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Damage history in composite laminates:
Matrix cracks leading to delaminations

Javier Romarı́s Villanueva* and Christos Kassapoglou

Abstract
Strain energy release rate calculations for various cases of delaminations emanating from matrix cracks are developed and
used to predict the onset of delaminations and their growth size as a function of applied tension and shear loads in
composite laminates. The method determines the matrix crack spacing, the delamination onset load, the delamination size
at onset and, through the use of a newly proposed delamination resistance curve, the size of delaminations as they grow
under load. The method can be applied to any symmetric laminate. Comparisons to test results in the literature for a variety
of layups and materials shows very good agreement with the exception of cases where significant edge delaminations appear
before delaminations caused by matrix cracks.
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Introduction

In broad terms, there are three major types of damage in
composites: Broken fibers, matrix cracks and delamina-
tions. The discussion in this work focuses on the interaction
of delaminations with matrix cracks. It is well-known1–3

that, often, delaminations start at the tips of matrix cracks
parallel to the fibers. In a ply with matrix cracks, the load is
transferred to adjacent plies around these cracks and in-
terlaminar stresses develop. These may cause delaminations
at the interface between the cracked ply and its neighbours.
The presence of matrix cracks and delaminations reduces
the stiffness properties of the laminate and may contribute to
pre-mature failure.4,5

Various methods to analytically predict the creation of
matrix cracks have been proposed over the years: Con-
tinuum mechanics methods, [for example Ref. 6,7], shear
lag analyses, [for example Ref. 8,9], and variational
approaches.10,11 Talreja6 derived constitutive relations de-
scribing the behaviour of a laminate with different damage
modes present, which can be used to describe damage
evolution under static or fatigue loads. Varna et al7 focused
on laminates containing 90° plies and proposed an approach
to predict matrix cracks and their effect on stiffness of such
laminates. Kashtalyan and Soutis,8 combined matrix cracks
in angle-ply laminates with delaminations. Nairn,9 exam-
ined the use of shear lag methods for analysing unidirec-
tional laminates. Hashin,10,11 was among the first to use a
variational approach to determine stresses in cracked

laminates and their effect on stiffness of cross-ply laminates.
In addition to the above, Socci and Kassapoglou5 solved the
governing equations to determine matrix crack creation and
multiplication for laminates under tension and shear loads.

Delaminations in laminates under in-plane loads, typi-
cally form at free edges because of mismatch in stiffness
properties of the plies12,13 or at tips of matrix cracks. Of
particular interest here are the latter where the interlaminar
stresses that develop at the tips of matrix cracks may exceed
the strength of the material in the resin layer between plies
and lead to delaminations. Nairn and Hu14 used a variational
approach to obtain expressions for the strain energy release
rate expressions to predict the critical crack spacing for
delamination onset for a class of laminates containing 90°
plies. A similar approach was proposed by Lem and Lui15

where they compared the energy released when cracks or
delaminations form. A three-dimensional finite element
analysis was used by Salpekar and O’Brien16 to study the
formation of triangular delaminations at matrix crack tips.
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Takeda and Ogihara,3 obtained expressions for the onset and
growth of delaminations at matrix crack tips and compared
to test results. Finally, Carraro et al,2 developed expressions
for the stresses around the matrix crack tips using gener-
alized stress intensity factors and proposed a fracture cri-
terion using a critical value of the mode I Generalized Stress
Intensity Factor.

The complexity of the stress field at matrix crack tips and
around delaminations emanating from these crack tips
makes the development of analytical methods difficult and,
often, limited to a class of laminates and/or applied loading
situations. Also, localized defects such as voids or matrix
rich regions accelerate or delay the creation of cracks and
delamination. Furthermore, measuring the crack density
exactly poses problems because of the difficulty of pin-
pointing the exact applied load at which new cracks form.
Finally, as has been observed by several researchers,17,18 the
symmetry of delamination creation assumed in many
models breaks down sometimes as some delaminations
forming in one ply interface stop growing and/or jump to
other ply interfaces.

The present communication builds on previous work and
proposes a fracture mechanics-based approach to analyti-
cally predict the onset and growth of delaminations ema-
nating from matrix crack tips for symmetric composite
laminates under tension or shear loads.

Approach

Matrix crack formation

The starting point is a laminate in some of the plies of which
matrix cracks developed under some type of loading, see
Figure 1. The layup can be arbitrary as long as it is sym-
metric, and the loading can be any combination of in-plane
tension and shear. Subsequent loading may either increase
the density of these cracks or/and lead to the creation of
delaminations. In order to model the delamination onset at
tips of matrix cracks, it is critical that the crack density in the
cracked plies be correctly predicted. Otherwise, the stiffness
changes caused by the presence of these cracks is not
correctly accounted for. Here, the approach developed by
Socci and Kassapoglou5 is used. For convenience, the
important equations from that work are briefly
repeated here.

Given a ply with matrix cracks with spacing D as shown
in Figure 1, the reduced transverse Young’s modulus
(perpendicular to the fibers) in the cracked ply is given by:5

E2red

E2
¼ 1þ 8

π2

X
n

1

n2

2e
φnD
2 � 2e�

φnD
2 þ φnD e

φnD
2 þ e�

φnD
2

� �
e�φnD � eφnD � 2φnD

(1)

where E2 is the transverse Young’s modulus for the un-
cracked ply, φn = nπ/tc with tc the thickness of the cracked
ply and D the crack spacing. By Maxwell’s relation, the
minor Poisson’s ratio of the cracked ply is given by:

ν21red ¼ E2red

E1
ν12 (2)

with E1 and ν12 the Young’s modulus parallel to fibers and
the major Poisson’s ratio of the pristine ply.

If the ply is, locally, under shear and, accounting for non-
linearity of the shear stress-strain curve of the material, the
shear modulus of a cracked ply is given by:5
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where

Bn ¼
X
n

ekn
D
2 þ eknDe�knD2

nπð Þ2 1þ eknDð Þ (4)

with γy the yield shear strain of the material, kn = nπ/tc and n
odd. It is interesting to note that, unlike the reduced
transverse modulus E2red, the reduced shear modulus is a
function of the local applied strain magnitude γa.

The load at which matrix cracks will multiply is found
using a criterion based on the average energy density be-
tween cracks.5 For an arbitrary combination of transverse
and shear strains applied locally to the ply, a new crack will
appear half-way between existing cracks when:

Δσ2

2E2
þ Δτ2

2G12
¼ ΔUdavcrit (5)

where Δσ and Δτ refer to the normal and shear stresses in the
ply before and after a new crack is created and ΔUdavcrtit is
the thickness averaged critical energy density for the given
combination of normal and shear strains.5 This critical
energy density changes with combination of σ and τ and is
determined by considering the limiting case of large crack

Figure 1. Symmetric laminate with ply with matrix cracks under
in-plane loading.
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spacing D where there is enough distance between cracks
for the ply to develop the pristine values of σ and τ. In such a
case, local failure of the ply would coincide with creation of
a new crack. A Hashin-type failure criterion is used. Then,5:

ΔUdavcrit ¼
σ2yav
2E2

þ τ2xyav
2G12

(6)

provided the average transverse stress σyav and the average
shear stress τxyav in the ply satisfy the criterion:

σ2yav�
Y t
is

	2 þ τ2xyav
ðSisÞ2

¼ 1 (7)

As the above equations will form the starting point for
the determination of delamination onset and growth it is
important to establish confidence in them. This is done by
comparing to published experimental results. The size of the
crack spacing in 90° plies as a function of applied laminate
stress for [0n/90m]s and [±25/90n]s laminates for different
values of n and m and for different materials is compared to
test results from2,19–22 in Figure 2.

As is seen from Figure 2, the predictions are in good to
excellent agreement with the test results. One interesting
observation is that for the [0/902]s laminate in Figure 4(a)
and for the four laminates in Figure 4(c) and (d), the
curves and test data seem to asymptote to an horizontal
line. This corresponds to crack saturation where further
load increase does not cause the creation of any more
matrix cracks. This would correspond to the point where
delaminations may start at the tips of these cracks. The
precise crack spacing at which this happens will be de-
termined in the next section.

Delamination onset – delaminations emanating
from matrix cracks

The results presented in the previous section establish
enough confidence in the accuracy of the method in pre-
dicting matrix crack spacing as a function of applied load.
This forms the starting point for determining when delam-
inations will start at the matrix crack tips. First, the strain

Figure 2. Comparison of predicted crack spacing to tests for various layups andmaterials. (a) UT-E500/Epikote RIMR235 fiberglass with
tests from Ref. 2. (b) AS/3501-6 Carbon/Epoxy with tests from Refs.20,21. (c) AS4/3501-6 Carbon/Epoxy with tests from Refs.22,23.
(d) IM6/Avimid K Carbon/Epoxy with tests from Refs.22,23.
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energy release rate corresponding to a given distribution of
matrix cracks is determined. The strain energy of the laminate
under tension and shear shown in Figure 1 can be written as:

U ¼ 1

2

ZZZ h
Ec
xεx

2 þ gc
xyγxy

2
i
dV ¼ 1

2

h
Ec
xεx

2 þ gcxyγxy
2
i
Lwh

(8)

where εx and γxy are laminate axial and shear strains, Ex
c and

gxy
c are laminate Young’s modulus and shear modulus ac-

counting for the presence of matrix cracks and L,w, and h are
the length, width and height of the laminate respectively.
Note that “g” is used for shear modulus instead of “G” to
avoid confusion with the symbol for the strain energy release
rate. The strain energy release rate relates the rate at which the
energy is dissipated by a material when a crack forms. In this
case, the right hand side of equation (8) must be differentiated
with respect to the crack area which, for a cracked ply (or
multiple plies with same orientation) of (total) thickness tc is:

Ac ¼ tcw
L

D
(9)

Then, the strain energy release rate for matrix cracking is
given by:

Gc ¼ ∂U
∂Ac

¼ 1

2

h

tc

2
64 ∂Ec

x

∂
�
1
D

�ε2x þ
∂gc

xy

∂
�
1
D

�γ2xy

3
75 (10)

In order to proceed, the dependence of Ex
c and gxy

c on 1/
D (matrix crack density) must be determined. This follows
the standard approach for determining the engineering
constants of a symmetric laminate using the classical
laminated-plate theory. In local coordinates, parallel and
perpendicular to the fibers, the stiffness values for a cracked
ply with matrix cracks are given by

Q11 ¼ E1
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Q66 ¼ G12red (14)

where equation (2) was used to obtain the final expression in
the right hand sides and E2red and G12red are given by
equations (1) and (3). Denoting then, d(..)/d(1/D) by (…)’
the derivatives needed to obtain the strain energy release
rate are obtained:
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with

B0
n ¼

X
n

knekn
D
2 eknD � 1ð Þ

nπð Þ2 1þ eknDð Þ2D
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For a symmetric laminate, Ex
c and gxy

c can be cal-
culated using the A matrix. The results can then be dif-
ferentiated with respect to 1/D with the use of equations
(19) and (20) to get the strain energy release rate Gc for
the laminate with cracked plies. An example of how the
value of Gc changes with crack spacing for different
thickness of cracked plies in various laminates under
tension is shown in Figure 3.

As the applied load increases from zero, the (average) crack
spacing, which is large and non-uniform at the beginning, will
decrease which means one moves from right to left in Figure 3.
For low applied load and, hence, large values ofD, the creation
of an additional crack is not affected by existing cracks. There is
no interaction and all cracks have the same size. The change in
strain energy for a given constant crack size will be the same
every time a new crack forms. As a result, the strain energy
release rate will be essentially constant for large values ofD. As
the applied load increases and the crack spacing D decreases, a
point is reachedwhere crack spacing is uniform and a new crack
would form at the mid-point between cracks.5 This was shown
in reference 5 to correspond to D = 2.966 tc. The amount of
energy released when a crack forms increases and the energy
release rate goes through a maximum. It should be noted that,
other than the case θ = 90o for the [0/θ2]s layups in Figure 3, all
laminates have both tension and shear strains present in the ply
with θ orientation. As the value of θ decreases from 90o the
magnitude of the shear stress in the θ ply increases and that of
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the transverse tension stress decreases until θ = 45o. As was
found in Ref. 5, a higher shear strain magnitude is needed to
initiate a new crack than a tension strain. Consequently, as can
be seen from Figure 3, laminates with shear stress dominant in
the θ ply, are less prone to matrix crack creation and thus the
strain energy release rate is lower. For θ < 45°, both the
magnitudes of shear and transverse stress in the θ ply decrease
leading to further reduction in the value of Gc.

Using equation (10), the effect of various parameters on
the strain energy release rate was found. The basic trends are
as follows: (a) Gc increases significantly when tc, the
thickness of the cracked ply, increases, (b) Increasing tc
shifts the Gc versus D graph to the right, towards larger
crack spacings, (c) Increasing E1/E2 increases Gc, (d) Gc

increases by a small amount when t1, the thickness of the ply
without cracks increases. (d) The point at which Gc departs
significantly from being constant depends only on tc. At this
point, the onset of delamination from existing matrix cracks
can be examined. A variety of possibilities, depending on
the resulting pattern is examined and is shown in Figure 4.
In all cases, the delaminations shown in blue color extend
across the laminate width (perpendicular to the page in
Figure 4). It is understood that in a real specimen, com-
binations of the above may appear as a result of local defects
such as waviness, porosity and non-uniform matrix content.
The cases selected here serve as an indicator of what to
expect in reality and will provide a range of results. The
approach is analogous to that used by O’Brien13 for edge
delaminations and makes use of equations (8) and (10) but
now the effect of the delaminations on the laminate stiffness
must be calculated. Focusing on Case 1 of Figure 4, the
laminate can be divided in repeating units as shown in
Figure 5.

For simplicity in showing the equations and under-
standing how different variables contribute, the case of a
cross-ply laminate will be assumed here but the results will
be generalized to any symmetric laminate under tension and
shear. Referring to Figure 5:

Ein ¼ 1

1� ν12ν21red

�
E2red � ν212

E2
2red

E1

�
(22)

Eout ¼ 1

1� ν12ν21
E1 � ν212E2
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(23)

Strain compatibility of the three sub-laminates with the
delaminations present leads to:

Edel
x ¼ 2t1Eout þ tcEin

2t1 þ tc
(24)

The stiffness of the three sub-laminates on the right of Figure 5
is that of a laminate with matrix cracks only, Ex

c which was
calculated before. Recognizing that the entire laminate consists of
the pattern of Figure 5 repeating along the length of the laminate
and that each repeating unit has the same applied axial force per

unitwidthNx, the overall axial stiffness of the laminate is obtained
treating the repeating units as springs in series:

Ecþd
x ¼ DEdel

x Ec
x

aEc
x þ ðD� aÞEdel

x

(25)

where a is the delamination length (parallel to the loading
shown in Figure 4) and the superscript “c + d” denotes
cracks and delaminations present. In an analogous way but
considering shear strains and load per unit width, the shear
modulus of the laminate is found:

gcþd
xy ¼ Dgdel

xy g
c
xy

agc
xy þ ðD� aÞgdel

xy

(26)

Case II can be shown to give exactly the same expres-
sions for Ex

c+d and gxy
c+d. For case III, the pattern to be

analysed is shown in Figure 6. An analogous approach leads
to the expressions:

Ecþd
x ¼ 2DEdel

x Ec
x

aEc
x þ ð2D� aÞEdel

x

(27)

gcþd
xy ¼ 2Dgdel

xy g
c
xy

agc
xy þ ð2D� aÞgdel

xy

(28)

Finally, for case IV, the repeating unit is shown in
Figure 7 and the resulting stiffness expressions are:

Ecþd
x ¼ DEdel*

x Ec
x

aEc
x þ ðD� aÞEdel*

x

(29)

gcþd
xy ¼ Dgdel*

xy gcxy

agc
xy þ ðD� aÞgdel*

xy

(30)

Figure 3. Energy release rate dependence on matrix crack
spacing for various layups. Applied strain = 0.05.
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Note that the quantities with superscript “del*” refer to
the right most laminate in Figure 7.

The basic stiffness values in equations (25)–(30) need
only be calculated once for each stacking sequence as they
will not change across cases. The approach just presented
assumed only one cracked ply or block of contiguous plies.
If failure analysis suggests that more than one plies will
develop cracks, the same approach can be used provided

that the repeating units and associated derivation include all
cracked plies and resulting delaminations.

The strain energy release rate can now be calculated
using an equation analogous to equation (10) with appro-
priate substitution for the stiffness values depending on the
case. This energy release rate will describe energy released
when the delaminations grow. It is assumed that, once the
delaminations appear, further load increase will lead to
delamination growth and not the creation of matrix cracks
whose density has reached saturation. As a result, the crack
area created is the area of the delaminations. This means that
equation (9) now changes according to the case to:

Ad ¼ 2aw, Case I

Ad ¼ 2 2
a

2

� �
w ¼ 2aw, Case II

Ad ¼ 2aw, Case III

Ad ¼ 2
a

2
w ¼ aw, Case IV

(31a-d)

Differentiating the strain energy with respect to Ad leads
to the following expressions for the strain energy release
rate for each of the four cases:

Figure 4. Possible configurations of delaminations emanating from matrix cracks.

Figure 5. Repeating unit to obtain longitudinal stiffness of a
laminate with cracks and delaminations (case I).
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It can be seen from equations (31a-d) that cases I and II
give identical results. Case III has a bigger denominator in
the brackets indicating that, for the same values of a and D,
the strain energy release rate will be smaller. Case IV is hard
to anticipate its magnitude by inspection because of the
quantities Ex

del* and gxy
del* whose effect is hard to evaluate

without explicit calculations. An approximation to the onset
of delamination can be obtained by taking the limit of
equations (32a-d) as the delamination size a tends to zero.
The resulting expressions are:
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A plot of equations (33a-d) as a function of crack spacing
for a [0/902]s UT-E500/Epikote RIMR235 is shown in
Figure 8. In addition to the four curves from equations (33a-
d), the onset of edge delamination predicted by O’Brien’s
method,13 and given by equation (34) below, is also shown
as a horizontal line since it is derived for nominally pristine
laminate without matrix cracks. In equation (34), ELAM is
the axial stiffness of the pristine laminate and E* is the sum
of the stiffnesses of the three sub-laminates created by edge
delaminations at the 0/90 interfaces. E* is analogous to Ex

d

for the case of delaminations emanating from matrix cracks
in the limit the crack spacing D goes to infinity.

Gedge ¼ 1

2
ε2xhðELAM � E*Þ (34)

As can be seen from Figure 8, cases I and II give higher
energy release rate values and would therefore be more
likely to occur if there were no defects in the laminate
promoting other cases. Case III gives significantly lower
release rate values. Case IV is close to Cases I and II and
could be favoured if there were inconsistencies in the
laminate such as local waviness, porosity etc. It is also seen
from Figure 8 that, for relatively small crack spacings, lower
than 0.5 mm in Figure 8, Cases I through IV have G values
higher than G for edge delamination in equation (34).

This means that for low values of D, the tendency would
be for delaminations to start at the tips of matrix cracks. For
higher D values, where there are relatively long portions of
the laminate without any matrix cracks, the tendency would
be to start edge delaminations in those regions.

At this point, the strain energy release rates for a laminate
with matrix cracks only and a laminate with matrix cracks
and delaminations can be combined to predict delamination
onset. This is shown in Figure 9 for a cross-ply laminate.
Starting from a laminate under load with matrix cracks, if
the load is further increased, energy can be dissipated by
forming a new crack or forming a delamination. The point
of intersection of the two energy release rate curves in
Figure 9 defines two regions of interest: To the left of the
point of intersection, the energy release rate for creating a
delamination is higher. This means for crack spacings lower
than the Donset value corresponding to the intersection,
(Donset∼ 0.8 mm in Figure 9), delaminations are the pre-
ferred way of energy dissipation. To the right of Donset, i.e.
for larger crack spacings, it is more energy-efficient for the
laminate to dissipate energy by increasing the area of matrix
cracks. Equating the two strain energy release rates Gc and
Gc+d gives the value of Donset. It can be shown that, for a
cross-ply laminate, the applied strain which would cause
delaminations to start is given by:

εa, onset ¼ σx, onset
Ex

¼ Y t
is

E2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:27024

f ðDonsetÞ

s
(35)

where f(D) is given in the Appendix. For a general
symmetric laminate under tension and/or shear, the
process is basically the same as that just described for
cross-ply laminates. However, the solution now cannot
be obtained without iterations due to the fact that the
equations cannot be normalized with the strains applied
to the laminate. This is mainly because of the depen-
dence in the shear modulus of the local applied shear

Romaŕıs Villanueva and Kassapoglou 7



strain, as described in equation (3). As before, the crack
spacing D when the two strain energy release rate
curves in Figure 9 intersect, is determined through
solving:

Gc

�
Nx,

Nx

Nxy
,D

�
¼ Gcþd

onset

�
Nx,

Nx

Nxy
,D

�
(36)

where Nx/Nxy is the ratio of applied axial and shear forces
on the laminate. But the value obtained from solving
equation (36) must also correspond to the matrix crack
spacing that the applied load would generate in the lam-
inate. Therefore, equation (7) must also be satisfied. If this
is not the case, the applied load combination must be
changed until the value of D = Donset which satisfies them
simultaneously is found. Owing to the fact that there are
three independent possibilities for Gc+d

onset from equa-
tions (33a-d) out of the four possible delamination con-
figurations examined, there will be a range for Donset as is
shown in Figure 10. Accordingly, three different delam-
ination onset loads can be determined corresponding to the
three distinct Donset values just found. This will give a
range of load predictions with the smallest Donset corre-
sponding to the highest delamination onset load. This
would be case III in Figure 10.

As there are no openly available data for general lami-
nates, the accuracy of the resulting predictions is assessed
by using data on cross-ply laminates. This is shown in

Figures 11–13. It should be emphasized here that the
predictions have no need of a critical energy release rate
value as they are based on critical energy density determined
from equation (5) through (7) and (33a-d) making use of
Ytis. In Figures 11 and 13, the value of Yt

is was obtained
from Ref. 19:

Y t
is ¼ 1:12

ffiffiffi
2

p
Y t (37)

Figure 8. Energy release rates for various cases as a function of
crack spacing.

Figure 6. Repeating unit to obtain longitudinal stiffness of a laminate with cracks and delaminations (case III).

Figure 7. Repeating unit to obtain longitudinal stiffness of a laminate with cracks and delaminations (case IV).
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where Yt is the transverse strength of the material with the
Yt value of 71 MPa in Figure 11 and 58.6 MPa for Figure 13
taken from the references. For Figure 12, the Yt

is value of
60 MPa was used as reported in the respective reference.

The delamination onset stress for [0/902]s and [0/904]s
laminates is shown in Figure 11. The predictions from the
present method are shown next to the test results with a
range corresponding to the three Cases examined also
shown. The predictions overlap most of the tests showing
good agreement. The differences from the test results in
Figure 11 are attributed to (a) the equation (37) used for Yt

is

for both laminates as insufficient data were available to
capture the dependence of the transverse in situ strength for
the lower stack thickness of the 90o plies, and (b) the de-
lamination pattern reported in Ref. 2 was a mixture of the
individual Cases examined here.

Similar good agreement in capturing the trend is observed
for [±25/90n]s laminates when compared to test results from
Ref. 20. The comparison is shown in Figure 12. No data
scatter were reported inRef. 20 so no direct comparison of the
ranges of the tests to the predictions can be made. As in the
previous Figure, Case III corresponds to the highest predicted
delamination onset load and Case I to the lowest.

A final comparison is made in Figure 13. The onset of
delamination crack density Donset as predicted by our
present method is compared to the predictions by Nairn and
Hu14 for different values of n in [0m/90n]s and [±45/90n]s
laminates as the values of n and m change. Good agreement
between the methods is observed.

The efficiency of the presented method allows trade
studies to examine the effect of different parameters. One
example is shown in Figure 14 where the layup of a laminate
under tension is varied. For [0/θ2]s laminates, values of θ
closer to 0o tend to have higher energy release rate values at

delamination onset than values closer to 90o. This trend
however is not monotonic. There is significant stretching/
shearing coupling in some of the laminates and the inter-
action between transverse tension and shear stresses in the
cracked θ plies is too complex to lead to a continuously
monotonic behaviour.

Other trends that were observed were that the onset of
delamination energy release rate in a cracked ply increases
with the thickness of the cracked ply or with the thickness of
the surrounding uncracked ply and decreases with an in-
crease in the ratio E1/E2 of the material.

Delamination growth

If the applied load is increased beyond the point at which
delaminations appeared at the tips of matrix cracks, these

Figure 9. Determination of matrix crack spacing to cause
delamination onset.

Figure 10. Determination of crack spacing at delamination onset.

Figure 11. Onset of delamination load in cracked cross-ply
laminates compared to tests from Refs. 2.
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delaminations will grow. An approach to determine the de-
lamination size as a function of applied load is proposed here.
First, it is assumed that the matrix crack spacing does not
change when the load increases further. Essentially, it is more
efficient for the laminate to dissipate energy in delamination
formation rather than creation of additional matrix cracks. This
corresponds to crack saturation where, as the loads increases,
the spacing remains constant and uniform.14,23–25

To proceed, a relationship between strain energy release
rate for growth and the delamination size is needed. As such

a resistance curve, a relatively simple semi-empirical ex-
pression proposed by Orange26 is used:

GR ¼ S2πa

g
�
1þ C2

ma
	 (38)

where GR is the strain energy change per unit area of crack
surface created, S and g are the shear strength and modulus
of the material, a is the delamination size and Cm is a
material-dependent parameter with units 1/√(length). It can
be seen that this expression has the standard shape of re-
sistance curve rising sharply and then asymptotically
reaching a value for large values of a. It is proposed here to
determine the value of Cm by requiring that, for large values
of Δa,GR equals the mode II critical energy release rateGIIC.
Then,

Cm ¼
ffiffiffiffiffiffiffiffiffiffi
S2π
gGIIc

s
(39)

The delamination size ao at delamination onset is
determined by equating the strain energy release rate for
a laminate with cracks and delaminations, equations
(33a-d) to that for a laminate with delaminations only,
equation (38):

GcþdðNx, onset,Donset, a0Þ ¼ GRða0Þ (40)Figure 12. Onset of delamination load in cracked [±25/90n]s
laminates compared to tests from Refs. 20.

Figure 13. Predicted crack density at delamination onset for various laminates compared to predictions in Refs. 14.
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Substituting:

1

4
h

L

Donset

Ec
x

Ec
x

Ed
x
� 1

� �
1� a0

Donset
þ a0

Donset

Ec
x

Ed
x

h i2ε2x, onset
8><
>:

9>=
>; ¼ S2πa0

g 1þ C2
ma0

� 	
(41)

An accurate approximation for ao can be obtained by
expanding the right hand side in a Taylor series and keeping
terms up to second order in ao. This leads to:

with Cm given by equation (39) and

A ¼ 1

4

h g

S2π
Ec
xðΔEÞ

�
L

D

�
ε2x, onset (43)

ΔE ¼ Ec
x

Ed
x

� 1 (44)

For delamination growth, equation (40) is solved again
but now Nx > Nx,onset replaces Nx,onset and a replaces ao. As
before, there are four cases corresponding to the four cases
shown in Figure 4:

with:

A ¼ 1

4

hG

S2π
Ec
xΔE

�
L

D

�
ε2x (46)

ΔE ¼ Ec
x

Ed
x

� 1 (47)

ΔE* ¼ Ec
x

Edel*
x

� 1 (48)

Published data with delamination size as a function
of applied load are relatively limited. Here, the accuracy
of equations (45a-d) is evaluated against test results
found in Ref. 3. For the material in Ref. 3, the following
values were used: S = 50 MPa, g = 2.85 GPa, and GIIc =
820 J/m2. The comparison of predictions to test results
for three cross-ply laminates is shown in Figure 15. As
before, a range of predictions is given in Figure 15,
corresponding to the four cases of Figure 4. For all three
laminates, the tests show there is a region with measured
delamination sizes without predictions from the present
method. This is because the predictions do not include

a0 ¼
AC2

m � 2 A
D ðΔEÞ � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
A
D

�2�
2ðΔEÞ þ C2

mD
	� 2 A

D

�
C2

mD� 2ðΔEÞ	
s

4 A
D ðΔEÞC2

m

(42)

I : aðDonset, εxÞ ¼
AC2

m � 2
A

Donset
ΔE � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
A

Donset

�2�
2ΔE þ C2

mDonset

	� 2
A

Donset

�
C2

mDonset � 2ΔE
	s

4
A

Donset
ΔEC2

m

II : aðDonset, εxÞ ¼
AC2

m � 2
A

Donset
ΔE � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
A

Donset

�2�
2ΔE þ C2

mDonset

	� 2
A

Donset

�
C2

mDonset � 2ΔE
	s

4
A

Donset
ΔEC2

m

III : aðDonset, εxÞ ¼
2AC2

m � A

Donset
ΔE � 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
A

Donset

�2�
ΔE þ 2C2

mDonset

	� 4
A

Donset

�
2C2

mDonset � ΔE
	s

2
A

Donset
ΔEC2

m

IV : aðDonset, εxÞ ¼
2AC2

m � 4
A

Donset
ΔE* � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2A

Donset

�2�
2ΔE* þ C2

mDonset

	� 4
A

Donset

�
C2

mDonset � 2ΔE*
	s

8
A

Donset
ΔE*C2

m

(45a-d)
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edge delaminations which would start irrespective of the
presence and spacing of matrix cracks. Beyond a certain
applied strain, the analysis presented here predicts
delamination sizes which are in good agreement with the
measured values for the [0/904]s and [0/906]s laminates
and slightly shifted to the left for the [0/902]s laminate
suggesting that the transverse in situ strength value used
in the analysis needs refinement.

Complete history of matrix cracks and delaminations

One of the advantages of the present method is that,
being essentially in closed form, it allows very rapid
construction of the complete history of cracks and de-
laminations in a laminate. An example is shown in
Figure 16 for the three laminates of Figure 15 under
uniaxial tension. In this Figure, crack spacing is measured
on the left y axis and delamination length on the right
y axis.

For low applied stress, there are no matrix cracks. This
is the region with the horizontal lines in the Figure. As the
applied stress increases cracks appear and their spacing
rapidly decreases. This is shown by the (near) vertical
lines in the Figure. Upon further increase of the applied
stress, the crack spacing has become uniform and in-
creases more slowly as shown by the curved portion of the
three continuous curves in Figure 16. Then, a stress is
reached where the cracks saturate and delaminations
appear. Their size at onset is smaller than the current
crack spacing. The evolution of these delaminations as
the stress increases further is delineated by the three
dashed curves with the delamination sizes read off the
right y axis. At some point, the delaminations grow to the
next matrix crack and there is no growth of delaminations
beyond that point. This is indicated by the horizontal
dashed portions of the three lines.

Figure 15. Size of delaminations emanating from matrix cracks
compared to tests from Refs. 3.

Figure 16. Matrix crack evolution and delamination growth in cross-ply laminates.

Figure 14. Dependence of strain energy release rate at onset of
delamination on matrix crack spacing D for different layups.
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Discussion

There were several simplifications introduced in the approach
presented above which should not be overlooked and which
are the subject of future expansions of the work: (a) Thermal
(and swelling) stresses were neglected. This was done as a
simpler first step to examine the accuracy of the approach
without them. Conceptually, the extension to include these
stresses is relatively simple by adding the corresponding
thermal and swelling strains. It should be noted that, while
such an extension is necessary, previous work,27 has shown
that at least for certain laminates and materials, their effect is
small. (b) There is a three dimensional stress field at the tips
of the matrix cracks and around delaminations whose effects
were neglected. Moreover, the fact that, under load the de-
laminations open the tips of the matrix cracks affecting the
local stiffness significantly, was also neglected. These effects
can be taken into account with detailed finite element models
and are addressed in detail in the work by Kahla.28 The
approach presented here aims at demonstrating that the crack
density and the delamination length can be used to predict
laminate stiffness in presence of damage or, conversely, that
laminate stiffness can be used to determine energy release
rate and, through that, delamination onset and growth. The
favourable comparison with tests suggests that the method is
promising but further improvements are necessary. (c) The
three-dimensional stress fields created near the crack tips and
delaminations will cause local bending which would be more
pronounced if the delamination pattern is unsymmetric as in
Case IV. These are neglected in the present work.

Summary and conclusions

The strain energy release rate for symmetric laminates under
tension or shear containing matrix cracks or matrix cracks and
delaminations was determined. Four different cases were
distinguished for the delamination pattern leading to a range of
predictions for the crack spacing at which delaminations will
start and the corresponding size of delamination onset. A
delamination resistance curvewas proposedwhichwas used to
determine the delamination size for higher applied loads. Good
agreement with published test results was observed. It was
found that, as the thickness of the cracked ply (or plies) in-
creases, the tendency for matrix crack creation increases and
delaminations at the tips of these cracks will start earlier. Also,
as the orthotropy ratio of the pristine material increases, the
tendency to crack the matrix increases and the load at which
delaminations will appear increases. Finally, for a ply under
combined shear and transverse tension, the relativemagnitudes
of these stresses will dictate when cracks and delaminations
will appear. The approach presented allows determination of
the complete history of matrix cracks and crack tip delami-
nations for symmetric laminates.
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Appendix

The quantity f(D) in equation (35) is given by:

f ðDÞ ¼ 64
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with n odd.
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