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a b s t r a c t

This paper proposes a sparse Bayesian treatment of deep neural networks (DNNs) for system iden-
tification. Although DNNs show impressive approximation ability in various fields, several challenges
still exist for system identification problems. First, DNNs are known to be too complex that they can
easily overfit the training data. Second, the selection of the input regressors for system identification
is nontrivial. Third, uncertainty quantification of the model parameters and predictions are necessary.
The proposed Bayesian approach offers a principled way to alleviate the above challenges by marginal
likelihood/model evidence approximation and structured group sparsity-inducing priors construction.
The identification algorithm is derived as an iterative regularised optimisation procedure that can be
solved as efficiently as training typical DNNs. Remarkably, an efficient and recursive Hessian calculation
method for each layer of DNNs is developed, turning the intractable training/optimisation process into
a tractable one. Furthermore, a practical calculation approach based on the Monte-Carlo integration
method is derived to quantify the uncertainty of the parameters and predictions. The effectiveness of
the proposed Bayesian approach is demonstrated on several linear and nonlinear system identification
benchmarks by achieving good and competitive simulation accuracy. The code to reproduce the
experimental results is open-sourced and available online.

© 2022 Published by Elsevier Ltd.
1. Introduction

System identification (SYSID) has a long history in natural
nd social sciences (Ljung, 1999b). Various approaches have been
roposed for both linear/nonlinear systems and static/dynamical
rocesses (Ayala, da Cruz, Freire, et al., 2014; Chen, Andersen,
jung, et al., 2014; Chiuso & Pillonetto, 2012; M. Brunot & Carrillo,
017). Among these, neural networks (NNs) are prominent black-
ox models and recently regained research interest in the SYSID
ommunity (Beintema, Toth, & Schoukens, 2021; Forgione & Piga,
021; Gedon, Wahlström, Schön, & Ljung, 2021; Ljung, Andersson,
iels, et al., 2020), thanks to the boom of deep learning.
The deep neural network (DNN) models have their advantages

nd disadvantages. An early paper on feed-forward NNs proved
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the universal approximation capabilities of any measurable func-
tion, using one hidden layer on a compact set (Hornik, Stinch-
combe, & White, 1989). The training of DNN is mainly based on
data which does not require much prior information about the
system (LeCun et al., 2015). Several works also achieved com-
petitive results by using feed-forward NNs (Leshno, Lin, Pinkus,
et al., 1993) and recurrent neural networks (RNNs) (Delgado,
Kambhampati, & Warwick, 1995; Weber & Gühmann, 2021) in
the context of dynamical systems. However, it is not easy to de-
sign a proper NN structure. First of all, the trade-off between the
model complexity and (simulation) prediction accuracy should
be considered. An over-simplified model cannot reveal the un-
derlying relation between input and output data. On the other
hand, an over-complex model may overfit the training data, thus
reducing its generalisation ability. Besides, the inevitable (non-
Gaussian and non-additive) noise and non-smooth characteristics
of some nonlinear processes may also cause the overfitting prob-
lem. Furthermore, NNs can also be underspecified by the data
and constitute a large space of hypotheses for high-performing
models (Wilson, 2020). Another challenging problem for SYSID
is input regressor selection, which is defined as follows: given
input regressors z(t+1) = [u(t+1), u(t), . . . , u(t− lu), y(t), y(t−
1), . . . , y(t − ly)]⊤ ∈ Rlu+ly+1 with lu and ly denoting respectively
the input and output lag, the most relevant input regressor fea-

tures, which can explain the intrinsic phenomenon of the system,
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re selected (Castellano & Fanelli, 2000). An effective input re-
ressor selection can improve the prediction performance, and
eneralisation ability of the identified model.
For these challenges, the sparse Bayesian learning method

ffers a principled way to tackle them simultaneously: (a) A more
fficient exploration of the hypothesis space (corresponding to
addle points) of NN models is possible (Wilson, 2020; Zhou,
ang, Wang, et al., 2019); (b) Over-fitting can be alleviated, and
odel redundancies can be eliminated through marginalisation
nd by choice of sparsity inducing prior distribution over parame-
ers (MacKay, 1992); (c) Important input variables can be selected
utomatically by imposing structured sparsity on the NN; (d)
odel parameters and prediction uncertainties can be quantified,
hich is particularly useful in decision making and safety-critical
pplications such as autonomous driving and structural health
onitoring (Huang, Shao, Wu, et al., 2019).
Diverse Bayesian SYSID methods have been developed in the

ast decades. To name a few, a practical sparse Bayesian approach
o state-space identification of nonlinear systems was proposed
n Pan, Yuan, Gonçalves, et al. (2016) in the context of biochem-
cal networks. A Bayesian identification algorithm of nonlinear
utoregressive exogenous (NARX) models using variational in-
erence with a demonstration on the electroactive polymer was
ntroduced in Jacobs, T. Baldacchino, et al. (2018). A framework
or identifying the governing interactions and transition logics
f subsystems in cyber–physical systems was presented in Yuan,
ang, Zhou, et al. (2019) by using Bayesian inference and pre-
efined basis functions. A variational expectation maximisation
pproach to SYSID when the data includes outliers was devel-
ped in Lindfors and Chen (2020). Two approaches to SYSID
sing Bayesian networks were proposed in Chiuso and Pillonetto
2012). The first one combines kernel-based stable spline and
roup Least Angle Regression while the other combines stable
plines with the hyper-prior definition in a fully Bayesian model.
owever, this work did not discuss how to apply the Bayesian
pproach to the NN model. Another typical probabilistic nonpara-
etric modelling method is the Gaussian process (GP), which
an perform excellently for linear and nonlinear SYSID tasks, but
uffers from the high computational burden for large datasets
nd cannot conduct input regressor selection efficiently. Overall,
pecific to the use of NNs as a model form, little attention has
een given to the identification of dynamic systems in a Bayesian
ramework.

Several approaches have been proposed to treat the NNs in a
ayesian manner, e.g., Laplace approximation, expectation prop-
gation, variational inference, etc. Among these methods, the
aplace approximation is an approximated inference approach
hat can only represent local properties but is closer in efficiency
o maximum a posteriori (MAP) (MacKay, 1992). However, to
pdate the posterior variance of parameters, the Laplace ap-
roximation method requires computing the inverse Hessian of
og-likelihood, which is infeasible for large-scale NNs. To address
his issue, a fast Hessian calculation technique was devised for
onvolutional NNs and successfully obtained an impressive image
lassification performance (Zhou et al., 2019).
In this paper, a companion technique for recurrent layers is

lso developed. Specifically, by unfolding a recurrent layer with
ts equivalent Fully Connected (FC) layers, the Hessian calculation
f a recurrent layer can be treated as the Hessian calculation for
he FC layers. Besides, since the Hessian is a diagonally dominant
atrix (Martens & Grosse, 2015), we develop a recursive and
fficient method to compute the diagonal blocks of the Hessian
atrix. Each block represents the Hessian diagonal entries of each

ayer and can be calculated recursively along with a backward
ropagation through time (BPTT) process. It should be noted that

he Hessian is a necessity for the Laplace approximation method

2

and can accelerate the optimisation process. In this paper, by
incorporating the Hessian information to update the loss function,
it can be observed that the proposed Bayesian approach can con-
verge faster than the conventional optimisation method without
capturing the Hessian information. Similar rapid convergence is
also observed in the previous works related to the second-order
optimisation methods (A. Botev & Barber, 2017; Botev, 2020;
Boyd & Vandenberghe, 2004; Nocedal, 1980).

In addition, a sparse Bayesian approach is proposed to ad-
dress several challenges for system identification based on deep
neural networks, including overfitting the training data, the se-
lection of input regressors, and the uncertainty quantification of
model parameters. We will consider two typical DNNs, i.e., Multi-
Layer Perceptron (MLP) and Long Short-Term Memory networks
(LSTM). The simulation error is adopted as the evaluation met-
ric, which is a more challenging criterion compared with one-
step-ahead prediction. The simulation error is equivalent to the
N-step-ahead prediction error, with N denoting a user-defined
temporal horizon. In order to identify the system in a Bayesian
framework, the group priors are introduced over network pa-
rameters to induce structured sparsity, and the Laplace approx-
imation is used to approximate the intractable integral of the
evidence. The main contributions of this paper have four folds:

• A practical iterative algorithm using Bayesian deep learning
is proposed for SYSID. The first identification cycle of the
algorithm is equivalent to the conventional sparse group
lasso regularisation method. This algorithm can be used
with both MLP and LSTM networks for linear and nonlinear
processes.

• An efficient Hessian calculation method is proposed for each
layer of DNNs, both for MLPs and RNNs. By calculating the
block-diagonal entry of the Hessian, the proposed method
can turn an intractable training/optimisation procedure into
a tractable one. The sparsification process is also accelerated
by recursively updating the Hessian information.

• The structured sparsity is incorporated in the Bayesian for-
mulation of the identification problem to alleviate the over-
fitting issue and select the input regressor. As a conse-
quence, the number of hidden neurons in both MLP and
LSTM networks can be significantly reduced.

• The proposed algorithm achieves good and competitive sim-
ulation accuracy on five benchmark datasets. The datasets
of three linear processes are provided in the MATLAB Sys-
tem Identification Toolbox,1 including the Hairdryer, Heat
exchanger, and the Glass Tube manufacturing process. The
datasets of two nonlinear processes are provided on the
Nonlinear System Identification Benchmarks website,2
including the Cascaded Tanks (Schoukens, Mattson, Wi-
gren, et al., 2016) and Coupled Electric Drives (Wigren &
Schoukens, 2017).

he organisation of this paper is as follows. Section 2 formu-
ates the identification problem using DNNs and introduces the
ayesian approach. Section 3 presents the iterative procedure of
he proposed sparse Bayesian learning algorithm and a recursive
essian computation method. The illustration of structured spar-
ity regularisation, uncertainty quantification, and the proposed
raining algorithm are introduced in Section 5. The identification
esults and detailed analysis are given in Section 6. Section 7
oncludes the paper. A discussion on the limitations and future
ork are also included in Section L of Appendix.

1 https://nl.mathworks.com/help/ident/examples.html.
2 https://sites.google.com/view/nonlinear-benchmark/.

https://nl.mathworks.com/help/ident/examples.html
https://sites.google.com/view/nonlinear-benchmark/
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Fig. 1. Single layer long short term memory network.
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. Preliminaries

.1. Problem formulation

The chosen mathematical model structure is generated by
raining the network Net(W, z), where W represents an array of
he weights in the network and z represents the input regressors
f size 1 × (ly + lu + 1). These are best defined by the prediction
odel:.

ˆ(t + 1) = Net(W, z(t + 1), ϵ) (1)

here ϵ represents the noise term. It should be noted that the ϵ
an be in any distribution of exponential family. And the model
arameter can be identified with a maximum likelihood method
n the case of Gaussian noise (see Chapter 7.3 in Ljung (1999b)).
he input regressor of the model is defined as a combination of
agged elements of the system input u and outputs y. The input
ag is denoted lu and output lag ly, resulting in the expression
(t + 1) = [u(t + 1), u(t), . . . , u(t − lu), y(t), y(t − 1), . . . , y(t −

ly)]⊤. With such a network model, we aim to address two typical
problems in SYSID. First, how to promote the sparsity of W to
relieve the overfitting issue of DNNs? Second, how to select the
input regressors automatically by identifying and removing the
redundant features from z(t + 1)?

The first DNN model considered is the LSTM network, a type
of RNN. Benefiting from the advantages of processing sequen-
tial data and memorising information, LSTM can also be applied
straightforwardly for dynamic SYSID (Delgado et al., 1995). The
BPTT method is used to train LSTM, where the network is un-
folded in time and weights are updated based on an accumulation
of gradients across time steps (see Fig. 1).

The second DNN model considered is the MLP, a type of feed-
forward NN. Backpropagation with stochastic gradient descent
algorithm and variations are often used to train a MLP network.

2.2. Learning in a Bayesian framework

Given a dataset D = (U, Y ) where the input U = [u(1), u(2),
. . . , u(T )] and output Y = [y(1), y(2), . . . , y(T )] with T referring
to the number of samples, the posterior estimation for network
weights W is given by Bayes’ rule:

p(W|D,H) =
p(D|W,H)p(W,H)

p(D|H)
(2)

p(D|W,H) designates the likelihood function, where p(W,H) de-
notes the prior over the weights W and p(D|H) is the evidence of
the hypothesis H given D. The hypothesis generally incorporates
model and inference assumptions. For simplicity of notations, the
3

hypothesis term is dropped in the rest of the paper. Assume that
the likelihood function belongs to the exponential family:

p(D|W, θ ) = g(θ ) exp
{ S∑

s=1

ηs(W, σ )Ts(σ ) + B(W)
}

= g(θ ) exp
{
−E(W, θ )

}
(3)

where g(·), Ts(·), ηs(·) and B(·) are known functions corresponding
o a specific exponential family distribution, θ is the parameter of
he family, and E(W, θ ) denotes an energy function.

The prior probabilities p(W) takes a Gaussian relaxed vari-
tional form p(W) ≥ p(W, ψ) = N (W|0,Ψ ) φ(ψ), where
(ψ) represents the hyperprior probability of ψ ≜ [ψ1

11, . . . ,
1
n11
, . . . , ψ1

n1n2 , . . . , ψ
L
11, . . . , ψ

L
nL−1nL ] and Ψ ≜ diag(ψ). With

he principle of minimising the misaligned probability mass, the
yper-parameter ψ can be obtained by

ˆ = argmin
ψ≥0

∫
p(D|W, θ )|p(W) − p(W, ψ)| dW

= argmax
ψ≥0

∫
p(D|W, θ )p(W, ψ) dW. (4)

he resulting problem is known as a type II maximum likeli-
ood. The integration is intractable and can be obtained by the
aplace approximation method, which is explained in detail in
ection 3.1.

. Sparse Bayesian deep learning

.1. Laplace approximation

The Laplace approximation method is adopted to compute the
ntractable integral in Eq. (4). L(W, θ ) can be approximated by a
econd-order Taylor series expansion around a set of connection
eights W∗ with the operator ∆W = W − W∗, so we have

≈ L(W∗, θ ) +
1
2
∆WTH∆W +∆WTg. (5)

he resulting expression for the likelihood in a compact form is
iven by

(D|W, θ ) = A
(
W∗, θ

)
exp

{
−

1
2
WTHW − WT ĝ

}
(6)

ĝ
(
W∗, θ

)
= g

(
W∗, θ

)
− H

(
W∗, θ

)
W∗

here H
(
W∗, θ

)
and g

(
W∗, θ

)
are respectively the Hessian and

he gradient of the loss function E with respect to W at W∗.
q. (6) is obtained by grouping elements independent of the
arget variable W in A

(
W∗, θ

)
. The approximated likelihood is

n exponent of a quadratic function corresponding to the Taylor
eries expansion of the energy loss. This form can be recast into
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Gaussian function. In effect of the conjugacy of the prior and
osterior, the posterior p(W|D) is Gaussian given by:

p(W|D) = N (W|µW ,ΣW ) (7)

W = ΣW ĝ, ΣW =
[
H + Ψ −1]−1 (8)

A more detailed derivation of the Laplace approximation is given
in Appendix A (Zhou, Ibrahim, Zheng, & Pan, 2022).

3.2. Evidence maximisation

The evidence in Eq. (4) attempts to find the volume of the
roduct p(D|W, θ )p(W, ψ), which is Gaussian and proportional

to the posterior. Thus, one can approximate the evidence as the
volume around the most probable value (here posterior µW ).

ψ̂ = argmax
ψ≥0

∫
p(D|W, θ )p(W|ψ)p(ψ)dW (9)

≈ argmax
ψ≥0

p(D|µW , θ )  
Best Fit Likelihood

p(µW |ψ)|ΣW |
1
2  

Occam Factor

. (10)

n David Mackay’s words, the evidence is approximated by the
roduct of the data likelihood given the most probable weights
nd the Occam factor (MacKay, 1992). It can also be interpreted
s a Riemann approximation of the evidence, where the best-fit
ikelihood represents the peak of the evidence. And the Occam’s
actor is the Gaussian curvature around the peak.

By realising that the posterior mean µW maximises p(D|W, θ )
(W|ψ), Eq. (10) can be rewritten into a joint maximisation
n W and ψ . By applying the −2log(·) operation, the evidence
aximisation in Eq. (4) can be recast into a joint minimisation of
n objective function L(W, ψ, θ ) given by:

(W, ψ, θ ) =WTHW + 2WT ĝ + WTΨ −1W + log|Ψ |

+ log|H + Ψ −1
| − T log(2πθ ) (11)

or a more thorough mathematical derivation that leads to Eq.
11) and insight into the Laplace approximation, please refer to
ppendix A and B (Zhou et al., 2022).

.3. Convex–concave procedure

The objective function in Eq. (11) can be seen as a sum of a
onvex u and concave v functions in ψ with:

(W, ψ) = WTHW + 2WT ĝ + WTΨ −1W (12)

v(ψ) = log|Ψ | + log|H + Ψ −1
|. (13)

TΨ −1W is positive definite, since ψ > 0. Thus, u is convex in Ψ .
can be reformulated as a log-determinant of an affine function
f Ψ . By using the Schur complement determinant identity:

Ψ ∥H + Ψ −1
| =

⏐⏐⏐⏐H −Ψ

⏐⏐⏐⏐ = |H∥H−1
+ Ψ | (14)

and taking the log of Eq. (14),

log|Ψ | + log|H + Ψ −1
| = log|H| + log|H−1

+ Ψ |

one finds an equivalent expression of v that is concave in Ψ .
The minimisation problem can therefore be reformulated as a
Convex–concave procedure (CCCP) (Chen et al., 2014). W and ψ
are obtained by the iterative minimisation of Eqs. (15)–(16).

W(k + 1) = argmin
W

u
(
W, ψ(k)

)
(15)

ψ(k + 1) = argmin
ψ≥0

u
(
W(k + 1), ψ

)
+ α(k) · ψ (16)
4

where α(k) = ∇ψv
(
ψ(k)

)T is the gradient of v evaluated at the
current iterate ψ(k). Using the chain rule, its analytical form is
given by:

α(k) =∇ψ

(
log|Ψ | + log|H + Ψ −1

|

)⏐⏐⏐
ψ=ψ(k)

= − diag
(
Ψ −1(k)

)
⊙ diag

((
H + Ψ −1(k)

)−1
)

⊙ diag
(
Ψ −1(k)

)
+ diag

(
Ψ −1(k)

)
(17)

⊙ is the point-wise Hadamard product. Since Ψ is a diagonal
matrix, Eq. (16) can be expressed per connection independently.
With ΣW l

ab
(k) being the connection weight posterior variance, the

analytical form for α is:

W (k) =
(
H(k) + Ψ (k)−1)−1 (18)

αl
ab(k) = −

ΣW l
ab
(k)

ψ l
ab(k)2

+
1

ψ l
ab(k)

. (19)

The optimisation step in Eq. (16) for ψ l
ab becomes

ψ l
ab(k + 1) = argmin

ψ≥0

W l
ab(k + 1)2

ψ
+ αl

ab(k) · ψ. (20)

y noting that

W l
ab

2

ψ
+ αl

ab · ψ ≥ 2
⏐⏐⏐√αl

ab·W
l
ab

⏐⏐⏐ (21)

the analytical solution is given by

ψ l
ab(k + 1) =

|W l
ab(k + 1)|
ωl

ab(k)

where ωl
ab(k) =

√
αl
ab(k).

For the second part, finding W can be done with stochastic
radient descent on Eq. (15), which can be reformulated as the
inimisation of a regularised loss function as follows:

(k + 1) = argmin
W

L = argmin
W

WTHW + 2WT ĝ

+

L∑
l=1

nl−1∑
a=1

nl∑
b=1

∥ωl
ab · W l

ab∥l1 (22)

≈ argmin
W

E(·) + λ

L∑
l=1

ρ(ωl,W l). (23)

(·) designates the energy loss function defined in Eq. (3) and ρ(·)
is the regularisation term.

4. Hessian computation

4.1. Definitions and properties of the hessian

For a DNN model, the Hessian of a weight matrix W ∈ Rm×n is
square matrix of the second-order of partial derivatives of the

oss function and can be formulated as:

W =

⎡⎢⎢⎢⎢⎢⎢⎣

∂2L
∂W⃗2

1

∂2L
∂W⃗1∂W⃗2

· · ·
∂2L

∂W⃗1∂W⃗mn
∂2L

∂W⃗2∂W⃗1

∂2L
∂W⃗2

2
· · ·

∂2L
∂W⃗2∂W⃗n

...
...

. . .
...

∂2L
∂W⃗mn∂W⃗1

∂2L
∂W⃗mn∂W⃗2

· · ·
∂2L

∂W⃗2
mn,mn

⎤⎥⎥⎥⎥⎥⎥⎦ (24)

So the (i, j) element of HW is:

[HW ]ij =
∂2L

(25)

∂W⃗i∂W⃗j
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here W⃗ ∈ Rmn is the vectorisation of the multi-dimensional
weight matrix W ∈ Rm×n. As the dimension of the Hessian is the
square of the number of unknown parameters (HW ∈ Rmn×mn),
t would be convenient to conduct the Hessian calculation by
reating the matrix as a vector (the vectorisation operator is
efined in Definition 1 of Appendix D (Zhou et al., 2022)).
The Hessian information can benefit the training of DNNs

rom two aspects. First, it can accelerate the optimisation process.
everal previous works on second-order optimisation methods
e.g., the Quasi-Newton methods (Boyd & Vandenberghe, 2004;
ocedal, 1980)) have presented that by incorporating the Hessian
nformation in the optimisation process, the rapid convergence
an be obtained without a lot of tuning work (A. Botev & Barber,
017; Botev, 2020). Besides, Martens et al. (2010) demonstrated
hat the Hessian information, also known as curvature matrix,
ould address the typical pathological curvature problem, where
he first-order optimisation method often falls into the ‘‘canyon’’
ith large varying curvature because of their lack of ability to
apture the curvature information (Dauphin et al., 2014; Martens
Grosse, 2015). Second, the Hessian of the weight matrix is a

equired component for the Laplace approximation method. The
essian is not only used to calculate the posterior distribution of
eight parameters as in Eq. (8) but also used to update the loss

unction in each cycle (see Eqs. (17)– (23).)
However, as the dimension of the Hessian is the square of the

umber of parameters, the calculation and storage of the Hessian
or large-scale neural networks are infeasible considering their
illions of parameters or more (Botev, 2020). To address this
roblem, an efficient Hessian calculation method for a FC layer
as in presented (A. Botev & Barber, 2017; Botev, 2020). The
roposed method therein can compute the diagonal blocks of the
essian, where each block represents the diagonal entries of the
essian in each layer and can be calculated recursively along with
he back-propagation process using Kronecker products.

Inspired by this method (A. Botev & Barber, 2017; Botev, 2020)
nd the diagonal dominant feature of the Hessian (Martens &
rosse, 2015), we develop two efficient and recursive block-
iagonal calculation methods for the Hessian computation of FC
ayer and recurrent layer in this section.

.2. Compute the Hessian of fully-connected layer

Given a MLP as shown in Fig. 2, the output of the hidden layer
can be calculated as:
l
= W lal−1

+ bl, al = σ (hl) (26)

here bl is the bias, σ (·) is the nonlinear activation function.
The superscript l denotes the layer index. al and hl represent the
ctivation value and the pre-activation value, respectively. With
hese definitions, the proposed Hessian calculation method for a

C layer is summarised in Lemma 1.

5

Lemma 1. For a fully-connected layer, given the activation func-
tion σ (·), the activation value al, al−1 and the pre-activation value
hl, the Hessian of the weight matrix W l is calculated recursively as
follows:

Hl
= diag((al)2 ⊗ H l) (27)

where ⊗ stands for Kronecker product. H l is the pre-activation
Hessian and is updated as:

H l
= (Bl)

2
⊙

((
(W l+1)⊤

)2
H l+1

)
+ Dl (28)

in which Bl and Dl are defined as:

Bl
= σ ′(hl), Dl

= σ ′′(hl) ⊙
∂L
∂al

(29)

here ⊙ represents the element-wise multiplication.
The above procedures can be calculated along with a backward

propagation process.

Remark 1. It should be noted that Lemma 1 is a modification of
the Hessian calculation method proposed in A. Botev and Barber
(2017). The proposed approach can be computed more efficiently.
Specifically, if the Hessian of a FC layer is computed as Eq. (27)–
(29), then the multiply accumulate operation (MACs) for the
pre-activation Hessian H and Hessian H could be reduced from
n(2m2

+ 2n2
+ 4mn + 3m − 1) to n(2 + 4 m) with W ∈ Rm×n

(e.g., if n = 100,m = 100, then the original method requires
107.97 × 106 MACs compared with only 0.04 × 106 MACs for
the approximate method.). Lemma 1 is also the inspiration of the
proposed Hessian calculation method for a recurrent layer. We
will revisit Lemma 1 many times in the following.

4.3. Compute the Hessian of recurrent layer

The challenge of the Hessian calculation for a recurrent layer
comes from the recurrent operation, where the weight matrices
in a RNN cell will be revisited iteratively through time (Martens,
Ba, & Johnson, 2018). This behaviour is different to the FC layer,
where the weight matrices only join once through the operation
in a forward propagation process. Since a LSTM cell is a special
form of the RNN, for the convenience of explanation, we use
a simplified RNN structure to illustrate the Hessian calculation
process. As shown in Fig. 3, we denote z(t), h(t) and y(t) as the
input, hidden state and output of the time step t , respectively.
The behaviour of this RNN layer can be described by

h(t) = σ
(
h̄(t)

)
= σ (Wiz(t) + Whh(t − 1)) (30)

y(t) = g(Woh(t)) (31)

here Wi, Wh and Wo represent the weight matrix of the input
ayer, hidden layer and output layer, respectively, and σ is the
ctivation function.
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It can be found that an unrolled RNN layer can be unfolded as
everal FC layer. Therefore the Hessian calculation for a recurrent
ayer can be regarded as the calculation of its equivalent FC
ayer. Inspired by Lemma 1, we propose a recursive and efficient
ethod to compute the Hessian of a recurrent layer as follows.

emma 2. For a recurrent layer, given σ representing the acti-
ation function, τ representing backward propagation time horizon,
representing the number of data samples, z(t), h(t) and y(t)

epresenting the input, hidden state and output at the time step t,
i, Wh and Wo representing the weight matrix of the input layer,
idden layer and output layer, the Hessian of Wi, Wh, Wo within the
NN layer is calculated as follows:
(1) The Hessian for Wo is:

o =
1
T

T∑
t=1

H⊤

o , H⊤

o = h(t)2 ⊗ H⊤

o (32)

here H⊤
o is the pre-activation Hessian.

(2) The Hessian for Wh is:

Hh = E

⎛⎝ T∑
t=1

t∑
j=max(1,t−τ+1)

Ht,j
h

⎞⎠ (33)

Ht,j
h = h(j − 1)2 ⊗ H t,j

h (34)

where Ht,j
h and H t,j

h represent the Hessian and the pre-activation
Hessian, respectively. In particular, H t,j

h = B2
h⊙

((
W⊤

h

)2 H t,j+1
h

)
+Dh,

where Bh = σ ′(h̄(j)),Dh = σ ′′(h̄(j)) ⊙
∂L
∂h(j) .

(3) The Hessian for Wi is:

Hi = E

⎛⎝ T∑
t=1

t∑
k=max(1,t−τ+1)

Ht,k
i

⎞⎠ (35)

Ht,k
i = (z(k))2 ⊗ H t,k

i (36)

where H t,k
i =

∏t
j=k+1 B

2
i ⊙

((
(Wi)⊤

)2 H j−1,j
i

)
with Bi = σ ′(h̄(j)).

The above procedures can be calculated along with a BPTT pro-
cess.

It should be noted that Lemmas 1 and 2 elaborate the detailed
procedures to calculate the Hessian with respect to a single data
sample (i.e., T = 1). If the number of data points is more than 1
(i.e., T > 1), the Hessian is calculated by averaging the Hessian
of an individual data sample. The detailed proof of Lemmas 1 and
2 are given in Section D.1 and Section D.2 of Appendix D (Zhou
et al., 2022).
6

5. Regularised identification algorithm

5.1. Input regressor selection and structured sparsity regularisation

As illustrated in Section 2.1, the input regressor is z(t + 1) =

u(t + 1), u(t), . . . , u(t − lu), y(t), y(t − 1), . . . , y(t − ly)]⊤ ∈
lu+ly+1. The feature selection means identifying and removing
he redundant features from z(t + 1). The proposed method can
elect the input regressors automatically by imposing structured
parsity regularisation on the DNN.
Specifically, the iterative procedure derived in Section 3 in-

ludes an assumption on the independence and non-stationarity
f connection weights, resulting in a shape-wise regularisation as
hown in Fig. 4(a). This drives the individual connection weight to
. In some applications, one may want to enforce more structured
parsity by pre-defining groups and re-expressing the regular-
sation term as a function of these groups (Zhou et al., 2019).
his paper uses a structured regularisation of rows and columns
Fig. 4(b–d)). The benefits of such an approach, specific to this
aper, are obtaining compact sparse models and the suppression
f input nodes in z that are deemed less pertinent without loss of
ccuracy. The reduction in the dimensionality of the input vector
represents the selection of input regressors.
To extend this approach to the Bayesian framework, one has to

evisit the prior formulation. The prior of a weight matrix is for-
ulated based on the designated group of weight matrices (row
r column or both). These groups are considered independent, but
he connection weights of a specific group share the same prior
aussian relaxation (see Fig. 4(b–d)). This results in a slightly
ifferent iterative update rule for the identification algorithm.
For each of the cases shown in Fig. 4, the update rules for

, ω and the regularisation function ρ are given in Appendix C
able C.1 (Zhou et al., 2022). There also stands more insight into
ow the adopted group priors slightly change the regularisa-
ion update rules on group Lasso regularisers (Simon, Friedman,
astie, et al., 2013).

.2. Algorithm

A pseudocode for the iterative procedure is given by Algorithm
.

emark 2. We now give some clarifications on the definition
f cycle and epoch in Algorithm 1. One identification ‘‘cycle’’ has
max epochs. One ‘‘epoch’’ refers to that the entire dataset is pro-
essed forward and backward by the NN for one time. In the first
dentification cycle, the regularisation is conventional (ω(0) = 1).
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Fig. 4. Priors for structured sparsity of weight matrices. l is the layer index. a and b denote the row and column index of a 2-D weight matrix, respectively.
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Algorithm 1 Identification Algorithm

Input: • Collect input–output data u(t) and y(t) for t =

1, 2, · · · , T .
• Arrange input regressors according to the chosen lags

lu, ly.
• Set regularisation parameter λ (empirically tuned) and

DNN pruning thresholds κψ , κW (≈ 10−3).
• Set the number of repeated experiments M , identification

cycles Cmax and the number of epochs in each cycle Emax.
• Initialise hyper-parameters Ψ (0) = I and ω(0) = 1.

utput: Return the set of connection weights W
for m = 1 to M do
for c = 1 to Cmax do
for e = 1 to Emax do
1 Stochastic Gradient Descent with loss function (ρ is
defined in Table C.1):

W(k + 1) = min
W

E(·) + λ

N∑
i=1

ρρρ(ωl,W l) (37)

end for
2 Update α according to Eqs. (18)-(19)
3 Update ψ and ω according to Table C.1
4 Dynamic pruning:
if ψ l

ab(k) < κψ or |W l
ab(k)| < κW then

prune W l
ab(k)

end if
end for
Simulate on the validation data and choose the model with
the smallest root mean square error (RMSE).

end for

That is, the first obtained model is a sparse model corresponding
to the conventional sparse group lasso regularisation method (as
shown in (Eq. (37))), and sparser models are expected to result
from the subsequent identification cycles.

Remark 3. The proposed algorithm shares the local convergence
properties (local minima, saddle point) of the adopted stochastic
gradient descent method (M. Zhou & Jin, 2021). This is because
the Laplace approximation is a local approximation method and
includes an assumption on the unimodality of the posterior. How-
ever, the pruning and regularisation techniques introduced are
heuristics that help speed up the algorithm and improve conver-
gence and optimality. Nonetheless, the identification experiments
are run multiple times with different initialisations. The identified
model with the best simulation accuracy is chosen.
7

5.3. Making predictions with uncertainties

In the Bayesian procedure, predictions are made using the
posterior predictive distribution, which is given by:

p(ŷ|z,D) =

∫
p(ŷ|W, z) p(W|D)dW. (38)

he first term of the integral is the likelihood of the prediction
onditional on the network parameters. The second term is the
nferred posterior distribution over the weights W , which can be
alculated as Eq (7). The expected value of the prediction is:[
ŷ
]

=

∫
ŷ p(ŷ|z,D)dŷ

=

∫ (∫
ŷ p(ŷ|W, z)dŷ

)
p(W|D)dW

=

∫
Net(W, z) p(W|D)dW

(39)

sing the inferred posterior distribution over the weights, one
an approximate this integral by the Monte-Carlo sampling
ethod. An unbiased estimate of the prediction is given by the
verage predictions using W sampled by the posterior M times

as below:

µŷ ≈
1
M

M∑
m=1

Net(W(m), z). (40)

In an analogous way, to estimate the variance in the posterior
predictive distribution, the expected value E

[
ŷT ŷ

]
is analytically

derived as follows:

E
[
ŷT ŷ

]
=

∫
ŷT ŷ p(ŷ|z,D)dŷ

=

∫ (∫
ŷT ŷ p(ŷ|W, z)dŷ

)
p(W|D)dW

=

∫ (
ζ + Net(W, z)2

)
p(W|D)dW.

(41)

where ζ represents the aleatoric uncertainty. An unbiased esti-
mate of the variance is given by Monte-Carlo integration meth-
ods (Gal, 2016), with M samples from the inferred posterior
distribution of W as below:

Σŷ ≈ ζ +
1
M

M∑
m=1

Net(W(m), z)2 − µT
ŷµŷ. (42)

This variance (Eq. (42)) represents the model uncertainty in
the prediction. It is approximated by the sum of an aleatoric
uncertainty and epistemic uncertainty. The aleatoric uncertainty
is generally known to be irreducible corresponding to the noise
covariance of the measurement and is generally incorporated in
the likelihood form (Gal, 2016). For example, if the likelihood
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Table 1
Models are trained to identify linear and nonlinear processes with validation information.
Process-Model Layers-Units Lags RMSEval (µ ± σ ) RMSEval (min) Sparsity Appendix

Hairdryer-MLP 1–50 5 0.074 ± 0.0005 0.073 88.1% Appendix F
Hairdryer-LSTM 1–10 5 0.093 ± 0.0166 0.081 93.5% Appendix F
Heat Exchanger-MLP 1–50 150 0.086 ± 0.0002 0.086 99.3% Appendix G
Heat Exchanger-LSTM 1–10 150 0.114 ± 0.0299 0.088 96.4% Appendix G
GT Manufacturing-MLP 1–50 5 0.660 ± 0.0013 0.657 97.8% Appendix H
GT Manufacturing-LSTM 1–10 5 0.671 ± 0.0019 0.669 99.0% Appendix H
Cascaded Tanks-MLP 3–10 20 0.428 ± 0.1032 0.257 84.5% Appendix I
Cascaded Tanks-LSTM 1–50 20 0.500 ± 0.1012 0.362 60.3% Appendix I

CED-MLP 2–50 10 0.187 ± 0.0285
0.134 ± 0.0192

0.149
0.120

78.4% Appendix J

CED-LSTM 1–10 10 0.155 ± 0.0257
0.126 ± 0.0201

0.121
0.097

72.8% Appendix J
is given as Gaussian distribution, then ζ should represent the
oise variance. The epistemic uncertainty corresponds to the
odel’s uncertainty in a prediction that is often called reducible
ncertainty (Gal, 2016) and grows when moving away from the
raining data (Wilson, 2020).

. Experiments

An overview of the simulation accuracy of our experiments
ompared with other methods can be found in Tables E.1–E.2
n Appendix E (Zhou et al., 2022). The code to reproduce the
xperimental results is open-sourced and available online.3

.1. Dataset and experiment setup

This section is to summarise the identification experiments of
hree linear processes and two nonlinear processes using the pro-
osed algorithm. For linear systems, the identification procedure
s repeated M = 20 times with Cmax = 6 identification cycles.
or nonlinear systems, the identification is also repeated M = 20
imes but with Cmax = 10 identification cycles each. Table 1
rovides a summary of the model structure used for identification
s well as the mean, standard deviation, and minimum validation
MSE of the M best-identified models and the percentage of
parse parameters in the best-identified model. In Appendix F–
ppendix J (Zhou et al., 2022), the benchmarks are described
ore thoroughly with sparsity plots, simulation plots, and poste-

ior predictive mean and uncertainty plots corresponding to the
est-identified model.
Three linear processes are identified, the Hairdryer, Heat ex-

hanger and Glass Tube (GT) manufacturing process. The datasets
f these processes are provided by Matlab in the corresponding
utorials (https://nl.mathworks.com/help/ident/examples.html)
n linear SYSID. The chosen best validated models are compared
o the methods used in the corresponding tutorials. Additional
odel structures used for the identification of the Hairdryer are

aken from Chapter 17.3 of Ljung (1999a) and run in Matlab. The
omparisons are in Appendix E Table E.1 (Zhou et al., 2022).
Two nonlinear processes, the Cascaded Tanks (Schoukens et al.,

016), Coupled Electric Drives (Wigren & Schoukens, 2017) are
lso identified. Information and datasets of these benchmarks
re compiled on the web page of the Workshop on Nonlinear
ystem Identification Benchmarks (https://sites.google.com/view/
onlinear-benchmark/). The cascaded tank system is a fluid level
ontrol system consisting of two tanks with free outlets fed by
water pump (Schoukens et al., 2016). The fluid levels of these

wo tanks are adjusted by the input signal that controls the water

3 https://github.com/hongpengzhou/Deep-Bayesian-System-Identification.
8

pump. The coupled electric drive is a system that drives a pulley
by controlling a flexible belt. Two electric motors provide the
driving force, and the spring is used to fix the pulley. A more
detailed description of the system and datasets of these bench-
marks are compiled on the web page of the Nonlinear System
Identification Benchmarks. The models with the best validation
performance are compared with the best models obtained using
conventional NN methods for multiple experiments (M = 20)
and the previous works in the literature for every benchmark in
Appendix E Table E.2 (Zhou et al., 2022).

6.2. Analysis of experimental results

In this subsection, the results will be discussed and analysed
concerning the claims made on sparsity, uncertainty quantifica-
tion, and simulation accuracy.

Sparsity: In most cases, the obtained networks are sparse models
with structured sparsity. For example, Fig. 5 is a sparsity plot of
the Heat Exchanger identified LSTM model, where half of the
weight matrices related to hidden states are removed from the
input gate (Whi,Whj) and forget gate (Whf ). According to Table 1,
sparsity is more prominent in the identified linear systems than
in nonlinear systems. This demonstrates that the nonlinearity that
the data exhibits requires a higher complexity than in the linear
case.

Starting with the linear systems, one can note that structured
sparsity induces a recognised transport delay in the Heat Ex-
changer MLP and LSTM models, which characterises this system.
Furthermore, the LSTM models for linear systems have complete
operators pruned. This means that the cell state can be well
regulated with fewer parameters than imposed by the initialised
model structure in the Heat Exchanger case. Similar behaviour is
seen across linear benchmarks.

Structured sparsity is also observed in the identified networks
for nonlinear systems (Table 1). In addition to that, similar to
LSTM models identified for linear systems, a lot of parameters
involving the hidden states are pruned. A possible explanation for
this behaviour is that the hidden states of LSTM units attempt to
retain short-term information from the time series that is also
available as lagged elements in the input regressor. The simu-
lation result further shows that the input regressor with lagged
elements can achieve better simulation performance for a LSTM
model (see Appendix E Table E.1-E.2 (Zhou et al., 2022)). Another
observation related to the structured sparsity regularisation is
the effect of input regressor selection. As shown in Fig. H.2a in
Appendix H (Zhou et al., 2022), the number of input regressors is
reduced from 40 to 2 after applying the sparse Bayesian algorithm
with row-wise and column-wise prior as shown in Appendix C
Table C.1. The redundant input regressors are also identified for

https://nl.mathworks.com/help/ident/examples.html
https://sites.google.com/view/nonlinear-benchmark/
https://sites.google.com/view/nonlinear-benchmark/
https://sites.google.com/view/nonlinear-benchmark/
https://github.com/hongpengzhou/Deep-Bayesian-System-Identification
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Fig. 5. Sparsity plot of the identified LSTM for Heat Exchanger. (Blue represents non-pruned connection weights). (For interpretation of the references to colour in this
igure legend, the reader is referred to the web version of this article.)
ther benchmarks and removed from the NN, thereby reducing
he model complexity.

We also find that DNNs (MLP models) with more hidden layers
re necessities to approximate complex systems. For example,
he optimal MLP model of the nonlinear cascaded tanks system
ncludes three hidden layers. In contrast, the optimal MLP model
f the linear hairdryer system only has one hidden layer. The
LP model with only one hidden layer and 10 hidden neurons is
lso applied for the cascaded tank system. However, the obtained
imulation error is around 0.663, which is worse than the MLP
odel with three hidden layers (0.257 as in Table 1). It should
lso be noted that although the number of hidden layers of the
LP models is not reduced in these experiments, the number
f hidden neurons is reduced, which provides a more suitable
etwork structure for different systems. For example, as shown
n Fig. G.2a, the number of hidden neurons in the MLP model of
he Heat Exchanger model is reduced from 50 to 7.

redictive distributions: The posterior predictive distributions
for each model result from the forward propagation of the param-
eters’ posterior uncertainty obtained with the estimation data.
Hence, if the validation data holds information that the model
does not learn from the estimation data, the posterior predictive
distribution could spread a bigger range of predictions (Wilson,
2020).

In some cases, the identified models show an unevenly dis-
tributed predictive uncertainty related to nonlinearities or dis-
turbances characteristics of the process and regions where the
model can be improved. Fig. 6 shows that the identified model
for Cascaded Tanks makes less robust predictions when overflow
occurs. The Heat Exchanger shows evenly distributed predictions
with uncertainty possibly coming from the ambient temperature
disturbance. Furthermore, the model type also affects the predic-
tive distribution. Examples include the LSTM models identified
for the Glass Tube Manufacturing Process and Cascaded Tanks.
In these benchmarks, the identified MLP model provides more
robust predictions than the identified LSTM model.

Free run simulation performance: The free run simulation is a
good measure of the model’s approximation ability to represent
a dynamic process by propagating a model’s prediction error
while forecasting. In this paper, we select the simulation error
as the evaluation metric. It is important to note that, for the
studied linear processes, a non-regularised LSTM performs worse
when compared to other identification methods. This supports
9

Fig. 6. Posterior predictive µy ± 2σy of the identified LSTM on Cascaded Tanks
benchmark.

the previous concerns made on using LSTM for the identifica-
tion of linear systems. The Bayesian MLP model outperforms the
Bayesian LSTM model in most presented applications except for
the Coupled Electric Drive.

Table 1 displays the mean and standard deviation of the vali-
dation simulation errors and the minimum corresponding to the
best-chosen model. The minimum is seen to fall close to the range
of one standard deviation from the mean. In addition, the variance
of validation errors for linear systems is overall less than for
nonlinear systems. A possible explanation is that the added com-
plexity in identifying nonlinear processes and the usage of more
complex nonlinear structures (LSTM in this case), increases the
likelihood of convergence towards saddle points. This is mainly
because the Laplace method adopted is a local approximation of
the evidence, which is a limitation of the proposed method and
justifies running the identification experiment M times.

The Bayesian approach to the identification of each bench-
mark constitutes an improvement over the conventional MLP and
LSTM methods in simulation errors and pushes these methods
to perform competitively with other literature (see Table E.1–
E.2). Besides, we also make a comparison with the well-known
Gaussian process (GP) in machine learning by exploring different
kernels (i.e., squared exponential kernel, rational quadratic ker-
nel). However, the GP method cannot perform input regressor
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election efficiently, i.e., all regressors flow into the black box
odel without any priority.

. Conclusion

In this paper, we combined sparse Bayesian learning and deep
earning for SYSID. An iterative procedure for dynamic SYSID
as been derived and evaluated with datasets of three linear
nd two nonlinear dynamic processes. The Bayesian approach in
his paper has used the Laplace approximation to approximate
he model evidence/marginal likelihood. The structured sparsity
egularisation has been implemented on NNs by enforcing group-
parsity inducing priors. An efficient Hessian calculation method
or the recurrent layer has been presented by calculating the
lock-diagonal value of the Hessian. The identified models for
he dynamic systems are sparse models that have contributed to
nput regressor selection and performed competitively with other
sed SYSID methods in a free run simulation setting. In addition,
ncertainties in the inferred predictions and connection weights
ave been quantified using Monte-Carlo integration methods.
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