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DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point
Clouds
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Learning from 3D point-cloud data has rapidly gainedmomentum, motivated

by the success of deep learning on images and the increased availability of

3D data. In this paper, we aim to construct anisotropic convolution layers that

work directly on the surface derived from a point cloud. This is challenging

because of the lack of a global coordinate system for tangential directions

on surfaces. We introduce DeltaConv, a convolution layer that combines

geometric operators from vector calculus to enable the construction of

anisotropic filters on point clouds. Because these operators are defined on

scalar- and vector-fields, we separate the network into a scalar- and a vector-

stream, which are connected by the operators. The vector stream enables the

network to explicitly represent, evaluate, and process directional information.

Our convolutions are robust and simple to implement and match or improve

on state-of-the-art approaches on several benchmarks, while also speeding

up training and inference.

CCS Concepts: • Computingmethodologies→Neural networks; Shape
analysis.
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1 INTRODUCTION
The success of convolutional neural networks (CNNs) on images and

the increasing availability of point-cloud data motivate generalizing

CNNs from images to 3D point clouds [Bronstein et al. 2017; Guo

et al. 2020; Liu et al. 2019d]. One way to achieve this is to design

convolutions that operate directly on the surface. Such intrinsic
convolutions reduce the kernel space to tangent spaces, which are

two-dimensional on surfaces. Compared to extrinsic convolutions,

intrinsic convolutions can be more efficient and the search space for

kernels is reduced, they naturally ignore empty space, and they are

robust to rigid- and non-rigid deformations [Boscaini et al. 2016].
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Fig. 1. Images have a global coordinate system (left). Point clouds do not
(right), complicating the design of anisotropic convolutions.

Examples of intrinsic convolutions on point clouds are GCN [Kipf

and Welling 2017], PointNet++ [Qi et al. 2017b], EdgeConv [Wang

et al. 2019], and DiffusionNet [Sharp et al. 2021].

Our focus is on constructing intrinsic convolutions which are

anisotropic or direction-dependent. This is difficult because of the

fundamental challenge that non-linear manifolds lack a global coor-

dinate system. As an illustration of the problem, consider a CNN on

images (Figure 1, left). Because an image has a globally consistent

up-direction, the network can build anisotropic filters that activate

the same way across the image. For example, one filter can test

for vertical edges and the other for horizontal edges. No matter

where the edges are in the image, the filter response is consistent. In

subsequent layers, the output of these filters can be combined, e.g.,

to find a corner. Because we do not have a global coordinate system

on surfaces (Figure 1, right), one cannot build and use anisotropic

filters in the same way as on images. This limits current intrin-

sic convolutions on point clouds. For example, GCNs filters are

isotropic. PointNet++ uses maximum aggregation and adds relative

point positions, but still applies the same weight matrix to each

neighboring point.

We introduce a new way to construct anisotropic convolution

layers for geometric CNNs. Our convolutions are described in terms

of geometric operators instead of kernels. The operator-based per-

spective is familiar from GCN, which uses the Laplacian on graphs.

While the Laplacian is a natural fit for intrinsic learning on sur-

faces, it is isotropic. A classical way of creating anisotropic oper-

ators is to write the Laplacian as the divergence of the gradient

and apply a linear or non-linear operation on the intermediate vec-

tor field [Weickert 1998]. We build on this idea by constructing

learnable anisotropic operators from elemental geometric operators:

the gradient, co-gradient, divergence, curl, Laplacian, and Hodge-

Laplacian. These operators are defined on spaces of scalar fields

and tangential vector fields. Hence, our networks are split into two

ACM Trans. Graph., Vol. 41, No. 4, Article 105. Publication date: July 2022.
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Fig. 2. A ResNet with varying convolutions is overfitted to a target image
created with twenty anisotropic diffusion steps. DeltaConv can reproduce
the filter well, where other convolutions struggle. (Courtesy NASA)

streams: one stream contains scalars and the other tangential vec-

tors. The operators map along and between the two streams. The

vector stream encodes feature activations and directions along the

surface, allowing the network to test and relate directions in subse-

quent layers. Depending on the task, the network outputs scalars or

vectors. A property of a network constructed from these operators

is that it is coordinate-independent: though bases of the tangent

spaces of a point cloud need to be chosen, the weights learned by the

network will be the same no matter what bases are chosen. Hence,

we can realize direction-dependent convolutions despite the lack of

global coordinate systems on surfaces and without the need of spe-

cially constructed tangent space bases. We name our convolutions

DeltaConv.
To get an idea of the benefits of DeltaConv, consider the anisotropic

image filter proposed by Perona and Malik [1990]. The Perona–

Malik filter integrates an anisotropic diffusion equation in which

the anisotropic operator combines the gradient, a non-linearity,

and the divergence. DeltaConv has access to the building blocks

needed to construct such an anisotropic operator and to perform

explicit integration steps of the diffusion equation. This is illustrated

in Figure 2. We trained a simple ResNet [He et al. 2016] to match

the result of twenty anisotropic diffusion steps on a sample image.

While DeltaConv can reproduce the filter well, other intrinsic con-

volutions and regular image convolutions fail to capture the effect,

producing overly smooth signals or artifacts instead. Additional

benefits of our approach are the following: by maintaining a stream

of vector features throughout the network, our convolutions can

relate directional information between different points on the sur-

face. Together with the increased expressiveness of convolutions

due to anisotropy, this results in increased accuracy over isotropic

convolutions, as well as state-of-the-art approaches, as we show in

our experiments. Also, each operator is implemented as a sparse

matrix and the combination of operators is computed per point,

which is simple and efficient.

In our experiments, we demonstrate that a simple architecture

with only a few DeltaConv blocks can match and, in some cases,

outperform state-of-the-art results using more complex architec-

tures. We achieve 93.8% accuracy on ModelNet40, 84.7% on the

most difficult variant of ScanObjectNN, 86.9 mIoU on ShapeNet, and

99.6% on SHREC11, a dataset of non-rigidly deformed shapes. Our

ablation studies show that adding the vector stream can decrease

the error by up to 25% (from 90.4% to 92.8%) on ModelNet40 and

up to 21% for ShapeNet (from 81.1 to 85.1 mIoU), while the use of

per-point directional features speeds up inference by 1.5 − 2× and

the backward pass by 2.5 − 30× compared to edge-based features.

Summarizing our main contributions:

• We introduce a new construction of convolution layers for

geometric CNNs that supports the construction of anisotropic

filters. This is achieved by letting networks learn convolu-

tions as compositions and linear combinations of geometric

differential operators and point-wise non-linearities. More-

over, the networks maintain a stream of vector features in

addition to the usual stream of scalar features and use the

operators to communicate in and between the streams.

• We propose a network architecture that realizes our approach

and adapt the differential operators to work effectively in our

networks.

• We implement and evaluate the network for point clouds
1
and

propose techniques to cope with undersampled regions, noise,

and missing information prevalent in point cloud learning.

2 RELATED WORK
We focus our discussion of related work on the most relevant topics.

Please refer to surveys on geometric deep learning [Bronstein et al.

2021, 2017] and point cloud learning [Guo et al. 2020; Liu et al.

2019d] for a more comprehensive overview of this expanding field.

Point cloud networks and anisotropy. A common approach for

learning on point-cloud data is to learn features for each point

using a multi-layer perceptron (MLP), followed by local or global

aggregation. Many methods also learn features on local point pairs

before maximum aggregation. Well-known examples are PointNet

and its successor PointNet++ [Qi et al. 2017a,b]. Several follow-up

works improve speed and accuracy, for example by adding more

combinations of point-pair features [Le et al. 2020; Liu et al. 2020; Lu

et al. 2021; Qiu et al. 2021a; Sun et al. 2019; Xu et al. 2021b; Yang et al.

2019; Zhao et al. 2019]. Some of these point-wise MLPs explicitly

encode anisotropy by splitting up the MLP for each 3D axis [Lan

et al. 2019; Liu et al. 2020]. Concepts from transformers [Vaswani

et al. 2017] have also made their way to point clouds [Lin et al.

2020; Zhang et al. 2021; Zhao et al. 2021]. These networks use self-

attention to compute aggregation weights for (neighboring) points.

Spatial information is incorporated by adding relative positions in

3D. Attention-based aggregation could be used in our approach as a

replacement of maximum aggregation. The distance between points

could serve as an intrinsic spatial encoding.

Pseudo-grid convolutions are a more direct translation of image

convolutions to point clouds. Many of these are defined in 3D and

thus support anisotropy in 3D coordinates. Several works learn a

continuous kernel and apply it to local point-cloud regions [Atzmon

et al. 2018; Boulch 2020; Fey et al. 2018; Hermosilla et al. 2018; Liu

et al. 2019a,b; Thomas et al. 2019; Wu et al. 2019; Xu et al. 2021a].

Others learn discrete kernels and map points in local regions to a

discrete grid [Choy et al. 2019; Graham et al. 2018; Hua et al. 2018;

1
The implementation is available at https://github.com/rubenwiersma/deltaconv.
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Lei et al. 2019; Li et al. 2018]. We go into an orthogonal direction by

building intrinsic convolutions, which operate in fewer dimensions

and naturally generalize to (non-)rigidly deformed shapes.

Finally, graph-based approaches create a k-nearest neighbor- or

radius-graph from the input set and apply graph convolutions [Chen

et al. 2020; Dominguez et al. 2018; Feng et al. 2019; Liu et al. 2019c;

Pan et al. 2018; Shen et al. 2018; Simonovsky and Komodakis 2017;

Te et al. 2018; Wang et al. 2018, 2019; Zhang et al. 2019; Zhang and

Rabbat 2018]. DGCNN [Wang et al. 2019] introduces the EdgeConv

operator and a dynamic graph component, which reconnects the

k-nearest neighbor graph inside the network. EdgeConv computes

the maximum over feature differences, which allows the network

to represent directions in its channels. Channel-wise directions can
resemble spatial directions if spatial coordinates are provided as

input, which is only the case in the first layer for DGCNN. In contrast,

our convolutions support anisotropy directly in the operators.

Rotation-equivariant approaches. Architectures with two streams

and vector-valued features are also used in rotation-equivariant

approaches for point clouds and meshes. A group of works stud-

ies rotation-equivariance in 3D space, aiming to design networks

invariant to rigid point-cloud transformations [Cohen et al. 2018;

Esteves et al. 2017; Poulenard et al. 2019; Thomas et al. 2018]. This

concept is also incorporated in the transformer setups [Fuchs et al.

2020]. Rotation-equivariant kernels typically output vector-valued

features. Vector Neurons simplify their use by linearly combining

3D vectors, followed by a vector non-linearity [Deng et al. 2021].

Our use of vector MLPs is similar. Differences are that we use tan-

gential vectors, rather than 3D vectors, and we derive these vectors

inside the network using geometric operators.

An alternative approach is to build networks using intrinsic

rotation-equivariant convolutions on meshes [Cohen et al. 2019;

de Haan et al. 2021; Gerken et al. 2021; Poulenard and Ovsjanikov

2018; Weiler et al. 2021; Wiersma et al. 2020]. These networks use

local parametrizations and apply rotation- or gauge-equivariant

kernels in the parameter domain to achieve independence from the

choice of bases in the tangent spaces. Our approach is an alternative

to gauge-equivariant networks. The use of differential operators also

makes our networks independent of the choice of local coordinate

systems. A benefit of our approach is that local parametrizations are

not needed. For example, gauge-equivariant approaches typically

use the exponential map for local parametrization but neglect the

angular distortion induced by the parametrization. To the best of our

knowledge, we are the first to implement and evaluate an intrinsic

two-stream architecture on point clouds.

Geometric operators. Multiple authors use geometric operators to

construct convolutions. The graph-Laplacian is used in GCN [Kipf

and Welling 2017]. Spectral networks for learning on graphs are

based on the eigenpairs of the graph-Laplacian [Bruna et al. 2014].

Surface networks for triangle meshes [Kostrikov et al. 2018] in-

terleave the Laplacian with the extrinsic Dirac operator [Liu et al.

2017]. Parametrized Differential Operators (PDOs) [Jiang et al. 2019]

use the gradient and divergence operators to learn from spherical

signals on unstructured grids. DiffGCN [Eliasof and Treister 2020]

uses finite difference schemes of the gradient and divergence opera-

tors for the construction of graph networks. DiffusionNet [Sharp

et al. 2021] learns diffusion using the Laplace–Beltrami operator

and directional features from gradients. DeltaConv uses a larger set

of operators, combining and concatenating operators from vector

calculus. In addition, it allows the processing of directional informa-

tion in the stream of vector-valued features. A related approach is

HodgeNet [Smirnov and Solomon 2021], which learns to build oper-

ators using the structure of differential operators. Outside of deep

learning, differential operators are widely applied for the analysis

of 3D shapes [Crane et al. 2013a; de Goes et al. 2016].

3 METHOD
We construct anisotropic convolutions by learning combinations of

geometric differential operators. Because these operators are defined

on scalar- and vector fields, we split our network into scalar and

vector features. In this section, we describe these two streams, the

operators and how they are discretized, and how combinations of

the operators are learned. Finally, we consider the properties that

result from this construction.

Streams. Consider a point cloud P ∈ R𝑁×3
with 𝑁 points ar-

ranged in an 𝑁 × 3 matrix. All points can be associated with 𝐶

additional features, which are stored in a matrix X ∈ R𝑁×𝐶
. In-

side the network, we refer to the features in layer 𝑙 at point 𝑖 as

x(𝑙)
𝑖

∈ R𝐶𝑙
. All of these features constitute the scalar stream.

The vector stream runs alongside the scalar stream. Each feature

in the vector stream is a tangent vector, encoded by coefficients

(𝛼𝑢
𝑖
, 𝛼𝑣

𝑖
) with respect to a basis in the corresponding tangent plane.

The basis can be any pair of orthonormal vectors that are orthogonal

to the normal vector. The coefficients are interleaved for each point,

forming the matrix of features V(𝑙) ∈ R2𝑁×𝐶𝑙
. One channel in V(𝑙)

is a column of coefficients: [𝛼𝑢
1
, 𝛼𝑣

1
, . . . , 𝛼𝑢

𝑖
, 𝛼𝑣

𝑖
, . . . , 𝛼𝑢

𝑁
, 𝛼𝑣

𝑁
]⊺ . The

input for the vector stream is a vector field defined at each point.

In our experiments, we use the gradients of the input to the scalar

stream. We will refer to the continuous counterparts of X and V as

𝑋 and 𝑉 , respectively.

3.1 Scalar to scalar: maximum aggregation
A simplified version of point-based MLPs is applied inside the scalar

stream, building on PointNet++ [Qi et al. 2017b] and EdgeConv

[Wang et al. 2019]. We apply an MLP per point and then perform

maximum aggregation over a𝑘-nn neighborhoodN(𝑖). The features
in the scalar stream are computed as

x(𝑙+1)
𝑖

= ℎΘ0 (x
(𝑙)
𝑖

) + max

𝑗 ∈N(𝑖)
ℎΘ1 (x

(𝑙)
𝑗
), (1)

where ℎΘ0 and ℎΘ1 denote multi-layer perceptrons (MLPs), consist-

ing of fully connected layers, batch normalization [Ioffe and Szegedy

2015], and non-linearities. If point positions are used as input, they

are centralized before maximum aggregation: p̂𝑗 = p𝑗 − p𝑖 .
The biggest difference with EdgeConv and PointNet++ is that we

use only point-based features within the network instead of edge-

based features. Thematrix multiplication used inside theMLP is thus

not applied to 𝑘𝑁 feature vectors, but 𝑁 point-wise feature vectors.

This has a significant impact on the run time of the forward and

backward passes. Directional information is encoded in per-point

vectors instead of edges.

ACM Trans. Graph., Vol. 41, No. 4, Article 105. Publication date: July 2022.
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3.2 Scalar to vector: Gradient and co-gradient
The gradient and co-gradient operators connect the scalar stream to

the vector stream. The gradients of a function represent the largest

rate of change and the directions of that change as a vector at each

point. The co-gradients are 90-degree rotations of the gradients.

Combined, the gradients and co-gradients span the tangent planes,

allowing the network to scale, skew, and rotate the gradient vectors.

We construct a discrete gradient operator using a moving least-

squares approach on neighborhoods with 𝑘 neighbors [Nealen 2004].

This approach is used in modeling and processing for point clouds

and solving differential equations on point clouds [Crane et al. 2013b;

Liang and Zhao 2013]. The procedure and accompanying theory

is outlined in the supplemental material. The gradient operator is

represented as a sparse matrix G ∈ R2𝑁×𝑁
. It takes 𝑁 values repre-

senting features on the points and outputs 2𝑁 values representing

the gradient expressed in coefficients of the tangent basis of each

point. The matrix is highly sparse as it only contains 2𝑘 elements in

each row. The co-gradient JG is a composition of the gradient with

a block-diagonal sparse matrix J ∈ R2𝑁×2𝑁
, where each block in J

is a 2 × 2 90-degree rotation matrix.

Point clouds typically contain undersampled regions and noise.

This can be problematic for the moving least-squares procedure.

Consider the example in Figure 3, a chair with thin legs. Only a few

points lie along the line constituting the legs of the chair. Hence,

the perpendicular direction to the line is undersampled, resulting

in a volatile least-squares fit: a minor perturbation of one of the

points can heavily influence the outcome (left, circled area). We

add a regularization term scaled by 𝜆 to the least-squares fitting

procedure, which seeks tomitigate this effect (right). This is a known

technique referred to as ridge regression or Tikhonov regularization.

We also argue that the gradient operator should be normalized,

motivated by how information is fused in the network. If G exhibits

diverging or converging behavior, features resulting from G will

also diverge or converge. This is undesirable when the gradient is

applied multiple times in the network. Features arising from the

gradient operation would then have a different order of magnitude

which needs to be accounted for by the network weights. Therefore,

we normalize G by the ℓ∞-operator norm, which provides an upper

bound on the scaling behavior of an operator

Ĝ = G/|G|∞, where |G|∞ = max

𝑖

∑︁
𝑗

|G𝑖 𝑗 |. (2)

λ = 0

�

�

λ = 0.0001

Fig. 3. Gradient of the x-coordinate on a chair without regularization (left)
and with regularization (right).

3.3 Vector to scalar: Divergence, Curl, and Norm
The vector stream connects back to the scalar stream with diver-

gence, curl, and norm. These operators are commonly used to ana-

lyze vector fields and indicate features such as sinks, sources, vor-

tices, and the strength of the vector field. The network can use them

as building blocks for anisotropic operators.

The discrete divergence is also constructed with a moving least-

squares approach, which is described in the supplement. Divergence

is represented as a sparse matrix D ∈ R𝑁×2𝑁
, with 2𝑘𝑁 elements.

Curl is derived as −DJ.

3.4 Vector to vector: Hodge Laplacian
Vector features are diffused in the vector stream using a combination

of the identity I and theHodge Laplacian𝚫 of𝑉 . Applying theHodge

Laplacian to a vector field𝑉 results in another vector field encoding

the difference between the vector at each point and its neighbors.

The Hodge Laplacian can be formulated as a combination of grad,

div, curl and J [Brandt et al. 2017]

𝚫 = −(grad div + J grad curl ) . (3)

In the discrete setting, we replace each operator with its discrete

variant

L = −(GD − JGDJ) . (4)

3.5 Why these operators?
The operators we use are related to each other in a fundamental

way. They form a metric version of the de Rham complex of a surface
[Wardetzky 2006]. The following diagram lays out the connections

described in the previous sections, where each of the operators maps

between functions (scalar fields) and vector fields.

𝑋 𝑉 𝑋
grad

div

curl

co-grad

(5)

Note that the bottom row is a 90-degree rotated version of the top

row. If we follow the diagram from left to right and apply grad

and then curl to any function, the output will always be zero. The

same holds for the path from right to left. The operators listed are

first-order derivatives. Laplacians, which are second-order deriva-

tives, can be formed by composing the first-order operators. For

functions: to vector fieldswith grad and back againwith div (Laplace-

Beltrami). For vector fields: we go to scalars with div and curl and

back again with grad and co-grad (Hodge-Laplacian). DeltaConv

learns to combine these operators and supports anisotropy by adding

non-linearities in-between.

3.6 DeltaConv: Learning Anisotropic Operators
Each of the operations either outputs scalar-valued or vector-valued

features. We concatenate all the features belonging to each stream

and then combine these features with parametrized functions

v′𝑖 = hΘ0 (v𝑖 , (GX)𝑖 , (LV)𝑖 ),
x′𝑖 = ℎΘ1 (x𝑖 , (DV′)𝑖 , (−DJV′)𝑖 , ∥v′𝑖 ∥) + max

𝑗 ∈N𝑖

ℎΘ2 (x𝑗 ) . (6)

We use the prime to indicate features in layer 𝑙 +1. All other features
are from layer 𝑙 . ℎΘ1 and ℎΘ2 denote standard MLPs. hΘ0 denotes

an MLP used for vectors. The vector MLPs scale and sum vectors,

ACM Trans. Graph., Vol. 41, No. 4, Article 105. Publication date: July 2022.
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Fig. 4. Schematic of DeltaConv.

which means they do not work on individual vector coefficients and

are coordinate-independent. Recall that V ∈ R2𝑁×𝐶 (𝑙 )
interleaves

the vector coefficients for each point in the columns. One layer in

the vector MLP is applied to V as follows

V′ = 𝜎 (VW), (7)

where W ∈ R𝐶 (𝑙 )×𝐶 (𝑙+1)
is a weight matrix and 𝜎 is a non-linearity

applied to vector norms. Matrix multiplication with W linearly com-

bines the vector features but the individual coefficients of a vector

are not mixed. Before the vector MLP is applied, we concatenate the

90-degree rotated vectors to the input features. This allows the MLP

to also rotate vector features and enriches the set of operators. For

example, the 90-degree rotated gradient is the co-gradient. The vec-

tor MLP can learn to combine information from local neighborhoods

(through the gradient and Hodge–Laplacian), as well as informa-

tion from different channels (through the identity). A schematic

overview of Equation 6 can be found in Figure 4.

While Equation 6 formulates DeltaConv in terms of MLPs and

feature concatenation, an alternative perspective is to consider the

operations in Equation 6 as linearly combining the elementary oper-

ators and composing them with non-linearities in-between to form

anisotropic geometric operators.

3.7 Properties of DeltaConv
The building blocks of DeltaConv, such as the gradient, divergence,

curl, and the combination with non-linearities allow DeltaConv to

build nonlinear anisotropic convolution filters. This is illustrated

by the example of the Perona–Malik filter in Figure 2. The vector

stream also allows DeltaConv to process vector features and their

relative directions directly with the appropriate operators.

DeltaConv is formulated in terms of smooth differential operators

and is not restricted to a specific surface representation. In this work,

we implement DeltaConv for point clouds and images. However,

the concepts generalize to other representations. For example, an

implementation for meshes could be done using finite element dis-

cretizations [Brandt et al. 2017] or discrete exterior calculus [Crane

et al. 2013a].

DeltaConv is coordinate-independent, meaning that the weights

used in DeltaConv do not depend on the choices of tangent bases.

For example, a forward pass on a shape with one choice of bases

leads to the same output andweight updates when runwith different

bases. The coordinate-independence follows from the fact that all

elementary operations in DeltaConv, such as applying geometric

operators and vector MLPs, are coordinate-independent. It is known

from differential geometry that one obtains the same results with

geometric operators, no matter which basis is chosen [O’Neill 1983].

This property is preserved by the discretization of the operators and

thus inherited by DeltaConv.

Finally, each of the building blocks of DeltaConv is isometry

invariant. That means DeltaConv does not change if a shape is

isometrically deformed. This property can be beneficial for tasks

where shapes are rigidly or non-rigidly deformed. If the surface

orientation is flipped, rotations in the tangent plane are flipped as

well. DeltaConv is robust to this if only the gradient and divergence

are used.

4 EXPERIMENTS
We validate our approach with comparisons to state-of-the-art ap-

proaches on classification and segmentation. In addition, we perform

ablation studies to provide more insight into the effect of the vector

stream on anisotropy, accuracy, and efficiency.

4.1 Implementation details
In our experiments we use network architectures based on DGCNN

[Wang et al. 2019]. We replace each EdgeConv block with a Delta-

Conv block (Figure 4) and do not use the dynamic graph compo-

nent. Thus, the networks operate at a single scale on local neigh-

borhoods. Despite this simple architecture, DeltaConv achieves

state-of-the-art results. To show what architectural optimizations

mean for DeltaConv, we also test the U-ResNet architecture used in

KPFCNN [Thomas et al. 2019] but with the convolution blocks in

the encoder replaced by DeltaConv blocks. In the downsampling

blocks used by these networks, we pool vector features by aver-

aging them with parallel transport [Wiersma et al. 2020]. More

details are provided in the supplemental material. Code is available

at https://github.com/rubenwiersma/deltaconv.

Data transforms. A 𝑘-nn graph is computed for every shape. This

graph is used for maximum aggregation in the scalar stream. It is

reused to estimate normals when necessary and to construct the

gradient. For each experiment, we use xyz-coordinates as input to

the network and augment them with a random scale and trans-

lation, similar to previous works. Some datasets require specific

augmentations, which are detailed in their respective sections.

Training. The parameters in the networks are optimized with

stochastic gradient descent (SGD) with an initial learning rate of 0.1,

momentum of 0.9 and weight decay of 0.0001. The learning rate is

updated using a cosine annealing scheduler [Loshchilov and Hutter

2017], which decreases the learning rate to 0.001.

4.2 Classification
For classification, we study ModelNet40 [Wu et al. 2015], ScanOb-

jectNN [Uy et al. 2019], and SHREC11 [Lian 2011]. With these ex-

periments, we aim to demonstrate that our networks can achieve

state-of-the-art performance on a wide range of challenges: point

clouds sampled from CAD models, real-world scans, and non-rigid,

deformable objects.

ModelNet40. The ModelNet40 dataset [Wu et al. 2015] consists of

12,311 CAD models from 40 categories. 9,843 models are used for
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Table 1. Classification results on ModelNet40.

Method Mean Overall

Class Accuracy Accuracy

PointNet++ [Qi et al. 2017b] - 90.7

PointCNN [Li et al. 2018] 88.1 92.2

DGCNN [Wang et al. 2019] 90.2 92.9

KPConv deform [Thomas et al. 2019] - 92.7

KPConv rigid [Thomas et al. 2019] - 92.9

DensePoint [Liu et al. 2019a] - 93.2

RS-CNN [Liu et al. 2019b] - 93.6

GBNet [Qiu et al. 2021b] 91.0 93.8
PointTransformer [Zhao et al. 2021] 90.6 93.7

PAConv [Xu et al. 2021a] - 93.6

Simpleview [Goyal et al. 2021] - 93.6

Point Voxel Transformer [Zhang et al. 2021] - 93.6

CurveNet [Xiang et al. 2021] - 93.8

DeltaNet (ours) 91.2 93.8

training and 2,468 models for testing. Each point cloud consists of

1,024 points sampled from the surface using a uniform sampling of

8,192 points from mesh faces and subsequent furthest point sam-

pling (FPS). We use 20 neighbors for maximum aggregation and

to construct the gradient and divergence. Ground-truth normals

are used to define tangent spaces for these operators and the reg-

ularizer is set to 𝜆 = 0.01. As input to the network, we use the

xyz-coordinates. The classification architecture is optimized for 250

epochs. We do not use any voting procedure and list results without

voting.

The results for this experiment can be found in Table 1. Delta-

Conv improves significantly on the most related maximum aggre-

gation operators and is on par with or better than state-of-the-art

approaches.

ScanObjectNN. ScanObjectNN [Uy et al. 2019] contains 2,902

unique object instances with 15 object categories sampled from Sce-

neNN [Hua et al. 2016] and ScanNet [Dai et al. 2017]. The dataset is

enriched to ∼ 15, 000 objects by preserving or removing background

points and by perturbing bounding boxes. The variant without back-

ground points is tested without any perturbations (no bg). The

variant with background points is both tested without (bg) and

with perturbations: Bounding boxes are translated (t), rotated (r),

and scaled (s) before each shape is extracted. This means that some

shapes are cut off, rotated, or scaled. t25 and t50 denote a translation

by 25% and 50% of the bounding box size, respectively.

We use a modified version of the classification architecture with

four convolution blocks with the following output dimensions: 64,

64, 64, 128. This setup matches the architecture used for DGCNN in

[Uy et al. 2019]. Normals are estimated with 10 neighbors per point

and the operators are constructed with 20 neighbors and 𝜆 = 0.001.

As input, we provide the xyz-positions, augmented with a random

rotation around the up-axis and a random scale 𝑆 ∈ U(4/5, 5/4).
The network is trained for 250 epochs.

Our results are compared to those reported by the authors of

ScanObjectNN (row 1-8) [Uy et al. 2019] and other recent approaches

in Table 2. We find that our approach outperforms all networks

for every type of perturbation, including networks that explicitly

account for background points.

Table 2. Classification results on ScanObjectNN.

Method no bg bg t25 t25r t50r t50rs

3DmFV [Ben-Shabat et al. 2018] 73.8 68.2 67.1 67.4 63.5 63.0

PointNet [Qi et al. 2017a] 79.2 73.3 73.5 72.7 68.2 68.2

SpiderCNN [Xu et al. 2018] 79.5 77.1 78.1 77.7 73.8 73.7

PointNet++ [Qi et al. 2017b] 84.3 82.3 82.7 81.4 79.1 77.9

DGCNN [Wang et al. 2019] 86.2 82.8 83.3 81.5 80.0 78.1

PointCNN [Li et al. 2018] 85.5 86.1 83.6 82.5 78.5 78.5

BGA-PN++ [Uy et al. 2019] - - - - - 80.2

BGA-DGCNN [Uy et al. 2019] - - - - - 79.9

GBNet [Qiu et al. 2021b] - - - - - 80.5

GDANet [Xu et al. 2021b] 88.5 87.0 - - - -

DRNet [Qiu et al. 2021a] - - - - - 80.3

DeltaNet (ours) 89.5 89.3 89.4 87.0 85.1 84.7

SHREC11. The SHREC11 dataset [Lian 2011] consists of 900 non-

rigidly deformed shapes, 30 each from 30 shape classes. This experi-

ment aims to validate the claim that our approach is well suited for

non-rigid deformations. Like previous works [Hanocka et al. 2019;

Sharp et al. 2021; Wiersma et al. 2020], we train on 10 randomly

selected shapes from each class and report the average over 10 runs.

We sample 2048 points from the simplified meshes used in MeshC-

NNs experiments [Hanocka et al. 2019] and use 20 neighbors and

mesh normals to construct the operators (𝜆 = 0.001). As input, we

provide xyz-coordinates, which are randomly rotated along each

axis. We decrease the number of parameters in each convolution of

the classification architecture to 32, since the dataset is much smaller

than other datasets. The network is trained for 100 epochs. We find

that our architecture is able to improve on state-of-the-art results

(Table 3), validating the effectiveness of our intrinsic approach on

deformable shapes.

4.3 Segmentation
For segmentation, we evaluate our architecture on ShapeNet (part

segmentation) [Yi et al. 2016]. ShapeNet consists of 16,881 shapes

from 16 categories. Each shape is annotated with up to six parts, to-

taling 50 parts.We use the point sampling of 2,048 points provided by

the authors of PointNet [Qi et al. 2017a] and the train/validation/test

split follows [Chang et al. 2015]. The operators are constructed with

30 neighbors and ground-truth normals to define tangent spaces

Table 3. Classification results on SHREC11.

Method Accuracy

MeshCNN [Hanocka et al. 2019] 91.0

HSN [Wiersma et al. 2020] 96.1

MeshWalker [Lahav and Tal 2020] 97.1

PD-MeshNet [Milano et al. 2020] 99.1

HodgeNet [Smirnov and Solomon 2021] 94.7

FC [Mitchel et al. 2021] 99.2

DiffusionNet (xyz) [Sharp et al. 2021] 99.4

DiffusionNet (hks) [Sharp et al. 2021] 99.5

DeltaNet (ours) 99.6
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Table 4. Part segmentation results on ShapeNet.

Method Mean

inst. mIoU

PointNet++ [Qi et al. 2017b] 85.1

PointCNN [Li et al. 2018] 86.1

DGCNN [Wang et al. 2019] 85.2

KPConv deform [Thomas et al. 2019] 86.4

KPConv rigid [Thomas et al. 2019] 86.2

GDANet [Xu et al. 2021b] 86.5

PointTransformer [Zhao et al. 2021] 86.6

PointVoxelTransformer [Zhang et al. 2021] 86.5

CurveNet [Xiang et al. 2021] 86.8

DeltaNet (ours) 86.6

Delta-U-ResNet (ours) 86.9

(𝜆 = 0.001). The xyz-coordinates are provided as input to the net-

work, which is trained for 200 epochs. During testing, we evaluate

each shape with ten random augmentations and aggregate the re-

sults with a voting procedure. Such a voting approach is used in the

most recent works that we compare with.

The results are shown in Table 4, where our approach, especially

the U-ResNet variant, improves upon the state-of-the-art approaches

on the mean instance IoUmetric and in many of the shape categories

(full breakdown in the supplemental material). For each category,

DeltaConv is either comparable to or better than other architectures

and significantly better than the most related intrinsic approaches

(PointNet++ and DGCNN). In Figure 5, we provide feature visual-

izations to give an idea of the features derived by the network.

4.4 Ablation Studies
We aim to validate the claim of anisotropy, isolate the effect of the

vector stream, validate the choices to regularize and normalize the

gradient and divergence operators, and investigate the impact of our

approach on the timing and parameter counts of these networks.

Anisotropy. To validate that DeltaConv supports anisotropy, we

train a network to mimic anisotropic diffusion [Perona and Malik

1990]. A ResNet [He et al. 2016] with 16 layers and 16 channels in the

hidden layers is trained for 100 iterations with Adam [Kingma and

Ba 2015] to match a target image generated with 20 anisotropic

diffusion steps. In each diffusion step, the gradients are scaled

with exp(−(|𝑣 |/0.05)2). We vary the convolution blocks in the net-

work with the ones from DiffusionNet [Sharp et al. 2021], Edge-

Conv [Wang et al. 2019], PointNet++ [Qi et al. 2017b], GCN [Kipf

and Welling 2017], and regular image CNNs. For DiffusionNet, we

set the diffusion time to a fixed value, as we are interested in the

ability of the convolution to derive anisotropic filters through its

gradient features. For all other convolutions, the neighborhoods

are 3x3 pixel blocks. The results are shown in Figure 2 and in the

supplement. DeltaConv achieves a good match. The other opera-

tors tend to blur the image or produce artifacts. For PointNet and

EdgeConv, this is likely due to the variable nature and sharpness

of the maximum aggregation. DiffusionNet lacks the divergence

and curl operators and does not maintain a vector stream, which

Fig. 5. For each layer of the network, we show how a single scalar- or vector-
feature varies over shapes in ShapeNet. The last row shows the output of
the network. The features tend to activate on similar regions.

is necessary to analyze the relative directions of vector features in

local neighborhoods.

Effectiveness of vector stream. To study the benefit of the vector

stream and its effect on different types of intrinsic scalar convolu-

tions, we set up three different scalar streams: (1) a Laplace–Beltrami

operator, Δ = −div grad, (2) GCN [Kipf and Welling 2017], and (3)

maximum aggregation (Equation 1). We test three variants of each

network: (1) only scalar stream, (2) scalar stream with the number

of parameters adjusted to match a two-stream architecture, and (3)

both the scalar and vector stream.

We test each configuration on ModelNet40 and ShapeNet. For

both of these tasks, we use the DGCNN base architecture. The model

for ShapeNet is trained for 50 epochs to save on training time and

no voting is used, which results in slightly lower results than listed

in Table 4. The results are listed in Table 5. We find that the vector

stream improves the network for each scalar stream for both tasks,

reducing the error between 19−25% for classification and 3−21% for

segmentation. For maximum aggregation on ShapeNet, the improve-

ments are lower, but still considerable, given the rate of progress on
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Table 5. Ablations of DeltaConv on ShapeNet (Seg) and ModelNet40 (M40)
with varying scalar streams.

Scalar Vector Match Seg mIoU M40 mcA M40 OA

Convolution Stream # params

Laplace– - - 82.5 86.1 90.4

Beltrami - ✓ 82.5 87.1 90.6

✓ - 84.9 89.4 92.2

GCN - - 81.1 87.3 90.4

- ✓ 81.2 87.3 90.8

✓ - 85.1 90.6 92.8

Max aggregation - - 85.7 89.2 92.2

- ✓ 85.7 89.5 92.6

✓ - 86.1 91.2 93.8

this dataset over the last few years. Simply increasing the number

of parameters in the scalar stream does not yield the same improve-

ment as adding the vector stream, showing that the vector-valued

features are of meaningful benefit. Maximum aggregation in the

scalar stream yields the highest accuracy.

Timing and parameters. In our method section we argue that com-

puting the gradient matrix is lightweight and that the simplified

maximum aggregation operator is significantly faster than edge-

based operators in PointNet++ and DGCNN. The main bottleneck in

these convolutions is maximum aggregation over each edge. In this

experiment, we demonstrate this by reporting the time it takes to

train and test the classification network on one batch of 32 shapes

with 1,024 points each. This includes all precomputation steps, such

as computing the k-nearest neighbor graph (∼ 15ms) and construct-

ing the gradient and divergence operators (∼ 30ms). The EdgeConv

network is tested without a dynamic graph component, so that only

the effect of precomputation and convolutions remains. All timings

are obtained on the same machine with an NVIDIA RTX 2080Ti

after a warm-up of 10 iterations. We implemented each method

in PyTorch [Paszke et al. 2019] and PyTorch Geometric [Fey and

Lenssen 2019]. The results are listed in Table 6. We find that our

network only increases the number of parameters by 10%. Our net-

work is significantly faster than the edge-based convolution: 1.5×
faster in training and inference and 2.5× faster in the backward pass.

DeltaConv with a Laplacian in the scalar stream is even faster: > 2×
faster in training and inference and 30× faster in the backward pass.

Gradient regularization and normalization. In our method section,

we argue that the least-squares fit for constructing the gradient

and divergence should be regularized and the operators should be

Table 6. Timing and parameter counts for classification onModelNet40. The
timing for training and inference includes all necessary precomputations.

Convolution Data Training Backward Inference # Params

Transform

DeltaConv (Lapl.) k-nn + ops 80ms 5ms 80ms 2,036,938

DeltaConv k-nn + ops 130ms 60ms 125ms 2,037,962

EdgeConv k-nn 196ms 147ms 186ms 1,801,610

Table 7. Classification accuracy on ModelNet40 with and without regular-
ization and normalization.

𝜆 Normalization Mean Overall

Class Accuracy Accuracy

10
−32 ✓ 85.2 90.3

10
−2

- 86.6 90.5

10
−2 ✓ 89.4 92.2

normalized. In this experiment, we intend to validate these choices.

We train amodel that is entirely based on our gradient operator, with

a Laplace–Beltrami operator in the scalar stream. This means that

every spatial operator in the network is influenced by regularization

and scaling. The model is trained on the ModelNet40 for 50 epochs.

The results are listed in Table 7. We notice a considerable difference

between our approach with- and without regularization. There is

a 2.8 percentage point decrease in mean class accuracy and 1.7

percentage point decrease in overall accuracy when the operator is

not normalized.

5 CONCLUSION
In this work, we propose DeltaConv, a new convolutional layer

for point cloud CNNs that is capable of extracting and processing

directional features. DeltaConv separates features into a scalar- and

vector stream and uses linear combinations and compositions of

a selected set of geometric operators from vector calculus to map

between and along the streams. This construction allows DeltaConv

networks to learn anisotropic convolutions fitting to the data and

task at hand. We demonstrate improved performance on a wide

range of tasks, showing the potential of using DeltaConv in a learn-

ing setting on point clouds. We hope that this work will provide

insight into the functionality and operation of neural networks

for point clouds and spark more work that combines learning ap-

proaches with powerful tools from geometry processing.

Challenges and future work. We limit our study to analysis tasks.

While we do not think it is impossible to adapt our operators for

generative tasks, it is unclear if and when the operators should

be recomputed when a surface is generated. Our work opens up

interesting possibilities for future work. Besides exploring more

applications of the vector stream, we want to test our approach on

other surface discretizations and other manifolds (e.g., hyperbolic

spaces and higher dimensional spaces) for which these operators

are available, and also intend to study how other variants of the

scalar stream impact the network.
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