealed. For example, Faridimehr et al. [2017] proposed a
two-stage stochastic programming model to design an optimal network of charging stations,
taking into account uncertainties in vehicle arrival times, state of charge, and drivers’ walk-
ing ranges. The study utilized the Sample Average Approximation method, which converges
asymptotically to an optimal solution, though the computational demands were significant.
To overcome this, the authors also developed a heuristic to provide near-optimal solutions
more efficiently. Similarly, Boujelben and Gicquel [2019] applied two-stage stochastic pro-
gramming to optimize the placement of fast charging stations under driving range uncer-
tainty. Their study tackled the stochastic flow refueling location problem (SFRLP), which
posed considerable computational challenges, especially for large problem instances. To ad-
dress this, they developed a Mixed-Integer Linear Programming (MILP) formulation along
with a tabu search heuristic. The combination of these methods significantly reduced com-
putation times while maintaining the quality of the solutions, making their approach viable
for real-world applications. In another study, Kim et al. [2021] employed a two-stage stochas-
tic mixed-integer programming (TSMIP) model to optimize the location of public charging
stations. In the first stage, the locations of charging stations were determined, while the
second stage involved the allocation of charging demand based on various scenarios reflect-
ing uncertainties in users’ charging behavior. Their model used dynamic decision trees to
generate charging demand scenarios, offering a realistic representation of plug-in electric
vehicle (PEV) users’ behaviors. Brandstätter et al. [2017] also utilized a two-stage stochastic
programming framework to optimize the placement of charging stations in Vienna. Their
model incorporated demand uncertainty, and to handle the large-scale nature of the prob-
lem, the authors implemented heuristic methods, which enabled the model to solve prob-
lems of significant size without sacrificing solution quality. Additionally, Çalık and Fortz
[2019] employed a two-stage framework, leveraging Benders decomposition to efficiently
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solve demand-driven charging station location problems. Benders decomposition allowed
them to break down the problem into smaller, more manageable subproblems, making their
model particularly well-suited for large-scale applications. This approach also improved the
computational feasibility of solving multiple demand scenarios in urban environments.

Multi-Stage Stochastic Programming: In multi-stage stochastic programming, decisions are
made sequentially over multiple periods, allowing for ongoing adjustments as uncertainties
evolve over time. This framework is particularly useful in long-term planning where un-
certainties unfold gradually, and decisions can be adapted at different points in time. For
example, Fan [2014] explored the application of multi-stage stochastic programming to opti-
mize vehicle allocations in one-way car-sharing systems, accounting for fluctuating demand
patterns. The study illustrated how the inclusion of demand uncertainty over multiple stages
can significantly enhance decision-making processes, providing a more resilient system in
the face of unpredictability. Similarly, Hua et al. [2019] proposed a multi-stage stochastic
model for joint optimization of infrastructure planning and fleet management in EV sharing
systems under uncertain demand. This approach highlighted the advantages of dynamic
adjustments in fleet allocation and charging station placement, ultimately improving oper-
ational efficiency and service levels in highly volatile environments. Moreover, Kadri et al.
[2020] introduced a multi-stage stochastic integer programming approach that incorporates
a multi-period decision-making horizon, capturing the temporal dimension of uncertainties
in recharging demand and infrastructure development. This method demonstrated how
incorporating time-varying factors can lead to more robust and adaptive charging station
networks.

2.1.4. Key Findings and Implications

Although traditional methods, robust optimization, and stochastic programming have been
applied in addressing the CSLP in existing literature, each of these approaches has its limi-
tations:

• Traditional methods often rely on deterministic models, which may not adequately
capture the inherent uncertainties in real-world scenarios.

• Robust optimization, while effective in handling worst-case scenarios, can sometimes
lead to overly conservative solutions that may not be optimal under typical conditions.

• Stochastic programming can address uncertainty, however, current stochastic program-
ming models face challenges when dealing with demand uncertainty in the CSLP. It
typically relies on assumed probability distributions or predefined scenarios, which
may fail to fully capture the complex and dynamic nature of traffic demand. As the
number of scenarios increases to better represent uncertainty, the computational com-
plexity rises significantly, potentially limiting its application in large-scale real-time
problems.

This research focuses on demand uncertainty, which is one of several types of uncertainties.
The rapid advancement of data-driven approaches, especially in deep learning, now allows
us to use historical traffic data to produce more accurate demand forecasts. This significantly
enhances the decision-making capabilities of stochastic programming models. Therefore,
a detailed exploration of traffic demand forecasting methods, particularly deep learning
models, will offer a strong data foundation for optimizing charging station locations and
improving overall system efficiency.
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2.2. Methods for Traffic Demand Prediction

Traffic demand forecasting is critical in transportation research, particularly in the CSLP for
one-way car-sharing systems, as it directly impacts the accuracy of infrastructure planning
and optimization outcomes. In the following section, we will review several methods of
traffic demand forecasting, with a specific focus on how deep learning models play a pivotal
role in solving the CSLP.

2.2.1. Classical Methods

In this domain, traditional statistical and machine-learning models play a significant role.
Statistical models are widely used for short-term traffic prediction due to their ability to
treat forecasting as a regression problem, offering clear computational structures and strong
theoretical interpretability. Chrobok et al. [2004] analyzed daily and seasonal traffic patterns
using two years of data from inductive loops in Duisburg, Germany. They then developed
an automatic matching process to classify new traffic data. Subsequently, they used constant
and linear models to predict short-term traffic. The research found that combining short-
term and long-term forecasting methods improves traffic prediction accuracy. In time series
analysis, Autoregressive Integrated Moving Average (ARIMA) models are widely used due
to their ability to handle traffic demand data effectively. [Yu and Zhang, 2004] proposed a
switching ARIMA model for short-term traffic flow forecasting, effectively capturing the dy-
namic patterns in traffic data. It demonstrates superior performance over traditional models,
especially in handling transitions between different traffic states. The model’s application to
real-world data from Beijing confirms its effectiveness and potential for broader use in ITS.
Alghamdi et al. [2019] addresses the growing problem of traffic congestion by leveraging
ARIMA. They focused on non-Gaussian traffic data and provided a systematic approach
to preprocessing and modeling using real traffic data from California. The results demon-
strate that ARIMA (2,1,3) closely matches actual traffic patterns, offering a reliable method
for managing traffic congestion. Seasonal ARIMA (SARIMA) is an extension of the ARIMA
that specifically accounts for seasonality in time series data. It incorporates seasonal compo-
nents in addition to the non-seasonal components used in a standard ARIMA model. The
study by Kumar and Vanajakshi [2015] explored the use of SARIMA models for predicting
short-term traffic flow with minimal data. Using data from only three consecutive days
on a 3-lane arterial roadway in Chennai, India, the SARIMA model achieved a mean abso-
lute percentage error of 4-10%, which is acceptable for Intelligent Transportation Systems
applications.

Traditional machine learning approaches, which can handle more complex data, are broadly
divided into three categories: feature-based models, Gaussian process models, and state
space models [Shaygan et al., 2022]. The comparison of these methods is shown in Table
2.1. Feature-based methods are used to train regression models, including linear regression
for various traffic prediction problems using human-engineered traffic features (see [Guan
et al., 2018; Li et al., 2019]). Gaussian process models are used to predict traffic demand by
modeling the distribution over possible functions that fit the observed data. These models
leverage the properties of Gaussian distributions to provide a flexible and powerful method
for making predictions based on spatial and temporal data patterns (see [Diao et al., 2019;
Salinas et al., 2019]). State space models can model the system’s dynamics with hidden
states that evolve over time according to a set of linear or nonlinear equations. These mod-
els capture temporal dependencies and uncertainties. For example, Zhou and Mahmassani
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[2007] introduced a structural state space model for dynamic OD demand estimation. It
integrates regular demand patterns, structural deviations, and random fluctuations using a
polynomial trend filter and Kalman filtering for real-time updates. The model is designed
to improve real-time dynamic traffic assignment (DTA) systems by continuously utilizing
real-time traffic data. Similarly, Pan et al. [2013] enhances the Stochastic Cell Transmission
Model by incorporating spatial-temporal correlations to improve short-term traffic state pre-
diction. By integrating a multivariate normal distribution-based predictor and calibrating
the covariance structure from spatial correlation analysis, the model captures the dynamic
dependencies in traffic flow. Predictions are conducted in a rolling horizon manner, allow-
ing real-time adjustments and enhancing accuracy. Furthermore, Duan et al. [2019] pro-
posed a unified spatio-temporal model for short-term traffic flow prediction, capturing the
time-varying spatio-temporal correlations between traffic at different measurement points.
The model is physically intuitive, considering road network topology, time-varying speed,
and trip distribution, distinguishing it from previous black-box approaches. By integrating
physical factors affecting spatio-temporal correlation into adjustable parameters, the model
reduces computational complexity and adapts easily to changing road and traffic conditions.
Experimental results using two real traffic datasets demonstrate superior accuracy compared
to traditional STARIMA and neural network approaches, with reduced computational com-
plexity.

Table 2.1.: Comparison of three traditional machine learning methods
Criteria Feature-Based Meth-

ods
Gaussian Process
Models

State Space Models

Simplicity and
Understand-
ability

Simple and easy to
understand

Less intuitive to inter-
pret

Requires strong as-
sumptions about the
underlying process

Flexibility Flexible with a wide
range of algorithms
(e.g., SVM, Decision
Trees)

Non-parametric and
flexible, can model
complex functions

Naturally models
temporal and sequen-
tial data

Computational
Efficiency

Often computa-
tionally efficient,
especially with large
datasets

Computationally ex-
pensive, especially
with large datasets

Computationally in-
tensive, especially for
large state spaces

Uncertainty Es-
timates

Generally does not
provide uncertainty
estimates

Provides uncertainty
estimates, valuable for
understanding predic-
tion confidence

Provides a probabilis-
tic framework for in-
ference and prediction

Interpretability Easy to interpret re-
sults

Less intuitive and
harder to interpret

Interpretation can be
challenging due to
model complexity

2.2.2. Deep learning Methods

Deep learning has been regarded as a powerful approach to predict traffic demand in recent
years. They effectively address the limitations of traditional methods, which struggle with
capturing complex, nonlinear patterns in traffic data and require strong assumptions about
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Figure 2.1.: Multilayer Perceptron (MLP)

data behavior. Initially, deep learning approaches were seen as impractical due to their high
demands for data, computation, and storage compared to classical methods. However, with
the advent of vast data availability and increased computational power, deep learning has
shown significant potential in traditional methods in traffic prediction [Shaygan et al., 2022].
Next, we will explore traffic demand forecasting by examining four common deep-learning
methods.

Multilayer Perceptron(MLP)

Multilayer Perceptron (MLP) is one of simplest forms of DNNs, they consist of input, hid-
den, and output layers, where each neuron in one layer is connected to every neuron in the
next later (see Figure 2.1). MLPs can capture nonlinear relationships in traffic data and are
often used as baseline models in traffic prediction studies [Gao et al., 2020]. Qin et al. [2023]
proposed a novel spatiotemporal hierarchical MLP network (STHMLP) for traffic forecast-
ing which addresses the limitations of traditional traffic forecasting methods by capturing
hierarchical temporal characteristics and macro spatial dependencies. The model employs a
decomposition architecture with fine and coarse modules to extract detailed spatio-temporal
information from road and region networks. Extensive experiments on four real-world
traffic datasets demonstrate that STHMLP significantly outperforms existing state-of-the-
art methods in terms of accuracy and efficiency. Dimara et al. [2021] presented a method
for predicting traffic volumes at toll plazas using a multi-layer perceptron (MLP) neural
network. By integrating minimal yet effective data such as vehicle counts, weather con-
ditions, and temporal features, the model achieves high accuracy with a mean absolute
percentage error (MAPE) of approximately 8.85%. The method is cost-effective and non-
intrusive, suitable for real-time traffic management, thus aiding in reducing congestion and
enhancing road network efficiency. Specifically for the charging station location problem
in one-way car-sharing systems, deep learning methods can generate more accurate traffic
demand forecasts, thereby providing high-quality scenario data for stochastic programming
models. This, in turn, enhances the reliability and robustness of the optimization process.
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Convolutional Neural Networks (CNNs)

Convolutional Neural Networks have been increasingly applied to traffic prediction tasks
due to its ability to capture spatial and temporal features from traffic data. Since it is chal-
lenging to represent the traffic network with 2D matrices, several researchers have tried
converting the traffic network structure at different times into image. These images are
then divided into standard grids, with each grid representing a specific region [Yin et al.,
2021]. Ma et al. [2017] introduced a novel approach that transforms spatiotemporal traffic
dynamics into images, enabling CNNs to predict traffic speed across large-scale networks.
This method involves creating a two-dimensional time-space matrix to represent traffic flow,
which is then processed by a CNN for feature extraction and prediction. The study showed
that this method outperforms traditional algorithms, such as ordinary least squares and k-
nearest neighbors, as well as other deep learning models like stacked auto-encoders and
long short-term memory networks (LSTMs), with a substantial improvement in accuracy.
Furthermore, Duan et al. [2018] presents a novel approach to enhancing urban traffic flow
prediction through use of a deep hybrid neural network. They combine Convolutional
Neural Networks (CNNs) and Long Short-Term Memory networks (LSTMs) to effectively
capture the spatial and temporal features of traffic data. The model is further optimized us-
ing a greedy algorithm, which improves prediction accuracy and reduces computation time.
The approach was validated using real-world taxi GPS data from Xi’an, demonstrating su-
perior performance compared to traditional prediction methods. To address the spatial and
temporal complexities of traffic demand, Du et al. [2020] proposed the Dynamic Transition
Convolutional Neural Network (DTCNN). This model was specifically designed to capture
the spatial distributions and the evolving dynamics of traffic demand by constructing a tran-
sition network based on historical data. The DTCNN was tested on New York City taxi and
bike-sharing data, where it demonstrated its effectiveness in producing precise traffic de-
mand predictions. Recent advancements have further extended the application of CNNs in
traffic prediction by integrating graph-based approaches. For example, Chen et al. [2020]
introduced a dynamic spatio-temporal graph-based CNN (DST-GCNN) that learns expres-
sive features to represent spatio-temporal structures and predict future traffic flows. The
DST-GCNN model utilizes a novel graph-based spatiotemporal convolutional layer to cap-
ture dynamic relationships in traffic data, showing competitive performance against other
state-of-the-art methods. This approach highlights the potential of CNNs to not only han-
dle static spatial information but also adapt to the dynamic nature of traffic networks over
time.

Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNN), particularly Long Short-Term Memory (LSTM) networks
and Gated Recurrent Units (GRUs), have shown substantial promise in traffic prediction
tasks due to their ability to learn and model temporal dependencies from sequential data.
These models are particularly well-suited for forecasting traffic flow, speed, and demand,
where the sequence of past data points plays a critical role in predicting future trends. For
instance, Vinayakumar et al. [2017] applied various RNN architectures, including LSTM and
GRU, to network traffic prediction, demonstrating that these models outperform classical
methods in capturing long-term dependencies and providing accurate traffic predictions.
Similarly, Ramakrishnan and Soni [2018] explored the use of RNNs for network traffic pre-
diction, comparing the performance of standard RNNs, LSTMs, and GRUs across different

16



2. Literature review

traffic prediction tasks. Their study found that RNN-based models significantly outper-
formed traditional statistical methods, particularly in tasks like volume prediction, packet
protocol prediction, and packet distribution prediction. Further advancements have been
made by integrating RNNs with other deep-learning models to enhance prediction accuracy.
For example, Zhu et al. [2020] proposed a novel traffic flow prediction method combining
RNNs with Graph Convolutional Networks (GCNs) and a belief rule base, which effec-
tively captures both spatial and temporal correlations in traffic data. Moreover, the work
by Tokuyama et al. [2018] highlighted the importance of incorporating additional contex-
tual information, such as timestamps and days of the week, into RNN models. Their study
showed that using such attribute information alongside traditional time-series data could
significantly improve the prediction accuracy of RNNs for network traffic prediction.

Graph Convolution Network (GCN)

Graph Convolutional Networks (GCNs) have emerged as a powerful tool for traffic predic-
tion due to their ability to model the spatial dependencies in traffic networks effectively.
These networks represent traffic systems as graphs where nodes correspond to specific lo-
cations (e.g., road segments, stations) and edges represent the spatial relationships between
these locations.

One prominent approach is the Temporal Graph Convolutional Network (T-GCN), which
integrates GCN with Gated Recurrent Units (GRUs) to capture both spatial and temporal
dependencies in traffic data. Zhao et al. [2018] demonstrated that the T-GCN model out-
performs traditional methods by effectively learning the complex topological structures of
urban road networks and the dynamic changes in traffic flow. Further advancements in
GCN-based traffic prediction include the development of models that dynamically adjust
the graph structure to better reflect the changing spatial relationships in traffic data. For
instance, Guo et al. [2020] introduced a Dynamic Graph Convolution Network (DGCN)
that constructs dynamic road network graphs by learning latent spatial-temporal features.
This approach enhances the model’s ability to adapt to the non-stationary nature of traffic
data, leading to improved prediction accuracy. Another innovative approach is the Coupled
Layer-wise Graph Convolution model proposed by Ye et al. [2021], which uses self-learned
adjacency matrices to capture multi-level spatial dependencies within the network. This
model has shown superiority over traditional methods by allowing different layers to learn
distinct spatial relationships, further improving the accuracy of transportation demand pre-
dictions.
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Table 2.2.: A Review of Deep Learning Methods in Traffic Demand Prediction Research

Author Dataset Spatial modeling type Temporal modeling type Evaluation Criteria

Qin et al. [2023] California (PeMS) Multilayer Perceptron - MAE, RMSE, MAPE

Dimara et al. [2021]
Analipsi,
Greece(toll plaza
data)

Multilayer Perceptron MAE, MAPE

Ma et al. [2017] Beijing (GPS data) CNN CNN MAE, RMSE, R2

Duan et al. [2018] Xi’an, China (GPS
data) CNN RNN(LSTM) MSE, RMSE

Du et al. [2020] NYC dataset CNN - MAE, RMSE

Chen et al. [2020] Bike-NYC, Taxi-
NYC CNN (DST-GCNN) CNN (DST-GCNN) MAE, RMSE, MAPE

Vinayakumar et al. [2017] GÉANT network
data

- LSTM, RNN, GRU RMSE, MSE

Ramakrishnan and Soni
[2018]

GÉANT, Abilene
(network data)

- RNN, LSTM, GRU RMSE, MSE

Zhu et al. [2020] Shenzhen Taxi
Dataset GCN RNN RMSE, MSE

Tokuyama et al. [2018] WIDE Project
Dataset - RNN RMSE, MSE

Zhao et al. [2018]
Shenzhen-taxi
dataset and Los-
loop dataset

GCN GRU RMSE, MSE

Guo et al. [2020]
PeMSD4, PeMSD8,
and PHILADEL-
PHIA

GCN(DGCN) - RMSE, MSE

Ye et al. [2021] NYC City Bike,
NYC Taxi GCN GRU RMSE, MSE
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2. Literature review

To summarize the research outcomes of existing traffic demand forecasting models, Table 2.2
outlines the application of various studies across different datasets, as well as their spatial
and temporal modeling methods and evaluation metrics. Building on this, this research will
adopt the LSTM-MLP-MDN architecture to address this issue. This architecture not only
captures complex spatiotemporal features but also generates more accurate demand proba-
bility distributions, thereby improving the optimization performance of stochastic program-
ming models under uncertainty. Compared to the methods reviewed in Table 2.2, LSTM
is effective in handling time series data, while MLP can model nonlinear features, particu-
larly the contextual information of traffic data. MDN further enhances the modeling of the
probability distribution of traffic demand, enabling more precise predictions of demand fluc-
tuations. In addition, this research will use the New York City Taxi dataset as the research
data, employing MAE, MAPE, and R2 as the primary evaluation metrics. These indica-
tors will help assess the performance of the proposed method in predicting traffic demand
across different time periods and spatial locations and will facilitate direct comparisons with
existing models to validate the effectiveness and robustness of the approach in real-world
applications.

2.3. Research Gap and Main Contributions

Many existing studies have made large advances in the modeling and optimization of charg-
ing station location problems for electric car-sharing services, primarily utilizing determinis-
tic models that do not incorporate uncertainty. However, in this problem, demand is highly
dynamic, and such models may oversimplify the complexities of real-world scenarios by not
adequately addressing demand uncertainties inherent in these systems.

With the consideration of demand uncertainty, some researchers have explored stochastic
programming models to address this problem [Brandstätter et al., 2017; Çalık and Fortz,
2019], these approaches, generate multiple scenarios to approximate real-life demand pat-
terns. It is worth noting that the probability distribution of traffic demand has a great impact
on the quality of this problem solution. There are basically two ways of dealing with it in
stochastic programming. One way is to utilize the expectation of random variables to replace
the probability distribution, in this case, the stochastic programming model practically be-
comes a deterministic optimization model. The other way is to use parametric approaches,
where the probability distribution is assumed. Brandstätter et al. [2017] predefined seven
scenarios based on the days of the week with determined probabilities. Çalık and Fortz
[2019] utilized probability distribution functions fitted from historical data via a nonlinear
least square optimization method to generate scenarios, each with a specific number of trips,
then compute the probability of scenarios based on the probability of individual trip in each
scenario. However, their approaches still exhibit limitations in adaptability and robustness
in infrastructure planning, they may not fully capture the complexity of demand patterns,
which can fluctuate significantly across different times. Consequently, there remains a criti-
cal need to explore methodologies that can deliver a more accurate and dynamic approach to
demand forecasting, thereby enhancing the reliability and effectiveness of charging station
location optimization for electric car-sharing services.

Motivated by this gap in the literature, we propose a novel deep learning-based stochastic
programming framework (LMSP Framework) to address the CSLP. Our model integrates
Long Short-Term Memory (LSTM) networks, Multilayer Perceptron (MLP), and Mixture
Density Networks (MDN). The LSTM component is employed to capture and forecast the
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Figure 2.2.: Research gap

temporal dynamics of traffic demand, while the MLP serves to enhance the predictive power
by capturing complex, non-linear relationships within the contextual data. The MDN is then
utilized to derive the probability distribution of the predicted traffic demand, enabling the
generation of various demand scenarios. These scenarios are subsequently used within a
stochastic programming model, which strategically optimizes the locations and capacities of
charging stations under demand uncertainty, ultimately aiming to maximize system prof-
itability while ensuring robust and reliable infrastructure planning.

To the best of our knowledge, this is the first research to utilize a deep learning-based
stochastic programming framework to address CSLP in a one-way electric car-sharing sys-
tem while explicitly considering traffic demand uncertainty. By employing a two-stage
stochastic programming approach, we effectively handle demand uncertainty. The appli-
cation of the deep learning model (LSTM-MLP-MDN) is used to enhance the two-stage
stochastic programming model because it allows for more accurate forecasting of traffic de-
mand probability distribution. This approach represents a significant advancement in this
field, offering a more robust and reliable method.

The main contributions of this research are as follows:

1. Novel LMSP Framework: This research presents a novel framework that integrates
CSLP with stochastic programming and data-driven methods. This approach directly
addresses the identified research gaps (see Figure 2.3), offering a structured solution
to the challenges of optimizing charging infrastructure under uncertainty.

2. Data-Driven Enhancement of Stochastic Programming: This research improves the
existing two-stage stochastic programming model by integrating a deep learning model
specifically designed to predict traffic demand probability distributions. By using his-
torical traffic data, the deep-learning model captures complex demand patterns and
provides more accurate inputs for the stochastic programming model.

3. LSTM-MLP-MDN model: A new deep learning architecture, combining Long Short-
Term Memory (LSTM), Multilayer Perceptron (MLP), and Mixture Density Networks
(MDN), has been developed. This hybrid model enables the prediction of traffic de-
mand distributions, addressing uncertainties in the CSLP. By learning from historical
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data, the model generates realistic demand scenarios, improving the reliability of in-
frastructure planning.
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3. Problem Description and Formulation

This chapter presents a detailed description of the problem this research aims to address,
followed by the formulation of our proposed solution. Section 3.1 describes the problem
that this research seeks to address. Section 3.2 introduces the two-stage stochastic program-
ming model for the charging station location problem. This model is primarily based on
[Brandstätter et al., 2017; Çalık and Fortz, 2019], with some refinements applied to better
align it with real-world conditions.

3.1. Problem Description

The rapid growth of electric vehicles (EVs) and car-sharing services has introduced signifi-
cant challenges in urban transportation planning, particularly in optimizing the location of
charging stations for one-way electric car-sharing systems under demand uncertainty. This
issue is crucial for promoting sustainable urban mobility, but it remains a significant chal-
lenge due to the highly dynamic nature of traffic demand and the inherent complexities of
urban environments.

In one-way electric car-sharing systems, users can pick up a vehicle at one location and
return it to another, offering flexibility but complicating resource management. The core
problem addressed in this research is how to strategically locate charging stations and allo-
cate electric vehicles to maximize system profitability while maintaining high service levels.
The key challenge is the demand uncertainty, influenced by factors such as time of day,
weather conditions, and unforeseen events, which complicates the prediction of when and
where vehicles will be needed.

To address this, the research formulates the problem as a two-stage stochastic program-
ming model. The first stage involves strategic decisions, such as where to place charging
stations and how many vehicles to allocate to each station. The second stage focuses on
operational decisions, such as whether to accept a user’s trip request based on vehicle avail-
ability and predicted demand, and whether a specific accepted trip is assigned to a particular
car. Incorporating a deep learning model to forecast traffic demand, this research aims to
enhance decision-making under demand uncertainty. The model combines the strengths
of Long Short-Term Memory (LSTM) networks, Multilayer Perceptron (MLP), and Mixture
Density Networks (MDN) to predict the probability distribution of future traffic demands.
The predicted demand distribution serves as input for the stochastic programming model,
significantly improving the robustness and reliability of traffic management strategies.
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3. Problem Description and Formulation

3.2. Two-Stage Stochastic Programming Model

Firstly, it is necessary to identify the potential locations for charging stations in the city’s
popular urban areas, denoted as I. Subsequently, we aim to select optimal charging stations
in I and assign an initial number of vehicles to the selected stations. In this system, users
from different regions request trips, but these requested trips need to first satisfy certain
conditions to be accepted and then receive permission to use the electric vehicle car-sharing
service.

3.2.1. Assumptions

To accurately model this system, it is crucial to establish certain assumptions before formu-
lating the two-stage stochastic programming model. These assumptions are as follows:

• No Operational Activities: The car-sharing company will not consider the operational
activities of the service staff, such as car relocation fees and charging station relocation
fees. This assumption ensures the decision of the first stage is fixed.

• Uniform Vehicle Type: All electric cars located in the station conform to a uniform
type, indicating identical automotive performance characteristics and battery capacity.

• Battery Consumption: The battery consumption of electric cars is directly proportional
to their travel time, meaning that all vehicles have the same maximum travel time. This
helps to reduce the impact of uncertainty in battery levels on the analysis.

• Charging Station Capacity: Each potential charging station location has the same
maximum capacity, with all selected stations equipped with the maximum number of
charging slots (also referred to as charging parking spaces). This can prepare for peak
demand conditions in high-traffic areas.

• OD Demand: All traffic demand starts and finishes at potential charging stations. This
simplifies the process for users to reach the nearest charging station.

• User Behavior: Users will choose the shortest travel time route.

• Charging Requirements: Initially, the electric vehicles at the station are fully charged
to 100%. Each vehicle must be fully charged before use. Once an electric vehicle is
utilized and returned to the charging station, it starts recharging immediately. The
charging time for all vehicles is the same, and upon completion, the battery capacity
will again reach 100%.

• No Queue for Parking: The need to queue for returning vehicles is not considered.
This can eliminate potential delays or congestion at charging stations.

3.2.2. Notations and Definitions

Next, we will introduce some important notations and definitions in the optimization model,
which can provide clarity and precision in our model formulation. Here, upper case letters
represent sets and lower case ones represent indices. For example, I is a set of potential
stations, and i is the index of an element of I.
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• Sets

– I = {1, 2, . . . , |I|}: The set of potential locations for charging stations, where i
indexes the stations.

– T = {0, 1, 2, . . . , Tmax} is the set of time periods (of identical length) in the plan-
ning period, where t denotes indices of the set.

– S = {1, 2, . . . , |S|} is the set of demand scenarios, where s denotes indices of the
set.

– H = {1, 2, . . . , |H|} is the set of purchased cars, where h represents indices of the
cars.

• Model Parameters and Coefficients

– ps is the probability of scenario s ∈ S.

– i is the income of each trip.

– fi is the fixed cost of the station if built at location i.

– c is the fixed purchasing cost of each car.

– W is the budget limit.

– N is the highest number of vehicles that can be purchased.

– ts
k is the shortest travel time required for the k-th trip, in scenario s.

– Φ is the maximum travel time of a fully charged car.

– C is the capacity of station i, i ∈ I.

– τ is the required charging time after a car is returned to the charging station.

Decision Variables

• First Stage Decision Variables (Strategic Layer)

– yi = 1 if a charging station is built at location i, ∀i ∈ I, 0 otherwise.

– Li is the initial number of electric vehicles at station i, ∀i ∈ I.

• Second Stage Decision Variables (Operational Layer)

– xk = 1 if trip k is accepted, ∀k ∈ Ks, ∀s ∈ S, 0 otherwise.

– xh
k = 1 if an accepted trip k of scenario s is assigned to car h, ∀h ∈ H, ∀s ∈ S,

∀k ∈ Ks, 0 otherwise.

– f h
a = 1 if car h is traveling along a particular arc a, ∀h ∈ H, ∀a ∈ As, 0 otherwise.

In the planning period, the set S includes various scenarios of total traffic demand, reflecting
the traffic demand uncertainty. The probability of each corresponding scenario is denoted by
ps. Each demand scenario s ∈ S includes a set of requested trips Ks, where each requested
trip k ∈ Ks consists of four elements: an origin point ok, a starting time sk, a destination
point dk, and an ending time ek. Note that ok ∈ I and dk ∈ I, and the travel time of trip k is
computed as ek − sk.

In each demand scenario s ∈ S, a requested trip k ∈ Ks can only be accepted if a purchased
car h is assigned to it. For each purchased car h, h ∈ H, let Ks

h = (ks
h1

, ks
h2

, . . . , ks
hl
) be the

sequence of trips carried out with car h in time order, where l represents the total number
of trips performed by a car.
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The decision variables in this model are divided into two stages. The first stage is the
strategic layer, where the optimal locations for the charging stations yi and the initial number
of electric vehicles assigned to each station Li are determined. This stage involves making
long-term decisions that significantly affect the overall efficiency and profitability of the car-
sharing system. The second stage is the operational layer, which focuses on the short-term
operations of the system. Here, there are three decision variables. xk evaluates whether
a user’s requested trip is accepted based on the real-time availability of vehicles and the
locations of built charging stations. xh

k ensures that each trip is matched with an appropriate
vehicle. Flow variables f h

a track the movement of each car, ensuring that the distribution of
cars aligns with the system’s operational requirements.

Time-Expanded Location Graphs (TLG)

This model introduces a time-expanded location graph Gs = (Vs, As) for each scenario s,
which enables the monitoring of the position of each car at each time point (see Figure
3.1a as an example). Here, nodes represents the possible locations (stations) of vehicles
at different time periods, and arcs represent the possible transitions (movements or status
changes) of vehicles between these location over time. The graph in this research is similar
to the one used by Brandstätter et al. [2017], but there are a few modifications, such as in
the initial allocation. Through practical implementation, it was found that replacing a large
number of binary decision variables zh, which indicate whether or not car h is purchased,
with a smaller number of integer variables Li can significantly reduce runtime and reduce
memory issues in complex integer programming problems. Additionally, these adjustments
were made to clearly show the number of electric vehicles allocated to each charging station,
making it easier to understand.

Nodes

In the graph, the node set Vs consists of a sink node ss, and each node it for each station i ∈ I
and each time point t ∈ {0, 1, 2, . . . , Tmax}. Here, note that i is used to represent an index of
a location in models that do not necessarily consider the time dimension explicitly. On the
other hand, it is employed to explicitly denote a temporal aspect of a node, indicating the
state of node i at time t.

Arcs

As is the set of arcs, which include waiting arcs, travel arcs, and final collection arcs:

• Waiting Arcs As
W: Waiting arcs are arcs that connect a station i at one time period

to the same station at the subsequent time period t + 1. They represent the scenario
where a vehicle remains at the same station, either parked or charging. Formally, these
waiting arcs are defined as: As

W = {(it, it+1) | i ∈ I, t ∈ {0, 1, 2, . . . , Tmax − 1}}

• Travel Arcs As
T: Travel arcs are arcs that represent the movement of a vehicle from

station i to another station j over a specific time period. They can capture the actual
movement of vehicles between different stations as they fulfill trip requests. These arcs
corresponding to trips requested in the scenario and are formally defined as As

T(k) ={
(isk , jek ) | i ∈ I, j ∈ I, sk ∈ T, ek ∈ T, sk < ek

}
for a trip k ∈ Ks, and travel arcs is As

T =⋃
k∈Ks As

T(k).
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• Final Collection Arcs As
C: Final collection arcs connect each station i at the last time

period Tmax to a sink node ss. These arcs ensure that the time-expanded graph is com-
plete by providing a way to ’collect’ all flows from the last time period. Furthermore,
they ensure the model can respect the capacity of the system at the end of the planning
horizon. Formally, these arcs are defined as As

C = {(iTmax , ss) | i ∈ I}.

In TLG, parallel travel arcs may exist because different trips might start and end at the same
points within the same time period but be realized by different cars. Similarly, if cars are
parked at the same station at the same time, their waiting arcs and final collection arcs may
also be identical. But TLG does not contain parallel waiting or collection arcs, since each arc
will be linked to each available car.

We further define:

• δ−(u) = {(v, u) ∈ As | arc(v, u) exists from node v to node u}

• δ+(u) = {(u, v) ∈ As | arc(u, v) exists from node u to node v}

δ−(u) represent the set of incoming arcs of a node u. It can capture all possible movements
or flows that lead into node u, whether they are travel arcs (representing vehicles moving
into a station) or waiting arcs (representing vehicles that are waiting or charging). δ+(u)
represent the set of outgoing arcs of a node u. It can capture all possible movements or
flows that originate from node u, which could be vehicles departing from a station to another
station or vehicles moving to a different state within the same station (e.g. from waiting to
traveling).

Furthermore, the notation f h[A′] = ∑a∈A′ f h
a indicates the subset of flow variables f h

a for a
subset of arcs A′ ⊂ As. The variable f h

a′ represents the flow of car h on the waiting arc a′.
Specifically, this variable indicates whether car h is located on the arc a′ at a certain time
period after completing a trip. The arc a′ corresponds to the time period during which the
vehicle is waiting or charging at a station before it is ready for the next trip.

Illustrative Example

Next, we explain the time-expanded location graph through diagrams with a simple exam-
ple. As shown in 3.1a, in scenario S′, there are three potential charging station locations,
all of which are built, denoted as i ∈ {1, 2, 3}. The planning period is T = {0, 1, Tmax}. At
t = 0, cars are initially allocated to each built charging station (see Figure 3.1b). All arcs
reflect the activities of cars at different time periods and different points, and the sink node
is used to aggregate and simplify constraints related to the flow. For example, we assume
each station initially has one car h, where h ∈ {1, 2, 3}, and the car states Ks

h =
(

kS′
h1

, kS′
h2

)
reflect the activities of each car. In Figure 3.1b, arcs of different colors represent the activities
of vehicles. The green car travels from i1 to i2 between t = 0 and t = 1, and then parks at i2
for charging from t = 1 to Tmax. The yellow car parks from t = 0 to t = 1, then travels from
i2 to Tmax. However, the red car remains parked throughout the planning period.

Then Table 3.1 summarizes the arcs appear in this example:
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Table 3.1.: Description of different types of arcs

Category Arc Type Arcs

Waiting arcs (it, it+1) (10, 11), (11, 1Tmax ), (20, 21), (21, 2Tmax ), (30, 31), (31, 3Tmax )
Travel arcs (it, jt+1) (10, 21), (21, 1Tmax )

Final collection arcs (iTmax , sink) (1Tmax , sink), (2Tmax , sink), (3Tmax , sink)

(a) An example of Time-expanded Location Graph

(b) Detailed Traffic Flow Graph

Figure 3.1.: Time-expanded Location Graph

3.2.3. Time-Dependent Integer Linear Program

The goal of this model is to find the optimal location for charging stations and determine
the initial allocation of electric cars to these stations in a one-way car-sharing system under
demand uncertainty. The objective function is established to maximize the profit of the car-
sharing company by calculating the total income from services minus all associated costs.
Now Time-Dependent Integer Linear Program is written as follows:
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max ∑
s∈S

ps ∑
k∈Ks

ixk − ∑
i∈I

fiyi − c ∑
i∈I

Li (3.1)

s.t. ∑
i∈I

fiyi + c ∑
i∈I

Li ≤ W (3.2)

∑
i∈I

Li ≤ N (3.3)

0 < ts
kxk ≤ Φ ∀s ∈ S, ∀k ∈ Ks (3.4)

H

∑
h=1

∑
a∈δ+(i0)

f h
a = Liyi ∀s ∈ S, ∀i0 ∈ Vs

0 (3.5)

H

∑
h=1

xh
k = xk, ∀s ∈ S, ∀k ∈ Ks (3.6)

∑
h∈H

∑
k∈Ks :ok=i,sk=0

xh
k ≤ Liyi, ∀i ∈ I, ∀s ∈ S (3.7)

H

∑
h=1

∑
a∈δ+(it)∩(As

W∪As
C)

f h
a ≤ Cyi ∀s ∈ S, ∀it ∈ Vs \ {ss} (3.8)

f h[δ− (it)] ≤ yi ∀h ∈ {1, 2, . . . , H}, ∀it ∈ Vs \ {ss} (3.9)

f h [δ− (it)
]
= f h [δ+ (it)

]
∀h ∈ {1, 2, . . . , H}, ∀it ∈ Vs \ {ss} (3.10)

∑
a∈As

T(k)
f h
a = xh

k ∀h ∈ {1, 2, . . . , H}, ∀s ∈ S, ∀k ∈ Ks (3.11)

f h
a ≤ f h

a′ (3.12)
∀h ∈ {1, 2, . . . , H}, ∀s ∈ S, ∀k ∈ Ks,

∀a =
(
isk , jek

)
∈ As

T(k),

∀a′ =
(

jek , jek+τ

)
∈ As

W

The objective function 3.1 maximizes the expected second-stage profit contribution from the
accepted trips. The first term in the objective function represents the expected income from
the car-sharing service. The second term accounts for the total fixed cost of all charging
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stations, while the third term reflects the purchasing cost of all vehicles.

Constraints 3.2 require that the combined total construction cost of the charging stations and
the purchase cost of electric vehicles should not exceed the budget limit W. Constraints 3.3
ensure that the initial number of allocated vehicles does not surpass the total vehicle count.
Constraints 3.4 ensure that trip k does not exceed the maximum travel time of the car Φ
due to battery limitations. Constraints 3.5 impose restrictions on nodes i0, which represents
node i of TLG in the initial state (t = 0), and Vs

0 represents the nodes at the initial time
t = 0 within the scenario s. Specifically, the sum of all arcs originating from built charging
station i, including both waiting arcs and traveling arcs, must equal the initial number of
cars at charging station i. These constraints can guarantee that each purchased car is first
allocated to its corresponding built charging station. Constraints 3.6 ensure that exactly one
car is assigned to each accepted trip. Constraints 3.7 ensure that the total number of trips
assigned to cars starting from built charging station i does not exceed the number of cars
initially located at station i, provided that the station is built. These constraints prevent the
over-allocation of trips relative to the resources available at each station. Constraints 3.7
ensure that for each potential charging station i, the sum of trips assigned to any car h that
was initially assigned at potential station i should be less than or equal to the total number of
vehicles Li that were initially placed at that station. These constraints enforce that assigning
trips to cars must consider the initial strategic decisions regarding vehicle allocation at each
station. Constraints 3.8 impose restrictions on all nodes except i0, i ∈ I. For each node it,
the sum of outgoing arcs including waiting arcs and final collection arcs, cannot exceed the
capacity of the station. These constraints ensure that throughout the planning period, the
number of EVs simultaneously parked at station i does not surpass its number of charging
slots. Constraints 3.9 ensure that cars can access only the built charging stations. Flow
conservation constraints 3.10 guarantee that each car’s route corresponds to a path in the
TLG in each scenario s. Link constraints 3.11 ensure that when a trip is assigned to a car,
the flow in the network must occur on one travel arc corresponding to that trip. It links the
vehicle’s route with the specific trip it is supposed to complete. Constraints 3.12 mandate
that each car h must fully charge its battery after completing the service.
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4. Methodology

4.1. Overview of the LMSP Framework

Figure 4.1.: Methodological Framework
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The proposed LMSP (LSTM-MLP-MDN Stochastic Programming) Framework is an innova-
tive solution to the Charging Station Location Problem (CSLP) under demand uncertainty.
Figure 4.1 illustrates the LMSP Framework and the workflow of the methodological frame-
work used in this research.

The LMSP framework operates through the following key mechanisms:

1. Data Input: Historical traffic data and contextual data are collected.

2. Deep Learning Model (LSTM-MLP-MDN): This component learns from historical traf-
fic patterns to predict future traffic demand. It captures temporal dependencies, pro-
cesses contextual information, and generates probability distributions of future traffic
demand. Section 4.2 offers a detailed explanation of it.

3. Demand Scenario Generation: The output from the deep learning model is used to
generate multiple realistic demand scenarios, each representing a possible future de-
mand pattern with an associated probability.

4. Two-Stage Stochastic Programming Model: This stage makes strategic decisions on
charging station locations and initial vehicle allocations, followed by optimizing oper-
ational decisions based on the generated scenarios.

5. Optimization Process: The stochastic programming model uses the generated scenar-
ios to find a robust solution, balancing the trade-off between infrastructure costs and
operational efficiency across all scenarios.

6. Output: The LMSP Framework ultimately outputs the optimized locations for charging
stations and the corresponding initial vehicle allocations.

4.2. Deep Learning Model for Traffic Demand Forecasting

4.2.1. LSTM-MLP-MDN Architecture

Figure 4.2 shows the architecture of LSTM-MLP-MDN, which consists of three parts: LSTM,
MLP, and MDN. The LSTM is responsible for capturing temporal dependencies from his-
torical traffic data, while the MLP processes non-sequential contextual features. The MDN
outputs a probability distribution over possible future demands, allowing the model to rep-
resent demand uncertainty effectively.

4.2.2. Multilayer Perceptron (MLP)

The Multilayer Perceptron (MLP) is a feedforward type of artificial neural network contain-
ing fully connected neurons where the activation function is nonlinear. This research uses
MLP to process non-sequential contextual data, such as weather information, traffic accident
information, and public holiday information. By learning complex patterns from these di-
verse features, MLPs can serve as a good complement to LSTM networks to better predict
total traffic demand.

In our MLP model, the input dimension is 11, incorporating various contextual information.
There are two fully connected hidden layers. The first fully connected layers map the input
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Figure 4.2.: LSTM-MLP-MDN Architecture

features to the first hidden layer, which includes dropout and uses the rectified linear unit
(ReLU) as an activation function. The second fully connected layer maps the features from
the hidden layer to the output layer, also employing the ReLU activation function. In the
output layer, the dimension matches the hidden layer size of the LSTM model. Note that
we use Kaiming uniform to initialize weights in these two hidden layers, as this method is
particularly well-suited for layers using the ReLU activation function [Lyu et al., 2021]. It
helps to prevent issues such as vanishing and exploding gradients by appropriately scaling
the weights at the beginning of training.

4.2.3. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) proposed
by Hochreiter and Schmidhuber [1997] to solve the long-existing problems of exploding and
vanishing gradients in RNN. Further research has determined that LSTM is particularly well-
suited for time series prediction due to its proficiency in capturing long-short dependencies
and temporal patterns in sequential data [Song et al., 2019]. This research leverages historical
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traffic demand data to predict future demand patterns, with a specific focus on predicting
hourly traffic demand based on past observations. An LSTM unit (see figure 4.3) typically
consists of a cell (the memory part of the LSTM) and three regulators of the cell’s information
flow, known as gates (input, output, and forget gate). A comprehensive explanation can be
found in the appendix C.1.

Figure 4.3.: The mechanism of LSTM

The LSTM model in this research is a stacked 2-layer model designed to learn more complex
patterns from data. The input data is a discrete sequence of hourly traffic demand from
historical data (x1, x2, . . . , xt), where sequence length t is 24, representing a full day of hourly
observations. This sequence is fed into the first layer at each time step t (t = 1, 2, . . . , t).
Initializing the hidden state and cell state with zeros ensures that the LSTM starts with a
neutral state for each input sequence. The first LSTM layer includes dropout to prevent
overfitting, it acts as a feature transformer, converting 24 traffic demand sequences into
higher-level representations and passing the hidden state h1

t to the second LSTM layer. The
second LSTM layer can learn from this transformed data and outputs the hidden state h2

t of
the last time step to the MDN model.

4.2.4. Mixture Density Network (MDN)

In this research, Mixture Density Network (MDN) is employed to handle the uncertainty and
variability in traffic demand predictions. Unlike traditional models that output a single point
estimate, the MDN outputs parameters for a mixture of Gaussian distributions, enabling the
prediction of a full probability distribution over possible future traffic demands.

Our MDN model comprises three fully connected layers, each dedicated to parameterizing
the components of a Gaussian mixture model, mixing with weight (or probabilities) π, stan-
dard deviations σ, and mean value µ. In the concatenation layer, the outputs of the MLP
and LSTM are combined as input.

The first fully connected layer outputs the mixing weights πi, utilizing a uniform initial-
ization to promote balanced initial probabilities, thereby ensuring that no single component
dominates the mixture prematurely. This layer employs a softmax activation function to nor-
malize the weights, guaranteeing that they sum to 1 and thus conform to the probabilistic
requirements of a mixture model. The second and third layers outputs the mean value µi
and the standard deviations σi of Gaussian components, respectively. Both layers are initial-
ized using the Kaiming normalization method and employ a softmax activation function to
ensure positivity.

36



1
Introduction

5
Case Study



5. Case Study

To validate and demonstrate the effectiveness of our proposed LMSP Framework, we will
conduct a case study in Manhattan using the New York City (NYC) taxi dataset as a real-
world dataset in this Chapter. Firstly, in section 5.1, we will perform data preprocessing on
the NYC taxi dataset by selecting potential charging station locations and constructing the
contextual data to support the prediction of total traffic demand. Subsequently, in section
5.2, we will apply the LSTM-MLP-MDN model to predict hourly total traffic demand and
evaluate its performance against other potential models, using a set of evaluation metrics to
confirm its superior predictive accuracy. In section 5.3, we will select five critical time periods
on January 1, 2020, each representing a distinct traffic pattern. Using the LMSP Framework,
the optimal deployment plan for charging stations will be derived based on these time
periods. Following this, we will conduct a comparative evaluation to assess the added value
of the LMSP Framework. Lastly, in section 5.4, we will provide a comprehensive analysis
of the optimal charging station location deployment plan and offer recommendations for
further improvements.

5.1. Dataset and Preprocessing

Figure 5.1.: Taxis of New York City

5.1.1. New York City (NYC) taxi dataset

New York City(NYC) is one of the largest and most densely populated cities in the world,
and the NYC taxi open dataset includes a substantial amount of data rich in information
over several years, making it a go-to resource for researchers [Shaygan et al., 2022]. The
dataset used in this research is the NYC taxi data from 2015 to 2019, focusing on yellow
and green taxi pickups and drop-offs within 25 selected popular regions in Manhattan. The
reasons for choosing this specific dataset are as follows:
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1. Comprehensive Time Span: The five-year time span provides a comprehensive view
of total traffic demand variations.

2. Pre-Pandemic Data: Data prior to 2020 is selected to avoid the significant impact of the
COVID-19 pandemic, which drastically affected total traffic demand [TLC Factbook,
2024].

3. Dominant Mode of Transportation: During this period, taxis were still the primary
mode of transportation in Manhattan. For-hire services like Uber and Lyft had not
reached their current levels by 2023, making this dataset more representative of typical
travel patterns from 2015 to 2019 [TLC Factbook, 2024].

4. Representative Travel Behavior: Taxi trips and car-sharing services exhibit similar
travel behaviors, making the taxi data an appropriate substitute for studying car-
sharing demand.

(a) Heatmap of Car Departure Regions (b) Heatmap of Car Destination Re-
gions

Figure 5.2.: Heatmap of Manhattan Traffic Demand from the Perspectives of Departure and Arrival
Figure 5.2a and figure 5.2b respectively illustrate the annual average number of trips originating from and arriving
at various regions from 2015 to 2019. Darker colors indicate a higher number of trips originating from or arriving
at the regions.

Each trip in the NYC dataset contains the following information: origin point, destination
point, starting time, and ending time. Both the origin and destination points are linked
to a regional location ID. By counting the number of trips originating in each region, we
can determine the traffic demand in different regions of Manhattan, as shown in Figure 5.2.
Based on this analysis, we select 25 regions, focusing on areas with higher traffic (indicated
by darker colors on the heat map) and key locations in Manhattan, such as Wall Street (see
Figure 5.3). A detailed examination of these regions using Google Maps helps pinpoint
specific coordinates suitable for establishing charging stations. The primary characteristics
of each region are also identified, as summarized in Table A.1. The selected locations are
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strategically placed in popular areas, such as near hospitals, shopping malls, and notable
landmarks.

Subsequently, we filter the Origin-Destination (OD) demand trips from the NYC taxi dataset,
focusing on trips that begin and end within these 25 regions to represent the demand for the
car-sharing service. Furthermore, we aggregate and individually analyze the hourly total
traffic demand from 2015 to 2019 in these 25 regions. This data will serve as the basis for
predicting hourly traffic demand in Section 5.2.

In addition to the above data processing steps, we need to address a critical component
for our model’s constraints: the travel time for each trip. This information is essential for
implementing the battery limitation constraint 3.4 in the optimization model. To obtain
accurate travel times, we employ Dijkstra’s algorithm implemented through the NetworkX
library [Hagberg et al., 2008]. This algorithm computes the minimal travel time between
given origin and destination points. The speed data used in these calculations is sourced
from Uber Movement Data 2019, providing realistic estimates of travel speeds in different
parts of Manhattan at various times.
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Figure 5.3.: 25 Potential Locations of Charging Stations
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Table 5.1.: 25 Potential Locations of Charging Stations

Location ID Latitude Longitude Region Main Type

12 40.7045416 -74.0142564 Battery Park Tourism
41 40.8075917 -73.9549547 Central Harlem Residential
43 40.7815194 -73.9627249 Central Park Tourism
48 40.7647531 -73.9880232 Clinton East Mixed Use
50 40.7712271 -73.9935659 Clinton West Commercial
68 40.7477804 -74.000438 East Chelsea Commercial
74 40.80182 -73.9392953 East Harlem North Residential
79 40.7260512 -73.9835308 East Village Entertainment (Nightlife)
88 40.7034746 -74.0115948 Financial District South Commercial

113 40.7346805 -73.9946012 Greenwich Village North Educational
140 40.7611816 -73.9579018 Lenox Hill East Residential
142 40.7738424 -73.9821234 Lincoln Square East Residential
161 40.7585437 -73.9772064 Midtown Center Commercial
163 40.7663007 -73.9818927 Midtown North Commercial
170 40.7482478 -73.9762946 Murray Hill Mixed Use
186 40.749101 -73.992006 Penn Station/Madison Sq West Commercial
194 40.7841865 -73.9266152 Randalls Island Entertainment (Sports)
231 40.7197847 -74.0068153 TriBeCa/Civic Center Commercial
232 40.7152425 -73.9842337 Two Bridges/Seward Park Residential
234 40.7379242 -73.9922478 UN/Turtle Bay South Governmental
236 40.7801748 -73.9550942 Upper East Side North Residential
237 40.76413 -73.9688047 Upper East Side South Residential
239 40.7818426 -73.979274 Upper West Side South Residential
243 40.856503 -73.932761 Washington Heights North Residential
244 40.8369673 -73.9401365 Washington Heights South Residential

5.1.2. Contextual Data of Manhattan

Some contextual factors are also considered in this model to help make more accurate traffic
demand predictions. These data types include:

• Weather Data: Weather data includes maximum temperature, minimum temperature,
mean temperature, precipitation (rain + snow), snow depth, and wind speed [Open
Meteo, 2024].

• Holiday Data and Big Events: Public holidays such as Christmas Day, Easter Sunday,
and big events like Presidents’ Day can significantly affect traffic demand.

• Traffic Accidents Data: This dataset includes all motor vehicle collision counts recorded
in the city of Manhattan [Department, 2024].

All contextual data need to be normalized before inputting them into the MLP model. This
step is crucial because it helps train the neural network to converge faster and more effi-
ciently. Here, holiday and big event data are digitized using One-Hot Encoding. The motor
vehicle collision counts data are scaled with the StandardScaler because they follow a normal
distribution, whereas all other contextual data are scaled using the MinMaxScaler.
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5.2. Traffic Demand Prediction

5.2.1. Experiment Setup

The deep learning model LSTM-MLP-MDN is used to predict the probability distribution
of hourly traffic demand in Manhattan. All training of the model was performed on a
system with the following specifications: CPU model: AMD Ryzen 9 7945HX with Radeon
Graphics, 2.50 GHz, and 16GB RAM. The specific parameters of the model are detailed in
Table 5.2 below:

Table 5.2.: Hourly Traffic Demand Hyperparameters

Parameter Value

Data Parameter
seq length 24

Model Parameters
batch size 32

epochs 15
learning rate 0.001

num gaussians 5

LSTM Parameters
lstm hidden layer size 88

dropout 0.4

MLP Parameters
mlp hidden dim 5

Early Stopping
patience 10

delta 0.05

Regularization
L2 λ 0.1

entropy weight 0.03

Sliding window cross-validation is utilized to train the deep learning model, as it helps in
capturing temporal traffic demand patterns and prevents overfitting to particular time peri-
ods, ensuring the model generalizes effectively over five years. As shown in Figure 5.4, five
windows are created to process all traffic demand data, with each window containing 90%
training data and 10% testing data. A 30% overlap between adjacent windows is employed
to capture more temporal dependencies and improve generalization to new and unseen
data. By calculating the average loss across all windows, we can evaluate the model’s per-
formance. Note that the negative log-likelihood (NLL) is utilized as a loss function because
it directly measures how well the predicted probability distributions fit the observed data,
accommodating the inherent uncertainty in traffic demand predictions.

Furthermore, an early stopping mechanism is introduced into the model. This is necessary
because the model is trained on datasets from five different windows. Without proper con-
trol, training within a single window can lead to overfitting, which subsequently diminishes
performance in subsequent windows. The early stopping mechanism can help in obtaining
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Figure 5.4.: Sliding window cross-validation

the best model by monitoring performance and stopping at the point of optimal perfor-
mance rather than continuing to train and potentially degrading the model’s performance.
In Table 5.2, ”patience” refers to the number of consecutive epochs allowed without an im-
provement in the validation loss before stopping the training process, and ”delta” is the
minimum change in the validation loss that is considered a significant improvement.

Regularization is also crucial in this to ensure the model utilizes all the mixture components
effectively rather than concentrating on just one or two. Here, we utilize two regularization
strategies: L2 regularization (weight decay) and entropy regularization. L2 regularization
can penalize large weights in the MDN network, which helps in preventing overfitting. In
Table 5.2, ’L2 λ’ is the regularization parameter for L2 regularization, which is added to
the loss function as λ ∑ w2

i , where wi are the weights of the MDN network. On the other
hand, entropy regularization can encourage the MDN network to use all components in the
Gaussian mixture more uniformly. In table 5.2, entropy weight is utilized to control the im-
portance of entropy regularization. This term is added to the loss function as α ∑ πi log(πi),
where πi are the mixture component weights and α is the entropy weight.

(a) Window 1 Loss (b) Window 2 Loss (c) Window 3 Loss

(d) Window 4 Loss (e) Window 5 Loss

Figure 5.5.: Training and Validation Loss over Five Windows

Figure 5.5 shows the training results for the model over 5 different windows. Both training
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and validation losses consistently and steadily decrease across all epochs and windows, in-
dicating that the model learns and fits the training data well. In each window, the validation
loss decreases almost in parallel with the training loss, indicating that the model is unlikely
to overfit. Furthermore, the final loss values for both training and validation are quite close
to each other, and both are significantly lower than the initial values. This suggests that
the model’s performance on the validation data is nearly as good as on the training data,
indicating good generalization.

5.2.2. Evaluation Metric

According to the literature review in Section 2, various evaluation metrics are used to as-
sess model performance. Since the model’s output is a probability distribution over traffic
demand rather than a single value, the evaluation metrics need to account for this. This
research evaluates the model from the following aspects:

Model Prediction Accuracy

To evaluate the model’s prediction accuracy, the most likely predicted value from the prob-
ability distribution is considered because it represents the single most probable outcome,
making it straightforward and intuitive. In the LSTM-MLP-MDN model, it is the mean
value of the normal distribution which holds the highest weight. This predicted value is
then compared to the actual observed value using metrics such as MAE (Mean Absolute
Error) and MAPE (Mean Absolute Percentage Error), which are defined as:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (5.1)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (5.2)

where n is the number of observations, yi is the actual traffic demand value for the i-th
observation, and ŷi is the predicted traffic demand for the i-th observation. MAE provides a
clear and interpretable measure of average prediction error that is robust to outliers, while
MAPE allows for comparison of forecast accuracy across datasets with different scales, and
its percentage format is intuitive and easy to understand.

R-squared (R2)

The R2 metric measures the proportion of the variance in the dependent variable that is pre-
dictable from the independent variables. It provides an indication of how well the predicted
values approximate the actual data points. A higher R2 value indicates a better fit of the
model to the observed data.

R2 = 1 − SSres

SStot
(5.3)
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where:

SSres (Sum of Squares of Residuals) is the sum of the squared differences between the ob-
served values and the predicted values by the model. SStot (Total Sum of Squares) is the
sum of the squared differences between the observed values and the mean of the observed
values.

Prediction Interval Coverage Probability (PICP)

The Prediction Interval Coverage Probability (PICP) is used to evaluate the reliability of
the model’s probabilistic predictions. It measures the proportion of times the actual traffic
demand values fall within the predicted 95% confidence interval. A high PICP indicates that
the model’s predicted intervals effectively capture the true variability in the data.

The 95% confidence interval in the LSTM-MLP-MDN model can be derived by sampling as
follows:

• Sample Generation: Draw 100 samples from the Gaussian mixture distribution. This
sample size is sufficient to ensure statistical stability.

• Sorting: Sort the samples to create an empirical distribution.

• Percentile Calculation: Determine the 2.5th percentile and the 97.5th percentile of the
sorted samples.

• Prediction Interval: The 95% prediction interval is defined by the 2.5th percentile and
the 97.5th percentile of the sorted samples.

Log-Likelihood (LL)

Log-likelihood (LL) is used to evaluate the goodness-of-fit of the model on the validation
set. It measures how well the predicted probability distributions match the observed traffic
demand data. A higher LL value indicates a better fit, as it implies that the model assigns
higher probabilities to the observed data points.

In the LSTM-MLP-MDN model, since the output is a mixture of normal distributions, equa-
tions C.7 and C.8 illustrate the process to calculate the mixture probability distribution. The
Log-Likelihood is then calculated as follows: for each validation sample in the validation
dataset, the log of the mixture probability distribution function is computed, which is de-
noted as:

logL(y) = log

(
N

∑
i=1

πi fi(y)

)
(5.4)

For the entire validation dataset, sum these log-likelihood values:

logLtotal = ∑
y∈validation set

log

(
N

∑
i=1

πi fi(y)

)
(5.5)
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5.2.3. Comparison With State-of-the-Art

This section compares our proposed LSTM-MLP-MDN model with several well-established
models in the field of time series prediction and traffic demand forecasting. These mod-
els are chosen for their proven performance in similar contexts and their ability to handle
complex time-dependent data. The comparison aims to demonstrate the advantage of our
approach in terms of accuracy and ability to capture uncertainty in traffic demand predic-
tions.

Our proposed model is compared with the following potential models. Note that all pa-
rameters of these models have been carefully adjusted through rigorous tuning processes to
ensure optimal performance, allowing for a fair comparison.

LSTM-MDN

Compared to the previous models, the LSTM-MDN model has removed the MDN’s compo-
nent responsible for extracting contextual information. After multiple rounds of hyperpa-
rameter tuning, the optimal parameters are as follows:

seq length = 24, batch size = 32, epochs = 15, learning rate = 0.001, num gaussians = 5,
lstm hidden layer size = 88, dropout = 0.3.

Boostrap Method

While LSTM-MDN naturally produces probability distributions, traditional time series mod-
els like Auto-Regressive Integrated Moving Average (ARIMA) and Seasonal Auto-Regressive
Integrated Moving Average (SARIMA) are designed to produce point estimates. To ensure
an appropriate comparison with our proposed LSTM-MLP-MDN model, we employ the
Bootstrap method for both ARIMA and SARIMA models to generate probability distribu-
tions.

The Bootstrap method is a resampling technique that allows us to estimate the sampling dis-
tribution of an estimator by resampling with replacement from the original sample. In the
context of our time series models, it helps convert point estimates into probability distribu-
tions, thus providing a measure of prediction uncertainty. The process involves resampling
the residuals from the original time series predictions to create multiple simulated samples.
Each resampled series is used to generate new forecasts, and this process is repeated 1000
times to create an empirical distribution of predictions. The detailed method integrating
ARIMA, SARIMA, and Bootstrap is as follows:

• ARIMA - Boostrap: The ARIMA model combines autoregressive and moving average
components and includes differencing to make the time series stationary. For hourly
prediction, the ARIMA model parameters are set as p = 2, d = 0, and q = 3. To obtain
a probability distribution as output, the Bootstrap method is applied.

• SARIMA - Boostrap: The SARIMA model extends ARIMA by incorporating seasonal
components. It is well-suited for traffic demand with seasonal patterns, showing daily
and weekly trends. For hourly prediction, parameters are set as order (3, 0, 5) and
seasonal order (1, 1, 1, 24). For daily prediction, parameters are set as order (1, 1, 1)
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and seasonal order (2, 1, 2, 7) where the Akaike Information Criterion is minimized.
Similarly, the Bootstrap method is also used.

5.2.4. Results Analysis

Model Performance Comparison

Table 5.3.: Comparison of the model results for hourly prediction

Experimental model MAE MAPE
(%)

R2 PICP (%) LL

LSTM-MLP-MDN 174.3023 15.10 0.8872 74.60 -23.0259
LSTM-MDN 179.2215 14.73 0.8592 65.82 -20.8965
ARIMA-Bootstrap 306.4000 38.3892 0.09 9.01 -17425.8749
SARIMA-Bootstrap 263.2236 26.69 0.12 12.3 -16823.69

Table 5.3 presents a comprehensive comparison of the performance metrics for the models
mentioned in the previous section in hourly traffic demand prediction. It is evident that
the LSTM-MLP-MDN model outperforms the others. Specifically, the Mean Absolute Error
(MAE) is 174.3023. Given that the hourly traffic demand in historical data ranges around
2500, this value is acceptable. The Mean Absolute Percentage Error (MAPE) value of 15.10%
indicates the average percentage error between the predicted and actual values. A MAPE of
15.10% is relatively reasonable for traffic prediction, considering that traffic patterns can be
highly volatile and influenced by numerous external factors. An R2 value of 0.8872 indicates
that approximately 88.72% of the variance in the traffic demand is explained by the model.
This high value, significantly superior to other models, demonstrates the model’s strong
explanatory power and excellent fit to the data. The Prediction Interval Coverage Probability
(PICP) is 74.60% which is the highest value compared to other models. This indicates that the
model’s predicted intervals capture the true values more effectively, showcasing its superior
ability to quantify uncertainty in predictions. The log likelihood (LL) value is -23.0259, which
is higher than that of other traditional methods.

To conclude, the superior performance of the LSTM-MLP-MDN model across most metrics,
particularly in MAE, R2, and PICP, underscores its effectiveness in predicting traffic demand
probability distributions. Its ability to capture both the central tendency (as evidenced by
low MAE and high R2) and the uncertainty (high PICP) of traffic demand makes it the
most suitable choice for generating reliable inputs for subsequent stochastic programming
optimization models.

Hourly Traffic Demand Pattern and Prediction Validation

Figure 5.6 provides a comparison of total traffic demand on January 1st from 2015 to 2020
in 25 selected regions in Manhattan. This visualization provides valuable insights into his-
torical traffic patterns:

• Hourly Traffic Demand Pattern: The graph clearly delineates typical daily traffic pat-
terns, including peak and non-peak hours. Consistently across the years, we observe
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Figure 5.6.: Total Traffic Demand on January 1st by Year (2015-2020), Predicted for January 1st, 2020

that traffic starts at a low level early in the morning, rises sharply to peak around
midday, and then decreases towards the evening. This recurring pattern not only
demonstrates the stability of Manhattan’s daily traffic rhythm but also provides crucial
insights for our subsequent analysis and decision-making process. By understanding
these fluctuations, we can strategically select representative time periods (see Section
5.3.1), accounting for various future traffic patterns in Manhattan, ranging from peri-
ods of low demand to high demand.

• Long-term Trend Analysis: A significant trend observed is the steady decrease in to-
tal traffic demand from 2015 to 2020. According to TLC Factbook [2024], one major
factor contributing to this trend is likely the rapid rise of for-hire vehicle services such
as Uber and Lyft, which have steadily captured market share from traditional taxis
since 2015. In the long term, future traffic demand is expected to decrease. However,
since the data used here is based on NYC taxi trips, there are still differences com-
pared to the potential demand for electric car-sharing services in the future. Therefore,
we cannot directly equate this downward trend with changes in demand for electric
vehicle-sharing services. Instead, our analysis focuses on short-term demand patterns,
specifically hourly patterns. These short-term patterns are likely to have a higher
similarity between taxi usage and the potential demand for electric vehicle-sharing
services.

The LSTM-MLP-MDN model demonstrates its ability to capture the main traffic trends
throughout the day. While there are some deviations in absolute values, these are within
an acceptable range considering the complexity of hourly predictions and the potential for
noise and fluctuations in such granular data. This lays a strong foundation for subsequent
analysis and planning.
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Figure 5.7.: Predicted Total traffic demand in Manhattan on January 1, 2020

5.3. Charging Station Deployment Plan

After completing the hourly traffic demand prediction, we focus on January 1, 2020, to
demonstrate the practical application of our model. This date is chosen as it represents
the most recent data point in our dataset, allowing us to showcase the model’s predictive
capabilities on current traffic patterns.

Our LSTM-MLP-MDN model generates a probability distribution of traffic demand for each
hour, specifically providing five potential demand levels with corresponding probabilities.
We then integrate these probability distributions as scenarios into our stochastic program-
ming model. This integration allows us to obtain an optimal EV charging station deployment
plan considering demand uncertainty within each hour.

To provide a comprehensive analysis and actionable recommendations for the deployment
plan in section 5.4, we consider Manhattan’s diverse traffic demand patterns throughout the
day. We strategically select five specific time periods that represent distinct traffic conditions
(see section 5.3.1). For each time period, we obtain a distinct deployment plan from our
proposed LMSP Framework, allowing us to understand how the optimal infrastructure setup
changes based on time-specific demand patterns.

Furthermore, to demonstrate the superiority of the LMSP Framework, we conduct a com-
parative analysis (see section 5.3.5). We evaluate the added value of our approach against
traditional methods combined with stochastic programming. This comparison specifically
focuses on how the deep learning component of our framework provides more accurate
probability distributions of traffic demand. It aims to illustrate that the improved quality of
input data from the deep learning model enables the stochastic programming component
to make more informed decisions, ultimately resulting in more efficient and cost-effective
charging station deployment strategies.

5.3.1. Determining Critical Time Periods

Figure 5.7 shows predicting total traffic demand in Manhattan City on January 1, 2020.
Actually there is a significant fluctuation in traffic patterns throughout each day. Therefore,
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to further understand the optimal charging station deployment under the different traffic
patterns, we divide the day into seven segments based on possible traffic conditions and
select five specific time periods (points marked in red in figure 5.7) as five representative
time periods for detailed analysis:

• Time period 1: All the requested trips start at 4h. This low-traffic period may include
evening entertainment activities, some night shift workers, and urgent travel needs.

• Time period 2: All the requested trips start at 9h. This period has high commuter
traffic due to people going to work and school. Major routes include travel from res-
idential neighborhoods such as the Upper West Side and Harlem to business districts
like Midtown Manhattan and the Financial District [TLC Factbook, 2024].

• Time period 3: All the requested trips start at 15h. This non-peak period with shop-
ping, entertainment, and business activities.

• Time period 4: All the requested trips start at 18h. This time period also has high com-
muter traffic due to people returning home from work and school, along with evening
dining out. Key routes include trips from Midtown Manhattan to outer boroughs and
residential neighborhoods. Notable patterns include travel from the Financial District
to Brooklyn Heights and from Times Square to Queens [City of New York, 2024].

• Time period 5: All the requested trips start at 21h. This time period has moderate traf-
fic due to entertainment and social activities, with some late-night shopping. Popular
routes include travel between entertainment hubs like Times Square and residential
areas in the Upper West Side, as well as from Greenwich Village to the East Village
TLC Factbook [2024].

5.3.2. Assigning Predicted Traffic Demand to Specific Routes

After predicting the total traffic demand, we use the frequency statistic from historical data
(2015 to 2019) to determine the probability of specific traffic demand for each route, where
both the origin point and destination point are among the selected 25 points. This allows us
to assign total traffic demand to each specific route based on their respective probabilities.
The specific data can be obtained by sampling from similar historical data.

For example, when collecting the traffic demand data starting at 9 AM on January 1, 2020,
before inputting it into the stochastic programming model, we first obtain the predicted
total traffic demand for 9 AM, which is 2687. Then, we assign this total traffic demand to
each route based on their probability distribution using historical data. Specifically, we filter
out all trips with a starting time of 9 AM from January 1 of each year from 2015 to 2019.
After removing the year information and shuffling the data, we sample the trips the required
number of times to represent the requested trips for each specific route at 9 AM on January
1, 2020.

5.3.3. Traffic Demand Level Scenario Sampling

LSTM-MLP-MDN outputs a mixture of Gaussian distributions as traffic demand predic-
tions for each particular hour. Since the two-stage stochastic programming model requires
different demand levels with corresponding probabilities, we sample five different values
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Table 5.4.: Probabilistic Distribution of Predicted Traffic Demand Over Five Time Periods

(a) 4h Prediction Result

Demand Probability

116 0.874495
172 0.122543
175 0.002473
537 0.000367

1189 0.000122

(b) 9h Prediction Result

Demand Probability

2687 0.517256
2582 0.436146
1919 0.027194
2756 0.014608
2708 0.004795

(c) 15h Prediction Result

Demand Probability

2968 0.479632
3016 0.477480
2194 0.023855
3075 0.014317
2956 0.004716

(d) 18h Prediction Result

Demand Probability

3433 0.528412
3120 0.413350
2449 0.030587
3213 0.020709
3063 0.006943

(e) 21h Prediction Result

Demand Probability

3285 0.539734
3042 0.399869
2379 0.031845
3116 0.021401
3002 0.007152

from the mixture distribution to represent these varying demand levels. The specific sam-
ple process below can ensure that select rapidly 5 different level values with corresponding
probabilities:

1. Extract traffic demand values (mean value), probabilities (weight), and standard devi-
ation from the prediction results .

2. Calculate the range of integer values to evaluate demand. Here the range is denoted
as:

[Dmin − 3σmax, Dmax − 3σmax] (5.6)

where:

Dmin and Dmax represent the minimum mean value and the maximum mean value
of the mixed Gaussian distribution respectively. And σmax represents the minimum
standard deviation.

3. For each demand value, calculate the Gaussian distribution probability density func-
tion (PDF) for each integer in the range and accumulate these probabilities weighted
by probabilities in step 1.

4. Normalize the cumulative probabilities to ensure their sum is 1, converting the cumu-
lative probability values into a valid probability distribution.

5. Identify and store the top 5 most probable demand levels based on the cumulative
probabilities. Results are shown in Table 5.4.
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Table 5.5.: Model Parameters

Parameter Value Meaning

|S| 5 Number of Scenarios
|I| 25 Number of potential charging station locations

Tmax 60 Number of time intervals within an hour
fi 3.42 (150000/∆) Fixed cost of the station if built at location i
c 0.34 (15000/∆) Purchasing cost of each car
i 20 Income from each trip
C 5 Capacity of station i
W 77 (3372600/∆) Budget
ik 20 Income from the k-th trip
N 30 Highest number of vehicles that can be purchased
Φ 55 Maximum travel time of a fully charged car
τ 15 Required charging time after a car is returned to

the charging station

Table 5.6.: Gurobi Setup

Parameter Value Description

NodefileStart 0.5 Start writing node files to disk after 0.5GB of
memory is used.

MIPFocus 2 Focus on finding feasible solutions quickly.
Cuts 3 Aggressive cut generation, speeding up

solving and improving solution quality.
MIPGap 0.05 The solver will stop only when the gap

between the current solution and the
theoretically optimal solution is less than
5%.

Presolve 2 Aggressive resolve to simplify the model
and reduce solving time.

Heuristics 0.5 Helps in quickly finding good feasible
solutions.

Threads 32 Utilizes all logical processors.
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5.3.4. Optimal Charging Station Deployment Results

This section respectively inputs the predicted hourly traffic demand probability distribu-
tions of these five time periods into the optimization model of section 3.2 to obtain the
final optimal deployment plan. According to the 2022 Annual Report of the NYC Taxi &
Limousine Commission, considering millions of trips in Manhattan, the high-speed charg-
ing requirement, and the high-frequency usage, the proposed charging stations are DC fast
charger stations. Parameters such as the cost of a DC fast charger station (approximately
150000 dollars) and the purchasing cost of an EV (15000 dollars) are also provided in the
report [New York City Taxi & Limousine Commission, 2022]. Assuming that the service life
of all charging stations and purchased EVs is 5 years, cost parameters should be adjusted by
dividing the time factor ∆ (where ∆ = 365× 24× 5) to convert them into hourly coefficients.
These adjustments allow the use of hourly parameters in the optimization model, thereby
accurately reflecting the cost within the hourly demand scenario. The model parameters are
set in Table 5.5. Considering the complexity of the optimization model, which includes a
substantial number of constraints and variables, it is necessary to establish specific param-
eters to improve both the speed and quality of the solution. The specific parameters are
detailed in Table 5.6.

Our optimization process produced distinct deployment plans for each of the five time pe-
riods studied: 4h, 9h, 15h, 18h, and 21h. These plans reveal variations in the number and
location of charging stations, as well as the allocation of vehicles, reflecting the changing
demand patterns throughout the day. The detailed deployment plans for each time period
are provided in appendix A for reference. A comprehensive analysis of these deployment
plans, including temporal and spatial considerations, will be presented in section 5.4.

5.3.5. The Added Value of Deep Learning in Stochastic Programming for
Demand Prediction

Traditional Approaches to Comparison

To highlight the benefits of incorporating a deep learning component of our proposed LMSP
Framework, we compare its performance against two traditional methods combined with
stochastic programming. These two traditional methods rely on frequency statistics from
historical data, as detailed below.

Historical Frequency-based Approach (HFA): This method utilizes historical data from 2015
to 2019, categorizing hourly total traffic demand into 24 classes based on the hour of the day.
For each hourly class, we select the top 5 most frequent total traffic demand values. The
probability of each value is calculated as its frequency within the class. These probabilities
are then normalized to ensure they sum to one. This approach captures the most common
demand patterns but may not adequately represent the full range of demand variability.

Gaussian Distribution Approach (GDA): Similar to the Historical Frequency-based Ap-
proach, this approach first categorizes historical data into 24 hourly classes. For each class,
a Gaussian distribution is fitted to the traffic demand data. Five representative values are
extracted from this distribution at the 0.2, 0.35, 0.5, 0.65, and 0.8 quantiles. These values
are rounded to integers to represent discrete demand levels. Finally, the probabilities are
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normalized to sum to one. This method provides a more nuanced representation of de-
mand variability compared to the Historical Frequency-based Approach, as it considers the
underlying distribution of the data.

Key Performance Indicators (KPIs)

To quantitatively evaluate the strengths and weaknesses of these approaches, we employ the
following key performance indicators (KPIs). Note that the specific meaning of the symbols
has been defined in detail in Section 3.2.

Profit: This is the objective value of the optimization model in section 3.2.3. It reflects the
total profit obtained by the system through the optimal allocation of charging stations and
vehicles.

Return on Investment (ROI): This measures the efficiency of the system’s capital invest-
ment, defined as the ratio of the profit gained to the initial investment, which specifically
includes the sum of the charging station construction costs and the EV purchasing cost.

ROI =
Profit

∑i∈I fiyi + c ∑i∈I Li
(5.7)

Demand Satisfaction Ratio (DSR): This KPI can provide a comprehensive measure of how
well the car-sharing system meets demand across all scenarios. It is calculated as follows:

DSR = ∑
s∈S

ps
∑k∈Ks xk
|Ks| (5.8)

where,

• |Ks| is the total number of requested trips in scenario s.

Charging Station Utilization Rate (CSU): Firstly, the utilization rate for charging station i
at time t is defined as follows:

UtilizationRate t
i =

∑h∈H f h
a

C
, ∀a ∈ As

W(i, t), ∀s ∈ S (5.9)

where,

• As
W(i, t) represents the set of waiting arcs at station i during time t in scenario s.

• C is the capacity of each charging station, i.e., the number of charging slots available
at each charging station.

Then, the average Utilization rate over the planning period is calculated by taking the mean
of the utilization rates at the T time points within the planning period. In this research, the
planning period is 1 hour, with each time point representing one of the 60 minutes within
that hour.

AvgUtilization i =
1
T

T

∑
t=1

∑h∈H f h
a

C
, ∀a ∈ As

W(i, t), ∀s ∈ S (5.10)
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Figure 5.8.: Performance Comparison of Different Methods Over Time Using KPIs

Finally, weighted utilization for different scenarios (denoted as CSU) is:

CSU = ∑
s∈S

ps

(
1
T

T

∑
t=1

∑h∈H f h
a

C

)
, ∀a ∈ As

W(i, t), ∀s ∈ S (5.11)

This KPI can measure how well the charging infrastructure is being used.

Results Analysis: Traditional-based Stochastic Programming vs. LMSP Framework

Through analysis of Figure 5.8, we can evaluate the performance of the LMSP Framework
from the following aspects. The specific data is provided in Appendix D.

Profit and ROI: In all time periods, traditional methods HFA and GDA show higher profit
and ROI compared to the LMSP Framework. Further analysis reveals that this is mainly due
to the higher demand prediction levels of HFA and GDA. Given the short planning period
(1 hour) in this research, and the optimization model parameters setting where income
from all car-sharing services far exceeds costs, demand levels significantly impact profit and
ROI. However, the high demand predictions of HFA and GDA may lead to overly aggressive
resource allocation. While this results in higher short-term profits, it may be accompanied by
unnecessary resource waste, such as the over-allocation of charging stations and vehicles.

Demand Satisfaction Ratio (DSR): The LMSP framework consistently demonstrates sig-
nificantly higher DSR compared to the HFA and GDA methods in all time periods. This
indicates that the LMSP framework can better meet actual demand at various time points.
While HFA and GDA’s high demand predictions lead to greater resource deployment, they
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do not accurately match real demand, resulting in lower satisfaction rates for user requests.
The LMSP framework, through more precise prediction of demand probability distributions,
enables the model to allocate resources more closely aligned with actual demand, avoiding
over- or under-allocation. Consequently, the LMSP framework can better satisfy user needs,
which is particularly crucial in electric car-sharing systems where user satisfaction is directly
related to service quality.

Charging Station Utilization (CSU): The LMSP Framework shows notably superior perfor-
mance in CSU compared to other methods, indicating its ability to better utilize charging
station resources across different time periods. HFA and GDA, due to their higher demand
prediction levels, may lead to the over-allocation of charging station resources, which are
not actually fully utilized. The LMSP framework, through more accurate demand predic-
tion, allocates charging station resources more rationally. This ensures effective use across
all time periods, avoiding resource waste or idleness.

Conclusion:

Although HFA and GDA perform better in terms of profit and return on investment, this
is mainly due to short-term gains from their high-demand predictions. However, the LMSP
Framework, through precise demand prediction using deep learning, achieves significantly
better demand satisfaction rates and charging station utilization rates. Specifically, compared
to HFA, the LMSP Framework shows an average improvement of 26.32% in DSR and 36.17%
in CSU across five time periods. When compared to GDA, it demonstrates an average in-
crease of 14.55% in DSR and 12.06% in CSU. These substantial improvements in operational
metrics indicate its ability to allocate resources more rationally, avoid waste, and perform su-
periorly regarding user satisfaction and resource utilization efficiency. Therefore, the LMSP
Framework demonstrates clear advantages in addressing actual demand variations, improv-
ing system operational efficiency, and optimizing resource utilization. This suggests that
the application of deep learning in stochastic programming indeed brings significant added
value to the planning and operation of electric car-sharing systems.

5.4. Comprehensive Analysis for Charging Station Location
Optimization

5.4.1. Overall Demand Patterns

To effectively evaluate the charging station deployment plan for the electric car-sharing sys-
tem, it is essential to first develop a comprehensive understanding of Manhattan’s traffic
demand patterns. Our analysis focuses on two key dimensions: temporal demand patterns
and spatial demand patterns.

Temporal Demand Patterns

The variation in traffic demand across different time periods is substantial, reflecting the
diverse traffic patterns throughout the day. According to Figure 5.6, the total traffic demand
across five specific time periods in 25 selected locations, distinct temporal patterns emerge:
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1. Late Night (4h): The lowest traffic demand is observed at this time, reflecting minimal
travel activity during late night hours. This period likely serves to night shift workers,
late-night entertainment, and emergency travel needs.

2. Morning Peak (9h) and Evening Peak (18h): These periods show the highest traffic
demand, typical of rush hour patterns. The 9h peak corresponds to the morning
commute, with people traveling to work and schools. The 18h peak reflects the evening
rush, as commuters head home and participate in post-work activities.

3. Afternoon (15h) and Night (21h): These periods show moderately high demand,
though not as intense as the peak hours. The 15h demand likely represents a mix of
business travel, shopping, and leisure activities. The 21h demand might be attributed
to evening social activities, late-night shopping, and entertainment.

Contrary to common belief, another interesting finding is that the morning and evening peak
hours are not entirely symmetrical. It is often assumed that people commute from home to
work during the morning peak and return home during the evening peak. However, our
data shows an imbalance between these two periods. This difference could be due to factors
like staggered work schedules, varying return trip patterns, or evening activities unrelated
to work. This asymmetry highlights the need to adjust deployment strategies based on the
unique timing patterns in each area.

5.4.2. Spatial Demand Patterns

The traffic demand in Manhattan exhibits significant spatial variability, reflecting the city’s
diverse and complex urban landscape. To gain insights into these patterns, we analyze his-
torical data, aggregating trips originating from each region at consistent time points (specif-
ically, January 1st) across multiple years. Figure 5.9 illustrates the resulting average number
of trips, revealing distinct regional demand patterns. The data here is also used later in the
figures, from Figure 5.10 to Figure 5.14 presented in the form of heat maps. For detailed
data, refer to appendix B.

Figure 5.9.: Trips by starting region and hour
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High-Demand Regions

Based on historical traffic data, several regions exhibit significantly higher traffic demand,
especially during peak hours on weekdays, such as 9h and 18h. These regions are typically
concentrated in the core residential and commercial areas of Manhattan. The following are
the two areas with the highest demand.

Upper East Side South (Region 237): The Upper East Side South is a major high-income
residential area, with traffic demand peaking during the morning and evening rush hours
on weekdays. Historical data indicates that this region experiences significant commuting
demand during these times. The high population density and many residents commut-
ing to commercial areas in Manhattan contribute to these peak periods. Given the area’s
dense residential nature, prioritizing the construction of charging stations in this region is
essential.

Midtown Center (Region 161): Midtown Center is Manhattan’s principal commercial dis-
trict, home to numerous office buildings and commercial establishments. As a result, traffic
demand in this area peaks during weekday mornings (around 9 h) and evenings (around
18h). The demand pattern in this commercial region reflects the high volume of commuters
working in the area. A well-distributed network of charging stations in Midtown Center is
essential for supporting the heavy use of electric vehicles during these peak hours. This de-
mand pattern suggests that priority should be given to expanding charging infrastructure in
commercial districts to accommodate the needs of commuters and business-related travel.

Low-Demand Regions:

In contrast to high-demand regions, several areas in Manhattan show relatively low traffic
demand. These regions are often associated with recreational or tourist activities, or they
may be residential areas with specific characteristics. The following are examples of typical
low-demand regions.

Randalls Island (Region 194): Randalls Island is primarily a recreational and sports area,
with traffic demand concentrated around events and activities. Figure 5.9 shows minimal
trips starting from this area across all time periods. Therefore, the allocation of charging
station resources in this context requires careful consideration.

Two Bridges/Seward Park (Region 232): Although Two Bridges/Seward Park is a resi-
dential area, its traffic demand is significantly lower compared to high-demand residential
regions like the Upper East Side. This may be attributed to a smaller population and fewer
direct connections to major transit hubs or commercial centers. Given the lower commuting
demand, extensive charging infrastructure may not be necessary in this area.

Relationship Between Demand and Region Type

When considered combined with table A.1, categorizes regions by their primary function
(e.g., residential, commercial, mixed-use), we can gain deeper insights into the relationship
between region type and travel behavior.

Residential Areas: Regions like Upper East Side South (Region 237), Upper East Side North
(Region 236), and Upper West Side South (Region 239) display strong morning and evening
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peaks, consistent with typical commuting patterns. This is likely due to the high population
density in these areas and the tendency for residents to commute to commercial districts
for work. However, not all residential areas follow this trend, as seen in the lower demand
in Washington Heights North (Region 243) and Washington Heights South (Region 244).
This discrepancy may be attributed to factors such as lower population density, different
socioeconomic characteristics, or better access to public transportation options.

Commercial Areas: Regions like Midtown Center (Region 161), Midtown North (Region
163), and the Financial District South (Region 88) show high demand during business hours,
peaking in the afternoon and early evening. This pattern reflects the influx of workers and
business-related travel, as well as potential lunchtime activities. The concentration of office
buildings, businesses, and services in these areas drives the high daytime demand. These
areas might benefit from a higher density of charging stations to accommodate the daytime
influx of electric vehicles.

Mixed-Use Areas: In areas such as Clinton East (Region 48) and Murray Hill (Region 170),
demand remains consistently high throughout the day. This steady demand is likely due to
a balanced mix of residential and commercial activities, creating a more evenly distributed
travel pattern throughout the day. These areas might require a more uniform distribution of
charging stations to cater to both residential and commercial needs.

Entertainment Areas: The East Village (Region 79), known for its nightlife, sees increas-
ing demand for the evening and night. This pattern reflects the area’s concentration of
restaurants, bars, and entertainment venues that attract visitors later in the day. In contrast,
Randalls Island (Region 194), categorized as an entertainment area focused on sports, ex-
hibits very low demand across all time periods. This could be due to its isolated location and
event-driven nature, suggesting that charging infrastructure here might only be necessary
during specific events.

Tourism Areas: Central Park (Region 43) has substantial demand, particularly in the after-
noon, likely due to its popularity among both tourists and locals for recreational activities.
Battery Park (Region 12), while also a tourist area, experiences comparatively lower de-
mand. This difference might be attributed to Central Park’s larger size, central location, and
broader appeal for various activities throughout the day.

Educational Areas: Greenwich Village North (Region 113), which houses several educational
institutions, shows demand peaking in the morning and remaining high throughout the
day. This pattern likely reflects the daily routines of students and staff, including morning
arrivals, daytime activities, and evening departures or events.

Governmental Areas: UN/Turtle Bay South (Region 234) experiences peak demand during
standard business hours, particularly in the afternoon and early evening. This pattern re-
flects the concentration of governmental and diplomatic activity in the area, with demand
driven by employees, visitors, and related business traffic.

5.4.3. Evaluation of Deployment Plan

We obtained optimal deployment plans based on five specific time periods from January
1, 2020. These plans identify the optimal locations for charging stations and the strategic
allocation of vehicle resources. In this section, we will individually analyze the deployment
strategies for each time period, concluding with an overall evaluation.
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Time Period 1 (4h) (see Figure 5.10)

The deployment plan for the 4h time period reflects the unique characteristics of late-night
traffic patterns in Manhattan. During this period, overall traffic demand is at its lowest, yet
the plan demonstrates a strategic approach to resource allocation.

At 4h, charging stations are spread across a wide area, with 19 out of 25 possible locations
having stations installed. Even though overall demand is low at this time, this wide coverage
seems aimed at keeping the system accessible. Important high-demand areas, like Midtown
Center (Region 161) and Upper East Side South (Region 237), have charging stations, which
matches the steady demand seen in these areas throughout the day.

The distribution of vehicles is also notable. A total of 29 vehicles are placed strategically
across the city, with the largest numbers assigned to certain key areas:

• Clinton East (Region 48): Clinton East (Region 48) receives the highest allocation of
4 vehicles, which fits with our earlier observation that mixed-use areas tend to have
steady demand throughout the day. This large allocation likely anticipates both late-
night returns and early-morning departures in this diverse urban area.

• Penn Station/Madison Sq West (Region 186): It has been assigned 5 vehicles, the high-
est allocation observed. This substantial commitment reflects the importance of major
transportation hubs, even during off-peak hours, serving late-night arrivals and early-
morning departures.

• Midtown Center (Region 161): It received 4 vehicles, recognizing its role as Manhat-
tan’s main commercial district. Despite the generally low commercial activity at this
hour, this allocation reflects foresight in preparing for early-morning business oper-
ations and accommodating night-shift workers, as highlighted in our analysis of de-
mand patterns.

These high-vehicle allocations in key areas contrast with the more moderate distributions
elsewhere. For instance, East Village (Region 79) and Upper East Side South (Region 237)
each receive 2 vehicles, reflecting their roles as residential and entertainment hubs with
potential late-night or early-morning demand.

Interestingly, several stations, such as Central Harlem (Region 41), Central Park (Region 43),
and East Harlem North (Region 74), have charging stations but no vehicles allocated. This
strategy aligns with our observation that these areas may have low outbound demand at 4h
but could serve as destinations for incoming trips. The placement of charging infrastructure
without initial vehicle allocation in these areas demonstrates foresight in system design,
preparing for potential incoming traffic and early morning demand.
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Figure 5.10.: Spatial Distribution at 4h
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Time Period 2 (9h) (see Figure 5.11)

The deployment plan for the 9h time period captures the morning peak in Manhattan’s
traffic. This time of day is marked by heavy commuter traffic as people head to work and
school. Compared to the 4h period, there is a noticeable shift in how resources are allocated,
showing how the system adapts to changing demand.

At 9h, the distribution of charging stations shows a slight reduction in coverage compared
to 4h, with 17 out of 25 possible locations having stations, down from 19 at 4h. This more
focused approach suggests an optimization strategy that concentrates resources in areas
with the highest morning demand, like the Upper East Side South (Region 237) and Penn
Station/Madison Sq West (Region 186), while still keeping good access across the city.

Vehicle allocation at this time remains at a total of 30 vehicles but with a notably different
distribution reflecting the complex morning traffic patterns. For example, Upper East Side
North (Region 236), Upper West Side South (Region 239), Lincoln Square East (Region 142),
and Midtown North (Region 163): The number of vehicles allocated to these regions has
increased compared to 4h. This larger allocation reflects the high volume of commuters
leaving these mainly residential areas during the morning peak.

Several stations, like Clinton West (Region 50) and Lenox Hill East (Region 140), have charg-
ing stations but no vehicles allocated, similar to what was seen in some areas during the 4h
period. This strategy likely reflects these areas’ roles as destination points during the morn-
ing rush, where charging is needed for incoming vehicles but there’s no need for outbound
capacity. Additionally, compared to the 4h deployment plan, regions like Central Harlem
(Region 41), East Harlem North (Region 74), and Financial District South (Region 88) have
opted not to build charging stations. This could be due to the system prioritizing areas with
higher demand, given the limited resources for deploying charging stations.

The 9h deployment plan effectively addresses the needs identified in our temporal demand
analysis for the morning peak. It shows a clear shift towards supporting commuter patterns,
with increased resources in residential areas for outbound traffic and in commercial areas
for inbound traffic.
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Figure 5.11.: Spatial Distribution at 9h
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Time Period 3 (15h) (see Figure 5.12)

The deployment plan for the 15h time period reflects Manhattan’s mid-afternoon traffic
patterns, which are typically a mix of business travel, shopping, and leisure activities.

The distribution of charging stations at 15h remains the same as at 9h, with 17 out of 25
potential locations having stations. Similarly, the total vehicle allocation also stays at 30,
though there are some changes in how the vehicles are distributed across locations.

• Penn Station/Madison Sq West (Region 186): Remains a critical hub with 4 vehicles al-
located, a slight decrease from 5 in the morning peak. This adjustment likely reflects a
slightly reduced but still significant demand at this major transportation center during
mid-afternoon hours.

• Midtown Center (Region 161), Clinton East (Region 48), Upper East Side North (Re-
gion 236), and Upper East Side South (Region 237): Each allocated 3 vehicles. This
consistent allocation across these diverse areas (commercial, mixed-use, and residen-
tial) suggests a balanced demand during this time of day, possibly due to a mix of
business activities, shopping, and leisure travel.

• Central Park (Region 43): Now has no vehicles allocated, down from 1 at 9h. This
could indicate a shift in recreational patterns, with fewer people starting their park
activities in the mid-afternoon.

• Clinton West (Region 50): Now has 1 vehicle allocated, whereas it had none at 9h.
This suggests an increase in mid-day demand in this area, possibly due to business or
leisure activities.

Interestingly, several stations, including Greenwich Village North (Region 113), and Two
Bridges/Seward Park (Region 232), maintain their morning allocations of 1 vehicle each,
indicating consistent demand throughout the day in these areas.
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Figure 5.12.: Spatial Distribution at 15h
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Time Period 4 (18h) (see Figure 5.13)

The deployment plan for the 18h time period reflects the evening peak in Manhattan’s traffic
patterns. This time is characterized by heavy commuter traffic as people return from work
and head out for evening activities, resulting in another notable shift in resource allocation
compared to the mid-afternoon period (15h).

Charging station distribution at 18h is 18 out of 25 potential locations having stations built.
And vehicle allocation at this time remains consistent with the 15h period, but with notable
adjustments to address the evening rush hour patterns:

• Midtown Center (Region 161): Allocated 4 vehicles, an increase from 3 at 15h. This
boost likely reflects the high volume of commuters leaving the city’s principal com-
mercial district during the 18h rush hour.

• Clinton East (Region 48) and East Village (Region 79): Both allocated 3 vehicles each.
For Clinton East, this maintains the 15h allocation, while for East Village, this repre-
sents an increase. This allocation likely addresses the mix of residents returning home
and the influx of people for evening entertainment in these vibrant areas.

• Penn Station/Madison Sq West (Region 186): Decreased from 4 to 2 vehicles, possibly
indicating a shift from incoming travelers at 15h to outbound commuters at 18h.

The 18h deployment plan effectively addresses the needs identified in our temporal demand
analysis for the evening peak. It shows a clear shift towards supporting reverse commute
patterns, with increased resources in commercial areas for outbound traffic and adjustments
in residential and entertainment areas to accommodate returning residents and evening
activities.
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Figure 5.13.: Spatial Distribution at 18h
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Time Period 5 (21h) (see Figure 5.14)

The deployment plan for the 21h time period reflects the late evening characteristics of
Manhattan’s traffic patterns. This period is typically characterized by a mix of late-night
entertainment, dining activities, and the final wave of returning commuters.

Charging station distribution at 21h remains consistent with the 18h period, with 18 out
of 25 potential locations having stations built. This consistency in the number of stations
suggests that the spatial coverage established for the evening peak (18h) remains suitable
for addressing late-night mobility needs. However, there are some notable changes in the
specific locations of these stations, indicating a fine-tuning of the system to meet shifting
demand patterns. Vehicle allocation at 21h maintains a total of 30 vehicles but with notable
adjustments to address the late evening patterns:

• Midtown Center (Region 161): Maintains the highest allocation of 4 vehicles, un-
changed from 18h. This consistency indicates the area’s sustained importance as a
hub for late-night activities and potentially late-working professionals.

• Penn Station/Madison Sq West (Region 186): Increased to 3 vehicles from 2 at 18h,
possibly reflecting an uptick in late-night arrivals and departures at this major trans-
portation hub.

• East Village (Region 79): Decreased from 3 to 1 vehicle, which is surprising given its
reputation for nightlife. This might suggest a shift in late-night travel patterns or a
focus on incoming rather than outgoing trips in this area.

• Central Harlem (Region 41): no longer has a charging station built, a change from the
18h period.

The 21h deployment plan strategically addresses the demands of the late evening hours, bal-
ancing the needs for entertainment, dining, and late-night commuting. It reflects a thought-
ful approach to resource allocation, adjusting support for nightlife areas while ensuring
adequate coverage in residential zones for individuals returning home late.
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Figure 5.14.: Spatial Distribution at 21h
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Overall Evaluation

As shown in table 5.7, we assess the effectiveness of the charging station deployment plan
by analyzing key metrics across different time periods.

Table 5.7.: Summary of Station Metrics at Different Times

Time (h) Station Number Cars Number Profit ROI DSR CSU

4 19 29 1826.29 24.40 0.7487 0.1317
9 17 30 6688.99 97.88 0.1279 0.0240

15 17 30 6849.31 100.22 0.1153 0.0226
18 18 30 7070.68 98.53 0.1086 0.0233
21 18 30 6976.14 97.21 0.1110 0.0212

Economic performance across time periods (Profit and ROI)

The economic performance of the deployment plan varies significantly across different time
periods, as evidenced by the profit and Return on Investment (ROI) metrics.

At 4h, the deployment plan shows the lowest profit (1826.29) and ROI (24.40). During this
period, the demand level is relatively low, and the income of car-sharing service significantly
exceeds the cost, therefore, the car-sharing system tends to deploy more charging stations
and vehicle resources to serve more potential requested trips. Consequently, the value of
profit and ROI becomes more sensitive to traffic demand levels. In contrast, the deployment
plan at peak hours, particularly at 18h (evening peak), shows the highest profit (7070.68) and
a high ROI (98.53). This demonstrates that the system’s resource allocation is well-aligned
with the high demand during evening rush hours, maximizing the income from car-sharing
services relative to the costs. It is important to highlight that, although the 18h period
generates the highest profit, the 15h period exhibits the highest return on investment (ROI)
at 100.22. This indicates that the afternoon timeframe may represent an optimal balance
between demand and resource allocation, allowing the system to achieve peak efficiency in
terms of ROI.

Customer satisfaction and infrastructure utilization (DSR and CSU)

The DSR and CSU offer valuable insights into the system’s service efficiency and resource
utilization across various time periods. At 4h, both DSR (0.7487) and CSU (0.1317) reach their
peak values, significantly higher than at other time periods. This high efficiency during low-
demand hours is a direct result of the relationship between resource allocation and demand
level. Despite the low demand, the system maintains a high number of charging stations
(19) and vehicles (29), nearly equivalent to peak hour allocations. In contrast, during other
time periods (9h, 15h, 18h, 21h), we observe significantly lower DSR (ranging from 0.1086 to
0.1279) and CSU (ranging from 0.0212 to 0.0240) values. This drop in both metrics during
higher demand periods suggests that: The system struggles to meet the increased demand
despite maintaining high resource levels.

5.4.4. Deployment Plan Recommendations

Table 5.8 presents our recommendations for the deployment plan of electric charging sta-
tions. For each region, we provide construction priority recommendations along with the
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corresponding vehicle resources. Specifically, for the five-time periods (4h, 9h, 15h, 18h, and
21h), regions where no charging station is proposed are marked as ”Not Recommended.”

In cases where charging stations are required only during specific time periods, we advise
”Evaluate with Caution.” For these locations, our recommendations are as follows:

• Conduct a more detailed demand analysis.

• Consider small-scale charging stations.

• Treat these areas as potential expansion sites for future system growth.

For locations requiring charging stations across all time periods, we assign a ”High Priority”
recommendation for construction. Additionally, we provide recommendations for the corre-
sponding vehicle assignment levels at different times of the day to ensure optimal resource
allocation and efficiency.
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Table 5.8.: Deployment Plan Recommendations Table

Latitude Longitude Station Region Construction Priority Vehicle Resource Recommendations

40.70454 -74.0143 12 Battery Park Not Recommended

40.80759 -73.9550 41 Central Harlem Evaluate with Caution

40.78152 -73.9627 43 Central Park Evaluate with Caution

40.76475 -73.9880 48 Clinton East High Priority 4 vehicles at early morning (4h), 2-3 vehicles
rest of day

40.77123 -73.9936 50 Clinton West Evaluate with Caution

40.74778 -74.0004 68 East Chelsea High Priority 1 vehicle base level, 2 vehicles at 15h

40.80182 -73.9393 74 East Harlem North Evaluate with Caution

40.72605 -73.9835 79 East Village High Priority 2 vehicles at 4h/9h, 3 vehicles at 18h, 1 vehi-
cle other times

40.70347 -74.0116 88 Financial District South Evaluate with Caution

40.73468 -73.9946 113 Greenwich Village North High Priority Consistent 1 vehicle across all time periods

40.76118 -73.9579 140 Lenox Hill East Evaluate with Caution

40.77384 -73.9821 142 Lincoln Square East High Priority 1 vehicle at 4h, 2 vehicles rest of day

40.75854 -73.9772 161 Midtown Center High Priority 4 vehicles at 4h/18h/21h, 3 vehicles at
9h/15h

40.76630 -73.9819 163 Midtown North High Priority 1 vehicle off-peak (4h/15h), 2 vehicles peak
hours (9h/18h/21h)

40.74825 -73.9763 170 Murray Hill High Priority 2 vehicles at 4h, 1 vehicle rest of day

40.74910 -73.9920 186 Penn Station/Madison Sq West High Priority 5 vehicles at 4h/9h, 4 vehicles at 15h, 2-3 ve-
hicles evening

40.78419 -73.9266 194 Randalls Island Not Recommended

40.71978 -74.0068 231 TriBeCa/Civic Center Evaluate with Caution

40.71524 -73.9842 232 Two Bridges/Seward Park Evaluate with Caution

40.73792 -73.9922 234 UN/Turtle Bay South Evaluate with Caution

40.78017 -73.9551 236 Upper East Side North High Priority 2 vehicles at 4h, 3 vehicles rest of day

40.76413 -73.9688 237 Upper East Side South High Priority 2 vehicles base level, 3 vehicles at 15h, 1 ve-
hicle at 18h

40.78184 -73.9793 239 Upper West Side South High Priority 3 vehicles at 9h, 2 vehicles midday, 1 vehicle
early/late

40.85650 -73.9328 243 Washington Heights North Not Recommended

40.83697 -73.9401 244 Washington Heights South Not Recommended
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6. Discussion

This chapter provides a comprehensive discussion of the LMSP Framework’s performance
and its broader implications. The discussion is organized into three main sections: First, we
analyze the effectiveness of the framework by conducting a detailed evaluation of the results
and deployment strategies (see section 6.1). Second, we critically examine the assumptions
and limitations that underlie our LMSP Framework (see section 6.2). Finally, we assess the
framework’s generalizability across different urban contexts (see section 6.3). Through this
systematic exploration, we aim to offer a balanced perspective on both the framework’s
contributions and potential areas for future improvement.

6.1. Discussion of Results

6.1.1. Effectiveness of the LMSP Framework

As demonstrated in the comparative analysis in section 5.3.5, the integration of deep learning
and stochastic programming in our LMSP Framework significantly enhances the optimiza-
tion of charging station locations. The innovative incorporation of deep learning methods
allows for more precise demand prediction forecasts, which is crucial for addressing the
inherent uncertainties in traffic patterns.

Our analysis shows that while the LMSP Framework may not yield the highest short-term
profits compared to some traditional methods, it significantly outperforms these methods
in terms of customer satisfaction, as measured by the Demand Satisfaction Ratio (DSR), and
infrastructure efficiency, as indicated by Charging Station Utilization (CSU). Specifically, the
LMSP Framework achieves an average DSR improvement of 26.32% and CSU improvement
of 36.17% compared to the Historical Frequency-based Approach (HFA) across five time
periods. Similarly, when compared to the Gaussian Distribution Approach (GDA), the LMSP
Framework provides a 14.55% increase in DSR and a 12.06% increase in CSU.

These metrics indicate that our approach is better aligned with the actual needs of the sys-
tem, particularly in environments characterized by high uncertainty and fluctuating de-
mand patterns. While traditional methods may be more appropriate for scenarios focused
on short-term profitability, the LMSP Framework provides a more balanced and sustainable
approach. Its ability to adapt to the complex dynamics of urban traffic facilitates more ef-
fective resource allocation, resulting in higher levels of customer satisfaction and improved
long-term operational efficiency for car-sharing systems.
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6.1.2. Deployment Strategy Analysis

Section 5.4 presents optimal deployment plans for Manhattan from five specific time periods
on January 1, 2020. These representative traffic patterns, to some extent, capture the daily
cyclical nature of Manhattan’s traffic conditions. However, it’s important to acknowledge
the limitations of this approach. The study does not account for operational activities, and
the strategies provided are not real-time but rather static deployments under various specific
time periods.

In our overall evaluation of these deployment plans across the five time periods (Table 5.7),
an interesting observation emerges. Despite significant variations in demand levels, the
system tends to allocate charging resources close to the maximum limit even during low
demand hours, such as 4h, similar to high demand periods. This tendency can be attributed
to the model’s parameter settings, where the income per service significantly exceeds the
cost parameters.

This finding highlights a crucial aspect of model design in transportation systems: the bal-
ance between resource allocation and demand levels. While ensuring sufficient resources
during peak hours is essential, the over-allocation during off-peak hours suggests a poten-
tial for optimization. It indicates that the model might be overly aggressive in resource
deployment, possibly leading to inefficiencies in low-demand periods.

This observation highlights the importance of fine-tuning model parameters to more accu-
rately reflect real-world economic considerations. In practical applications, the cost-benefit
ratio of deploying charging infrastructure should be carefully calibrated to avoid over-
investment during low-utilization periods. This could involve introducing more refined cost
structures or implementing dynamic pricing strategies that better align with the fluctuating
demand levels throughout the day.

Additionally, this result highlights the need for more advanced modeling of operational
costs and benefits. Future iterations of the model could integrate more detailed operational
factors, such as the costs associated with maintaining underutilized stations and the poten-
tial advantages of having reserve capacity to accommodate unexpected demand surges.

In conclusion, while our LMSP Framework demonstrates significant advantages in optimiz-
ing charging station locations under demand uncertainty, the deployment strategy analysis
reveals areas for further refinement. By addressing the issue of resource allocation across
varying demand levels, future research can enhance the model’s practical applicability and
economic efficiency in real-world urban transportation systems.

6.2. Discussion of Assumptions and Limitations

6.2.1. Assumptions

While our proposed LMSP Framework provides valuable insights into optimizing charging
station locations for electric car-sharing systems, it is important to acknowledge and discuss
the assumptions made in our model and their potential limitations. This section examines
these assumptions, their implications, and potential areas for future research.
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Exclusion of Operational Activities

To simplify the modeling process of electric vehicle (EV) operations in a one-way car-sharing
system, we made the assumption to exclude operational activities such as vehicle relocation
and charging station scheduling costs. Instead, we employed a two-stage stochastic pro-
gramming approach, which allowed us to focus on the strategic deployment of charging
stations.

This assumption provided certain advantages, such as simplifying the model and enabling
a concentrated focus on key infrastructure decisions, while also reducing computational
complexity, thus making it feasible to solve larger-scale problems. However, this assump-
tion also introduced some limitations. By excluding operational activities, the model may
lack realism in representing the day-to-day operations of the system, which could result in
suboptimal solutions regarding overall system efficiency. Additionally, the model’s inability
to capture short-term operational adjustments may hinder its ability to influence long-term
strategic decisions effectively. Future research could address these limitations by incorporat-
ing operational activities using multi-stage stochastic programming or simulation studies,
providing a more comprehensive view of system performance and leading to more robust
optimization strategies.

Vehicle and Charging Station Uniformity

Our model assumes all vehicles are of the same type and charging stations have a fixed max-
imum capacity. While this assumption helps reduce model complexity, it doesn’t reflect the
diversity present in real-world scenarios. This simplification fails to capture the heterogene-
ity of EV fleets in real-world scenarios, ignores the potential benefits of dynamic capacity
management at charging stations, and may lead to possible overestimation or underesti-
mation of system capacity and efficiency. Future research could incorporate heterogeneous
vehicle fleets and flexible charging station capacities to enhance model realism and capture
potential operational efficiencies.

Simplified Origin-Destination Demand

In our model, we assume that all trips start and end at charging stations, ignoring the
”first mile” and ”last mile” of user journeys. In reality, users typically walk to and from
charging stations at the beginning and end of their trips. This simplification potentially
overestimates system convenience for users, may lead to suboptimal station placements in
terms of user accessibility, and provides an inaccurate representation of total trip times and
user experience. Future work could incorporate these walking distances into the demand
modeling process, providing a more accurate representation of user behavior and system
efficiency.

Simplified User Behavior Assumptions

Our model assumes users always choose the shortest driving path and park at charging sta-
tions. This simplification, while useful for modeling purposes, ignores the diversity of real
user behaviors. It may lead to inaccurate representation of actual user route choices, ignore
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the possibility of parking at non-charging locations, and potentially overestimate charg-
ing station utilization. Incorporating more diverse user behavior models, possibly through
agent-based simulations, could enhance the realism of the system model and provide more
accurate predictions of system performance.

Simplified Traffic Conditions

The model doesn’t account for geographical factors or road conditions (such as congestion
levels or road quality) that might affect traffic demand. It also doesn’t consider potential
queuing issues when returning vehicles. This simplification may result in potentially unre-
alistic travel time estimates, possible suboptimal station placements in areas with frequent
congestion, underestimation of waiting times during peak hours, and an inability to capture
the impact of road network characteristics on system performance. Future research could
integrate more detailed traffic models and consider queuing theory to address these limita-
tions. This could lead to more realistic travel time estimates and better-informed decisions
on charging station placements.

6.2.2. Limitations

Although this research provides valuable insights into the optimization of charging station
locations for electric car-sharing systems under demand uncertainty, it is still subject to
certain limitations.

Firstly, this research relies heavily on historical data for predicting traffic demand. While
this data provides a basis for forecasting it, it inherently lacks real-time updates and may
not reflect sudden changes in traffic patterns due to unforeseen events or shifts in user
behavior. Furthermore, the model does not incorporate geographic variables such as local
geography, road conditions, or population density variations, all of which can significantly
influence traffic flows and car-sharing demand. The exclusion of these factors can lead to
inaccuracies in demand prediction.

Additionally, the research did not incorporate potential changes in regulatory policies or
economic fluctuations that could significantly impact the demand for car-sharing services.
Such external factors are critical in real-world applications and could affect the practical
utility of the findings.

The use of deep learning models, while innovative, brings its own set of limitations. These
models require large datasets to train effectively and are often seen as ”black boxes,” offering
little in terms of the interpretability of the factors driving the predictions. The model’s
reliance solely on historical data without considering real-time data feeds or integrating
multidisciplinary factors such as urban planning and socio-economic data may reduce the
robustness of the predictive outcomes.

The stochastic programming model used in this research sampled only five scenarios to rep-
resent the variability in traffic demand, which may not sufficiently capture the full spectrum
of potential traffic conditions. This limited sampling could undermine the model’s ability to
generalize and handle real-world uncertainties effectively. As such, the outcomes might not
reflect the true variability and complexity of demand patterns that would be encountered in
practice.
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Furthermore, the probabilistic models used for stochastic programming are based on sim-
plifying assumptions necessary for computational feasibility. These assumptions might not
fully capture the complex inter-dependencies and variability in urban traffic patterns, po-
tentially limiting the model’s accuracy and real-world applicability. This can result in rec-
ommendations that are theoretically optimal but may not be as effective when implemented
in varying real-world conditions.

Lastly, while the predictive deep learning model effectively forecasts hourly traffic demand,
this level of granularity may not fully align with the requirements of long-term, strategic
planning. The model provides several optimal deployment plans based on traffic demand
at five specific hours in one day, and although our analysis offers conclusions that consider
daily traffic fluctuations, our deployment recommendations are insufficient in reflecting sea-
sonal shifts, holiday periods, or other long-term patterns that influence transportation behav-
iors over seasons or years. This limitation underscores the challenge of applying short-term
predictive insights to long-term infrastructure decisions, which may lead to sub-optimal
strategic outcomes.

6.3. Generalisability of the model and results

The generalisability of our LMSP Framework is an important consideration for its potential
application in various urban environments. This section discusses the model’s adaptability
to different contexts and the factors that may influence its effectiveness in other settings.

6.3.1. Applicability to Urban Areas

Our LMSP Framework, based on research conducted in Manhattan, demonstrates excellent
performance in high-density urban environments. It is particularly well-suited for cities
with similar characteristics, such as high traffic demand and significant daily fluctuations
in travel patterns. The model’s effectiveness in capturing and responding to these dynamic
urban conditions makes it a valuable tool for cities facing similar transportation challenges.
However, its applicability to low-density areas or smaller cities requires further investigation.
The unique traffic patterns, infrastructure, and user behaviors in less densely populated
areas may necessitate adjustments to the model’s parameters and assumptions.

6.3.2. Scalability to Other Cities

The flexibility of our model, particularly the deep learning component (LSTM-MLP-MDN),
allows for potential application across multiple datasets for traffic demand prediction in
different cities. This adaptability is a significant strength of the framework. However, it’s
important to note that the model may require retraining and fine-tuning to account for local
factors specific to each city. These factors could include different regulations, geographical
challenges, or unique user behaviors that influence traffic patterns and car-sharing system
usage. The process of adapting the model to new urban environments would involve not
only retraining with local data but also potentially adjusting the model architecture to cap-
ture city-specific features effectively.
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6.3.3. Data Availability and Model Training

Our model relies heavily on historical traffic data, with the NYC taxi dataset serving as an
excellent training set due to its comprehensiveness. The effectiveness of the model in new
locations is contingent on the availability of similar high-quality, comprehensive datasets.
In areas lacking such extensive data, the predictive accuracy of the model may be compro-
mised. This limitation underscores the importance of data infrastructure and collection in
cities looking to implement such advanced transportation planning tools. Future research
could explore methods to adapt the model to work with less comprehensive datasets or to
incorporate alternative data sources that might be more readily available in different urban
contexts.

6.3.4. Limitations of Generalisation to Short-term or Real-time
Adjustments

While our model excels in strategic planning, it currently does not account for short-term
operational adjustments such as real-time vehicle repositioning or changes in traffic patterns
due to unpredictable events like concerts or sports events. This limitation may affect its
applicability in scenarios where rapid, dynamic responses to changing conditions are cru-
cial. Extending the model to incorporate real-time adjustments could significantly enhance
its applicability across various domains and improve its responsiveness to the day-to-day
fluctuations in urban transportation needs.

In conclusion, while our LMSP Framework shows promising potential for generalization,
particularly in high-density urban environments, its application in different contexts re-
quires careful consideration of local factors, data availability, and the need for short-term
operational flexibility. Future research directions could focus on enhancing the model’s
adaptability to diverse urban settings and incorporating real-time adjustment capabilities
to broaden its applicability and effectiveness across a wider range of urban transportation
scenarios.
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7. Conclusion

7.1. Answers to the Research Questions

This section will address the questions presented in section 1.3.

7.1.1. Main Research Question

How can a novel deep learning-based stochastic programming framework (LMSP Frame-
work) be developed and applied to optimize the Charging Station Location Problem (CSLP)
in a one-way electric car-sharing system under conditions of traffic demand uncertainty?

Answer: This research successfully develops and implements a novel approach that com-
bines deep learning with stochastic programming (LMSP Framework) to optimize the Charg-
ing Station Location Problem (CSLP) in one-way electric car-sharing systems under demand
uncertainty. The key components and steps of this framework are as follows:

• Development of Deep Learning Models: Advanced deep learning models, including
Long Short-Term Memory (LSTM), Multilayer Perceptron (MLP), and Mixture Density
Networks (MDN), were used to predict traffic demand patterns more accurately.

• Integration with Stochastic Programming: These traffic demand predictions were inte-
grated into a two-stage stochastic programming model, allowing for strategic decisions
about the location and capacity of charging stations under different demand scenarios.

• Optimization Under Uncertainty: By considering demand uncertainty, the framework
optimized the locations of charging stations and the allocation of vehicles. This method
made the planning process more adaptable and robust in the face of unpredictable
traffic.

• Case Study Application: The framework was tested with a detailed case study in
Manhattan, demonstrating how it could be applied effectively in a real-world, high-
density urban environment.

• Performance Evaluation: The framework was evaluated based on various criteria, such
as profitability, return on investment, demand satisfaction ratio, and charging station
utilization. These metrics showed that the framework was able to strike a good balance
between economic efficiency and operational performance.

• Comparative Analysis: When compared to traditional approaches, the LMSP Frame-
work showed better performance, particularly in improving customer satisfaction and
making more efficient use of infrastructure, especially in areas where demand is highly
variable and uncertain.
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7.1.2. Sub Research Questions

1. How does the integration of stochastic programming help in accommodating demand
uncertainty when optimizing the location and initial number of cars at charging stations?

Answer: The integration of stochastic programming in our LMSP Framework plays a cru-
cial role in accommodating demand uncertainty for charging station optimization. By em-
ploying a two-stage stochastic programming model, our approach effectively handles the
variability in traffic demand patterns. The first stage makes strategic decisions on charging
station locations and initial vehicle allocations, while the second stage addresses operational
decisions based on realized demand scenarios. This structure allows the model to consider
multiple possible demand outcomes, each with associated probabilities when making infras-
tructure decisions. Consequently, the resulting charging station network is more robust and
adaptable to fluctuating demand patterns. This approach significantly improves upon de-
terministic models by minimizing the risk of over- or under-provisioning resources, thereby
enhancing the overall system’s efficiency and resilience to demand uncertainty.

2. How can advanced deep learning techniques, particularly the LSTM-MLP-MDN model,
be employed to accurately forecast the probability distribution of traffic demand in a one-
way electric car-sharing system?

Answer: The research demonstrates that the integrating of advanced deep learning tech-
niques, specifically the LSTM-MLP-MDN models (see Figure 4.2), significantly enhances
the accuracy of predicting traffic demand probability distribution in one-way electric car-
sharing system. As evidenced in table 5.3, the model achieves superior performance with an
MAE of 174.3023, MAPE of 15.10%, and R2 of 0.8872, significantly outperforming traditional
forecasting methods.

The LSTM component of the model effectively captures the temporal dependencies in traf-
fic demand. By processing sequences of historical demand data, LSTM can predict future
demand patterns with greater accuracy, particularly by recognizing demand trends and fluc-
tuations over time. This capability is essential for managing the dynamic nature of demand
in a car-sharing system. The MLP adds a layer of complexity by modeling the nonlinear
relationship between various influencing factors, such as weather, time of day, and traffic
conditions, and their impact on demand. By doing so, the MLP refines the predictions gen-
erated by the LSTM, ensuring that the models account for complex patterns and interactions
within the data. The MDN component is crucial for addressing the inherent uncertainty in
traffic demand. Unlike traditional models that provide a single-point estimate, the MDN
generates a probability distribution of potential demand levels. This probabilistic approach
allows the model to not only predict the most likely demand scenario but also to account
for a range of possible outcomes, thereby improving the robustness of the decision-making
process in station location and vehicle allocation.

3. How does the integration of advanced demand prediction techniques, such as LSTM-
MLP-MDN, enhance the performance of stochastic programming models addressing the
CSLP compared to traditional forecasting methods, and what added value does it bring?

The integration of our advanced demand prediction model significantly enhances the op-
timization performance of stochastic programming models in solving the CSLP. Specifi-
cally, compared to the Historical Frequency-based Approach (HFA), the LMSP Framework
achieves an average improvement of 26.32% in Demand Satisfaction Ratio (DSR) and 36.17%
in Charging Station utilization rate (CSU) across five time periods. When compared to the
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Gaussian Distribution Approach (GDA), it shows an average increase of 14.55% in DSR and
12.06% in CSU. The LSTM-MLP-MDN model’s ability to generate more accurate probability
distributions of traffic demand provides the stochastic programming component with higher
quality input data, resulting in more robust and reliable optimization outcomes.

While traditional methods show higher short-term profits and return on investment due to
their aggressive demand predictions, the LMSP Framework’s superior performance in opera-
tional metrics indicates its ability to allocate resources more rationally and avoid waste. This
demonstrates that the integration of advanced demand prediction techniques with stochastic
programming brings significant added value to the planning and operation of electric car-
sharing systems. The framework’s focus on operational efficiency and demand satisfaction,
rather than just short-term financial gains, positions it as a more viable option for long-
term profitability and sustainable system operation, particularly in addressing the complex
challenges of demand uncertainty in urban transportation systems.

4. What insights can be drawn from the application of the proposed LMSP Framework in a
real-world case study (Manhattan)?

Answer: The application of the LMSP Framework in Manhattan provides several valuable
insights into the optimization of charging station locations for electric car-sharing systems.
Through comprehensive temporal and spatial analysis of traffic patterns, the following key
findings emerge:

• The research reveals distinct traffic demand patterns throughout the day. Significant
variations were observed across different time periods, such as 4h, 9h peak hour, 15h,
18h evening peak, and 21h. This time sensitivity highlights the importance of consid-
ering temporal factors in urban car-sharing system planning.

• Spatial analysis uncovers significant geographical variations in demand patterns across
Manhattan. High-demand regions, such as Upper East Side South (Region 237) and
Midtown Center (Region 161), consistently show substantial traffic demand, while ar-
eas like Randalls Island (Region 194) and Two Bridges/Seward Park (Region 232) ex-
hibit consistently lower demand. These spatial variations emphasize the importance
of location-specific deployment strategies. Furthermore, different urban characteristics
significantly influence traffic patterns. Residential areas like Upper East Side South
show strong morning and evening peaks, while commercial districts such as Midtown
Center experience high daytime demand. Mixed-use areas like Clinton East demon-
strate more consistent demand throughout the day.

• The deployment plan analysis reveals important insights about resource allocation.
Our study demonstrates that optimal charging station placement and vehicle allocation
vary significantly based on both location and time of day. The system’s performance,
measured through Demand Satisfaction Ratio (DSR) and Charging Station Utilization
(CSU) rates, shows notable variations across different periods, reflecting the dynamic
nature of urban mobility demands. While traditional methods show higher short-term
profits, the LMSP Framework demonstrates superior operational efficiency, achieving
better resource utilization and demand satisfaction. This suggests improved long-term
sustainability and operational viability.

• These insights from the Manhattan case study not only validate the effectiveness of the
LMSP Framework but also provide valuable guidance for urban planners and trans-
portation system operators. The findings highlight the importance of considering both
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temporal and spatial factors in charging infrastructure planning, while also demon-
strating the potential of data-driven approaches in addressing complex urban mobility
challenges. This comprehensive understanding of demand patterns and system perfor-
mance contributes significantly to the development of more efficient and sustainable
urban transportation solutions.

These findings not only validate the performance of the LMSP framework but also provide
valuable insights for urban planners, policymakers, and transportation researchers. They
highlight the complexity of urban mobility systems and the potential for data-driven, AI-
enhanced tools to address these challenges effectively.

5. How do the results of the case study validate the effectiveness, adaptability, and feasi-
bility of the proposed LMSP Framework?

Answer: The application of the LMSP Framework in the Manhattan case study reveals sev-
eral important insights and effectively validates its effectiveness, adaptability, and feasibility
in a real-world urban environment.

• Effectiveness: The LMSP Framework’s effectiveness is primarily demonstrated by its
significant improvement in demand forecasting accuracy and resource optimization.

– Demand Prediction: By integrating deep learning techniques (LSTM-MLP-MDN),
the LMSP Framework outperforms traditional methods in traffic demand predic-
tion, achieving lower Mean Absolute Error (MAE) and higher R2 values. Specifi-
cally, the LMSP Framework achieved an MAE of 174.3023, MAPE of 15.10%, and
R2 of 0.8872, significantly outperforming other comparative models.

– Resource Optimization: More accurate predictions enable the framework to make
better decisions on charging station placements and vehicle allocations, resulting
in higher Demand Satisfaction Ratios (DSR) and Charging Station utilization rates
(CSU) across different time periods. For example, it performs well during both
low-demand (4 AM) and high-demand (6 PM) periods.

• Adaptability: The LMSP Framework’s adaptability is highlighted by its ability to han-
dle diverse and fluctuating demand patterns. This adaptability confirms the frame-
work’s capability to respond to both temporal and spatial variations in traffic, crucial
for managing demand uncertainty in complex urban environments.

– Temporal Adaptability: The framework adapts well to both low-demand periods
(e.g., 4 AM) and high-demand periods (e.g., 6 PM) throughout the day. It provides
reasonable charging station layouts and vehicle allocations for five specific time
periods (4h, 9h, 15h, 18h, 21h).

– Spatial Adaptability: It successfully captures and adapts to demand differences
between commercial areas (like Midtown Center) and residential areas (such as
Upper East Side South).

• Feasibility: The feasibility of the LMSP Framework is validated through its successful
application in a large-scale, high-density urban environment like Manhattan:

– Scalability: The LMSP Framework successfully optimizes a network of 25 poten-
tial charging station locations across Manhattan, incorporating various demand
scenarios derived from extensive historical data. The model parameters, includ-
ing charging station costs, vehicle purchase costs, and operational metrics, were

86



7. Conclusion

calibrated using real-world data from New York City Taxi & Limousine Com-
mission reports. This demonstrates the framework’s ability to handle large-scale,
data-intensive problems in a complex urban environment.

– Practical Application: The framework’s recommendations for station placements
in high-demand areas such as Midtown Center and Upper East Side South align
with known traffic patterns, validating its practical applicability.

– Computational Efficiency: Solves large-scale optimization problems within rea-
sonable time frames, demonstrating its feasibility in real-world scenarios.

5. How can the findings from this research enhance the planning and operation of electric
car-sharing systems, and what are the potential implications for sustainable urban mobil-
ity?

This research significantly enhances the planning and operation of electric car-sharing sys-
tems through the LMSP Framework’s improved optimization of charging station locations
and vehicle allocations. The framework’s ability to handle demand uncertainty, as evidenced
by superior DSR and CSU metrics, can lead to more efficient and reliable services. Insights
from temporal and spatial demand analysis can inform broader urban planning decisions,
integrating car-sharing systems more effectively into overall transportation networks. The
implications for sustainable urban mobility are substantial: the optimized systems can con-
tribute to reducing private vehicle ownership, decreasing urban congestion, and lowering
emissions. By promoting efficient resource utilization and aligning with sustainability goals,
this research has the potential to accelerate the transition to cleaner transportation options
in urban areas globally, contributing to more sustainable and livable cities.

7.2. Future Research Outlook

The findings of this study open up several avenues for future research in the field of electric
car-sharing systems and charging station optimization. These potential research directions
aim to enhance the applicability, accuracy, and comprehensiveness of the LMSP Frame-
work.

1. Geographical Expansion: Future research should expand the geographical scope of
case studies beyond Manhattan to validate the proposed model in different urban and
suburban environments. This would help assess the generalizability of the model’s
conclusions and adapt the optimization strategies to cities with varying transportation
infrastructures and population densities. Such studies could provide valuable insights
into how the model performs under diverse urban conditions and help refine its pa-
rameters for broader applicability.

2. Integration of Real-time Data: Integrating real-time traffic data and geographic vari-
ables such as road conditions and population density could significantly enhance the
accuracy of demand forecasts. This integration would lead to more dynamic and
adaptable car-sharing systems, capable of responding to immediate changes in traf-
fic patterns or urban dynamics. Future studies could explore methods to incorporate
these real-time data streams into the LMSP Framework, potentially through the devel-
opment of online learning algorithms or adaptive optimization techniques.
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3. Operational Dynamics Integration: Future research could focus on integrating short-
term operational dynamics, such as vehicle relocation strategies and dynamic pricing
models, into the long-term planning framework. This integration could provide a
more holistic optimization approach, bridging the gap between strategic planning and
day-to-day operations of car-sharing systems.

4. External Factor Analysis: Future work could explore the impact of external factors like
regulatory changes and economic fluctuations on car-sharing demand. By incorporat-
ing scenario analyses that consider these variables, future research could provide more
comprehensive insights into the long-term sustainability and adaptability of electric
car-sharing services. This could involve developing more sophisticated economic mod-
els or policy simulation frameworks to be integrated with the existing LMSP Frame-
work.
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A. Deployment Plan over Five Time Periods

Table A.1.: Deployment Plan at 4h

Region ID y i L i Latitude Longitude Zone

12 0 0 40.7045416 -74.0142564 Battery Park
41 1 0 40.8075917 -73.9549547 Central Harlem
43 1 0 40.7815194 -73.9627249 Central Park
48 1 4 40.7647531 -73.9880232 Clinton East
50 1 0 40.7712271 -73.9935659 Clinton West
68 1 1 40.7477804 -74.000438 East Chelsea
74 1 0 40.80182 -73.9392953 East Harlem North
79 1 2 40.7260512 -73.9835308 East Village
88 1 1 40.7034746 -74.0115948 Financial District South

113 1 1 40.7346805 -73.9946012 Greenwich Village North
140 1 1 40.7611816 -73.9579018 Lenox Hill East
142 1 1 40.7738424 -73.9821234 Lincoln Square East
161 1 4 40.7585437 -73.9772064 Midtown Center
163 1 1 40.7663007 -73.9818927 Midtown North
170 1 2 40.7482478 -73.9762946 Murray Hill
186 1 5 40.749101 -73.992006 Penn Station/Madison Sq West
194 0 0 40.7841865 -73.9266152 Randalls Island
231 0 0 40.7197847 -74.0068153 TriBeCa/Civic Center
232 0 0 40.7152425 -73.9842337 Two Bridges/Seward Park
234 1 1 40.7379242 -73.9922478 UN/Turtle Bay South
236 1 2 40.7801748 -73.9550942 Upper East Side North
237 1 2 40.76413 -73.9688047 Upper East Side South
239 1 1 40.7818426 -73.979274 Upper West Side South
243 0 0 40.856503 -73.932761 Washington Heights North
244 0 0 40.8369673 -73.9401365 Washington Heights South
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Table A.2.: Deployment Plan at 9h

Region ID y i L i Latitude Longitude Zone

12 0 0 40.7045416 -74.0142564 Battery Park
41 0 0 40.8075917 -73.9549547 Central Harlem
43 1 1 40.7815194 -73.9627249 Central Park
48 1 2 40.7647531 -73.9880232 Clinton East
50 1 0 40.7712271 -73.9935659 Clinton West
68 1 1 40.7477804 -74.000438 East Chelsea
74 0 0 40.80182 -73.9392953 East Harlem North
79 1 2 40.7260512 -73.9835308 East Village
88 0 0 40.7034746 -74.0115948 Financial District South

113 1 1 40.7346805 -73.9946012 Greenwich Village North
140 1 0 40.7611816 -73.9579018 Lenox Hill East
142 1 2 40.7738424 -73.9821234 Lincoln Square East
161 1 3 40.7585437 -73.9772064 Midtown Center
163 1 2 40.7663007 -73.9818927 Midtown North
170 1 1 40.7482478 -73.9762946 Murray Hill
186 1 5 40.749101 -73.992006 Penn Station/Madison Sq West
194 0 0 40.7841865 -73.9266152 Randalls Island
231 0 0 40.7197847 -74.0068153 TriBeCa/Civic Center
232 1 1 40.7152425 -73.9842337 Two Bridges/Seward Park
234 1 1 40.7379242 -73.9922478 UN/Turtle Bay South
236 1 3 40.7801748 -73.9550942 Upper East Side North
237 1 2 40.76413 -73.9688047 Upper East Side South
239 1 3 40.7818426 -73.979274 Upper West Side South
243 0 0 40.856503 -73.932761 Washington Heights North
244 0 0 40.8369673 -73.9401365 Washington Heights South
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A. Deployment Plan over Five Time Periods

Table A.3.: Deployment Plan at 15h

Region ID y i L i Latitude Longitude Zone

12 0 0 40.7045416 -74.0142564 Battery Park
41 0 0 40.8075917 -73.9549547 Central Harlem
43 1 0 40.7815194 -73.9627249 Central Park
48 1 3 40.7647531 -73.9880232 Clinton East
50 1 1 40.7712271 -73.9935659 Clinton West
68 1 2 40.7477804 -74.000438 East Chelsea
74 0 0 40.80182 -73.9392953 East Harlem North
79 1 1 40.7260512 -73.9835308 East Village
88 0 0 40.7034746 -74.0115948 Financial District South

113 1 1 40.7346805 -73.9946012 Greenwich Village North
140 1 1 40.7611816 -73.9579018 Lenox Hill East
142 1 2 40.7738424 -73.9821234 Lincoln Square East
161 1 3 40.7585437 -73.9772064 Midtown Center
163 1 1 40.7663007 -73.9818927 Midtown North
170 1 1 40.7482478 -73.9762946 Murray Hill
186 1 4 40.749101 -73.992006 Penn Station/Madison Sq West
194 0 0 40.7841865 -73.9266152 Randalls Island
231 0 0 40.7197847 -74.0068153 TriBeCa/Civic Center
232 1 1 40.7152425 -73.9842337 Two Bridges/Seward Park
234 1 1 40.7379242 -73.9922478 UN/Turtle Bay South
236 1 3 40.7801748 -73.9550942 Upper East Side North
237 1 3 40.76413 -73.9688047 Upper East Side South
239 1 2 40.7818426 -73.979274 Upper West Side South
243 0 0 40.856503 -73.932761 Washington Heights North
244 0 0 40.8369673 -73.9401365 Washington Heights South
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A. Deployment Plan over Five Time Periods

Table A.4.: Deployment Plan at 18h

Region ID y i L i Latitude Longitude Zone

12 0 0 40.7045416 -74.0142564 Battery Park
41 1 0 40.8075917 -73.9549547 Central Harlem
43 1 1 40.7815194 -73.9627249 Central Park
48 1 3 40.7647531 -73.9880232 Clinton East
50 1 1 40.7712271 -73.9935659 Clinton West
68 1 1 40.7477804 -74.000438 East Chelsea
74 0 0 40.80182 -73.9392953 East Harlem North
79 1 3 40.7260512 -73.9835308 East Village
88 0 0 40.7034746 -74.0115948 Financial District South

113 1 1 40.7346805 -73.9946012 Greenwich Village North
140 1 1 40.7611816 -73.9579018 Lenox Hill East
142 1 2 40.7738424 -73.9821234 Lincoln Square East
161 1 4 40.7585437 -73.9772064 Midtown Center
163 1 2 40.7663007 -73.9818927 Midtown North
170 1 1 40.7482478 -73.9762946 Murray Hill
186 1 2 40.749101 -73.992006 Penn Station/Madison Sq West
194 0 0 40.7841865 -73.9266152 Randalls Island
231 0 0 40.7197847 -74.0068153 TriBeCa/Civic Center
232 1 1 40.7152425 -73.9842337 Two Bridges/Seward Park
234 1 1 40.7379242 -73.9922478 UN/Turtle Bay South
236 1 3 40.7801748 -73.9550942 Upper East Side North
237 1 1 40.76413 -73.9688047 Upper East Side South
239 1 2 40.7818426 -73.979274 Upper West Side South
243 0 0 40.856503 -73.932761 Washington Heights North
244 0 0 40.8369673 -73.9401365 Washington Heights South
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A. Deployment Plan over Five Time Periods

Table A.5.: Deployment Plan at 21h

Region ID y i L i Latitude Longitude Zone

12 0 0 40.7045416 -74.0142564 Battery Park
41 0 0 40.8075917 -73.9549547 Central Harlem
43 1 1 40.7815194 -73.9627249 Central Park
48 1 3 40.7647531 -73.9880232 Clinton East
50 1 1 40.7712271 -73.9935659 Clinton West
68 1 1 40.7477804 -74.000438 East Chelsea
74 0 0 40.8018200 -73.9392953 East Harlem North
79 1 1 40.7260512 -73.9835308 East Village
88 0 0 40.7034746 -74.0115948 Financial District South

113 1 1 40.7346805 -73.9946012 Greenwich Village North
140 1 1 40.7611816 -73.9579018 Lenox Hill East
142 1 2 40.7738424 -73.9821234 Lincoln Square East
161 1 4 40.7585437 -73.9772064 Midtown Center
163 1 2 40.7663007 -73.9818927 Midtown North
170 1 1 40.7482478 -73.9762946 Murray Hill
186 1 3 40.7491010 -73.9920060 Penn Station/Madison Sq West
194 0 0 40.7841865 -73.9266152 Randalls Island
231 1 1 40.7197847 -74.0068153 TriBeCa/Civic Center
232 1 1 40.7152425 -73.9842337 Two Bridges/Seward Park
234 1 1 40.7379242 -73.9922478 UN/Turtle Bay South
236 1 3 40.7801748 -73.9550942 Upper East Side North
237 1 2 40.7641300 -73.9688047 Upper East Side South
239 1 1 40.7818426 -73.9792740 Upper West Side South
243 0 0 40.8565030 -73.9327610 Washington Heights North
244 0 0 40.8369673 -73.9401365 Washington Heights South
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B. Trip Data at Different Locations over
five specific time periods
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B. Trip Data at Different Locations over five specific time periods

Table B.1.: Trip Data at Different Locations

Location ID Zone 4h 9h 15h 18h Total Trips

12 Battery Park 3 35 152 28 236
41 Central Harlem 236 1601 1337 1561 5857
43 Central Park 118 3741 6388 4567 16977
48 Clinton East 1866 7310 5546 8047 30917
50 Clinton West 585 2761 2238 2700 9936
68 East Chelsea 1422 4501 4984 6071 22153
74 East Harlem North 201 1635 1416 1794 5968
79 East Village 1791 3609 3212 4047 18638
88 Financial District 55 351 690 948 2704

113 Greenwich Village 314 3466 3437 4323 15541
140 Lenox Hill East 197 5203 4694 4484 16590
142 Lincoln Square East 328 6889 8799 10308 35415
161 Midtown Center 351 6236 11687 12687 41322
163 Midtown North 569 4910 8292 10593 31242
170 Murray Hill 539 7588 6766 8236 29103
186 Penn Station/Madison Sq 930 8660 7313 8625 33177
194 Randalls Island 0 5 10 5 27
231 TriBeCa/Civic Center 440 2261 2672 3310 11587
232 Two Bridges/Seward Park 120 228 196 275 1132
234 UN/Turtle Bay South 631 4602 8249 10388 32689
236 Upper East Side North 298 10259 12484 10941 38984
237 Upper East Side South 317 10397 13973 13296 45027
239 Upper West Side South 385 6298 7741 7459 26439
243 Washington Heights North 48 208 148 125 615
244 Washington Heights South 82 519 577 567 2093
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C. Fundamentals of Deep Learning Model

C.1. LSTM unit

A comprehensive breakdown of the LSTM unit’s structure is provided here.

Forget Gate:

The forget gate determines which information from the previous cell state should be dis-
carded or kept. Current time input xt and previous hidden state ht−1 are fed to the gate,
and outputs a number between 0 and 1 for each number in cell state Ct−1. A 1 means
”entirely keep this” while 0 means ”entirely discard this”.

ft = σ
(

W f · [ht−1, xt] + b f

)
(C.1)

where:

σ is the sigmoid activation function, W f represents the weight matrix associated with the
forget gate, [ht−1, xt] denotes the concatenation of the current input and the previous hidden
state.

Input Gate:

The input gate decides which new information to add to the cell state. This involves two
parts: a sigmoid layer which decides which values to update, and a tanh layer which creates
a vector of new candidate value, C̃t that could be added to the state.

it = σ (Wi · [ht−1, xt] + bi) (C.2)

C̃t = tanh (WC · [ht−1, xt] + bC) (C.3)

Update Cell State:

Ct = ft ∗ Ct−1 + it ∗ C̃t (C.4)

where Ct−1 represents the old cell state, it is updated to the new cell state Ct. This is
performed by multiplying the old cell state by the forget gate’s output and adding the
product of the input gates’ output and the candidate values.

Output Gate:
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C. Fundamentals of Deep Learning Model

Figure C.1.: Mixture Density Network structure [Petrov and Repin, 2020]

ot = σ (Wo · [ht−1, xt] + bo) (C.5)
ht = ot ∗ tanh (Ct) (C.6)

The output gate of an LSTM, denoted by ot, is computed using a sigmoid activation function
applied to the linear combination of the current input xt and the previous hidden state ht−1,
along with bo. Then, the output gate activation ot then modulates the output from the cell
state Ct, which processes through a tanh function to normalize its values. The final output
hidden state ht can be obtained by element-wise multiplication of ot with tanh(Ct), effectively
filtering the cell state information to produce the output relevant for the next time step.

C.2. MDN

The Mixture Density Network consists of two parts: a Neural Network and a Mixture Model.
A neural network adopts any effective structure to convert inputs x into learned features,
and a mixture model is a type of probabilistic model constructed with a weighted sum of
simpler distributions [?].

Figure C.1 illustrates the structure of the Mixture Density Network. Given input x, the MDN
outputs weights πi, mean values µi, and variances σi of the i-th Gaussian distribution. The
probability density function of the i-th Gaussian distribution is given by:

fi(y) =
1√

2πσ2
i

exp

(
− (y − µi)

2

2σ2
i

)
(C.7)

Weighted by mixing coefficients πi, N Gaussian distributions form a mixture density condi-
tional probability density p(y | x), which is denoted as:

fmixture(x) =
N

∑
i=1

πi · fi(y) (C.8)
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C. Fundamentals of Deep Learning Model

Figure C.2.: ReLU Activation Function Figure C.3.: Softplus Activation Function

C.3. Activation Function

Rectified Linear Unit (ReLU)

Rectified Linear Unit (ReLU) is a type of activation function commonly used in neural net-
works, especially in the hidden layers of deep learning models. It introduces non-linearity
by outputting the input directly if it is positive; otherwise, it outputs zero, as shown in
Figure C.2. It is defined mathematically as:

ReLU (x) = max(0, x) (C.9)

ReLU is computationally efficient and helps mitigate the vanishing gradient problem, mak-
ing it well-suited for deep learning models.

Softplus

The Softplus activation function is a smooth, differentiable alternative to the ReLU (Rectified
Linear Unit) function, as shown in Figure C.3. The Softplus function is defined mathemati-
cally as:

Softplus(x) = log(1 + ex) (C.10)

Softmax

The Softmax function transforms a vector of real numbers into a probability distribution,
where each output value represents the probability of the corresponding class. The values
output by Softmax sum to 1, making them directly interpretable as probabilities.
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D. Results of Comparison between LMSP
Framework and Traditional-based SP

Table D.1.: Performance at 4h
Profit ROI DSR CSU

HFA 2312.36 30.7577 0.6252 0.1205
GDA 3896.11 54.5521 0.3756 0.0621
LMSP 1826.29 24.4026 0.7487 0.1317

Table D.2.: Performance at 9h
Profit ROI DSR CSU

HFA 6819.04 100.2800 0.1190 0.0225
GDA 7177.60 105.0278 0.1068 0.0212
LMSP 6688.99 97.8781 0.1279 0.0240

Table D.3.: Performance at 15h
Profit ROI DSR CSU

HFA 7093.08 99.3151 0.0971 0.0188
GDA 7260.76 101.6629 0.0922 0.0181
LMSP 6849.31 100.2241 0.1153 0.0226

Table D.4.: Performance at 18h
Profit ROI DSR CSU

HFA 7331.66 102.1692 0.1005 0.0207
GDA 7457.97 103.9293 0.0964 0.0194
LMSP 7070.68 98.5323 0.1086 0.0233

Table D.5.: Performance at 21h
Profit ROI DSR CSU

HFA 7425.26 103.4736 0.0935 0.0190
GDA 7281.54 101.4708 0.0989 0.0186
LMSP 6976.14 97.2148 0.1110 0.0212
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