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Summary

Hydrological and meteorological research are of great value to comprehend the complex Eastern Africa sys-
tem, and more specifically the Kenyan Rift Valley, as impacts of climate change and indisputable changes in
the hydrology of the lakes have become more apparent in recent decades. Lakes in the Kenyan Rift Valley
region, spanning from the south to the north of Kenya, have been experiencing an increase in their water lev-
els resulting in severe flooding in some cases. The flooding has been a relatively gradual but steady process
throughout the 2010s. However, since 2020 the lakes have been rising more rapidly. This research aims to un-
derstand the main drivers behind the overflowing of Lake Nakuru as one of the lakes in the Kenyan Rift Valley
and specifically examines the hypothesis that increased precipitation in the catchment area is the primary
cause of this phenomenon. The study utilises various methodologies to analyse spatio-temporal variability
in precipitation, investigate the dynamics of Lake Nakuru, and identify the origin and driving forces behind
the changing precipitation patterns.

A change point analysis is performed for weather station data throughout the catchment including lake pre-
cipitation and catchment precipitation. A water balance model is built to analyse the impact of precipitation
on the lake through precipitation bin analysis and different catchment interactions such as catchment runoff,
lake evaporation, and sub-surface catchment storage. Multiple linear regression has been applied to identify
key catchment characteristics for the variability of the lake volume. Through moisture tracking as part of this
research with WAM2layers it was possible to identify changes in moisture sources and climate drivers of pre-
cipitation in the catchment.

The findings of the research reveal significant changes in precipitation patterns, with a notable increase in
precipitation since 2010. Change point analysis indicates that this increase coincides with the rise in lake
volume, suggesting a strong correlation between precipitation and the overflowing of the lake. The water
balance model employed in the study further emphasises the impact of precipitation on the lake, highlight-
ing the complex interactions between precipitation and the catchment. Moisture tracking and climate driver
analysis provide insights into the origins of the precipitation variability. The study identifies the western
Indian Ocean region, particularly east of Madagascar, as an increasingly important moisture source for the
catchment area. Moreover, the study highlights a negative correlation between El Niño and September pre-
cipitation, indicating the influence of climate oscillations on the changing precipitation patterns. These find-
ings suggest that future climate changes, including increasing sea surface temperatures and intensifying La
Niña and El Niño events, may further contribute to the likelihood of flooding in the area.

Overall, the research strongly supports the hypothesis that the overflowing of Lake Nakuru is primarily caused
by changes in precipitation. The study emphasises the need for further research and monitoring to better
understand the complex interactions between climate, precipitation, and the lake system.
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1
Introduction

1.1. Problem Description
Kenya is no stranger to drought, as several parts in the north of the country have not experienced rain for a
over two years. On the contrary, the southwestern region of Kenya experiences more severe rains and a phe-
nomenon has been unfolding since 2010. Lakes in the Kenyan Rift Valley region, spanning from the south
to the north of Kenya, have been experiencing an increase in their water levels resulting in severe flooding
in some cases. The flooding has been a relatively gradual but steady process throughout the 2010s. How-
ever, since 2020 the lakes have been rising more rapidly (Baraka, 2022). Schools, farmland, wildlife reserves,
and communities have flooded. Approximately 75,000 households were forced to leave their home, and as
a results a population of nearly 400,000 people required ongoing humanitarian aid to this day (Kenya Min-
istry of Environment and UNDP, 2021). Inundated riparian land creates room for lake species to expand
their territory, causing more human-wildlife interference, as for example schools are threatened by advanc-
ing crocodiles and hippos (Baraka, 2022). The photographs in Figure 1.1 demonstrate the significant impact
of the rising lakes. The lakes are are not only vital to people and economy, but also wildlife. For example, three
saltwater lakes located in the Kenyan Rift Valley, Lake Bogoria, Lake Nakuru, and Lake Elmentaita, sustain a
great number of abundant marine and bird life. These ecosystems are threatened by extinction as the lakes’
chemical and ecological compositions change.

Research performed by the Ministry of Environment and UDNP identified multiple causes for the rising lakes,
such as increased precipitation, anthropogenic land degradation, and geological and tectonic activity. Fur-
thermore, indications of cyclical events are proposed by the elders living near the lakes (Kenya Ministry of
Environment and UNDP, 2021). Journalist Baraka (2022), who wrote an article in The Guardian called "A
drowning world: Kenya’s quiet slide underwater", has spoken to local people whom also suggest that the rise
of the lakes is cyclical. A clear trend is observed looking at the Kenyan Rift Valley precipitation. As of 2010,
yearly precipitation has increased by approximately 20% compared to the long term mean, increasing from
753 mm to 905 mm averaged over the entire Rift Valley (The World Bank Group, 2021). Therefore, for this
study specific interest in changing precipitation patterns have been developed with its relation to the rising
lakes. With understanding the changing patterns of precipitation and its impact on Lake Nakuru lies the fo-
cus of this research.

The overflowing of the lakes in the complete Rift Valley raises the question what the underlying cause is.
Several researchers found a relation between precipitation and the rising lakes. However, their research does
not eliminate other possibilities like tectonic plate movement and land use change, as they are not confident
enough to be sure that precipitation is the only cause. Their findings showing a relation with overflowing lakes
and increased precipitation, but they suggest this should be substantiated with more observational data and
at a higher time resolution to establish a more sound theory about the rising lakes. A water balance model is
suggested with bathymetry data, observational precipitation data, and more accurate evaporation data. Even
though the increased precipitation is said to be evident from literature, the root causes for this variably have
not been scrutinised. This research therefore implements moisture tracking and climate driver analysis to
investigate the underlying causes and provide insights into possible future developments. The lake Nakuru
catchment is used as a case study.
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(a) (b) (c)

Figure 1.1: Pictures made from the lake shore and water representing; The impact of rising water levels at the shore of Lake Nakuru with
dead trees and intruding terrestrial wildlife environment (a); Impact of rising water levels at the shore of Lake Naivasha with submerged
hotel property (b); Impact of rising water levels on land separation on Lake Naivasha where an island has been created around 2019 to

2020 and properties became separated (c).

1.2. Research Objective
The objective of this research is to gain insights into the main drivers responsible for the overflowing of Lake
Nakuru. Specifically, the aim is to test the premise that increased precipitation in the catchment and changing
underlying precipitation drivers are the primary cause of the phenomenon. The research questions to answer
in order to meet this objective are listed below:

1. What spatio-temporal variability in precipitation can be observed on different timescales in the Lake
Nakuru catchment?

2. What are the dynamics of lake Nakuru and how do they relate to the precipitation variability?

3. What is the origin and the driving forces for the temporal variability in precipitation and lake Nakuru?

1.3. Report structure
This thesis report is structured as follows: Chapter 2 provides a literature study to shed light on the back-
ground of the topics relevant to this study. In Chapter 3, the study area is described in detail. Chapter 4
focuses on the data used in the research. Chapter 5 elaborates on the methodology used to answer the re-
search questions. Chapter 6 presents an overview of the research findings, followed by a discussion of the
results and related literature in Chapter 7. Chapter 8 concludes the research and presents the main findings.
Finally, Chapter 9 offers recommendations for future research.
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Literature study

The literature study provides and explains the main components of this research. This chapter elaborates on
earlier findings on precipitation variability in Eastern Africa and Kenya combined with fluctuations of the Rift
Valley lakes. The underlying climatic drivers and moisture source dynamics for precipitation are explained
afterwards and is subdivided into; methods for moisture tracking; moisture sources and sea surface temper-
ature (SST) dynamics; climatic drivers and large-scale circulations; and future changes in climate drivers.
Finally, key findings from literature are extracted and listed.

2.1. Precipitation and Lake characteristics
Precipitation in Eastern Africa and Kenya is highly variable and seasonally dependent. Four seasons can
be distinguished namely the dry season (JF), long rains season (MAM), continental rains season (JJAS), and
the short rains season (OND) (Dyer and Washington, 2021; Yang et al., 2015). Inter-annual variations are most
common with on average increasing precipitation since 2010 observed in Kenya (Dyer and Washington, 2021;
Gichuru and Waithaka, 2016; Herrnegger et al., 2021; Kimaru et al., 2019). On a year to year basis 2009 to 2010
for example saw an increase in precipitation of 36.3% according to analysed TRMM data, whilst 2010-2011
precipitation reduced by 29.8% (Gichuru and Waithaka, 2016). Kimaru et al. (2019) investigated the temporal
variability of precipitation and river flows at Lake Nakuru with Climate Hazards Group Infrared Precipitation
with Station (CHIRPS) data on a yearly timescale. CHIRPS slightly overestimates the observational data from
one single station that was included in this research. It is found with SPI indices that from 1981 to 1996 there
was a high frequency of prolonged dry periods. Prolonged wet periods were experienced between 2010 and
2018 and is given as a possible explanation for the rising of the lake. The almost complete dry up of the lake
in 1995 and 1996 due to dry periods whilst in 1997 an El Nino driven precipitation caused flooding. Recom-
mendations are made suggesting the development of a water balance with the latest bathymetry survey to
investigate whether the hydro-meteorological variability alone can account for the observed flooding.

Another case study by Langat et al. (2017) in the Tana river basin in southeastern Kenya, found that an in-
creased streamflow is largely due to the increased precipitation in the highlands. They address the availabil-
ity of water to the intra-seasonal and inter-annual variability in climate including El Nino. A positive annual
monotonic trend was found for the higher elevated precipitation observation stations whilst a negative an-
nual monotonic trend was found for lower elevated observations.

Herrnegger et al. (2021) explores the relationship between precipitation and lake characteristics on a yearly
basis for all lakes in the Rift Valley and found a relationship between rainfall surplus and deficits with surface
area fluctuations. This study suggested a lag of one year for lake Nakuru till precipitation is noticed in the sur-
face area of the lake with a correlation of 0.515. Higher resolution investigations, like monthly and seasonal,
might reveal more detailed relationships between precipitation and lake characteristics, where catchment
characteristics cannot be omitted. A change point is found in precipitation at 2009 where the long term
mean substantially differs from 1981 to 2009 and 2010 to 2020. The lake characteristics are defined by the
Database for Hydrological Time Series of Inland Waters (DAHITI) (Schwatke et al., 2019). Furthermore, the
actual evapotranspiration is calculated as the actual evaporation from ERA5 times the precipitation ratio be-
tween CHIRPS and ERA5, as ERA5 generally overestimates precipitation in Kenya. The article suggested that
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Figure 2.1: East African currents and monsoon winds in the west Indian Ocean (Pollard, 2007).
Attention should be paid to the Monsoon systems from the south and the north over different
periods. The Southeastern Monsoon manifests itself from May to October whereafter the ITCZ
moves over the equator from North to South initiating the short rains season from October to
December in Kenya. The Northeast Monsoon manifests from November to March followed by

the ITCZ moving from south to north forcing the long rains season from March to May.

using a hydro-meteorological observation network on the ground would improve the accuracy of the analy-
sis, but also more accurate evapotranspiration data is useful for the understanding of the lake and catchment
dynamics (Herrnegger et al., 2021; Kimaru et al., 2019).

2.2. Moisture sources and climate drivers
The origin of East African precipitation is highly dynamic and dictated by numerous climatic influences. It re-
ceives moisture from three major air systems, the northeastern monsoon system and the southeastern mon-
soon system from the Indian Ocean, and South Westerly humid air from the Congo basin (Balagizi et al.,
2018). The seasonality of precipitation is governed by the interchange between the two monsoon systems,
controlled by the Indian Ocean and its temperatures visualised in Figure 2.1. The southeastern monsoon
winds are present from May to October. The rain seasons in Eastern Africa are starting when these winds
change with the ITCZ moving over Eastern Africa from North to South from October to December. The north-
eastern monsoon winds are occurring from around November to March which onsets the main rain season
from March to May. Tierney et al. (2013) suggested that rainfall in East Africa is mainly dominated by the
Indian Ocean by altering the local walker circulation, and the influence of the Pacific Ocean is minimal. The
monsoon systems are mainly limited to East Africa because of the high plateaus and and Congo air bound-
ary. To understand these dynamics it is important to understand where and how continental precipitation in
Eastern Africa, and more specifically Kenya, is generated and how climate drivers affects this complex system.
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Methods for moisture tracking
Several methods are used throughout previous studies for moisture tracking. In recent studies WAM2layers
is used to model the moisture source and with that climatic drivers such as SST dynamics (Findell et al., 2019;
Keys et al., 2022; Van der Ent et al., 2013; Van der Ent and Savenije, 2013). Van der Ent et al. (2013) compared
different moisture tracking models. The tracking can be done online parallel to a climate model run, or pos-
teriori i.e. offline with reanalysis data or output from climate models. It has been concluded that a one layer
model would not be sufficient as it could not consider shear factors of wind. An effective way would be, if a
moisture tracking model would be used, an offline 2D representation using a Eulerian grid as it reduces com-
putation time, i.e. WAM2layers. The model first calculated the fluxes and states of the water balance within
the domain of each grid cell. Second, the fluxes and states information is used to either forward or backtrack
from or towards a specific location (Keys et al., 2022).

Moisture recycling in East Africa has also been researched using isotopic analysis (Balagizi et al., 2018; Levin
et al., 2009; Otte et al., 2017; Soderberg et al., 2013). The isotope analysis found that for East African countries
the main source is the Indian Ocean, but in specific cases of lacking data very difficult to assess for smaller
areas. For a case study in Congo, Balagizi et al. (2018) found that East African Lakes are characterised by a
certain d-excess indicator that is found in the Congo region. During dry season, evaporation from the lakes is
more dominant, which signature is found back in the Congo region precipitation. This argument is supported
by Van der Ent et al. (2010), whom studied moisture recycling ratios over the world and found that the main
source of rainfall in the Congo basin is evaporated moisture over East Africa.

Moisture sources and SST dynamics
Yang et al. (2015) observed that during dry season (JF) the southern part of the ocean is warmer compared to
the northern ocean region and Arabian sea and displays a north-south SST gradient. During the long rains
season (MAM) the Indian Ocean gradually heats up, where the warmer temperatures are observed in front
of the Kenyan Coast and more eastern in the Indian Ocean. During the continental rains season (JJAS) the
ocean cools off with lower temperatures near the coast and higher lower temperatures deeper into the Indian
Ocean. In the short rains season (OND) the same distribution of SST is seen as during the long rains season
although lower. Comparing precipitation and SST in East Africa, both have their peak in April. Lowest values
in SST are observed between July and September.

Van der Ent and Savenije (2013) identified oceanic sources for continental precipitation around the world
from 1982 to 2009 using the WAM2LAYERS moisture tracking model. Furthermore, the SST of the source
areas have been related to the precipitationshed, that is where evaporation from the ocean contributes to
precipitation in a specific area. Not only SST adjacent to East Africa, but also the effects of El Nino 3.4 are as-
sessed in several region. These regions show a variation of influences by local SST and El Nino. For instance,
for West Africa the SST in the source region strongly correlates with precipitation in the rainy season and for
Australia both local SST and El Nino have a big influence.

The areas relevant for this research are source area 10 delineated in the Southern Indian Ocean near Mada-
gascar and source region 11 delineated in the Northern Indian Ocean and Arabian sea along the East African
coast. SST is averaged over the surface area of the source region. The periods 1982 to 2009 for source region
10 show a slight positive correlation between precipitation and SST in some parts of Kenya for the months
January, February, May, June, August, October, November, December. For source region 11 a positive correla-
tion between precipitation and SST in some regions of Kenya is found for the months January, February, May,
October, November, December. Furthermore, when comparing the precipitation to the SST in the El Nino
region some positive correlations are observed for areas in Kenya in the months January, February, October,
November, and December, but a negative correlation for the months March, July, August, and September
(Van der Ent and Savenije, 2013).

Keys et al. (2022) present a 40-yr analysis of the source for Kenya’s precipitation and the fate of evaporation
that originates from Kenya. WAM2layers has been used to examine the annual and seasonal changes in mois-
ture source and sinks. Kenya’s precipitation consists for 85% of moisture originating from oceanic evapora-
tion whilst 15% originates from continental evaporation, primarily from Kenyan highlands. This area remains
an important source of moisture for Kenya. WAM2LAYERS was run at a global scale to calculated fluxes and
states overall, after which tracking is used for Kenya specifically to backtrack and forward track moisture.
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Figure 2.2: Percent difference in annual evaporation contribution to Kenya precipitation between wet
and dry years (Keys et al., 2022). Blue indicates that for wet periods relative moisture production is
higher for continental moisture and further Eastern in the Indian Ocean. Red periods indicate the

regions where relative to wet periods moisture is primarily produced.

This study specifically focuses on the differentiation between wet and dry years in Kenya. During dry season
the moisture tends to come from the Northeastern part of the Indian Ocean including the Somali coastline.
The long rains season MAM moisture originates from more close to the Kenyan coastline in the Indian Ocean.
The cool dry season displays moisture sources from the Southeast Indian ocean and the northern coastline of
Madagascar and coastline of Tanzania. The short rains season the dominant moisture source is the coastline
of Kenya, the western Indian Ocean and the coastline of Somalia. When comparing the wet and dry years it
is found that during wet years the relative moisture contribution for precipitation is largest from continental
evaporation from Kenya and moisture further east on the Indian Ocean. In dryer years, moisture originates
relatively more to the coastline, and the Arabian Sea becomes relatively more important, as is visualised in
Figure 2.2 (Keys et al., 2022).

Climatic drivers and large-scale circulations
Dyer and Washington (2021) concluded that during very wet seasons, the majority of rainfall variation occurs
towards the end of March and beginning of April, resulting in an early start to the long rains season and a
concentration of more rainfall earlier in the season. Various factors were identified as key drivers of rain-
fall variability, including local ascent above 700 hPa, mid-tropospheric moisture flux convergence, and moist
static energy (latent heat) in the lower and mid-troposphere. Large-scale circulations were also found to play
a significant role, with variations in the 200 hPa velocity potential and sub-seasonal correlations with sea sur-
face temperatures in the western Indian Ocean identified as important factors. Moisture availability in East
Africa was found to be linked to horizontal advection, with mid-tropospheric moisture strongly influenced
by the strength of easterlies over central Africa (Cook and Vizy, 2013; Dyer and Washington, 2021). Black et al.
(2003) suggested that during strong low-level easterlies in the North central Indian ocean there is enhanced
precipitation in at the western Indian Ocean and drier conditions in the West. This phenomena is tied to the
Indian Ocean Dipole (IOD) and corresponding Dipole Mode Index (DMI). It is suggested that a dipole index
larger than 0.5°C for three consecutive months leads to enhanced rainfall over East Africa.

This phenomenon has been researched for the very wet short rains season starting from October to Decem-
ber 2019 leading into January 2020. The strong low-level easterlies weaken the westerly flows that usually
transport the moisture away from Eastern Africa (Black et al., 2003). The event started early October through
January and caused floods and landslides affecting an estimated 2.8 million people. The only precipitation
event surpassing this event was in 1997 when large scale flooding occurred as well which is associated with
the El Nino effect, whilst for the 2019 event there was no El Nino. There was a strong IOD event with very
warm SST off the coast and anomalously cool SST in the eastern part of the Indian Ocean and is among the
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strongest IOD events in 30 years. In 1997 the positive IOD led to extremely wet conditions over East Africa.
Analysis of sea surface temperature data shows that strong East African rainfall is associated with warming
in the Pacific and Western Indian Oceans and cooling in the Eastern Indian Ocean (Black, 2005; Black et al.,
2003; Wainwright et al., 2021). Black (2005) suggested that earlier findings of the relationship between East
African rainfall and the El Nino Southern Oscillation (ENSO) is manifested by the link between the ENSO and
IOD.

Change in climate drivers
Most of the the East African climate is a bimodal precipitation annual cycle, although in some regions a uni-
modal distribution. East Africa has seen a decline of rainfall during the long rains season (Yang et al., 2015;
Cook and Vizy, 2013). Several mechanisms have been proposed for this dying trend where related to the
westward extension of the Indo-Pacific warm pool and associated Walker circulation, while other link it to
SST over the Pacific basin to a La Nina-like pattern. (Yang et al., 2014) supports the observed drying trend of
the long rains season, but assigns its cause to the natural decadal variability associated with the SST in the
Pacific Ocean. Climate projections from CMIP5 show an increase in precipitation in the long rains season
with global warming, which is opposite from the trend observed up until 2015.

Findell et al. (2019) focuses on historical and projected climate change and how it affects the oceanic and
terrestrial moisture contribution to continental precipitation using WAM2layers (Van der Ent et al., 2014).
They found that in a warming world, the contribution of oceanic evaporation to continental precipitation
becomes larger compared to the contribution of continental evaporation to continental precipitation. Near
surface temperatures increase so that the moisture capacity of air above the ocean increases. The theory and
observations learn that with global temperatures warming the mean atmospheric moisture content increases
and so potentially the total water column and storm intensities are enhanced.

Future projections from climate models indicate increasing rainfall during the short rains under future cli-
mate change, suggesting that events such as the increased rainfall during the 2019 short rains could become
more frequent under climate change (Black et al., 2003). Cai et al. (2018) explored relationships between
strong positive IOD events and global warming and found that with a global warming of 1.5°C the positive
IOD events could happen twice as often, implicating more of these heavy rain events in the short rains sea-
son. Moreover, the rate at which the Indian Ocean SST is rising is among the fastest of any tropical region.
It is found that the short rains season could be lengthened by two months in the twenty first century in the
southern Kenya and Tanzania region (Cook and Vizy, 2013).

2.3. Key findings
Based on the studied literature, some key findings could be distilled to support the arguments of how this
research is being conducted.

• Recommendations are made suggesting the development of a water balance with the latest bathymetry
survey to investigate whether the hydro-meteorological variability alone can account for the observed
flooding.

• WAM2LAYERS has been a widely used model for moisture tracking purposes in East Africa and other
parts of the world.

• Catchment precipitation and oceanic evaporation in relation to SST and SST gradient in the Indian
Ocean are interesting to consider for this study.

• SST in source regions show positive correlations with various regions in Kenya.

• During wet years the relative moisture contribution for precipitation is largest from continental evap-
oration from Kenya and moisture further east on the Indian Ocean. In dryer years, moisture originates
relatively more to the coastline, and the Arabian Sea becomes relatively more important

• Drivers for precipitation in East Africa could be the IOD effect and El Nino Southern Oscillation, as they
reveal both positive and negative correlations with precipitation in East Africa.
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Study Area

For over a decade, the majority of lakes throughout the Kenyan Rift Valley have been steadily rising. One of
these lakes is Lake Nakuru, the study area for this research. Despite being a small area of focus, it presents
an intriguing case study, due to its complex geo-hydrological conditions, which may shed light on the over-
flowing of not only Lake Nakuru, but also other lakes in the Rift Valley. A better comprehension of the overall
system is first established by detailing the Kenyan Rift Valley, before exploring the specific features of the Lake
Nakuru catchment.

3.1. Kenyan Rift Valley
Kenya is situated in East Africa and is characterised by two rain seasons. The long rains season which lasts
from March to May and the short rains season lasting from October to December. The temperature in Kenya
is consistent over the year, with a mean annual temperature of 25°C, and has a mean annual precipitation of
703 mm (The World Bank Group, 2021). Precipitation in Kenya originates from the Indian Ocean, as low-level
mean winds from southeastern direction move over Kenya between June and August, and shift direction to
a more northeasterly wind between December and February, with the ITCZ moving over Kenya (Levin et al.,
2009).

The ITCZ separates northerly and southerly air flows, whereas the Congo Air Boundary separates westerly
flow from easterly low-level flows. The interplay between these two boundaries determines the meteorolog-
ical situation in Kenya. This results in southeastern flows for the period between June and September called
the continental rains season. During the long rains season between March and May and the short rains sea-
son between October and December, precipitation originates mainly from the southeastern region just above
Madagascar. During dry season between January and February, precipitation originates from the Northeast-
ern Indian Ocean and the Arabian sea.

In addition to these meteorological influences, the topography of Kenya is key for its complex meteorological
system. High altitude plateaus between 1000 and 2000 m are interspersed by mountains of over 4000m, influ-
encing weather patterns making them unique for different areas. The complex topography of the Rift Valley
is visualised in Figure 3.1 with a range from 300 to 3700 m above mean sea level, and is of importance to the
precipitation in the Kenyan Rift Valley. From the Kenyan highlands in the south of the Rift Valley it descents to
the north. A channel is formed between two escarpments along the western and eastern boundary of the Rift
Valley, as it leads towards the lake Turkana channel in the north, which separates the Kenyan and Ethiopian
highlands.
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Lake Nakuru Catchment

rift valley

dem_rift_valley

Legend

Figure 3.1: Study area of the Kenyan Rift Valley as digital elevation model indicating the wide variations in
elevation. The catchment of Lake Nakuru is visualised in red in the middle along the eastern ridge of the Rift

Valley on high elevation at about 2000 m.

3.2. Lake Nakuru catchment
Lake Nakuru is a salt water lake and situated at 1760 m above sea level with a catchment area of about 1600
km2 laying in a closed hydrological basin along the southeastern escarpment of the Kenyan Rift Valley, geo-
graphically visualised in Figure 3.1. It experiences mean annual rainfall 876 mm and mean annual evapora-
tion of 1800 mm. Lake Nakuru is a medium sized lake compared to other lakes with a surface area between
30 and 60 km2 and varying depth between 0.5 and 8 m. Due to shallowness of the lake it is very sensitive to
climatic variations as it has little buffer capacity to withstand inter- and intra-seasonal variability and expe-
riences high evaporation rates. During the drought years of 1993 and 1996 this resulted in the lake almost
drying out, whilst during wet years like 1997 and 2019 the lake has experiences major flooding (ilec, 2005;
Kimaru et al., 2019; Odada, 2001).

Lake Nakuru has minimal underground inflow, and is therefore dependent on seasonal river inflow. Rivers
drain into the lake, as well as treated wastewater from Nakuru city (Kanda and Suwai, 2013). Four rivers flow
from the western escarpment towards the Lake. Most of the river water infiltrates to recharge groundwater
before reaching the lake, and become influent as a result (Kanda and Suwai, 2013). Shallow groundwater
flows directly to Lake Nakuru from the east and west rift edges. Deep groundwater is assumed to flow north-
wards, towards the lower laying parts of the Rift Valley, where Lake Bogoria is situated (Montcoudiol et al.,
2019).

The lake is partially encircled by Nakuru city with a population of 400,000 people, that is rapidly expanding,
putting stress on water supply and the environment. The lake is listed as a UNESCO heritage site and is
known for hosting one of the largest populations of Flamingos. The national park surrounding the lake is
among one of the highest biodiversity parks in the country. Over the last couple of decades, the catchment
has transformed to a cultivated and highly populated and urbanised area. According to Raini (2009) the
catchment has seen major deforestation practices from 1970 to 1986 with more than 80.000 ha deforested in
the major forest of the catchment. In 1994, even more forest was assigned to other land-use practices by the
government resulting in a 30% forest loss of the southwestern Mau forest. Investigations performed by Kenya
Ministry of Environment and UNDP (2021) saw a downward trend in forest cover, while seeing an increase in
cropland and wetland between 2000 and 2018. Forestland decreased from 8.5% to 7.7%, with cropland and
wetland increasing from 35.4% and 2.6% to 46.6% and 3.3% respectively.
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Data description

This study employs diverse datasets to portray catchment and atmospheric variables and analyse their long-
term variability and trends. The data covers a 41-year period from 1981 to 2021 and are grouped based on
the proposed research questions. Paragraph 4.1 clarifies the catchment characteristics, while paragraph 4.2
focuses on lake characteristics. Paragraph 4.3 details the data collection for moisture tracking and climate
indicators.

4.1. Catchment characteristics
Precipitation
Accurate precipitation data are important for the purpose of this research. Kenya Meteorological Depart-
ment (KMD) provided precipitation data of fourteen weather stations, from a period 1981 to 2021 (KMD,
2022). Table 4.1 provides details about latitude and longitude of the stations, as well as the elevation and
mean precipitation. The data provided by KMD did not reveal any data gaps, indicating the KMD processed
their data before sharing, as raw data over such a time period would likely have data gaps. The weather sta-
tions are quite evenly spread over the catchment area resulting in a dense dataset with a radial distance of no
more than 10 km between two nearest weather stations.

The Thiessen polygon method was applied to determine the catchment average precipitation and lake pre-
cipitation, rather than taking the average over all stations. Lake precipitation is defined by the average Thiessen
polygons for weather stations 6, 7, 10, and 11, taking into account contribution area of each weather station
over the lake. According to the Thiessen method, the precipitation recorded at a particular station can be ex-
trapolated halfway towards the next station in any direction (Schumann, 1998). These polygons are then used
to estimate the relative area that is covered by the weather station’s polygon, which is indicated by the area
weight in Table 4.1. The KMD precipitation dataset is used in the remainder of this research for catchment
wide precipitation analysis, water balance modelling, and moisture tracking analysis.

Evapo(transpi)ration
Lake evaporation and catchment evapotranspiration contribute to understanding the impact precipitation
has on the lake. Data on catchment reference evaporation and actual evaporation from the lake are ex-
tracted from the Water Productivity Open-Access Portal (WaPOR) version 2. WaPOR is an online platform,
developed by the Food and Agriculture Organisation of the United Nations (FAO), which provides access to
satellite-based information on water resources in Africa and Southeastern Asia. WaPOR aims to improve wa-
ter management and food security through providing high quality and open access data on water resources
and hydrometeorological variables. The platform combines data from the Sentinel missions, MODIS and
aqua satellites that is modelled to provide information on reference evaporation and land cover classifica-
tions to name a few. The time series are extracted from the portal using a shapefile for lake Nakuru and
catchment boundaries (Food and of the United Nations, 2021).
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Table 4.1: Fourteen weather stations from the Kenya Meteorological Department with corresponding
location, elevation above mean sea level, mean precipitation, and the average weight according to the

Thiessen polygon method (KMD, 2022). The elevations indicate differences of almost 1000 meters
and precipitation mean deviates of 300 mm per year.

Station Latitude [°] Longitude [°] Elevation [m] Precipitation mean [mm/year] Area weight [%]
Pts2 -0.4433 35.8903 2600 1123 5.2
Pts3 -0.3616 35.9595 2166 987 7.2
Pts4 -0.4521 35.9584 2380 979 6.1
Pts5 -0.5569 35.9432 2756 1050 8.3
Pts6 -0.3032 36.0432 1817 905 8.6
Pts7 -0.4002 36.0436 1951 915 7.3
Pts8 -0.5017 36.0482 2022 815 8.5
Pts9 -0.6143 36.0497 2564 810 11.3

Pts10 -0.2811 36.1231 1860 901 12.0
Pts11 -0.3991 36.1489 1845 1004 6.5
Pts12 -0.5172 36.1505 1838 719 7.9
Pts13 -0.6374 36.1596 2305 845 6.0
Pts14 -0.6253 36.2014 2352 912 2.7
Pts15 -0.4102 36.1805 1893 835 2.3

4.2. Lake characteristics
Lake characteristics are surface area, depth, and volume of lake Nakuru. A combination of two datasets
has been used to approach the most accurate representation of the lake’s behaviour. The datasets are the
Database for Hydrological Time Series of Inland Waters (DAHITI) (Schwatke et al., 2019) and a bathymetry
study with echo-sounding technology performed by Jomo Kenyatta University of Agriculture and Technology
(JKUAT) (Iradukunda et al., 2020).

Database for Hydrological Time Series of Inland Waters
DAHITI is used to extract the time series for the surface area of the lake following the method introduced by
(Schwatke et al., 2019). Landsat data level 2 product ’surface reflectance’ and sentinel-2 have been used from
January 1984 to June 2018. The Landsat data are processed in Google Earth Engine for cloud-processing whilst
sentinel level 2 is already corrected for the atmosphere. As of 2015, Sentinel-2 data became available initiated
by the Copernicus program of the European Space Agency (ESA). Two satellites were launched, sentinel-2A
and sentinel-2B, providing a temporal resolution of five days. Sentinel Level-1C is used from 2018 for the
extraction of the lake surface area after it has been processed. These satellite images are used as an input for
the extraction of land-water masks.

Defining the land-water mask is performed by estimating five water indices; the New Water Index (NWI);
Tasseled Cap for Wetness (TCwet); Automated Water Extraction Index for Shadow Areas (AWEIsh); Modified
Normalised Difference Water Index (MNDWI); and Automated Water Extraction Index for Non-Shadow Areas
(AWEInsh). This study combines these five to use the strength of each water index. The method calculates
automated thresholds for separating water from land. If four out of five water indices agree whether a grid
is water, the grid is assigned a water mask. Grids that are indicated by 0 or 1 water index as water, are set to
land. Grids with 2 or 3 water indices are processed through a probability mask, where they get assigned water
or land based on the long-term water probability of there being water or land.

The time series for surface area observations of the lake run from 1984 to 2020. Only 56 surface area ex-
tractions were made from 1984 to 2009, that is about two per year. Moreover, from 1989 to 2000, only two
observations were made. After 2010, a total of 256 surface areas were extracted, that is 21 observations per
year on average. Over 25 observations per year are provided for years 2013 to 2018, and 2020. The minimum
surface area, depth, and volume, respectively 33.04 (+- 6.98) km2, 0.73 m, and 0.014 km3, were observed at
30 January, 2010. However, at 21 January, 1995, and 10 July, 1987, similar minimum values were observed.
The lake characteristics reached its maximum of 63.49 (+- 0.6) km2, 8.20 m, and 0.345 km3 observed at 4 Jan-
uary, 2021. Within an 11-year time period the lake’s surface area increased with 30.45 km2 representing a 92%
growth.
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Table 4.2: Bathymetry survey results with depth from the surface of the lake, partial depth
(delta_h),surface area at depth, partial volume, and total volume (Iradukunda et al., 2020). The
maximum depth at the time of measuring was 6.2 m and a maximum surface area of 56.8 km2.

Depth [m] [m] Surface area [m2] Partial volume [m3] Total volume [m3]
6.2 0 0 0 0
6.0 0.2 1.23E+06 1.43E+04 1.43E+04
5.5 0.5 3.18E+07 1.04E+07 1.04E+07
5.0 0.5 3.73E+07 1.74E+07 2.79E+07
4.5 0.5 3.97E+07 1.93E+07 4.72E+07
4.0 0.5 4.18E+07 2.04E+07 6.76E+07
3.5 0.5 4.38E+07 2.14E+07 8.90E+07
3.0 0.5 4.54E+07 2.24E+07 1.11E+08
2.5 0.5 4.70E+07 2.32E+07 1.35E+08
2.0 0.5 4.83E+07 2.39E+07 1.59E+08
1.5 0.5 4.98E+07 2.47E+07 1.83E+08
1.0 0.5 5.20E+07 2.56E+07 2.09E+08
0.5 0.5 5.47E+07 2.70E+07 2.36E+08
0.0 0.5 5.68E+07 2.89E+07 2.65E+08

Bathymetry survey
The bathymetry study was performed by Iradukunda et al. (2020) in June 2019. The depth, surface area, par-
tial volume, and total volume have been extracted with echo-sounding technology, from which the results are
listed in Table 4.2. The lake variables are given for every 0.5 m layer in the lake. Measured from the surface,
the lake has a maximum depth of 6.2 m. The partial volume of the lake gives the volume in that specific lake
section, e.g. between 6 m and 5.5 m depth. The surface area is given for the top layer of this specific section,
e.g. the surface area at 5.5 m depth is 3.18e07 m2. The total volume is the accumulated sum of partial vol-
umes. The bathymetry survey data are used to establish a relation between the measured surface area and
volume. The bathymetry study describes the state of the lake at one specific point in time. In order to create
an accurate time series for the volume of the lake, the surface area time series from DAHITI is used to fit the
lake volume to lake surface area relation from bathymetry. DAHITI also provides data on the volume, which
is estimated by combining the depth from altimetry and surface area from optical imagery. The volume is
estimated from the minimum observed surface area, so it does not incorporate the actual bottom of the lake.
It is for this reason that the relation between bathymetry observed surface area and volume is used to create
a time series for the lake volume.
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4.3. Moisture tracking and climate data
The moisture tracking model WAM2layers requires input data from surface variables and model level vari-
ables. ERA5 hourly data on single levels is used for this research (Hersbach, 2023). ERA5 replaces the ERA-
Interim reanalysis data and provides data from 1940 to present. The data are acquired with a script that makes
use of an CDS API key to download the data from the ERA5 database. The data are downloaded as NetCDF
files for the domain 0 to 100 longitude and 40 to -40 latitude and time of interest from 1981 to 2021. The
downloading script and WAM2layers code is provided on the GitHub repository (van der Ent et al., 2022).

The model level data is comprised of 22 model levels, a temporal resolution of one hour, and a grid size of
0.5°. Model variables are u and v component of wind and specific humidity. The u component of wind is the
eastward component of the wind. The v component of wind is the northward component of wind. Both wind
components are combined to define the horizontal wind speed and direction. The specific humidity gives
the mass of water vapour per kilogram of moist air. The variables are defined for each grid per model level.

Surface variables used by the model are; total precipitation; evaporation; surface pressure; and total column
of water. Total precipitation defines the accumulated liquid and frozen water falling to the earth’s surface. The
sum is taken for large-scale and convective precipitation. It omits fog, dew or precipitation that evaporates
before it hits the Earth’s surface. Evaporation represents the accumulated water that has evaporated from the
surface of the Earth and includes a simplified version of transpiration. Surface pressure is the weight of all
air in a vertical column above the surface of the Earth with unit Pascals. It is the pressure of the atmosphere
on the land, sea surface, and in-land water. The total column of water is the accumulated amount of water
in a vertical column from the Earth’s surface to the top of the atmosphere. It comprises water vapour, liquid
water, snow, cloud ice, and rain, in kg m-2.

In various studies, sea surface temperature (SST) is associated with precipitation over land and is suggested
to be an important driver for precipitation. SST is used in this research to assess the impact of it for differ-
ent source regions on precipitation. The European Centre for Medium-Range Weather Forecasts (ECMWF)
provides the Ocean Reanalysis System 5 (ORAS5). It is a combination of model data with observations glob-
ally covering 1979 to present at a resolution of 0.25°. Two global SST indices are used as well namely El Niño
Southern Oscillation (ENSO) and the Indian Ocean Dipole acquired through NOAA (Huang et al., 2017).
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Methodology

In this chapter, the research methods used in the study are outlined. The focus in Paragraph 5.1 is on the
spatial and temporal analysis of precipitation with an emphasis on change point detection, which reflects
on the first research question. Paragraph 5.2 examines how the variability of precipitation impacts the lake
through the application of a water balance model. Paragraphs 5.3 and 5.4 describe the methodology used for
moisture tracking, and moisture source analysis in relation to climate drivers respectively.

5.1. Spatial and temporal catchment analysis
The overflowing of lake Nakuru is a rather abrupt and sudden process initiated around the early 2010s, from
which a steady rise is observed up until 2021 given historical data. It is therefore of considerable interest to
look at sudden changes in precipitation patterns. To validate change points, an offline detection method is
used, provided by the Ruptures package introduced by Truong et al. (2020). The algorithm takes a time series
signal as input, where the goal is to find the optimal segmentation. It uses a built-in cost function includ-
ing MSE, Binary Segmentation (binseg), and the Dynamic Time Warping (dtw). A recursive algorithm finds
the optimal segmentation. The algorithm calculates the minimum cost for all possible segments up to that
time. The algorithm backtracks to recover the indices of the change point once the optimal segmentation is
found. Tuning parameters in the algorithm can be adjusted to improve the performance of the algorithm,
including the penalty parameter that controls the complexity of the segmentation and the minimum size and
jump parameter that control the minimum segment size and the maximum distance between two consecu-
tive change points.

The significance of the change point is tested with the Mann-Whitney U test at a significance level of 5%, if
a change point candidate is identified by the algorithm. The Mann-Whitney (MW) U test, also known as the
Wilcoxon rank-sum test, does not demand a normal distribution and is suitable for smaller data sets. It also
assumes two sub-samples were extracted from a larger sample of the same population. It assesses the sig-
nificance of difference in median or mean over the two time series. If the segmentation is proven significant
the first year after the year of change is called a change point. The MW test has been progressively used in
recent decades for assessing changes and steps in hydrological time series like streamflow and precipitation.
For instance, Liang et al. (2011) applied the method to find jumps in precipitation time series in the northeast
of China and Keim and Muller (1992) investigated whether local heavy rainfall regimes had changed through
the analysis of annual maximum storm series.

The KMD weather station data are assessed among each other to find statistical relations for elevation, dis-
tance apart, and rainfall amount. Change points in catchment precipitation are further analysed based on
changes in climatology and daily, monthly and yearly precipitation. The SPI has been calculated for every
year in the time series (WMO, 2012) to provide insight into the number of dry and wet years. Eventually
periods of interest are distilled for further moisture tracking and climate driver analysis.
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Figure 5.1: Water balance model for lake Nakuru presenting the catchment and lake model components; catchment precipitation (Pc,t),
catchment actual evapotranspiration (ETa,t) soil storage (St), groundwater percolation (PEt), total catchment runoff (Rt), modelled lake

volume (Vm,t), lake precipitation(PL,t), lake seepage (SEt), and lake evaporation (E)L,t) at time t and the maximum soil storage of the
catchment (Smax).

5.2. Water balance model
This paragraph is divided into three subsections to detail the water balance modelling method. The first
subsection explains the conceptual water balance model, including its corresponding components and rela-
tions. The second subsection describes the Monte Carlo model calibration, followed by an explanation of the
methods used to interpret the model including a component analysis and a multiple linear regression model.

5.2.1. Conceptual model
To relate precipitation to the behaviour and fluctuations of the lake, a simple water balance model is intro-
duced, conceptually visualised in Figure 5.1, with a daily time resolution (t=1 day). Model inputs consist
of time series from 2009 to 2021 and are classified as; catchment precipitation; catchment potential evapo-
transpiration; lake precipitation; lake surface area; and lake actual evaporation. Lake Nakuru has no known
surface water outlets (Kenya Ministry of Environment and UNDP, 2021). Shallow groundwater as a result of
precipitation flows directly to Lake Nakuru from the east and west rift edges and from the south and from the
north. Deep groundwater is assumed to flow northwards towards the lower laying parts where Lake Bogoria
is situated (Montcoudiol et al., 2019). The outgoing flux for the lake would be actual evaporation (Ea,t) from
the lake’s surface and seepage (SEt) from the bottom of the lake to deeper groundwater. Seepage from the
lake is assumed to be low, for the reason that this is a salt water lake. The precipitation on the lake (PL,t) and
total catchment runoff (Rt) as a result of catchment response and runoff coefficient are the two incoming lake
fluxes.

Catchment characteristics are also important to consider as it determines the response to precipitation. The
maximum storage (Smax) is the average maximum amount of water that can be stored over the entire catch-
ment area in the root zone. The incoming flux to the catchment is the catchment precipitation (Pc,t). The
outgoing catchment fluxes would be groundwater percolation (PEt) and actual evapotranspiration (ETa,t).
Percolation is assumed to not flow to the lake but rather recharge groundwater and subsequently flow down-
stream to lower laying areas in the Rift Valley. The catchment experiences a reference evapotranspiration
used as an input for the model to calculate actual evapotranspiration based on the amount of water in the
soil with respect to the maximum soil capacity. The output of the model comprises a time series of daily res-
olution of the catchment storage, actual catchment evapotranspiration, catchment runoff, total lake volume,
and change in lake volume which is the volume that leaves or enters the lake at time t.
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The equation for the actual evapotranspiration of the catchment at time t ETa,t is provided by equation 5.1,
ETref,t is the catchment reference evapotranspiration, St is the catchment storage at time t and Smax is the
maximum storage of the catchment. Equation 5.2 and 5.3 represent the percolation PEt and runoff coefficient
rc, t at time t where PEmax and rc,max are their maximum defined parameters. Equation 5.4 describes lake
seepage at time t SEt which is a function of the lake area and maximum seepage for the lake SEmax.

ET a,t = E ref,t ×
St

Smax
(5.1)

PE t = PE max × St

Smax
(5.2)

r c, t = r c,max × St

Smax
(5.3)

SE t = SE max × Alake

Alake,max
(5.4)

Equation 5.5 describes lake influx from catchment runoff Rt, where Pt is the catchment precipitation at time
t.

R t = {

r c, t ×P t P t ̸= 0,St ≤ Smax

r c, t ×P t + St −Smax P t ̸= 0,Si > Smax

0 P t = 0,St ≤ Smax

(5.5)

Equation 5.6 describes the catchment storage at time t St where the storage of previous time step St-1 is con-
sidered with fluxes entering the catchment storage, namely catchment precipitation Pt and fluxes leaving the
catchment storage i.e. catchment runoff at time t Rt, actual evapotranspiration at time t ETa,t, and percola-
tion at time t PEt. If the catchment storage at time t exceeds the maximum catchment storage, the minimum
value of both is taken for the catchment storage at time t+1 St+1.

St = {
St-1 + P t −R t −ET a,t −PE t P ̸= 0

St-1 −ET a,t −PE t P t = 0
St+1 = {

mi n(St,Smax) St > Smax

St St ≤ Smax
(5.6)

Eventually, the total volume contribution to the lake delta Vlake,mod,t at time t is described by Equation 5.7,
and totalled by the incoming fluxes at time t; runoff volume a time t Vrunoff,t, lake precipitation volume VPL,t,
and outgoing fluxes at time t; lake evaporation volume VEL t and the lake seepage volume VSEt .

△V lake,mod,t = V runoff,t +V PL,t −V EL t −V SEt (5.7)

Equation 5.8 describes the total volume at time t with the lake volume at time t-1 Vlake,mod,t-1 and the total
volume contribution at time t from catchment and lake interactions delta Vlake,mod,t.

V lake,mod,t = V lake,mod,t-1 +△V lake,mod,t (5.8)

5.2.2. Model calibration
The model is calibrated using a Monte Carlo simulation on the four parameters to represent the volume of
the lake explained in Table 5.1. The ranges provided in the table are set to a certain range to reduce equi-
finality, as more parameter sets can perform equally well. Furthermore, there are four input parameters to
consider, specifically runoff coefficient, maximum storage of the subsurface, percolation, and seepage. A
wide but reasonable parameter range is chosen after literature and hand calibration. This means a total of
14256 parameter sets are made. A multiple objective function is used to select the right parameter set. The
NSE and NSElog are calculated for each parameter set and are described in the Equations 5.9 and 5.10. Finally



17

Table 5.1: Water balance model parameters with unites, range for calibration, and description.

Parameter Unit Range Step Description
Smax [mm] 100 - 500 50 The maximum storage of the catchment sub-surface

rc,max [-] 0.05 - 0.15 0.01
Runoff coefficient of the catchment
depending on catchment storage

SEmax [mm/d] 0 - 4.8 0.4
Seepage from the lake to groundwater
depending on lake volume

PEmax [mm/d] 0 - 4.8 0.4
Percolation from the catchment sub-surface to groundwater
depending on catchment storage

the Euclidean distance (De) is calculated for each parameter set to obtain the most balanced parameter set
and is described in Equation 5.11. Vm is the modelled volume and Vo is the observed lake volume. As the lake
volume is very sensitive to sudden changes and experiences high variability month to month, it is important
to model both the high and low extremes. This multi-objective calibration therefore aims to model both the
highs and lows using the NSE and NSElog objective functions. The parameter set with the lowest De is often
defined as the most balanced model and in this case taken as the parameter set for this model (Hrachowitz
et al., 2014).

N SE = 1−
∑n

i =1(Vm,i −Vo,i )2∑n
i =1(Vo,i −Vo)2

(5.9)

N SElog = 1−
∑n

i =1(log (Vm,i )− log (Vo,i ))2∑n
i =1(log (Vo,i )− log (Vo)

)2 (5.10)

De =
√

(1−N SE)2 + (1−N SElog )2 (5.11)

5.2.3. Precipitation and lake behaviour
To investigate the difference in model behaviour to precipitation a monthly component analysis is conducted
to evaluate the influence of precipitation on lake variability. The analysis is restricted to the period from 2009
to 2020, when sufficient measurements of lake characteristics are available. The analysis involves creating
precipitation bins of approximately 25 mm, as depicted in Figure 5.2 according to the Freedman-Diaconis
rule (Freedman and Diaconis, 1981), and assessing the monthly volume variations within each bin. To exam-
ine the impact of precipitation on the volume variation, all four fluxes contributing to lake volume change,
namely lake precipitation, lake evaporation, lake seepage, and catchment runoff, are analysed. This analysis
leads to the identification of three hypotheses, which aim to explain why precipitation events have different
effects on the lake volume:

1. Examining the entirety of factors that influence lake volume, including lake precipitation, evaporation,
seepage, and catchment runoff, instead of solely focusing on precipitation, can provide a more com-
prehensive explanation for the observed lake volume behaviour.

2. The fluctuation of the lake is closely linked to the variability of rainfall during the month.

3. The lake’s variability is influenced by the precipitation from the previous month and the current month,
impacting the catchment water storage capacity.
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Figure 5.2: A scatter plot representing the precipitation bin distribution for component analysis and
relation between monthly precipitation and monthly observed volume change. Take note of the

different bins which should be viewed horizontally, where for the same range of precipitation, a wide
range of volume differences are observed.

Subsequently, to understand the lake volume dynamics and contributing components, multiple linear re-
gression (MLR) is performed (Holder, 1985). The general equation for MLR is:

y =β0 +β1x1 +β2x2 + · · ·+βn xn +ε (5.12)

where:

• y is the dependent variable (the variable that is being predicted or explained)

• x1, x2, . . . , xn are the independent variables (the independent variables that are used to predict the value
of y)

• β0,β1, . . . ,βn are the regression coefficients (the parameters that determine the slope of the regression
line)

• ε is the error term (the part of y that cannot be explained by the independent variables)

The independent variables are model outputs lake precipitation, lake evaporation, lake seepage, and catch-
ment runoff. The dependent variable that is predicted is the lake volume. The coefficients of the independent
variable give an impression of the importance of the variable towards predicting the volume of the lake. The
goal of MLR is to estimate the values of the regression coefficients that minimise the sum of squared errors
between the predicted values of y and the actual values of y. This is done using a method called ordinary least
squares regression. It finds the values of the regression coefficients that minimise the residual sum of squares,
which is the sum of the squared differences between the predicted values of the dependent variable and the
actual values of the dependent variable. It is applied in various studies such as estimating the relationship
between weather variables (rainfall, temperature, and other climate indices) and agricultural productivity
(measured by crop yield) (Mediero and Kjeldsen, 2014).
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5.3. Moisture tracking
The model WAM2layers is used for moisture tracking to track precipitation from the catchment area 10 days
backward in time (Van der Ent et al., 2014). This is an offline tracking algorithm that makes use of Eulerian
computation. The region of interest to perform backtracking is from -40 to 40 latitude and 0 to 100 longitude.
This area is based on previous backtracking research for East Africa. Furthermore, the precipitation domain
is given by the region from which backtracking is performed and is -0.7 to -0.2 latitude and 35.7 to 36.3 longi-
tude to be representable for the lake Nakuru catchment area.

The next step is to process the data, so the model can read it and perform the backtracking analysis. It in-
cludes accumulating the data into two layers, deriving moisture fluxes from the available ERA5 data, and
converting the data into the right units. In order to start the reprocessing, a configuration file is built with the
correct date range and file locations.

After the processing step, the data is ready for the backtracking functionality of the model. The backtracking
experiment tracks precipitation back in time. The model uses a file that defines the source region from where
to track moisture. The source region file has latitude and longitude data as well as a grid containing 0 and 1
where 1 indicates in this case the lake Nakuru catchment and has the same domain as the downloaded data
and thus the preprocessed files. Again the configuration file should contain the time period for the precipi-
tation event that is backtracked, and the duration over which backtracking is performed. The data is used to
solve the water balance for the tagged moisture for each grid and in two layers, called the upper and lower
layer. The water mass balance that is solved is given by equation 5.4 (Findell et al., 2019; Van der Ent et al.,
2013):

∂Sg ,lower

∂t
=

(Sg ,l ower u)

∂x
+
∂(Sg ,lower v)

∂y
+ Eg −Pg ±Fv,g (5.13)

Where g describes the mass of water that has being tagged from the source area; t is time; u and v are the
wind components; P is the surface precipitation, E is the surface evaporation, and Fv is the exchange between
layers over the vertical. The upper and lower layer backward trajectory are somehow similar except that Eg

is expected to only enter the lower layer. The fluxes are calculated over the boundaries of each grid cell over
the u and v direction. Vertical exchange is a strong assumption as it tries to capture all exchanges of moisture
due to rainfall that does not reach the surface, convection, and turbulence. However, results were reasonable
physically in previous studies (Van der Ent et al., 2013).

5.4. Climate indices
To interpret the moisture tracking, this research makes use of climate indices to find relations with precipi-
tation and lake overflowing. Moisture sources are of great importance when looking for reasons why precip-
itation patterns are changing. Therefore, this research investigates different moisture sources for catchment
precipitation both spatially and temporally and further looks into larger scale global circulations that are at
hand and could influence precipitation patterns for the time periods of interest, i.e. El Niño and the Indian
Ocean Dipole (IOD).

5.4.1. Moisture sources
A distinction is made between land and sea evaporation contribution to the precipitation in the catchment.
As Keys et al. (2022) suggests for Kenya as a whole, it is found that during wet years the relative moisture
contribution to precipitation is more focused on continental evaporation and oceanic evaporation further
east on the Indian Ocean. In dryer years, moisture originates relatively more from the coastline, and the Ara-
bian Sea becomes relatively more important. It is also suggested that Kenya’s precipitation consists for 85%
of moisture originating from oceanic evaporation, whilst 15% originates from continental evaporation. Fur-
thermore, Findell et al. (2019) suggested that in a warming world, the contribution of oceanic evaporation to
continental precipitation becomes larger compared to the contribution of continental evaporation to conti-
nental precipitation. Near surface temperatures increase so that the moisture capacity of air above the ocean
increases.
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Not only the distinction between land and sea contribution is made. Moreover, sea contribution is divided
into sea regions that are relevant to the time of year and moisture trajectory. Regarding the time series of
interest, specific sea regions are identified based on literature and backtracking results. In defining the sea
regions, distinctions are made between the coastal moisture source, off the coast evaporation in the western
Indian ocean, and evaporation further east in the Indian Ocean contributing to precipitation in the catch-
ment. In this way it is possible to identify sea regions that contribute to precipitation in the catchment for
the tracking time period and account for possible changes. Precipitation throughout the year experiences
different contribution regions of evaporation as wind patterns and SST shift with the ITCZ.

5.4.2. Sea surface temperature and climate indices
Changes in SST are key for investigating precipitation variability in the catchment. Analysis of SST data shows
that strong East African rainfall is associated with warming in the Pacific and Western Indian Oceans and
cooling in the Eastern Indian Ocean (Black, 2005; Black et al., 2003; Wainwright et al., 2021). Yang et al. (2015)
observed that during dry season, from January to February, the southern part of the ocean is warmer com-
pared to the northern ocean region and Arabian sea and displays a north-south SST gradient. During the long
rains season, form March to May, the Indian Ocean gradually heats up, where the warmer temperatures are
observed in front of the Kenyan Coast and more eastern in the Indian Ocean. During the continental rains
season, from June to September, the ocean cools off with lower temperatures near the coast and higher lower
temperatures deeper into the Indian Ocean. In the short rains season, from October to December, the same
distribution of SST is seen as during the long rains season, although temperatures are lower.

Changing SST in the Indian Ocean can influence evaporation rates and moisture transport over East Africa,
which in turn can impact precipitation patterns in the region. A warmer SST in the western Indian Ocean
can increase the amount of water vapour in the atmosphere through evaporation, which can enhance rain-
fall over East Africa. Conversely, cooler SST in the eastern Indian Ocean can decrease evaporation rates and
moisture transport, which can lead to drier conditions in the region (Gimeno et al., 2012). The key physical
factors that affect evaporation rates on the ocean include SST, atmospheric moisture content, wind speed,
and air-sea temperature and humidity differences. These factors can influence both the rate and spatial dis-
tribution of oceanic evaporation . Gimeno et al. (2013) presented results from a modelling study that analyses
the relative importance of local and non-local controls on evaporation rates. The authors find that local con-
trols, such as SST and atmospheric moisture content, are the dominant factors influencing evaporation rates
on short timescales (hours to days). However, non-local controls, such as large-scale atmospheric circula-
tion patterns and oceanic mixing, can also play a significant role in controlling evaporation rates on larger
timescales (weeks to months). Regarding local controls of the evaporation rate, the sea regions identified for
the time span of interest are analysed on their difference in SST. Black (2005) suggested that earlier findings
of the relationship between East African rainfall and the ENSO is manifested by the link between the ENSO
and IOD. Non-local controls include the ENSO and the IOD. These are compared with precipitation periods
of interest for the catchment through Pearson correlation.
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Results

The Results chapter of this thesis presents the findings of the study in a structured manner, by sequence
of the research questions. The chapter begins with a spatial and temporal analysis of precipitation in the
catchment of Lake Nakuru, followed by a detailed description of the water balance model that examines
the interaction between precipitation and the lake. The chapter then investigates moisture tracking and sea
surface temperature dynamics, and explores the impact of global circulations on the study area.

6.1. Spatial and temporal precipitation analysis
Change point analysis has been conducted on the individual and the Thiessen interpolated times series, lake
precipitation, consisting of weather station 6, 7, 10 and 11, and catchment precipitation consisting of all
weather stations. Figure 6.1 visualises the KMD weather station locations and whether the weather station
experiences a change point in annual precipitation at 2010. Those that experience a change point are visu-
alised in green, others in red. Nine out of fourteen weather stations experience a significant change point at
2010. This section is supported by supplementary material in Appendix A, where Table A.1 lists the change
point and significance for every weather station, as well as lake precipitation and catchment precipitation.
Weather stations around the lake, except for seven, experience a change point, as well as weather stations
at the northwestern and eastern part of the catchment. No significant change points are observed in higher
elevated areas in the southwestern and middle part of the catchment. Furthermore, higher laying weather
stations seem less likely to experience a change point. In addition, both lake precipitation and catchment
precipitation experience a significant change point at 2010.

The weather stations reveal diverse changes in precipitation when comparing the average precipitation prior
and post change point. Station 11 and station 14 show a surge in precipitation of 41% and 48%, whereas
station 8 and 9 remained roughly the same. Additionally, the other stations show increased precipitation of
13% for station 5, and 28% for station 15. Catchment precipitation shows a lower increase compared to lake
precipitation, where they increase 18% and 25%, from 849.11 mm to 1005.05 mm, and 871.26 mm to 1090.65
mm, respectively. Comparing KMD stations among each other revealed the relationships between relative
distance and precipitation. The correlation for stations within a radius of 15 kilometres suggests a high pos-
itive correlation above 0.75. As distance progresses the correlation becomes lower down to 0.63 on average,
with extremes to a low correlation relation between certain weather stations. Furthermore, precipitation gen-
erally increases with elevation.

Figure 6.2 presents the baseline climatology of the catchment, established by averaging precipitation for each
month from 1981 to 2009 and 2010 to 2021. Compared to the baseline, January shows a decrease in precip-
itation of -21% (-7.60 mm), while September exhibits the largest change of 64% (+37.81 mm). October and
December also show notable changes, with increments of 30% (+21.14 mm and +15.95 mm, respectively).
April (+33.66 mm), May (+23.07 mm), and July (+13.84 mm) represent changes of 20% to 30%, while March
(+8.75 mm) and June (+6.31 mm) exhibit changes of around 10%. In contrast, February (-0.49 mm), August
(+1.83 mm), and November (+1.68 mm) show only minor differences, with changes of 2% or less.
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Figure 6.1: DEM map of lake Nakuru Catchment with delineation of lake Nakuru on December 11th,
2020. The KMD weather stations are visualised by their location and if there is a significant change

point detected in 2010 (green) or not (red). Change points are observed in 9 out of 14 weather stations.

Before the change point, the catchment experienced one moderately wet year with 1 < SPI < 1.5 (1988) and
one moderately dry year with -1 < SPI < -1.5 (2004). In addition, there were two very dry years with -1.5 < SPI <
-1.75 (1999, 2000) and two extremely dry years with SPI < -2.0 (1984, 2009). From 2010 to 2021, the catchment
experienced two moderately wet years (2010, 2014), two very wet years in a row with 1.5 < SPI < 1.75 (2018,
2019), and one extremely wet year with SPI > 2.0 (2020). It is noteworthy that no moderately dry or drier years
were observed after the change point.

Figure 6.2: Climatology for lake Nakuru catchment displaying the difference between the average monthly
precipitation prior to 2010 and post 2010. The shaded blue area displays the change in average monthly

precipitation. Major relative and absolute increases are observed for April and September.
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(a) Solution space model calibration (b) Modelled volume for optimal parameter sets

Figure 6.3: Multi-objective calibration results with the solution space and optimal parameter sets for the water balance model where
the objective functions equal 0.818, 0.939, and 0.194 for NSE (red), NSElog (purple), and De (green) respectively (a) and time series of

the observed volume in black and corresponding error, and the three optimal parameter sets for NSE, NSElog, and De (b). Lower
volumes and higher volumes are over-predicted whilst the mid range values are more under-predicted and parameter sets visually

perform near equally well.

Table 6.1: Parameter sets for calibration results of the water balance model
for the optimal objective functions NSE, NSElog, and De

Variable NSE NSElog De

Smax [mm] 400 450 400
rc,max [-] 0.1 0.08 0.09
SEmax [mm/d] 2.0 1.6 1.6
PEmax [mm/d ] 3.6 2.4 3.6

Table A.2 shows a change point in monthly precipitation over the catchment in September and October of
2010. Catchment precipitation has increased by 155.94 mm annually, with April and September contributing
to 46% of this increase with 33.66 mm and 37.81 mm, respectively. The intensity of precipitation in these
months has also increased. For instance, in April, there were 0.9 days per month with a 15 mm precipita-
tion over the catchment before the change point, while after the change point, this increased to 2.7 days per
month. Similarly, in September, there were 0.13 days per month with a daily precipitation intensity of 12 mm
over the catchment area before the change point, whereas after the change point, this increased to 1.4 days
per month. Figure A.1 and A.2 provide visualisations of the yearly and monthly precipitation intensities for
these two significant months.

6.2. Water balance modelling
6.2.1. Precipitation and lake interaction
In order to identify the months of interest, it is important to understand how the lake responds to varying
precipitation amounts in each month. Figure B.1 visualises the observed lake surface area and resulting lake
volume over time, indicating an inclination from 2010 onwards. This section is supported by supplementary
material in Appendix B, where Table B.1 provides the average monthly precipitation for each month during
the model period (2009-2020), along with the accumulated volume contribution and the Pearson correla-
tion of precipitation with observed monthly volume changes. It is found that three months, namely Febru-
ary, March, and October, contribute on average to a decline in lake volume with -0.024, -0.012, and -0.010
km3, respectively. On the other hand, the months of April, May, and September contribute the most to the
lake volume, with 0.0619, 0.0623, and 0.0532 km3, respectively, and they also experience the highest aver-
age precipitation. Notably, prior to 2010, September had one of the lowest precipitation amounts, whereas it
currently experiences the third-highest. The correlation between precipitation and observed volume change
differs for each month. Specifically, April precipitation exhibits a high positive correlation with monthly vol-
ume change of 0.820, while May precipitation shows no to weak positive correlation with monthly volume
change of 0.260. September precipitation demonstrates a moderate positive correlation with observed vol-
ume change of 0.527.
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6.2.2. Model calibration
A total of 14256 parameter sets have been tested on the water balance model for which the solution space is
visualised in Figure 6.3a. The parameter set with the lowest De values is taken as the most balanced model
with a De value of 0.194 that include a NSE and NSElog of 0.818 and 0.934 respectively. The parameter sets
for the multi-objective function calibration are given in Table 6.1. The three parameter sets have maximum
catchment storage and runoff coefficient roughly within the same range considering the total range for cal-
ibration. Figure 6.3b visualises the modelled volume for each optimum parameter set. What is chosen to
be the most balanced model gives a maximum catchment storage of 400 mm, a runoff coefficient of 0.09,
maximum lake seepage of 1.6 mm d-1 and maximum percolation from the catchment of 3.6 mm d-1. The
parameter set gives the maximum value as they are intertwined with catchment and lake variability. For all
three models there is an overestimation for the lower volumes, however within the error range for the ob-
served volume. Around an observed lake volume of 0.25 km3 an under-prediction is noticed mostly outside
of the error range. The dynamics are roughly the same, although lower. For lake volumes around 0.25 to 0.3
km3 the model shows a good and mostly equal representation. Above 0.3 km3 the model is over predicting
the observed lake volume.

6.2.3. Model Output
To understand how the model behaves Figure 6.4a displays the histograms for the main model input, lake
evaporation, catchment precipitation, and lake precipitation, and model outputs, catchment runoff, lake
seepage, and modelled volume change per month. Catchment precipitation typically ranges from 0 to 125
mm per month, with maximum precipitation months extending to 300 mm. The catchment precipitation
is translated to catchment runoff through the runoff coefficient and catchment storage. The rather uniform
histogram for precipitation is translated to a exponentially decreasing catchment runoff histogram. The num-
ber of lower runoff volume is higher compared to low precipitation amount that could that the catchment has
a dampening effect on precipitation. Lake precipitation follows roughly the same distribution as catchment
precipitation as those are very well linked with a correlation of 0.97 where catchment precipitation and runoff
experience a correlation of 0.9, visualised in Figure 6.4b. In general lake evaporation contributes about two
times more to lake volume losses than lake seepage, as they range from -0.003 to -0.006, and -0.001 and -0.003
km3 respectively. The volumes of lake evaporation and lake seepage are positively correlated with 0.74, most
probably because they both depend on the surface area of the lake. Lake evaporation has a slight positive
correlation with catchment precipitation of 0.25. Lake seepage has low to no correlation with other variables.
Regarding Figure 6.4a, the observed volume change and the modelled volume change per month are visu-
alised on the bottom right. They experience a moderately positive correlation of 0.6. In total, 57 months show
a negative modelled volume change whilst for the observed volume change the is 63 months. The observed
volume change displays more months in the second lowest bar of the histogram, whereas the modelled vol-
ume more in the lowest bar. Furthermore, the modelled volume change has a long tail with outliers up to
0.04 km3, where the observed volume does not. The modelled volume therefore gives more extreme volume
ranges as opposed to the observed volume.

6.2.4. Component analysis
To gain a comprehensive understanding of how precipitation affects the lake, it’s crucial to not only exam-
ine the amount of precipitation, as many studies do, but also consider catchment characteristics. Predicting
how a specific amount of precipitation of the same magnitude would impact the lake is challenging, but it’s
easier to predict for varying precipitation amounts. This relates to the first hypothesis, which suggests that
the overall modelled change, encompassing lake precipitation, catchment runoff, lake evaporation, and lake
seepage, is a superior predictor than catchment precipitation alone. To investigate this, the Pearson correla-
tion of precipitation and modelled volume change is compared with the observed monthly volume change
of the lake within the same precipitation bin. Considering all bins, precipitation and observed lake volume
change are positively correlated with 0.537, whereas modelled volume change to observed volume change
are stronger positively correlated with 0.604.
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(a) Histogram of model entities (b) Correlation matrix of model entities

Figure 6.4: Histograms for monthly totals for catchment precipitation and lake precipitation, catchment runoff, lake evaporation, lake
seepage, and modelled lake volume change in km3 per month (a) and Correlation matrix for the model variables contributing to the
modelled monthly lake volume (b). Notably, the spread for modelled lake volume is higher with representing more extremes in the

bottom right histogram. Correlation coefficients represent possible relations between mainly lake and catchment precipitation, but
also moderate positive correlations for modelled and observed lake volume.

Figure 6.5a provides a bar chart of the correlation results for hypothesis one were it is argued that a more
comprehensive explanation for the impact of precipitation on the lake is obtained by examining the impact
of catchment characteristics rather than only precipitation. In the precipitation bins correlation values range
from -0.326 for bin 3 (51.77 to 77.66 mm) to 0.322 for bin 4 (77.66 to 103.55 mm). Within the same range of
precipitation it is therefore difficult to predict the influence on the lake volume. Hence, modelled volume
change provides a better estimate of the impact on the observed volume, where the correlation ranges from
no correlation in bin 1 and 8 to 13, to correlation values of 0.622, and 0.728 for bin 4 (77.66 to 103.55 mm) and
bin 6 (129.44 to 155.32 mm) respectively.

Figure 6.5b provides a bar chart of the correlation results for hypothesis two where it is argued that the lake
variability depends on the variability and intensity of rainfall, which is assessed by looking at the monthly
variance with daily precipitation intensities. Lower precipitation ranges bin 1 (0 - 25.89 mm) and bin 2 (25.89
- 51.77 mm) experience a low positive correlation between observed lake volume change and variance in
monthly rainfall. Also the variance in modelled volume change gives a moderate positive correlation. Bin
3 to 5 do not experience correlation, whereas for bin 6 a high positive correlation is found with variance in
modelled lake volume and variance in monthly precipitation. Inter monthly variability could be a measure
on lake impact for lower and higher precipitation bins with high correlations in the middle graph for bin 1, 2
and 6.

Figure 6.5c provides a bar chart of the correlation results for hypothesis three about the analysis that con-
siders precipitation and catchment memory over two months. Overall, this approach enhances the correla-
tion with observed lake volume to 0.618 and 0.644 for precipitation and modelled lake volume, respectively.
Notably, incorporating a two-month precipitation accumulation results in significant improvements in the
correlations with higher precipitation ranges bin 5,6, and 7, with regard to a one month period. Moreover, the
modelled volume change over two months generally performs equally well or better than the accumulated
two-month precipitation.
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(a) Hypothesis 1 (b) Hypothesis 2 (c) Hypothesis 3

Figure 6.5: Component analysis for bin 1 to 13 and all months combined. Figure a presents hypothesis 1 where the correlation of
precipitation and modelled volume change are compared with the observed volume change. Figure b presents hypothesis 2 where the

effect of variance in precipitation and modelled volume is related to observed volume change. Figure c presents results for hypothesis 3
where a two month period is considered. Precipitation ranges above 25 mm show correlations above 0.4 up to 0.7 regarding modelled

versus observed volume. Bin 1, 2, 6, and 7 show positive correlation with inter monthly variability. Including previous month in the
analysis of lake impact generally increased the prediction of the model over all precipitation ranges.

In addition to analysing all months in the precipitation range it is also important to understand the extremes
within each bin, as significant lake decrease or lake increase could be triggered by certain catchment or pre-
cipitation behaviour. The lower extremes and higher extremes are compared representing 15% of the sampled
months at each end, or 2 samples at each end for bin 6 and 7 to 13, as their sample size is too small. Taking
the minimum and maximum observed lake change over all months on the lower and upper 15% results in
21 months at each side. For the lower bound 86% received below average precipitation, whilst for the up-
per bound 71% received above average precipitation. With respect to modelled volume, 95% of the lower
bound observations correspond with a below mean modelled volume change, whilst 76% of the upper bound
correspond with an above mean modelled volume. The lower to negative volume changes are all caused by
precipitation events lower than 100 mm per month, whilst for the high volume change the amount of precip-
itation is more ambiguous.

Hypothesis two refers to the monthly variance in precipitation and modelled volume change. In the lower
bound, 71% receives below mean variance in precipitation, whilst 52% of the upper bound receives an above
mean variance in precipitation. With respect to the variance in modelled volume, 81% of the lower bound
observed volume change is modelled with a below average variance in modelled volume, whilst for the up-
per bound 71% is modelled with an above average variance in volume change. Regarding lower precipitation
bins 1, 2 and 3, low variance in precipitation is associated with low to negative volume change. For higher
precipitation bins this is not the case. Regarding variance in modelled volume, a low variance in general is
associated with a lower volume change. In general, higher observed volume changes are less subject to vari-
ance in precipitation or modelled volume.

Hypothesis three refers to the memory of the catchment with a two month precipitation period. In 81.0% of
the lower bound observed volume change, accumulated precipitation over two months is below mean pre-
cipitation. In 76.2% of the higher bound, accumulated precipitation over two months is above mean precipi-
tation. Regarding modelled volume change, 81.0% of the lower bound observed volume change corresponds
with a below mean modelled volume change over two months, whilst of the higher bound, 85.7% corresponds
with above mean modelled volume change over two months.
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6.2.5. Model Performance
Figure 6.6 demonstrates the performance of the model by presenting the time series for one month, three
months, and accumulated volume (a, c, e), along with their corresponding scatter plots (b, d, f) that visualise
the observed volume against the modelled volume and corresponding r-squared value. Notable overestima-
tion of three peaks occurring in 2018, 2019, and 2020 are identified. The model can account for 38.5% of the
variability with an r-squared value of 0.385. These three peaks are also evident in the scatter plot as the three
highest values. The linear regression is slightly less steep when compared to the perfect fit line. In greater
detail, the time series visualisation exhibits the same order of magnitude, and hence significant positive and
negative volume changes are usually well-matched. Based on Figure 6.6a, accurately representing near-zero
volume changes on a monthly resolution can be a challenging task for the model. This is due to the potential
for negative observed volume changes to be modelled as positive, and vice versa.

Figure 6.6c, considers a three-month time period. An improvement in the model performance is observed,
with an increased ability to reproduce the variability in the lake volume, as reflected in the higher r-squared
value of 0.625. The trend of the lake is well-matched, particularly for the period from 2010 to 2017. The ex-
tremes are still significantly overestimated in magnitude, with peak values that are roughly two times higher
than the observed values, as observed in 2018, 2019, and 2020. Moreover, for the entire year of 2020, the
model produces higher volume changes than what was observed. Additionally, the linear regression relation
shows a similar trend to the perfect fit, with both lines being approximately parallel to each other. The line for
the scatter plot is slightly above the perfect fit line, indicating a slight overestimation of the modelled volume
changes. It goes without notice that in 2012 the observations are generally under-predicted by the model.

Figure 6.6e visualises the comparison of the accumulated modelled and observed volume. The model shows
a r-squared value of 0.868. It has becomes clear that the model over-predicts the lower lake volumes in gen-
eral from 0 to 0.1 km3. Subsequently, the model generally under-predicts the lake volumes from 0.15 to 0.25
km3. As the volume of the lake increases to about 0.3 to 0.35 km3 the model over-predicts the volume again.
We could argue that this over-prediction is caused by these three peaks described earlier in 2018, 2019, and
2020.
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(a) 1-month lake volume change (b)

(c) 3-month lake volume change (d)

(e) Accumulated lake volume (f)

Figure 6.6: Model performance with respect to modelled and observed volume where the time series for the one month volume change
(a), the three month volume change (b), and the accumulated volume change (c) are given with on the x-axis the time in months, and
on the y-axis the observed or modelled volume. Accompanied by their scatter plots in figure b, d, and f, respectively, where the x-axis
represents the observed volume and y-axis the modelled volume. As the modelled volumes are taken into account for a longer time

period the r2-statistic improves. There is a good resemblance of lake variability with exception for high extremes in the years 2019, and
2020.
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(a) MLR model and observed lake volume (b) MLR model versus observed volume scatter plot

Figure 6.7: MLR model performance with respect to the observed lake volume with time series, with x-axis time in months, and y-axis
accumulated lake volume (a) and accompanied scatter plot with x-axis modelled lake volume, and y-axis MLR model predicted volume
are visualised (b). Compared to previous Figures there is a general improvement in observed lake volume resemblance with the scatter

plot following the perfect fit, even though lower lake volumes are still mismatched in some parts.

Table 6.2: Correlation coefficients for MLR model constant and independent variables; lake precipitation; catchment runoff; lake
evaporation; and lake seepage, with corresponding the coefficient, standard error, t-value, and p-value.

Independent variable [km3] Coefficient Std err t-value P >| t |
Constant -0.010 0.006 -1.784 0.077

Lake precipitation 2.152 0.468 4.601 0.000
Catchment runoff -0.151 0.217 -0.694 0.489
Lake evaporation -0.837 0.318 -2.635 0.009

Lake seepage 5.061 0.266 19.034 0.000

Regarding lake volume it is of interest to investigate the independent variables that make up the modelled
lake volume. A MLR model is created of which the time series result and accompanied scatter plot are visu-
alised in Figure 6.7. The coefficients for the independent variables and the constant are provided in Table 6.2.
The ’Std err’ column represents the standard error of the coefficient estimate, which measures the variability
or uncertainty of the estimate. The ’t-value’ column shows the t-value, which is the ratio of the estimated co-
efficient to its standard error, and is used to test the null hypothesis that the true coefficient value is zero. The
’P>|t|’ column shows the p-value, which is the probability of observing a t-value as extreme or more extreme
than the observed value, assuming the null hypothesis is true. A small p-value indicates that the coefficient is
statistically significant, meaning that it is unlikely to have occurred by chance, and that it provides evidence
for a relationship between the corresponding independent variable and the dependent variable.

The p-values for lake precipitation, lake evaporation, and lake seepage are all less than 0.05, indicating that
these variables are statistically significant predictors of the dependent variable. In contrast, the p-values for
the constant and catchment runoff are greater than 0.05, indicating that these variables are not statistically
significant predictors of the dependent variable in the presence of the other variables. The coefficient for
lake precipitation and lake seepage are 2.152 and 5.061 respectively, which means they are significantly more
important than catchment runoff and lake evaporation for predicting the observed lake volume. The MLR
model results in a volume prediction that has a high r-squared value of 0.868. Thereby, the mid to high range
lake volumes better predicted and match the observed lake volume as can be seen in both the time series as
the scatter plot. It should be noted that looking at the time series the MLR model does not resemble the very
lower range of lake volume with high accuracy. The same is true for the lake volume range from 0.08 to 0.12
km3.
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(a) (b)

Figure 6.8: April moisture tracking results of continental (a) and sea (b) evaporation representing the difference in evaporation prior
and post the change point of 2010. Contour plots are indicating that the moisture contribution from coastal and east of Madagascar
increases prior to post change point. Continental evaporation manifests a large absolute increase compared to oceanic evaporation.

6.3. Moisture tracking
The main aim of the moisture tracking is to find relations between changing precipitation patterns and the
fluctuations in origin of this precipitation. The overall precipitation patterns are compared with origins of
precipitation with regards to the change point observed. The months of April and September are investigated
as they have proven to be most significant to precipitation and lake variability. They are assessed on their
land versus sea moisture contribution, sea region contributions, and extremely low and high precipitation
events.

6.3.1. April moisture tracking analysis
Continental and oceanic evaporation
Moisture tracking results for the month of April are visualised in Figure 6.8 which represents the modelled
difference prior and post change point for continental and oceanic evaporation. This section is supported by
supplementary material in Appendix C. The tracking visualisations prior and post change point for continen-
tal and sea contribution are visualised in Figure C.1 and C.2. In the month of April, continental evaporation
contributes about 27.2% on average to the total precipitation in the catchment before 2010 whereas after 2010
this is 31.3%. In absolute terms this is 31.28 mm before the change point compared to 45.92 mm after 2010
an increase of 14.64 mm on average per year which is a surge of 46.8%, whilst the change in average April
precipitation is 26.8%. During two wet years after the change point in 2013 and 2018 land contributions can
reach above 50% of the total precipitation, whist low precipitation months like 2011 this can be as low as 13%.
A moderately positive correlation is observed of 0.648 between the percentage of precipitation originating
from the continent and April precipitation in the catchment. This relation intensified after the change point
from 0.536 prior to a high positive correlation of 0.754 post change point. On the other hand the percentage
of oceanic evaporation is then negatively correlated to April precipitation. Prior 2010 the mean sea moisture
contribution is 83.86 mm or 72.83% and 100.62 mm or 68.66 % after 2010. This comes down to a mean in-
crease of 16.76 mm or a 19.99%.

Notably, continental evaporation extends and intensifies more to the North, West and South of the catch-
ment. Furthermore, there is a high concentration (dark blue) around and left of the catchment indicating
intensified local moisture contribution. Regarding sea moisture, intensification is observed along the coast
between Madagascar and Mozambique. The contour plot of 0.005 and 0.01 extends to the South of Madagas-
car indicating more evaporation from this region. It is thereby observed that in Figure C.2b the 0.02 contour
extends further into the Western Indian Ocean. This can be clearly seen in the difference visualisation as well.
Increases are observed before the coast of Tanzania as well as in the Western Indian Ocean just to the right of
Madagascar.
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Table 6.3: April contributions of six sea regions prior and post change point representing the percentage contribution of total oceanic
evaporation and the absolute contribution to the moisture contributing to precipitation. Sea regions 1, 4 and 5, specifically mid coastal,

equatorial oceanic, and south equatorial oceanic, have the largest moisture contribution, where sea region 5 increases in magnitude
post 2010.

Region
Percent of sea contribution

Prior 2010 [%]
Percent of sea contribution

Post 2010 [%]

Absolute contribution to e_track
to KMD precipitation

Prior 2010[mm]

Absolute contribution to e_track
to KMD precipitation

Post 2010 [mm]
1 24.2 22.9 20.3 23.0
2 8.8 13.9 7.4 13.9
3 6.0 3.7 5.1 3.7
4 20.6 16.1 17.2 16.1
5 26.8 31.6 22.4 31.6
6 8.1 5.6 6.8 5.6

Sea regions analysis
Appendix C displays visualisations of sea regions for the month of April, which include the distribution of six
sea regions. Figure C.3 and Figure C.4 demonstrate the total contribution of sea regions before and after 2010,
respectively. Figure C.5 illustrates the difference in tracked moisture from each region. As April precipitation
is sometimes distributed over the full Indian Ocean extending till right of India. Six sea regions are defined
representing; central coastal region (1); the southern coastal region (2); the northern coastal region (3); the
Indian ocean off the coast along the equator (4), south of the equator and right of Madagascar (5), and north
of the equator around India (6). Table 6.3 summarises the outcomes, presenting the percentage and absolute
contribution of moisture to oceanic evaporation from each of the six regions before and after 2010.

Sea region 1, 4 and 5, are the most significant when it comes to moisture contribution. After 2010, the contri-
bution of sea regions 1, 3, 4, and 6 to oceanic evaporation has decreased, while the contribution of regions 2
and 5 has increased from 8.8% to 13.9% and 26.8% to 31.6% respectively. This indicates that the importance
of regions near and north of the equator has declined, while regions south of the equator have become more
significant. Despite an overall increase in precipitation in April, regions 3, 4, and 5 have decreased in absolute
terms, whereas region 1 has increased. Meanwhile, sea regions 2 and 5 have experienced a significant abso-
lute increase, with their average evaporation levels rising from 7.4 mm to 13.9 mm and 22.4 mm to 31.6 mm,
respectively, representing an absolute increase of 87.8% and 41.1%.

Table C.1 provides the relation expressed in correlation between April precipitation and sea region contri-
bution as a percentage of oceanic evaporation, and between April precipitation and absolute evaporative
contribution of the sea region. It has previously been mentioned that there is a moderate and high posi-
tive correlation for the percentage of evaporation originating from land compared to April precipitation, and
thus negative for oceanic evaporation. Percentage wise there is no profound correlation between any of the
sea regions and April precipitation over all years, however sea region 1 has the highest low correlation of -
0.404. When we compare prior and post 2010, the negative correlation for sea region one changes from low
to moderate negative correlation of -0.338 to -0.545. Comparing the absolute contributions from sea regions,
region 1 has a high correlation with April precipitation of 0.863, and sea region 4 and 5 a moderate positive
correlation of 0.654 and 0.664 respectively. Correlations for sea region 2, 3, and 6 are low positive. Interest-
ingly, comparing prior and post 2010, sea regions 3 and 6 move from low positive correlation to moderate and
high positive correlation respectively with 0.249 to 0.588 and 0.229 to 0.709. Other region correlation remain
roughly equal. This could indicate that more moisture from the northern regions serves as an indicator for
wet periods.
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Table 6.4: Moisture source sea region contribution to three driest months April (1996, 2011, 2021) and three wettest months April (1988,
2018, 2020) including the percent contribution compared to the sea regions total and absolute contribution. Region 5 is most

significant in its change to relative and absolute moisture contribution.

region Contribution to dry extremes [%] Contribution to dry extremes [mm] Contribution to wet extremes [%] Contribution to wet extremes [mm]
1 26.5 8.6 23.1 43.6
2 10.6 3.4 5.9 11.1
3 6.6 2.1 3.7 7.1
4 21.2 6.9 17.8 33.5
5 24.9 8.1 36.9 69.7
6 4.9 1.6 4.8 9.1

(a) (b)

Figure 6.9: September moisture tracking results of continental (a) and sea (b) evaporation representing the difference in evaporation
prior and post the change point of 2010. Intensification of moisture contribution from the coastal areas as well as northeast of
Madagascar with an increase also manifesting between the Mozambique and Madagascar. There is overall a major increase in

continental evaporation extending more to the west of the catchment.

Low and high precipitation extremes
As part of understanding dynamics for wet and dry April months the three low and high extreme precipita-
tion months are investigated for their moisture sources and sea region contribution of which the results are
described in Table 6.4. The three driest years include 1996, 2011, and 2021. The three wettest April include
1988, 2018 and 2020. On average the three driest years have sea contribution of 32.45 mm opposed to 188.72
mm in the three wettest years. Relatively, during the driest months, moisture from sea represents 82.0% of the
total tracked moisture compared to 66.6% in the wettest months. In the driest and wettest month the relative
contribution of sea region 5 increased massively from 24.9% to 36.9%, whilst all other regions decreased in
relative contribution most notably the mid coastal region 1 from 26.5% to 23.1% and the mid Indian Ocean
region 4 from 21.2% to 17.8%. One can argue that the coastal region and Indian ocean around the equator be-
come relatively less important during wet months and more important during dry months. The other coastal
regions 2 and 3 have also decreased in relative importance from 10.6% to 5.9% and 6.6% to 3.7%.

6.3.2. September moisture tracking analysis
Continental and oceanic evaporation
Moisture tracking results for the month of September are visualised in Figure 6.9 which represents the mod-
elled difference prior and post change point for continental and oceanic evaporation. This section is sup-
ported by supplementary material in Appendix D. Moisture tracking results for prior and post 2010 can be
found in Figure D.1 and D.2. In the month of September 30.85% of the precipitation can be attributed to
evaporation from land equalling 17.31 mm on average before 2010. After 2010 the contribution of continen-
tal evaporation increased to 32.52% or 29.14 mm on average per month September. This represents a 11.83
mm increase or 68.3% relatively. The largest difference is observed around and left of the catchment area.
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Table 6.5: September contributions of five sea regions prior and post change point representing the relative contribution of total
oceanic evaporation and the absolute contribution to the moisture contributing to precipitation. Region 4, to the east of Madagascar

contributes the most to oceanic evaporation and increases significantly in absolute terms after 2010.

Region
Percent of sea contribution

Prior 2010 [%]
Percent of sea contribution

Post 2010 [%]

Absolute contribution to e_track
to KMD precipitation

pre 2010[mm]

Absolute contribution to e_track
to KMD precipitation

Post 2010 [mm]
1 14.0 14.3 5.4 8.7
2 6.8 8.1 2.6 4.9
3 16.9 17.0 6.5 10.3
4 44.1 45.7 17.1 27.6
5 18.0 14.6 7.0 8.8

The contribution of continental evaporation can be over 40% in the years of 2001 and 2011 and be as low as
15% in the years 1997 and 2002. The percent of land contribution and September precipitation represents
a low positive correlation of 0.486 over all years. The correlation however is reduced after the change point
from a moderate positive correlation of 0.622 to no correlation of 0.013. Alternatively, oceanic evaporation
contributes to 69.15% or 38.8 mm prior 2010 and 67.5% or 60.47 mm post 2010, representing a 21.66 mm
difference and 55.8% increase.

The tracking visualisations prior and post change point for continental and sea contribution are visualised
in Figure D.1 and D.2. Continental evaporation became more intense around the left of the catchment re-
gion and there is a high concentration of moisture production around the catchment that contributes to the
precipitation. Regarding sea moisture, intensification is observed along the coast between Madagascar and
Mozambique. The contour plot of 0.005 and 0.01 extends to the South of Madagascar indicating more evapo-
ration from this region. It is thereby observed that in comparing prior and post change point moisture source,
the 0.005 and 0.010 contour stays reasonably in place whereas 0.020 and 0.030 contours extend further east
of Madagascar. This is clearly observed in the difference visualisation. Large increases are also observed near
the coast of the Kenyan-Tanzanian border extending to the north of Madagascar.

Sea regions analysis
Appendix D displays visualisations of sea regions for the month of September, which include the distribution
of six sea regions. Figure D.3 and Figure D.4 demonstrate the total contribution of sea regions before and after
2010, respectively. Figure D.5 illustrates the difference in tracked moisture from each region. Given the distri-
bution of September precipitation the sea is divided into five regions representing the central coastal region
(1), the southern coastal region (2), northern Madagascar (3), eastern Madagascar and western Indian Ocean
(4), and further east on the Indian ocean (5). Table 6.5 summarises the outcomes, presenting the percentage
and absolute contribution of moisture to oceanic evaporation from each of the six regions before and after
the change point.

It becomes evident that the moisture source from sea region 4 contributes most of the sea moisture to pre-
cipitation in the catchment with 44.1% of total sea moisture. Thereby, sea region 1, 3, and 5 contribute about
the same percentage of sea moisture before 2010. After 2010 these distributions have slightly shifted with
most notably the reduction in percentage contribution of region 5 from 18.0% to 14.6% and the increases of
sea region 2 and 4 from 6.8% to 8.1% and 44.1% to 45.7% respectively. As September precipitation generally
increases after the change point, the absolute contribution for all sea regions increases as well. The absolute
increase is most profound in sea region 4 from 17.1 mm to 27.5 mm representing a 61.4% increase, where
percentage wise region 1, 2, 3, and 5, increased with 61.1%, 88.5%, 58.5%, and 25.7%.

Table D.1 provides the relation expressed in correlation between September precipitation and sea region con-
tribution as a percentage of oceanic evaporation, and between September precipitation and absolute evap-
orative contribution of the sea region. Percentage wise there is no profound correlation between any of the
sea regions and September precipitation over all years. It is only after 2010 that sea region 3 exhibits a low
negative correlation with precipitation. Furthermore, there are no drastic changes prior and post 2010 to the
correlation of absolute moisture contribution and September precipitation. It is remarked that regions 1, 3
and 4 give a very high positive correlation whilst regions 2 and 5 give a moderately positive correlation.
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Table 6.6: Moisture source sea region contribution to three driest months September (1996, 2011, 2021) and three wettest months
September (1988, 2018, 2020) including the relative contribution compared to the sea regions total and absolute contribution

region Contribution to dry extremes [%] Contribution to dry extremes [mm] Contribution to wet extremes [%] Contribution to wet extremes [mm]
1 12.2 2.2 13.7 12.7
2 5.9 1.0 7.6 7.1
3 16.7 3.0 16.1 14.9
4 45.8 8.2 44.1 40.9
5 19.2 3.4 17.9 16.6

Low and high precipitation extremes
The three lowest and highest precipitation months for September are investigated as well for their moisture
sources and sea region contributions of which the results are described in Table 6.6. The three driest years
include 1997, 2002, and 2006. The three wettest April include 2013, 2017 and 2021. On average the three driest
years have sea contribution of 17.82 mm opposed to 92.73 mm in the three wettest years. Relatively, during
the driest months, moisture from sea represents 81.5% of the total tracked moisture compared to 69.6% in the
wettest months. Sea region contribution as a percentage of total sea contribution remained relatively stable
between wet and dry extremes.

6.4. Sea surface temperatures
SST is an important metric for the rate of evaporation from the sea surface. Therefore the general changes
in SST are observed first. Thereafter, the sea regions defined in moisture tracking are investigated for their
variability in SST and what that means for catchment precipitation. Accordingly, the extremely low and high
precipitation events, also defined from moisture tracking, are compared with each other regarding SST in the
defined sea regions for April and September.

6.4.1. General SST variability

Therefore, the full year period, April, and September SST are investigated along with their relation to catch-
ment precipitation. The results are visualised in Figure 6.10. Furthermore, the sea regions from April and
September are assessed on their variability in SST. Looking at the left plots, the mean SST for the full year
reveals the highest SST around the equator as well as for the month of September. Higher SST in April are
observed around 5° latitude. Temperatures decreasing towards the -40° latitude to about 288 Kelvin for the
yearly average, and to about 290 Kelvin and 286 Kelvin for April and September respectively. Temperatures
between 20° and 0° latitude remain roughly the same.

Regarding decadal changes in the middle plots, we observe a slight increase around and above the equator
for all the time periods regarding the change between the first two decades from 1981 to 1989 and 1990 to
1999 (blue). Below the equator temperatures remained the same on average except for September where a
decrease in SST is observed of up to -0.25 Kelvin. The difference from the second to third decade (orange)
gives us different patterns. For the full year period an increase in SST is observed over the full latitude range
of around 0.2 Kelvin. Around -30° latitude an increase of 0.3 Kelvin is shown. Another pattern is observed for
the month of April where mainly temperatures around 20° and -30° latitude are observed of about 0.3 Kelvin.
Referring to September SST an increase of 0.3 Kelvin is observed over the full latitude range except for above
10° and below -30° latitude. Regarding the third to last decade (green) the main increase for the full year is
observed between -10° to -30° latitude of 0.2 to 0.4 Kelvin increase.

Regarding the month of September we see the increase in SST shift more towards the equator with up to 0.4
Kelvin increase around the -20° latitude ranges. Over the full latitude an increase of 0.2 Kelvin is observed. The
month of September provides observations with a large increase between again -10° to -30° latitude of up to
0.45 Kelvin, whilst regions outside of this range remain the same increase about 0.1 Kelvin. Overall comparing
the accumulated changes in SST the increased SST is most profound around the -20° to -30° latitude range all
time periods. September SST however also reveals a surge around the equator. The right plots in Figure 6.10
provide a general overview of the changes in mean SST prior and post 2010.
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(a) Full year SST

(b) April SST

(c) September SST

Figure 6.10: Visualisations of the SST; as change over the latitude range for means from 1981 to 2009 and 2010 to 2021 (left); as a
difference between 2 consecutive decades (middle); and as the difference between the means from 1981 to 2009 and 2010 to 2021 (right;

with the full year SST (a), April SST (b), and September SST (c). April experiences the highest temperatures during the year whilst
September for example experiences lower SST up to 4 Kelvin at 30° latitude (left). SST have been rising faster with the decade, and have

most profoundly risen around -20 to -30° latitude for April and September. The same region where most of the moist increased
production is found resulting from the moisture source analysis.

6.4.2. Regional SST variability
The correlation between April precipitation and sea region SST, as well as the mean SST across all regions,
were analysed over one, three, six, and nine year periods to capture yearly and multi-yearly trends. This sec-
tion is supported by supplementary material in Appendix E. The results are presented in Figure 6.11 and Table
E.1, which shows that April precipitation did not exhibit strong correlations to any sea region across the entire
1981-2021 time period (left). However, when the time period was divided into prior- and post-2010, negative
correlations were found between April precipitation and SST for the prior-2010 period (middle), while posi-
tive correlations were found for the post-2010 period (right).

Over time, a moderate trend correlation for the three-year mean was observed for region 1, particularly
around 0.4. Positive correlations between SST and April precipitation were found for the six-year means,
indicating that higher SST were associated with more precipitation on average in April for both individual
and all sea regions. Although the correlation for the full time series was 0.255 and prior to 2010 was -0.253,
a strong positive correlation of 0.819 was observed for the post-2010 period, suggesting a clear relationship
between SST and April precipitation over a six-year time frame.
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(a) 1981-2021 April SST (b) 1981-2009 April SST (c) 2009-2021 April SST

Figure 6.11: Correlation coefficients for April precipitation to sea region SST for all years together (a), only SST years prior 2010 (b), and
SST years post 2010 (c). Regarding April precipitation there is positive correlation for sea regions 1 and 4, the coastal equatorial and

oceanic equatorial region. The correlation between precipitation and SST becomes more profound when taking into account multiple
year means. Precipitation after 2010 reveals very high correlation with SST over the 6 and 9 year mean. On a one year timeframe, low to

no correlations are found.

(a) 1981-2021 September SST (b) 1981-2009 September SST (c) 2009-2021 September SST

Figure 6.12: Correlation coefficients for September precipitation to sea region SST for all years together (a), only SST years prior 2010
(b), and SST years post 2010 (c). September precipitation experiences low positive correlation for all sea regions over a one year mean.
This relation becomes stronger already after taking into account the three year means for SST and precipitation. Negative correlations

are found before 2010 over a multi year period, whereas with SST increasing means experience high correlations with post 2010
precipitation.

The relationship between September precipitation and SST is examined using the same approach as for April,
and the findings are presented in Figure 6.12 and Table E.2. The results show a moderate positive correlation
for sea region 4 in all years (left), while other regions display low or no correlation. However, for a three-
year time period, the correlation becomes stronger, ranging from highly correlated for sea regions 1, 4, and
5 to moderately positive for sea regions 2 and 3. The six-year and nine-year means generally improve the
correlation for all sea regions. In contrast, prior to 2010, negative to low positive correlations are observed
across all regions and time periods. For the post-2010 period, high positive correlations are noted for the six-
year and nine-year means, except for sea regions 1 and 3 on a six-year mean. Figure 6.13 provides the trend
for all sea regions combined over a six-year period for the month of April and September.
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(a) April 6-year mean (b) September 6-year mean

Figure 6.13: The 6-year trend in April (a) and September (b) showing the relation between SST and precipitation. One should pay
attention to the increasing mean temperatures of the sea regions trending with precipitation, where a rise is most profound from about

2010 for April and already from 2005 in September.

SST in sea regions during extreme precipitation
In order to strengthen the SST analysis, the three low and high extreme precipitation events from moisture
tracking are also examined based on their corresponding sea region SST. The findings for the months of April
and September are presented in Figure 6.14a and 6.14b, respectively. The SST differences are illustrated across
the latitude range of six sea regions for the month of April. Regions 1, 2, and 3 represent the coastal regions,
while regions 4, 5, and 6 are the oceanic regions located around, south, and north of the equator, respectively.
The results indicate that higher temperatures are primarily observed for wet April months above the equator
in regions 3 and 6, with differences ranging from 0 to 0.6 Kelvin. From the equator to the south, sea regions 2
and 4 display consistent differences ranging from 0.3 to 0.6 Kelvin. Sea region 1, which is the middle coastal
region, exhibits a large variance, ranging from 0.1 at around -5° to -10° latitude to a maximum of 0.7° around
the equator. Sea region 5, which is the oceanic region south of the equator, shows a difference of 0.4 Kelvin
around -15° latitude to -0.3 Kelvin at about -30° latitude. Overall, the analysis shows that SST is higher for wet
April months, with higher temperatures observed along the full coast and between 10° to -15° latitude at sea.

The month of September displays source regions mainly below the equator. Sea regions 1 and 2 are coastal
regions, sea region 3 lies north of Madagascar, region 4 is the region east of Madagascar, and region 5 is further
east on the Indian Ocean. Interestingly, SST differences are 0 to -0.2 Kelvin from about 0° to -5° latitude for
the coastal and northern Madagascar regions, from which they experience larger differences to 0.3 Kelvin
SST to about -10° latitude. The lower coastal region 2 shows very little difference in SST fluctuating between
-0.1 and 0.2 Kelvin. Moisture sources in sea regions 4 and 5 were previously recognised to be significant
to precipitation changes in September. Regarding SST they experience the largest difference as well. Peak
differences are observed for sea region 4 constantly above 0.5 Kelvin with highs up to 0.8 Kelvin around the
-20° latitude. Sea region 5 further up the ocean experiences differences above 0.5 Kelvin from a -20° latitude
onwards.

6.5. Global Climate variability
Apart from SST that are also directly influenced by global climate variability, the relation between these global
climate variability and precipitation is investigated for the IOD and El Niño. Strong IOD events are related to
period of high precipitation in the short rains season October, November, December experiencing a moder-
ately high correlation of 0.688. This relation became stronger comparing prior- and post -2010 from 0.568 to
0.842. The flooding of 1997 and 2019 are tied to this phenomenon. Including September precipitation in the
analysis gives an correlation of 0.539 overall, and an improvement from 0.388 to 0.732 comparing prior and
post change point. The month September to IOD September experiences no to moderate negative correla-
tion of -0.464 prior 2010 and -0.278 post 2010. No evidence of correlations is found for the months of April
and IOD with 0.229 and -0.373 correlation.
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(a) (b)

Figure 6.14: SST differences in sea regions defined in moisture tracking for extreme precipitation years for April (a) and September (b)
with on the x-axis the difference in mean extreme SST per region and on the y-axis the latitude range for each sea region. For the month
of April this regards the difference between SST for high extreme precipitation years 1988, 2018 and 2020 and low extreme precipitation
years 1996, 2011, and 2021. For September this means SST difference in high extreme precipitation years 2013, 2017 and 2021, and low
extreme years 1997, 2002, and 2006. Orange colours indicate coastal sea regions. Blue colours indicate oceanic regions. In September

SST differences of up to 0.8 degrees over the latitude on average are observed. For September it mainly regars the full latitude range that
experiences higher temperatures.

Figure 6.15a represents a time series of the second global climate indicator namely El Niño. Over the course
of 42 years there have been 14 El Niño years and 14 La Niña years. Prior 2010 there have been 11 El Niño
years and 9 La Niña years opposed to 3 and 5 post-2010. Figure 6.15b represents a visualisation of the El Niño
and La Niña years against September precipitation. Overall there is a high negative correlation between the
index and September precipitation of -0.620. This correlation became more profound comparing prior- and
post-2010 where the correlation increased to -0.640 to a very high correlation of -0.800. La Niña events are
associated with high September precipitation whilst El Niño events with low September precipitation. Prior
2010 the average precipitation of a La Niña year was 69.18 mm and post 2010 122.46 mm, whilst the average
El Niño year prior 2010 was 39.16 mm compared to 63.82 mm post 2010, representing an increase of 77% and
63% respectively. September precipitation is highly negatively correlated with El Niño whilst the short rains
season from October to December is strongly correlated with an El Niño.
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(a) (b)

Figure 6.15: A time series visualisations of El Niño and La Niña between 1980 and 2021 (a) with the El Niño and La Niña years scattered
against September precipitation prior and post 2010 (b). El Niño periods are defined in red and measure above 0.5 degrees above the
mean for 3 consecutive months, whereas La Niña records three consecutive months with 0.5 degrees below the mean. Red points are
indicated as El Niña years where blue points are indicated as La Niña. The crosses indicate prior-2010 and post-2010 are indicated by
dots. There is a strong correlation between September precipitation and El Niño, resulting in wet September months during El Niño

which have become more intense after 2010.
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Discussion

Hydrological and meteorological research are of great value to comprehend the complex Eastern Africa sys-
tem, and more specifically the Kenyan Rift Valley, as impacts of climate change (Black et al., 2003; Black, 2005)
and indisputable changes in the hydrology of the lakes (Dyer and Washington, 2021; Gichuru and Waithaka,
2016) have become more apparent in recent decades. This study has been addressing variability in precipita-
tion and lake dynamics for Lake Nakuru using a water balance model and moisture tracking. This was used
to find patterns in changing climatology tied to the overflowing of the lake using observational precipitation
data and bathymetry studies to obtain a more sophisticated understanding of the system. One must ascribe
caution to the specific meaning of water balance model parameters as these are more conceptual than phys-
ical features, since they are not observed or studied on site. According to the literature study performed for
this research, this is the first study to have employed moisture tracking with WAM2layers on a catchment
scale, and the resulting findings are both adequate and insightful. The method used to explore moisture pro-
duction and sea surface temperature (SST) variability in sea regions adds on our current understanding of
the impact that land, coastal, and further oceanic evaporation has on precipitation in East Africa (Yang et al.,
2015; Van der Ent and Savenije, 2013; Keys et al., 2022).

Precipitation variability
Years of low precipitation were interspersed with years of high precipitation over the lake Nakuru catchment.
As of 2010 a change point has been identified in weather station precipitation data and catchment wide pre-
cipitation, in agreement with earlier findings for precipitation in the Rift Valley region. Earlier studies have
identified as a breakpoint in 2009 (Herrnegger et al., 2021), whereas this study rather employs the terminol-
ogy of a change point, which is the year after a point of change. Mean precipitation over lake and catchment
area were investigated using the Thiessen method although this study does not take into account elevation
difference. It is expected not to have great impact on this water balance model or the model outcomes as
this model uses catchment wide precipitation. The Thiessen precipitation mean, and station precipitation
mean data sets have been compared after which two important, but not very significant, differences are ob-
served; first, the difference in the mean precipitation between 1981 and 2021 is about 20 mm; second, there
is a dampening mainly seen in the higher precipitation years. Not sure is the impact on daily precipitation
intensities on a catchment scale when implementing another method for determining the mean catchment
precipitation. Furthermore, weather station areas as a contribution to lake precipitation is assumed to be sta-
ble over time. While lake precipitation is proven to be an important part of explaining the lake variability one
might want to consider dynamic weather station contributions to lake precipitation for the model. Even so,
a more detailed water balance model should consider modelling individual catchment regions contributing
to the lake taking into account residence times, elevation, and land use changes. While this study’s focus lies
with the variability of precipitation and underlying drivers, taking into account previous catchment entities
for the water balance model would benefit the understanding of how local changes, geography, and different
catchment parts contribute to the dynamics of lake Nakuru.
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The bimodal precipitation annual cycle for East Africa is disputable for the catchment itself. The long rains
season from March to May is very profound whereas the short rains season from October to December does
not show a major second jump in precipitation. On the other hand, lengthening of the short rains season
(Cook and Vizy, 2013), as a result of climate change is an argument for the change point observed for the
month of September for which precipitation increased from the third lowest to the third highest precipitation
month surging 64% on average presumably extending the short rains season. Due to time and computation
power constraints, with April being the second largest contributor to the absolute increase of precipitation,
the two months April and September were identified as significant contributors the the change in precipita-
tion and overflowing of the lake to be further analysed with moisture tracking. The prolonged dry periods
and wet periods observed for the CHIRPS dataset (Kimaru et al., 2019) is supported by the observational data
from the Kenyan Meteorological Department as SPI indicators before the change point mainly present dry to
extremely dry periods whereas after the change point very wet and extremely wet periods were observed.

Implications water balance model decisions
It should be noted that because of limited data in lake observations and evaporation data the model em-
ployed in this research encompasses the time period from 2009 to 2020. Data prior 2009 revealed major data
gaps of up to five years making it not possible to adequately model the dynamics of the lake. However a more
detailed model was developed compared to previous studies (Herrnegger et al., 2021), specifically related to
actual evaporation and precipitation data. The model uses observational data from fourteen weather stations
for precipitation on a catchment and lake precipitation scale. Opposed to CHIRPS data which is primarily
based on satellite data calibrated with observational data with a resolution of 0.5°. Future models could be
made more sophisticated to model the variability of the lake with the 14 specific catchment compartments for
which weather station data is available. The actual evaporation obtained through water balance modelling
of the catchment is considered more reliable than the method employed by Herrnegger et al. (2021) where
the actual evaporation was calculated through multiplying actual evaporation from ERA5 with the ratio be-
tween ERA5 and CHIRPS precipitation, under the assumption that the overestimation of precipitation by
ERA5 compared to CHIRPS reflect directly to actual evapotranspiration under the same conditions. For this
study, through the ratio of catchment storage compared to the maximum catchment storage, hence water
availability, and reference evapotranspiration from WaPOR the actual evapotranspiration for the catchment
has been obtained. This is important to accurately determine the impact precipitation has on the catchment
and thus on the lake, because evaporation directly determines the net amount of precipitation available in
the catchment.

Regarding the model parameters included in the model calibration caution should be taken with interpret-
ing the values of the model parameters like runoff coefficient and catchment storage. The optimal values
are obtained through calibration and represent conceptual rather than physical values and can differ heav-
ily between different catchment areas and over time. Additionally, percolation from the catchment storage
to groundwater is assumed to not end up in the lake as percolation is assumed to recharge deeper ground-
water levels just as river flows that are mostly lost to recharge of groundwater before reaching the lake, for
which most of the rivers become influent (Kanda and Suwai, 2013). Deep groundwater is assumed to flow
northwards towards the lower laying parts of the Rift Valley where Lake Bogoria is situated (Montcoudiol
et al., 2019). The catchment runoff is then assumed to take into consideration runoff flow and shallow sub-
surface flow towards the lake. The impact of groundwater flow is not known for lake Nakuru specifically.
The assumptions above are mainly based on the literature study which suggests that underground inflow is
minimum. The hydrology in the catchment is complex and future studies should therefore specifically focus
on groundwater flows in the catchment and contribution to the lake. This could be realised with isotopic
tracer hydrology which has been applied in several studies in East Africa (Levin et al., 2009; Kebede et al.,
2009; Montcoudiol et al., 2019; Balagizi et al., 2018). Regarding model performance, the model overestimates
parts of 2010 to 2012, most caused by a higher modelled volume for the period of 2010 only. As variability and
magnitude change are quite stable between 2013 and 2018, the model on the one month and three month
time frame indicates a significant underestimation for the year 2012 resulting in a continuing underestima-
tion for the remaining time period. Large peaks in modelled volume in 2018, 2019, and 2020 cause the model
to overestimate the lake volume by the end of 2020. Multiple Linear Regression has been applied to overcome
the under-and overestimation of the model to see which model variables would be most significant for the
variability in the model. The high performance indicator for the three month and accumulated modelled lake
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volume indicates that the model is able to follow the dynamics of the lake accurately and is able to predict
lake volumes in the same order of magnitude overall.

Moisture tracking and climate drivers
Researchers are increasingly interested in using moisture tracking to explore hydro-meteorological variabil-
ity as it allows them to understand the underlying dynamics of climatological changes in a particular re-
gion. While moisture tracking studies have been implemented at the country scale, this study employs mois-
ture tracking to examine precipitation on a lake catchment scale, making it one of the first studies to use
WAM2layers for this purpose. Keys et al. (2022) found that 85% of Kenya’s precipitation consists of moisture
from oceanic evaporation and 15% from continental evaporation. Catchment specific moisture tracking for
this study found that continental evaporation can have a significant larger contribution to precipitation of
about 27% to 31% in the month of April and 31% to 33% for September precipitation. The relation between
continental moisture and precipitation became more profound when the three driest and wettest years were
compared. Extreme land contributions are found for the month of April with over 50% continental moisture
contribution and over 40% for September precipitation, mostly for wet months. This study found that wet pe-
riods are tied to higher land evaporation for both April and September precipitation. On top of that, coastal
moisture contribution is lower for wet periods compared to oceanic moisture contribution.

Overall, this study supports earlier findings related to land, coastal, and oceanic moisture production for dry
and wet periods (Keys et al., 2022; Findell et al., 2019) now also on catchment scale. Complex geological and
hydrological conditions of the Rift Valley, this study could result in different findings for other catchments.
It is promising though that the relation find for Kenya is also found back in the lake Nakuru catchment re-
garding land, coastal, and oceanic moisture production. A positive correlation for April and September for
continental contribution to precipitation is observed and with increasing relative contributions for precipi-
tation comparing prior and post change point. It should be noted that this study specifically focuses on the
months of April and September as these months are identified as the most significant contributors to the
changing precipitation patterns in the catchment. It would be interesting to investigate all months and see
if yearly patterns have changed. Furthermore, months that have seen no or negative change in precipitation
are also interesting to investigate further so find similarities and differences between wetter months to be
able to identify clearer causes.

Yearly SST over the Indian ocean and precipitation over the catchment both experience their peak in April.
With a warming world Findell et al. (2019) argued that the ratio between oceanic and continental evapo-
ration would become larger making oceanic evaporation more important. This study however found that
continental evaporation became relatively more important compared to oceanic evaporation. Both April and
September experience a gradient in SST with lower temperatures in the southern Indian Ocean. In April SST
ranges from 304 Kelvin around the equator to 292 Kelvin south of Madagascar. SST in September range from
302 Kelvin around the equator to 290 Kelvin and lower south of Madagascar. In the area along the latitudes of
Madagascar also the highest increments in SST are found. Comparing wet and dry periods SST in some areas
to the right of Madagascar can differ almost 1 Kelvin. Moreover, these regions of the sea have also been iden-
tified as the most significant moisture contributors to precipitation in the catchment. Furthermore, these
regions show the highest increase in produced moisture. Over time, SST has an effect on precipitation as
mean SST for April and September both show moderate to high correlation with precipitation. Concerning
El Niño and the Indian Ocean Dipole (IOD), this research supports the argument of the role El Niño and IOD
have on precipitation. Where positive correlation are found with the short rains season (Black, 2005; Black
et al., 2003). On the other hand, September precipitation experiences a high negative correlation with La Niña
which is partly argued in previous research (Van der Ent and Savenije, 2013).
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Future work
Although this work enhances the understanding of lake Nakuru variability and the impact of precipitation
with underlying changing drivers, there are several important next steps. Whereas observation data for pre-
cipitation is available it is important to obtain observation data through fieldwork experiments regarding
evaporation, catchment runoff, and possibly groundwater flows with isotopic tracers. This would enhance
the understanding of the catchment. A more sophisticated water balance could be developed for the lake, di-
viding the model in different catchment parts and implementing retention times. These parts could be based
on the locations of the KMD weather stations. Groundwater flow should be included in addition to using dif-
ferent runoff coefficients with respect to land classifications. Considering the added value of this study to our
understanding of the lake Nakuru behaviour to precipitation variability, the aim should be to establish flood
extent marks and mitigation plans for surrounding communities and wildlife habitat. The water balance
model provides relatively accurate insights into the impact of precipitation on the lake, as it can predict the
next month’s impact if precipitation values, and the impact of preceding months are known. The under- and
overestimation of the water balance model with respect to the observed lake volume should be compared to
time-series of the surrounding lakes Naivasha and Elmenteita to see if there are similarities. The surrounding
lakes could impact lake Nakuru through groundwater flow. It is furthermore interesting to elaborate on mois-
ture tracking for all years which was not possible considering time constraints. This method of investigating
precipitation variability and moisture sources produces interesting insights into the changing climatology of
the catchment and could be applied to more catchment in the Rift Valley to investigate possible similarities
and differences.



8
Conclusion

The objective of this research is to gain insights into the main drivers responsible for the overflowing of Lake
Nakuru. Specifically, the aim is to test the premise that increased precipitation in the catchment is the pri-
mary cause of the phenomenon. This study has investigated spatial and temporal variability of precipita-
tion in the lake Nakuru catchment by applying change point analysis and relating this variability to the lake
through a water balance model. The origin and underlying causes for this variability in precipitation has been
researched by applying moisture tracking with the WAM2layers model to identify moisture sources, local, and
non-local climatic drivers to explain the changing hydro-meteorology of the catchment.

Change points in precipitation have been observed in catchment and lake precipitation including the ma-
jority of weather stations in 2010. Notably, this change point coincides with the rise in lake volume from
2010 onwards. Catchment precipitation has increased with about 19% while several weather stations indi-
cate more precipitation up to 48%. The months of April and September together contribute 46% of the total
increased precipitation over the catchment, which is further substantiated by the change point in September
precipitation. Interestingly, the weather station change points are observed bordering the northern and east-
ern parts of the catchment along the mountain ridges. As the multiple linear regression analysis shows that
lake precipitation is the most important independent variable as it comes to lake influx, it is interesting that
the change points in precipitation are mainly focused to weather stations around the lake. Lake precipitation
overall increased more than the catchment average precipitation, with 219 mm and 156 mm respectively, in-
dicating a higher water availability in the lake’s surroundings. This suggests that changes in lake precipitation
is most likely the cause for the overflowing of the lake. The water balance model enhances our understand-
ing of the effects of precipitation on the lake as it reveals different impacts for the same order of magnitude
precipitation as a result of catchment interaction.

A combination of factors could be ascribed to the changing April and September months through moisture
tracking an climate drivers. Over time the western Indian Ocean region east to Madagascar became an in-
creasingly important moisture source for precipitation tied to a more than average sea surface temperature
increase in this region specifically. This study reveals that moisture is produced more locally comparing
prior and post change point with continental evaporation contribution increasing as well. Furthermore, a
high negative correlation between El Niño and September precipitation indicate that La Niña periods have a
strong positive effect on September precipitation. It is likely that with increasing sea surface temperatures,
a La Niña and El Niño are increasing in magnitude over the coming years increasing the likelihood of flooding.

In conclusion, the results of this study strongly suggest that the flooding of Lake Nakuru is likely to be at-
tributed to changes in precipitation. While there is limited research available on this subject, no significant
evidence has been found to support the possibility of tectonic plate movement as a contributing factor. The
sudden and significant shift in the lake’s surface area and volume indicates that changes in land use alone
are not a sufficient explanation for this phenomenon. Rather, it is possible that changes in land use and in-
creased precipitation may have a mutually reinforcing impact on the overflowing of Lake Nakuru. Overall,
these findings support the argument that a changing climate, in conjunction with increased precipitation, is
the primary underlying cause for the overflowing of lake Nakuru.
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Table A.1: Change point detection results for weather stations 2 to 15, lake precipitation, and catchment precipitation. Eight out of
fourteen weather stations experience a significant change point at 2010. Lake precipitation experiences a significant change point at

2010, however for the catchment precipitation average precipitation does not reach below 0.05 significance level.

Time series Elevation [m] P_pre2010 P_post2010 Change [mm] Change [%] Change_Point Significance
Pts2 2600 1040.21 1322.67 282.46 27.15% 2010 0.00068
Pts3 2166 916.82 1157.42 240.6 26.24% 2010 0.00398
Pts4 2380 925.79 1106.96 181.17 19.57% 2010 0.0882
Pts5 2756 1011.53 1142.85 131.32 12.98% - -
Pts6 1817 855.01 1024.64 169.63 19.84% 2010 0.01953
Pts7 1951 869.65 1024.82 155.17 17.84% 2010 0.06054
Pts8 2022 816.97 811.48 -5.49 -0.67% - -
Pts9 2564 813.22 802.75 -10.47 -1.29% - -
Pts10 1860 850.42 1021.58 171.16 20.13% 2010 0.02107
Pts11 1845 895.9 1266.31 370.41 41.35% 2010 0.0000
Pts12 1838 680.91 811.63 130.72 19.20% 2010 0.0122
Pts13 2305 786.5 985.07 198.57 25.25% 2010 0.0048
Pts14 2352 800.04 1182.03 381.99 47.75% 2010 0.0000
Pts15 1893 773.08 986.56 213.48 27.61% 2010 0.0008
Lake_Precipitation 1868 871.26 1090.65 219.39 25.18% 2010 0.0068
Catchment_Precipitation 2168 849.11 1005.05 145.51 18.37% 2010 0.0434

Table A.2: Change point detection results for monthly mean catchment precipitation. September and October experience a significant
change point at 2010.

Time series P_pre2010 P_post2010 Change [mm] Change [%] Percent of total change (%) Change_Point Significance
Jan 36.27 28.67 -7.60 -20.96% -5.22% - 0.4307
feb 30.97 30.48 -0.49 -1.59% -0.34% - 1
Mar 65.90 74.65 8.75 13.28% 6.02% - 0.7635
Apr 125.47 159.13 33.66 26.83% 23.13% - 0.3667
May 94.50 117.57 23.07 24.41% 15.85% - 0.1400
Jun 71.53 77.85 6.31 8.82% 4.34% - 0.6569
Jul 72.44 86.28 13.84 19.11% 9.51% - 0.2343
Aug 91.77 93.60 1.83 2.00% 1.26% - 0.57633
Sep 58.65 96.46 37.81 64.46% 25.98% 2010 0.0036
Oct 66.67 87.81 21.14 31.71% 14.53% 2010 0.0328
Nov 82.34 84.02 1.68 2.04% 1.15% - 0.9657
Dec 52.61 68.56 15.96 30.33% 10.96% - 0.4476
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(a)

(b)

Figure A.1: A visualisation of the time series of yearly precipitation in the month of April, indicating more intense months observed as
well as more intense daily precipitation, resulting in an increased precipitation of 26.83% on average per year comparing before and

after 2010.

(a)

(b)

Figure A.2: A visualisation of the time series of yearly precipitation in the month of September, indicating more intense months
observed as well as more intense daily precipitation, resulting in an increased precipitation of 64.46% on average per year comparing

before and after 2010 for which the change point is significant in the month of September.
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Water balance modelling
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Table B.1: Monthly precipitation and total monthly contribution to volume increase accompanied by their Pearson correlation for the
years 2009 to 2021

Month
Average monthly

precipitation [mm/month]
Accumulated contribution

to the total volume [3]
Pearson correlation month observed

volume change to precipitation [-]
JAN 27.3 0.00398 0.241
FEB 28.5 -0.02406 0.670
MAR 69.9 -0.01203 0.483
APR 152.3 0.06189 0.820
MAY 117.5 0.06231 0.260
JUN 73,5 0.03305 0.630
JUL 81.4 0.03347 0.130
AUG 89.0 0.04497 0.482
SEP 92.1 0.05315 0.527
OCT 85.0 -0.00980 -0.031
NOV 81.2 0.02217 0.645
DEC 72.9 0.02949 0.405

Figure B.1: Observed surface area (red) and lake volume (blue) from 1984 to 2021. An inclination is observed form 2010 onwards. Data
from 1984 to 2009 is very scarse.
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Moisture tracking April
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Table C.1: Correlation results for moisture tracking sea regions April prior and post change point

region
Correlation of KMD precipitation

to % of sea evaporation from region
Correlation % before 2010 Correlation % after 2010

Correlation of KMD precipitation
to absolute e_track from region

Correlation absolute before 2010 Correlation absolute after 2010

1 -0.404 -0.338 -0.545 0.863 0.860 0.873
2 0.177 0.062 0.234 0.457 0.338 0.488
3 -0.105 -0.111 0.125 0.291 0.249 0.588
4 -0.003 0.210 -0.292 0.654 0.704 0.730
5 0.0119 -0.042 -0.013 0.664 0.678 0.617
6 0.000 -0.012 0.240 0.370 0.229 0.709
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(a)

(b)

(c)

Figure C.1: April moisture tracking results of land evaporation before the change point (1981-2009) (a) and after change point
(2010-2021) (b) including a visualisation of the difference in moisture source (c)
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(a)

(b)

(c)

Figure C.2: April moisture tracking results of sea evaporation before the change point (1981-2009) (a) and after change point
(2010-2021) (b) including a visualisation of the difference in moisture source (c)
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(a) (b)

(c) (d)

(e) (f)

Figure C.3: April moisture tracking results of sea regions before the change point (1981-2009)
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(a) (b)

(c) (d)

(e) (f)

Figure C.4: April moisture tracking results of sea regions after the change point (2010-2021)
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(a) (b)

(c) (d)

(e) (f)

Figure C.5: April moisture tracking results of sea regions difference prior and post change point



D
Moisture tracking September

Table D.1: Correlation results for moisture tracking sea regions September prior and post change point

region
Correlation of KMD precipitation

to % of sea evaporation from region
Correlation % before 2010 Correlation % after 2010

Correlation of KMD precipitation
to absolute e_track from region

Correlation absolute before 2010 Correlation absolute after 2010

1 0.154 0.227 -0.191 0.944 0.924 0.931
2 0.29 0.216 0.254 0.682 0.589 0.671
3 -0.225 -0.165 -0.462 0.9 0.907 0.816
4 0.128 0.176 -0.139 0.931 0.928 0.883
5 -0.331 -0.387 0.133 0.632 0.622 0.677
6 0.000 -0.012 0.240 0.370 0.229 0.709
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(a)

(b)

(c)

Figure D.1: September moisture tracking results of land evaporation before the change point (1981-2009) (a) and after change point
(2010-2021) (b) including a visualisation of the difference in moisture source (c)
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(a)

(b)

(c)

Figure D.2: September moisture tracking results of sea evaporation before the change point (1981-2009) (a) and after change point
(2010-2021) (b) including a visualisation of the difference in moisture source (c)
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(a) (b)

(c) (d)

(e)

Figure D.3: September moisture tracking results of sea regions before the change point (1981-2009)
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(a) (b)

(c) (d)

(e)

Figure D.4: September moisture tracking results of sea regions after the change point (2010-2021)
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(a)

(b) (c)

(d)

Figure D.5: September moisture tracking results of sea regions difference prior and post change point



E
Sea surface temperature analysis
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Table E.1: Correlation of April SST from regions with April precipitation over a one year, three year, six year, and nine year mean

Region
Correlation

1 year
Prior 2010

1 year
Post 2010

1 year
Correlation

3 year
Prior 2010

3 year
Post 2010

3 year
Correlation

6 year
Prior 2010

6 year
Post 2010

6 year
Correlation

9 year
Prior 2010

9 year
Post 2010

9 year
1 0.219 0.171 0.157 0.387 0.215 0.398 0.333 -0.157 0.885 0.3 -0.316 0.889
2 -0.062 -0.027 -0.428 0.039 -0.064 -0.002 0.155 -0.018 0.664 -0.036 -0.233 0.338
3 0.195 0.265 -0.086 0.104 -0.055 -0.09 0.029 -0.335 0.727 -0.192 -0.594 0.429
4 0.223 0.164 0.153 0.353 0.254 0.183 0.42 -0.114 0.892 0.348 -0.2 0.871
5 -0.045 -0.001 -0.558 0.2 -0.188 -0.003 0.281 -0.274 0.856 0.207 -0.384 0.839
6 0.316 0.336 0.148 0.224 0.073 -0.039 0.167 -0.411 0.925 0.008 -0.628 0.76

All 0.182 0.205 -0.101 0.255 0.045 0.098 0.255 -0.253 0.889 0.105 -0.469 0.819

Table E.2: Correlation of September SST from regions with September precipitation over a one year, three year, six year, and nine year
mean

Region
Correlation

1 year
Prior 2010

1 year
Post 2010

1 year
Correlation

3 year
Prior 2010

3 year
Post 2010

3 year
Correlation

6 year
Prior 2010

6 year
Post 2010

6 year
Correlation

9 year
Prior 2010

9 year
Post 2010

9 year
1 0.233 -0.008 -0.166 0.625 0.116 0.511 0.573 -0.31 0.18 0.71 -0.577 0.866
2 0.174 0.069 -0.504 0.425 -0.156 0.05 0.479 -0.443 0.501 0.637 -0.644 0.699
3 0.18 -0.043 0.041 0.583 0.21 0.087 0.487 -0.274 -0.416 0.715 -0.392 0.394
4 0.399 0.107 0.221 0.688 0.255 0.054 0.752 0.083 0.579 0.888 0 0.9
5 0.344 -0.039 -0.003 0.671 0.111 0.019 0.826 0.274 0.673 0.922 0.243 0.911

All 0.335 0.024 -0.104 0.676 0.136 0.121 0.788 -0.191 0.624 0.841 -0.344 0.898
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