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Abstract 
China is undergoing large changes to tackle carbon dioxide emissions and air pollution. While the top-down governance allows 
for clear setting of emission reduction targets for industrial sectors and major cities, reducing emissions in residential sectors 
in smaller (the so-called low-tier) cities remain challenging and often unaddressed. This paper studies policy options to reduce 
emissions in residential sectors in low-tier Chinese cities. We conducted interviews and surveys in the city of Jingmen in the 
Hubei province and developed simulation models with feasible policy options and realistic consumption choice preferences. The 
simulation provided insights to the policies on reducing household coal consumption and ensuing emissions. Our research 
found that top-down restrictive policies such as coal ban and coal tax are effective in reducing emissions. They, however, 
restrict access to affordable energy for heating and cooking, especially within rural areas. They hence need to be combined with 
supportive policies such as electricity subsidy to yield long-term positive impact.  
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1. Introduction 

Over the last decade, the Chinese government invested 
significant resources and implemented ambitious 
policies in curbing emissions and pollution (Jia, 2018; 
Dong, Sun, Li & Jiang, 2017). The country is a front 
runner in emission reduction and investment in 
renewables (Yang, Hu, Tan, & Li, 2016; Sahu, 2018; 
Wang et al., 2019). Although its coal consumption is 
reduced in proportion to the its total energy 
consumption (from 70% in 2011 to 59% in 2018), 
China’s total coal consumption is still high: 4.64 
billion tons used in 2018 (Zhao & Alexandro, 2019; 
Climate Action Tracker, 2019). Around 81% of China’s 
emissions comes from coal. (EIA, 2020). Many 
households in China, particularly in small cities and 

rural areas known as low-tier prefectures, are using 
biomass and more often coal as direct energy sources 
for heating and cooking. These solid fuels are 
inexpensive, but they cause severe air pollution 
(indoors and outdoors) and are damaging to public 
health. Besides sulphur dioxide  emissions that lead to 
acid rain and soil acidification (T. J. Wang, Jin, Li, & 
Lam, 2000), direct burning and incomplete 
combustion of those fuels in combination with poor 
household ventilation incurred household air 
pollution that is estimated to cause each year 420,000 
premature mortalities in China (Delang, 2016). 

The current environmental investments and 
policies in China often focus on major sectors such as 
industry, agriculture and power generation (Gu et al., 
2018), as well as on major administrative regions 
(including the so-called high-tier cities) such as 

https://creativecommons.org/licenses/by-nc-nd/4.0/
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Beijing, and Guangzhou (Hu & Mu, 2019; Su, Chen, & 
Yang, 2016; Ou et al., 2017). For national policies, such 
as phasing out coal-fired power plants and national 
emission trade scheme (Sandalow, 2018), China’s 
hierarchical governance structure has the advantage 
of effective top-down goal setting and decision-
making. The implementation however is left to the 
local officials who need to establish local policies and 
regulations (Gilley, 2012; Qi, Ma, Zhang, & Li, 2008; 
National Development and Reform Commission 2008). 
The local policy design and implementation requires 
(bottom-up) data collection to accommodate local 
needs, for which the Chinese top-down information 
flows experience limitations. There is limited research 
on how policy design and implementation at local 
level can motivate residents to move away from 
traditional solid fuels such as coal and biomass (Jiang 
& O’Neill, 2004; Muller & Yan, 2014). 

This paper investigates policy options to stimulate 
household energy transition in low-tier prefectures in 
China. An important goal is to stimulate such 
transition without forcing consumption reduction for 
heating and cooking (currently often using traditional 
solid fuels), and to provide affordable alternatives. We 
conducted a case study on the city of Jingmen, which 
shares many characteristics with other Chinese 
prefectural cities. We conducted interviews and 
surveys, and developed simulation models to study the 
policy implications on consumption and emissions. In 
Section 2, we describe the interview and survey results 
of Jingmen. These results were used to develop the 
models which are presented in Section 3. Section 4 
discusses the experimental results and policy 
implications. 

2. Interviews and Surveys in Jingmen 

Jingmen is a low-tier prefecture in Hubei province. It 
has a population of just over three million. Our study 
in Jingmen consists of the use of local data, conducted 
interviews and surveys with local government officials 
and residents.  

The interviews were carried out with three different 
target groups: (1) interviews with the municipal 
government (around thirty minutes to one hour each), 
e.g. the Development and Reform Commission, and 
the Housing Construction Committee, to explore what 
policies the government can legally implement in 
coherence with the party agenda. These interviews 
were conducted in order to better understand the 
problem from the perspective of the local government, 
which policies were currently considered, and to 
which extent the current policies are already in their 
implementation phase. (2) Interviews with technical 
expert groups, e.g. the Ecological Environment Bureau 
(around 30 minutes), and members of the High-Tech 
Industry Campus (around 3 hours), to understand 
what policies are feasible from a technical point; (3) 
Around 10 interviews were conducted with individual 
residents to inquire about the potential reaction to 
policies from a social viewpoint. The length of these 

interviews varied between 5-20 minutes, depending 
on the cooperation of individual residents as they were 
carried out individuals who were willing to further 
discuss their preferences regarding their energy 
consumption after conducting the survey in person. 
Surveys (n=616) were conducted to gain knowledge 
about demographics, current household fuel 
consumption, and to gain insight about the reason 
why the residents consume certain fuel types. 

2.1. Interview Results: Policy Design 

The Jingmen government considers five core policies 
for implementation. The goal is to induce a shift in 
residential energy demand from traditional energy 
sources (coal and biomass) to cleaner sources such as 
electricity and gas. We modelled these policies and 
their combinations in the simulation model. The five 
policies are: (1) A complete ban on residential coal use; 
(2) An (incremental) price tax on residential coal by 
0.02 CNY/MJ per year; (3) A fixed electricity subsidy of 
25%; (4) An increased accessibility to (natural) gas 
through a 20% faster rate of natural gas pipeline 
construction throughout the city; (5) Increase 
residential awareness by providing information and 
education about health and environmental impact 
about the consumption of coal and biomass versus gas 
and electricity. These policies can be divided into two 
groups: policies (1) and (2) are restrictive policies as 
they prohibit or limit access to undesirable fuel types; 
policies (3) to (5) are supportive policies as they ease 
the access to desirable fuels. 

The other policies such as demand-based 
(dynamic) electricity pricing, and supply-side policies 
such as transition towards renewables fall outside the 
scope of our study. Due to the centralised provision by 
the Central China Power Grid, the sources (e.g. 
renewables) of electricity falls under the jurisdiction 
of the central supplier, not that of the local 
governments. The local renewable generation by 
households in low-tier prefectures is also not feasible 
given the context. In our study, we assume that the 
electricity consumption itself does not create 
emissions, which is already accounted at the 
generation phase. 

2.2. Survey Results: Consumption Behaviours 

The survey got respondents from rural and urban 
areas. This distribution is important as energy 
consumptions in rural and urban areas showed 
distinct patterns. We inquired information about the 
respondents’ demographics, current household fuel 
consumption and choice preferences.  

2.2.1. Demographics and Background of Respondents 

There is a growing inequality in income between urban 
and rural areas in China (Molero-Simarro, 2017). This 
is also reflected in the survey response data: around 
half of the respondents in the rural area had an annual 
income of less than 30,000 CNY (around €3,880); 
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almost half of the urban respondents reported to have 
an annual income of over 80,000 CNY (around 
€10,340). The rural population is on average older and 
has a lower level of education, in comparison to the 
urban population. 

2.2.2.  Current Household Energy Consumption  

The level of energy consumption increases with the 
level of income. This increase diminishes at a yearly 
income of around 100,000 CNY per year. In general, 
the respondents spend 2-7% of their income on 
energy. Aside from energy consumption for heating 
and cooking, there is non-substitutable consumption 
(where electricity cannot be replaced by fuels) for 
appliances such as televisions or lighting. The survey 
acquired the information about the use of these 
appliances. The urban population possesses a lot more 
appliances compared to the rural population. 

2.2.3. Choose Preferences of Energy Source 

The urban and rural areas showed different attitudes 
to fuel consumption. Residents in both areas are aware 
of the potential dangers of coal, yet unaware of the 
harm of biomass consumption to health. The rural 
respondents consumed more harmful fuels such as 
coal out of necessity as there is a lack of cleaner 
alternatives. They often are unaware of, or not in a 
position to have health and environment concerns in 
the first place. Many respondents in urban areas 
already consume cleaner energy such as gas and 
electricity as these are already accessible and relative 
cheap to use. They believe that pollution is a public 
issue and they are concerned about the environmental 
and health issues. 

3. Model overview 

The overall model can be briefly described with six key 
aspects. First, the geographical scope of the model is 
the urban and rural areas of Jingmen. As the rural area 
has distinct energy consumption characteristics 
compared to the urban area, they are modelled with 
different parametric settings. Second, the modelling 
focuses on the residential sector, in particular the 
energy consumption for household cooking and 
heating, where the energy transition policy shall take 
effect. Third, four forms of energy (sources) are 
considered: electricity, (natural and petroleum) gas, 
biomass (e.g., firewood, crop, straw and residue) and 
coal. They are listed in order from the most to least 
desirable from the perspective of policy makers in 
Jingmen. Fourth, the model forecasts (and backcasts) 
energy consumption from 2015 until 2030, which 
covers China’s three consecutive Five-Year Plans 
(FYPs). As the energy consumption data from 2015 to 
2020 was not yet available at the time of research, the 
energy and census data from 2010 to 2015 (Hubei 
Provincial Bureau of Statistics 2020) are used to 
configure the model parameters. Fifth, the policy 
options identified in Section 2.1 are implemented as of 

2020 in the simulation experiments (see Section 
3.2.6). Sixth, from the simulated energy consumption, 
the model estimates the carbon dioxide (CO2) and 
respirable particulate matter (PM10) emissions. 

3.1. Co-simulation of Vensim and LEAP models 

Two models are used to simulate the energy demand 
and subsequent emissions, one developed in Vensim 
and one developed in LEAP. The Vensim model 
simulates the energy policies and household energy 
consumptions for cooking and heating, while the LEAP 
model aggregates the energy consumption and 
estimates the resulting CO2 and PM10 emissions. Prior 
to the simulation run, a user can configure the policy 
options and their conditions, e.g. to implement a 
policy in a given year. The two models communicate 
through co-simulation as illustrated in Figure 1. 

 
Figure 1. Information flow of the so-simulation 

The simulation time-step of Vensim model is one 
month and the LEAP model one year. They are 
synchronized each year (enabled by Visual Basic). 
Vensim’s monthly consumption output is aggregated 
and converted to yearly sums, read by LEAP. The LEAP 
model uses this household energy consumption and 
estimates the yearly emissions. The emission values 
are then transferred back to the Vensim model which 
triggers the policies, if applicable, for the following 
year. This interaction iterates until 2030. 

3.2. Vensim System Dynamics Model 

The Vensim model has five sub-models, each of which 
is configured for the rural and urban areas separately. 
The first three sub-models correspond to the three 
utility factors: (1) the energy price, (2) the 
convenience of using each form of energy, (3) the 
knowledge (of a household) about energy 
consumption (regarding the four forms of energy), 
e.g., their impact to health and environment; and the 
willingness of consumption behaviour change, e.g. to 
consume cleaner energy if applicable. Sub-models 4 
and 5 compute the total utility and the average amount 
of household consumption for each energy source. 

In literature, Multinomial Logit Models (MLMs) are 
often used for fuel choices (Alem et al., 2016; Hosier & 
Dowd, 2002; Liao et al., 2019). They model the utility 
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of each choice by calculating the logarithmic fraction 
of the utility sum of all options. The utility of each type 
of fuel in this study is a function of the price, 
convenience, and residents’ knowledge of 
consumption and willingness to change. Figure 2 
provides the main model variables and the 
interactions between each of the sub-models. Each of 
the three sub-models calculate a ‘utility’-related 
value of a fuel for each month. Each fuel type is 
expressed using a corresponding price-utility, 
convenience-utility and knowledge and willingness- 
utility, all ranging between [0,1]. These values are then 
combined to attain a value that represents the total 
utility of the fuel, the sum of the utilities of fuel is 
equal to 1. In this way, the final utility of each 
individual fuel represents the percentage of people 
using this certain energy source for cooking and 
heating purposes. This is calculated in sub- model (4). 
Additionally, the results from sub-models 1-3 will 
influence the total energy demanded per household 
(e.g. a lower price of electricity will cause more people 
to use electricity, and more electricity to be used per 
individual). Sub-model 5 therefore combines results 
from sub-models 1-4 to attain a total energy 
consumption per energy type. These results are 
subsequently sent to LEAP, which calculates the total 
emissions as a result of the consumed energy. The 
following paragraphs will lay out each of the sub-
models in further detail.  

 
Figure 2. An overview of the system dynamics model for energy 
policy and residential energy consumption 

3.2.1. Sub-model 1: Energy Price 

The fuel price sub-model focuses on the prices of fuel 
and the proportion income spent on fuel consumption. 
Jiang & O’Neill (2004) and Wang et al. (2015) reported 
that people generally pay 3-10% of their monthly 
income on energy. Our survey showed that the 
respondents spent between 2-7%, which is consistent 
with literature. The price of each fuel in the Vensim 
model is constant if there is no policy intervention. 

The prices are based on the CEIC database (CEIC, 2019) 
and are converted to CNY/MJ: biomass 0.000, coal 
0.020, gas 0.037, and electricity 0.147. 

The survey shows that that price plays a significant 
role in the choice of fuel type and quantity consumed 
in the rural area. In accordance with the energy ladder 
hypothesis presented by Hosier & Dowd (2002), people 
are more likely to move over to more sophisticated 
types (i.e. cleaner, more convenient, and often more 
expensive) of fuel when income rises. Liao et al. (2019) 
confirmed the existence such a fuel ladder in China. In 
the experiments without policy intervention, the 
market price is the price people need to pay for their 
fuel. The fraction of income (Fr) spent on a fuel type is 
calculated by equation (1): 

𝐹𝐹𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (1) 

Where D is the average consumption for a certain type 
of fuel, calculated as output from the previous time-
step. P is the fuel price (in CNY/MJ). The subsequent 
price-related utility value is calculated using equation 
(2). The utility of fuel price is not (inversely) linear to 
the percentage of income paid. We assume that the 
more people pay for their fuel, the less likely people 
are to choose a more expensive fuel. 

𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = min�1, max�0, ln �
𝐹𝐹𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚

𝐹𝐹𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
��� (2) 

where putility represents the price-related utility value 
of the fuel. This sub-model assumes that biomass is 
free (i.e. people collect the firewood themselves) so 
that biomass has a maximum price utility of 1. 

3.2.2. Sub-model 2: Convenience of Energy 
Consumption 

As people prefer to use a certain type of fuel for 
convenience, the utility of a fuel source increases 
when the source is more accessible. Electricity is the 
most convenient and has a ‘convenience’-utility value 
of 1. Gas is assumed to be 30% less convenient if it 
comes from propane tanks rather than pipelines. 
Thus, its convenience defined as following: 

𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑦𝑦𝑔𝑔𝑔𝑔𝑔𝑔 = %𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 0.7(1 − %𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) (3) 

Where %connected refers to the percentage of 
households that are connected to the natural gas grid. 
Biomass is more convenient (and more available) to 
use in the rural area than in the urban area. Due to the 
residue it leaves behind, biomass is assumed to be less 
convenient than propane gas and is standardly set at 
0.4. The convenience of coal depends on how easy it is 
to acquire, e.g., how many retailer stores. The number 
of stores is based on the profits of sellers which 
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further depend on the demand. 

3.2.3. Sub-model 3: Knowledge and Willingness 

People’s knowledge deficit about the environmental 
impact of fuel consumption poses significant 
constrains for them to engage in environmental 
behaviors such as shifting to cleaner fuel and more 
efficient consumption (Huang & Warnier, 2019). Those 
who are more aware of the environmental impact 
often have more positive attitudes toward behavioral 
change (Latif, Omar, Bidin, & Awang, 2013; Paço & 
Lavrador, 2017). But they also need to make conscious 
decisions for specific actions that lead to behavioral 
change (Huang & Warnier, 2019). In our study, this 
behavior change refers to the use of another fuel 
source which can be sometimes more expensive or less 
convenient, such as using gas rather than coal because 
of the health dangers it may pose. 

This sub-model uses learning-by-searching and 
learning-by-doing mechanisms adapted from Bildik, 
Daalen, Yü, Ortt, & Thissen (2015) and Struben & 
Sterman (2008). A variable (KW) represents the 
knowledge and willingness to adopt a new cleaner fuel 
source in a neighbourhood: 

𝐾𝐾𝑊𝑊𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐾𝐾 ∗𝑊𝑊 (4) 

The level of knowledge (K) is determined by 
knowledge gain (kin) and knowledge decay (kout).  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑘𝑘𝑖𝑖𝑖𝑖 − 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 (5) 

There are two main ways knowledge can be gained: 
either through learning from other people in the 
neighbourhood (Esoc), or through the provision of 
information (Einfo). 

𝑘𝑘𝑖𝑖𝑖𝑖 = (1 − 𝐾𝐾𝑡𝑡−1)�𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡 + 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡� (6) 

The value of Esoc variables depend on the amount of 
people using clean energy, defined in equation (6). 
The main drivers of this model are the loop in which 
‘clean energy’ becomes the ‘talk of the town’, i.e. 
people are becoming aware of the importance because 
other people are using clean energy types. The 
perceived importance of clean energy depends on the 
amount of people are currently using the clean energy. 
It concerns the ‘social cohesion’ amongst members in 
the urban and rural areas. 

𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝐾𝐾𝑡𝑡−1 ∗ 𝐹𝐹𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡−1 (7) 

The value csoc is a coefficient that refers to the social 
cohesion within the urban and rural area. These values 
are estimated as a result of survey questions regarding 
the knowledge people had regarding the energy 
consumption of their neighbours, as well as whether 

the neighbourhood had an impact for citizens in 
choosing their own fuel. The variable Frclean,t-1 refers to 
the fraction of people in the region that are already 
consuming clean fuel (either electricity or gas) in the 
previous month. 

The amount of knowledge gained from information 
outlets depends on the amount of information that is 
put out to the people regarding clean energy 
consumption. This measure is activated and adjusted 
as a policy option in the form of a variable cinfo (Policy 
5). It is further dependent on the amount of 
information that is retained by an individual. The 
information is delayed as it takes time for the policy to 
be implemented, take effect and also for the people to 
adjust their behaviour accordingly. The value Einfo is 
therefore calculated as following: 

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(1 − 𝐾𝐾𝑡𝑡−1) (8) 

Any loss of knowledge is due to a lack of overall 
exposure and general decay as people’s interests are 
shifting away over time. If there are not enough people 
who have adopted the clean energy, and the 
‘knowledge and willingness’ of people to adopt the 
technology will reduce as a result of lack of knowledge 
and interest. The decay of knowledge (kout) is 
calculated using the same formula used by Bildik, 
Daalen, Yü, Ortt, & Thissen (2015), in which the 
amount of knowledge naturally decays (i.e. due to a 
loss of interest) as an exponent depending on the 
amount of knowledge the people have. 

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜 = Θ0
exp (−4𝜀𝜀(𝐾𝐾𝑡𝑡−1 − 𝜏𝜏𝑒𝑒𝑒𝑒)

1 + exp (−4𝜀𝜀(𝐾𝐾𝑡𝑡−1 − 𝜏𝜏𝑒𝑒𝑒𝑒) (9) 

Θ0 stands for the maximum rate of knowledge decay. 
This value is slightly higher in the urban area 
compared to the rural area as the ‘lifestyle speed’ and 
change in the urban area is generally faster than in the 
rural area. Variable ε is the rate of knowledge decay at 
t, which is inversely proportional to the exposure rate, 
𝜏𝜏𝑒𝑒𝑒𝑒. 

When people are knowledgeable about clean and 
efficient energy, they also need to be willing to use the 
energy, as this often means that they need to spend 
more to make the transition. Our survey shows that 
people are more willing to use or change to a fuel 
source which is affordable, in particular when a small 
portion of income is spent on energy. This willingness 
to adopt therefore depends on the amount of money 
people currently already spend on energy as a portion 
of their maximum willingness to spend. This 
maximum amount is set at 5% (Frincome,max). This leads 
to the following formula for the willingness: 

𝑊𝑊 = 𝑐𝑐𝑠𝑠𝑠𝑠 �max�0,
𝐹𝐹𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐹𝐹𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡−1

𝐹𝐹𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚
�� (10) 
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Where csW is the coefficient of willingness taken as the 
proportion of surveyed individuals who stated they 
would be willing to pay more if this could give them 
cleaner energy. 

3.2.4. Sub-model 4: Energy utility 

Literature investigating population fuel choice often 
investigates fuel preferences using Multinomial Logit 
Models (Alem et al., 2016; Hosier & Dowd, 2002; Liao 
et al., 2019). This type of choice modelling considers 
the utility of each available choice by calculating its 
logarithmic fraction to of the sum of utility of all 
choices possible. The relative utility of each individual 
fuel is the proportion of the total population that is 
using a certain type of fuel. The utility of each 
available fuel is a function of the mechanisms of price, 
convenience, knowledge and willingness described 
earlier. In order to obtain the utility of each fuel type, 
the sub-model KPI’s are multiplied by a coefficient (c) 
representing their relative importance in determining 
the type of fuel. A calibrated fixed error term (ξ) is 
added to each of the utilities to compensate for other 
assumptions made such as the limited choice of which 
fuel types available. The values of ξ are calibrated 
between -3 and 3, using consumption data available 
between 2010-2015. This provides the following 
function for each fuel type (e – electricity, g – natural 
gas, cl – coal, b – biomass): 

ln�𝑢𝑢𝑒𝑒,𝑡𝑡,𝑟𝑟� =
𝑐𝑐𝑃𝑃𝑃𝑃𝑒𝑒 + 𝑐𝑐𝐶𝐶𝐶𝐶𝑒𝑒 + 𝑐𝑐𝐾𝐾𝐾𝐾𝐾𝐾𝑊𝑊𝑒𝑒

𝑐𝑐𝑃𝑃 + 𝑐𝑐𝐶𝐶 + 𝑐𝑐𝐾𝐾𝐾𝐾
+ 𝜉𝜉𝑒𝑒 (11) 

ln�𝑢𝑢𝑔𝑔,𝑡𝑡,𝑟𝑟� =
𝑐𝑐𝑃𝑃𝑃𝑃𝑔𝑔 + 𝑐𝑐𝐶𝐶𝐶𝐶𝑔𝑔 + 𝑐𝑐𝐾𝐾𝐾𝐾𝐾𝐾𝑊𝑊𝑔𝑔

𝑐𝑐𝑃𝑃 + 𝑐𝑐𝐶𝐶 + 𝑐𝑐𝐾𝐾𝐾𝐾
+ 𝜉𝜉𝑔𝑔 (12) 

ln�𝑢𝑢𝑐𝑐𝑐𝑐,𝑡𝑡,𝑟𝑟� =
𝑐𝑐𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 + 𝑐𝑐𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 + 𝑐𝑐𝐾𝐾𝐾𝐾(1 − 𝐾𝐾𝑊𝑊𝑐𝑐𝑐𝑐)

𝑐𝑐𝑃𝑃 + 𝑐𝑐𝐶𝐶 + 𝑐𝑐𝐾𝐾𝐾𝐾
+ 𝜉𝜉𝑐𝑐𝑐𝑐  

(13) 

ln�𝑢𝑢𝑏𝑏,𝑡𝑡,𝑟𝑟� =
𝑐𝑐𝑃𝑃𝑃𝑃𝑏𝑏 + 𝑐𝑐𝐶𝐶𝐶𝐶𝑏𝑏 + 𝑐𝑐𝐾𝐾𝐾𝐾(1 − 𝛽𝛽𝛽𝛽𝑊𝑊𝑏𝑏)

𝑐𝑐𝑃𝑃 + 𝑐𝑐𝐶𝐶 + 𝑐𝑐𝐾𝐾𝐾𝐾
+ 𝜉𝜉𝑏𝑏 

(14) 

The formulas for the dirty fuels are different from the 
fuels considered clean, as knowledge and willingness 
hereby have a negative effect on the total utility. 
Biomass is considered less harmful than coal, so a 
factor considering the harmfulness of biomass in 
comparison to coal (β) is multiplied by the knowledge 
and willingness factors. Subsequently, the relative 
utility of each fuel type is calculated using the 
formula: 

𝑈𝑈𝑓𝑓 =
𝑢𝑢𝑓𝑓

∑ 𝑢𝑢𝑓𝑓𝑖𝑖
4
𝑖𝑖=0

 (15) 

It represents the ratio of households that consume 
energy 𝜀𝜀 for cooking and heating.  

3.2.5. Sub-model 5: Energy consumption 

The actual demand for energy variable represents the 
expected average amount of energy a family will be 
using for cooking and heating purposes in the 
upcoming year. If fuel becomes cheaper and more 
convenient to use, it will be consumed by a relatively 
larger portion of the city. However, the total 
consumption per capita will likely increase too. The 
actual energy demand therefore increases as a result 
of the convenience and price total utility variables of 
all fuels combined, which is denoted as xCP. On the 
other hand, the energy demand may also change 
depending on the knowledge and willingness 
variables. This determines how people are willing to 
use less fuel because they are more aware of how to 
use less and willing to use less because they are 
implored to do so out of reasons for the environment 
or health (xKW). 

Using the results from the utility sub-model (4), 
the CP and KW-factors are calculated, which are used 
to calculate the per-household change in energy 
consumption. The values for xKW and xCP are calculated 
using equations 16 and 17 below: 

𝑥𝑥𝐶𝐶𝐶𝐶,𝑡𝑡 =
∑ 𝑐𝑐𝐶𝐶𝐶𝐶𝑓𝑓𝑖𝑖,𝑡𝑡−1 +4
𝑖𝑖=0 𝑐𝑐𝑃𝑃𝑃𝑃𝑓𝑓𝑖𝑖,𝑡𝑡−1

4  (16) 

𝑥𝑥𝐾𝐾𝐾𝐾,𝑡𝑡 = 𝑐𝑐𝐾𝐾𝐾𝐾𝐾𝐾𝑊𝑊𝑡𝑡−1 (17) 

For each factor there is a delay of one month, as it may 
take a month before people will adjust their 
consumption quantity (as a result of the monthly 
energy bill). 

The actual impact of CPin and the KWout on energy 
demand are dependent on the current expected 
average amount of energy as the flows represent a 
percental change in demand. Furthermore, aside from 
their indicated names (Convenience and Price, and 
Knowledge and Willingness) they depend on a 
minimum threshold value that needs to be reached in 
order for any effect to take place. If this threshold 
value is not reached, the flows will turn out to be 
negative. For convenience and price, residents will use 
less energy if the combined factor of convenience and 
price is less than they are willing to put in (as CPin will 
be negative). On the other hand, a decrease in 
knowledge and willingness about saving energy will 
lead to an increase of energy consumption (i.e. a 
negative KWout). The average energy demand is 
therefore modelled as following:  

𝑑𝑑𝑟𝑟,𝑡𝑡 = 𝑑𝑑𝑟𝑟,𝑡𝑡−1 +
𝑑𝑑𝑑𝑑𝑟𝑟
𝑑𝑑𝑑𝑑  (18) 

𝑑𝑑𝑑𝑑𝑟𝑟
𝑑𝑑𝑑𝑑 = 𝐶𝐶𝑃𝑃𝑖𝑖𝑖𝑖,𝑟𝑟,𝑡𝑡 − 𝐾𝐾𝐾𝐾𝑜𝑜𝑜𝑜𝑜𝑜,𝑟𝑟,𝑡𝑡 

(19) 
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𝐶𝐶𝑃𝑃𝑖𝑖𝑖𝑖,𝑡𝑡 = 𝑑𝑑𝑡𝑡−1�𝑥𝑥𝐶𝐶𝐶𝐶,𝑡𝑡 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝐶𝐶𝐶𝐶�
3#(20) (20) 

𝐾𝐾𝐾𝐾𝑜𝑜𝑜𝑜𝑜𝑜,𝑡𝑡 = 𝑑𝑑𝑡𝑡−1�𝑥𝑥𝐾𝐾𝐾𝐾,𝑡𝑡 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝐾𝐾𝐾𝐾�
3
 (21) 

With dr describing the average expected per household 
energy demand. The final results from sub-model (4) 
and sub-model (5) will determine the average 
residential fuel demand per household, as well as the 
proportion of residents that use specific types of fuels 
for cooking and heating purposes. These outputs to 
the Vensim model are used as inputs for the LEAP 
model. 

3.2.6. Implementation of the energy policies 

Policies are implemented in the Vensim model 
where the related variables are altered, e.g. the energy 
prices are increased with taxes or decreased with 
subsidies; the number of households connected to the 
pipelines increases with Policy 4. A summary is listed 
as follows.  

• Coal Ban: Coal is removed from the model as an 
energy source once this policy is implemented. 

• Coal Tax: The price of coal in the Price Sub-model 
is increased by 0.02 CNY/MJ per year. 

• Electricity Subsidy: The price of electricity in the 
Price Sub-model is decreased by 25% at the 
moment of policy implementation. 

• Additional Gas Pipelines: the number of 
households connected to pipelines %𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 in 
the Energy Convenience Sub-model increases by 
20% at the moment of policy implementation. 

• Increasing Awareness: the value of 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 in the 
Knowledge and Willingness Sub-model is set to 
0.5 instead of 0. This means that additional 
knowledge gain is achieved through information 
campaigns. 

3.3. LEAP model 

LEAP (Long-range Energy Alternatives Planning) is an 
integrated energy-environment accounting model for 
policy and climate change assessment. It has four 
major components: energy demand, energy 
transformation and conversion, resource assessment 
and environmental impact estimations. Using the data 
output from the Vensim model, the LEAP model 
computes the CO2 and PM10 emissions according to the 
forms and amounts of energy consumed in the rural 
and urban areas using its ‘Technology and 
Environmental Database’ (LEAP, n.d.). 

4. Experimental results 

Our study has simulation experiments with the five 
policy interventions individually (see Section 2.1) and 
with their duo combinations. The results of the 

experiments are compared to that of the no-policy 
scenario as the baseline. For the no-policy scenario, 
the energy consumption and CO2 and PM10 emissions 
rise steadily from 2015 to 2030. This is expected as 
expected economic welfare will cause an increase in 
per household energy consumption, while it will not 
directly lead to a change in fuel type consumption. 
Table 1 and Table 2 show the consumption and 
emissions in urban and rural areas in 2015 and 2030 
(without policy intervention) respectively. 

Table 1. Consumption (Terajoules) and emissions (Metric Tons) in 

Jingmen in 2015. 

2015  Urban Rural Total 
Consumption 
(Terajoules) 

Electricity 2 531 2 144 4 675 
Gas 2 542 339 2 881 
Coal 710 657 1 367 
Biomass 0 181 181 
Total 5 783 3 321 9 104 

Emissions 
(Metric Tons) 

CO2 207 633 99 601 307 234 
PM10 65 76 141 

Table 2. Consumption (Terajoules) and emissions (Metric Tons) in 

Jingmen in 2030. 

2030  Urban Rural Total 
Consumption 
(Terajoules) 

Electricity 12 030 5 251 17 281 
Gas 6 729 3 569 10 298 
Coal 753 2 209 2 962 
Biomass 0 590 590 
Total 19 512 11 619 31 131 

Emissions 
(Metric Tons) 

CO2 445 159 468 318 913 477 

PM10 69 255 324 

Simulated values, assuming no policy intervention. 

The increases in the no-policy scenario are 
significant, with an average increase of around 915 TJ 
and 553 TJ per year in the urban and rural areas 
respectively. The main reason for this is the expected 
increase in per-household income in urban (expected 
to increase from 75,000 CNY in 2015 to 160,000 CNY in 
2030) and rural areas (expected to increase from 
16,000 CNY in 2015 to 55,000 CNY in 2030), stated by 
the Jingmen Development and Reform Commission. 
Additionally, interviews with the High-Tech Industry 
Campus hinted at significant improvements made in 
urban infrastructure of energy supply. 

The effects of different policy interventions are 
shown in Figure 4. The x-axes indicate the aggregated 
amount of energy consumption in proportion to that 
of the no-policy scenario, which is at point (1,1). The 
y-axes indicate the total amount of CO2 or PM10 
emissions in proportion to that of the no-policy 
scenario.  
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Figure 4. Energy Consumption, CO2 and PM10 Emissions In 2030 with 
Policy Options. Results relative to the No-Policy Scenario. 

The experimental results of the policies are discussed 
in the following sub-sections. Due to space limits, not 
all results presented are shown by figures. In practice, 
urban and rural areas can implement policies 
separately. However, as each policy is tested in both 
areas, they will be discussed under a single header. 

4.1. Policy 1: Coal ban 

A ban on coal consumption will be very effective in 
reducing emissions for both, the rural and urban areas 
in Jingmen. The coal ban is effective because it takes 
away a fuel alternative rather than inducing a change 
in household consumption behaviour. The removal of 
coal as a fuel alternative will reduce the CO2-emissions 
to less than half of that expected in 2030 under no-
policy conditions. The PM10-emissions will drop 
directly from 150 to 50 metric tonnes as a result of the 
coal ban. Afterwards, no significant rise in PM10 
emissions is expected up until 2030. However, this 
policy will impose the largest energy demand 
reduction which can be problematic. A coal ban could 
lead to a demand reduction of up to 30% in 2030, 
compared to the expected rise during the no-policy 
alternative. The impact in the rural area will be much 
larger, which could see a reduction of around 45% in 
2030. Biomass and gas will be used to compensate for 
the lack of coal, while demand for electricity will 
remain nearly unaffected, likely because it is too 
expensive for many to use. 

4.2. Policy 2: Coal tax 

A coal tax will have limited effect in the urban area: a 
large incremental increase in coal price fails to induce 

significant change in energy demand. This lack of 
response is likely because coal consumption is already 
low in the urban area, meaning that the overall impact 
it can have is minimal. Another reason is that people 
that are using coal are likely not doing so for monetary 
reasons. Making coal more expensive will therefore 
have limited effect, especially since it remains cheaper 
than gas or electricity.  

In the rural area, a coal tax will have a significant 
impact on the overall energy demand. A substantial 
part of the population uses coal as people are unable to 
afford the cleaner alternatives. As with the coal ban 
policy, if coal will become less readily accessible and 
affordable alternatives lack, households will consume 
less energy. Although this reduction starts out 
minimal, the changes eventually add up due to the 
incremental tax increase. This leads to demand 
reductions of between 14% and 30% in 2030 compared 
to the no-policy alternative. As an alternative, people 
will revert to using ‘free’ biomass. As coal in China is 
very cheap, a monetary method to discourage 
consumption needs a significant price increase. 

A coal tax should not be ignored as a viable policy 
for emission reduction as it is effective in reducing 
PM10 emission levels, while the effect on carbon 
dioxide emissions is less impactful. Even if the tax rate 
is high, carbon dioxide emissions will not drop further 
than 15% by 2030. On the other hand, PM10 emissions 
could reduce up to 40% by 2030. The policy does not 
necessarily cause the emissions to reduce, but instead 
reduces the rate at which emissions increase as a 
result of increased energy consumption, which will be 
helpful in reaching the peak carbon emission value 
sooner. 

4.3. Policy 3: Electricity subsidy 

Reducing the price of electricity will have a positive 
impact on energy demand in the rural area, while the 
demand in the urban area remains constant. The 
energy demand in the urban area will be unaffected, 
but the composition of fuel demand will change, 
causing a slight decrease in PM10, while CO2-emissions 
remain constant.  

There is an initial decrease of around 10% in both 
CO2 and PM10 emissions by 2025, yet the policy could 
eventually lead to higher emissions in 2030, where the 
PM10 and CO2 emissions can increase to 10-16% 
compared to the no-policy scenario. This is because 
the rural energy demand keeps increasing at an 
average yearly rate between 2025 and 2030 (964 TJ per 
year, as opposed to 553 TJ in the baseline scenario).  A 
reduction in electricity price will also reduce the price 
of consumption of other appliances of which the fuel is 
non-substitutable (such as microwaves or 
televisions). A price reduction will likely lead to an 
increase in energy consumption rather than a shift 
from undesirable to desirable fuels. 
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4.4. Policy 4: Additional gas pipelines 

Placing additional gas pipelines at an increased rate 
will be mostly effective in the urban area. Increasing 
the convenience is very effective and therefore such a 
policy will see a short-term decrease of biomass and 
coal consumption by about 10%. In the long term, 
additional precautions need to be taken. Once the 
urban area is fully connected to the national gas grid, 
there is no additional convenience from this policy. 
This will eventually cause coal and biomass 
consumption to readjust to normal levels. However, 
this policy is the least effective policy in the rural area. 
On top of that, it will be practically difficult to connect 
the rural area to the natural gas grid.  

4.5. Policy 5: Increasing awareness 

When considering increasing the awareness of 
residents there is a clear decrease in emission levels. 
This is mostly caused by citizens moving away from 
coal as their primary source of fuel. The largest shift 
concerns one from coal towards biomass. This change 
causes a significant decrease in both carbon dioxide 
and PM10 emission levels. Household CO2-emissions 
can reduce by around 12-17% in 2030, while PM10-
emissions can reduce to around 20-25% of the 
expected no-policy level. This means that the policy is 
good at achieving desired result of reducing emissions 
but fails to stimulate consumption of the cleaner fuels 
in lieu of the reduced coal demand. By 2030, biomass 
consumption will increase by around 25%, while coal 
consumption can reduce by 25-35%. This is because 
there is no change in convenience or price and while 
the consumption of coal is discouraged, citizens are 
unlikely to move to more expensive fuels as they have 
no incentive to do so.  

This policy has higher levels of risk because there 
are no restrictions placed on individual citizens. This 
means that the government is dependent on the free 
will and cooperation of its citizens as a result of policy 
implementation. The effectiveness of such a policy is 
debatable especially since citizens are aware of the 
minimal impact, they as an individual household have 
on emission levels. It is uncertain whether people will 
change their energy consumption to the extent that 
they mentioned during survey and interviews. 
Knowing how to take action does not equal taking 
action. Furthermore, despite the importance for 
citizens to become more knowledgeable about energy 
consumption, the government can also not expect for 
the citizens to make significant changes by 
themselves. The people cannot be expected to make 
the autonomous choices that the government 
generally makes for them. For this reason, such a 
policy is unlikely to be successful on its own and 
should always be implemented in combination with 
another policy. 

4.6. Policy combinations 

Combining two policies can have a larger impact as the 

effects from two policies may be able to amplify the 
results of one another. A combined policy composed of 
a restrictive and supportive policy can negate the 
adverse effects of one as consumption can be 
channelled to another fuel.  

Policy combinations that include a coal ban cause a 
direct reduction in energy demand. The reduction has 
lasting effects and will lead to a general reduction in 
energy consumption, in the urban as well as the rural 
area. Considering the energy demand of the urban 
area, there are two distinguishable groups of policy 
combinations: those that include a coal ban, and those 
that do not. The coal ban immediately reduces urban 
carbon dioxide emissions by around 10%. An 
additional reduced rate of increase in energy 
consumption as a result of the ban, can mean a 
reduction of 35-40% in CO2-emissions 2030 
compared to the baseline scenario. 

Providing electricity subsidies leaves more room for 
increasing overall energy consumption. The policy 
combinations that include an electricity subsidy show 
promising results. Combining this policy with 
increasing exposure can reduce emissions 
significantly. Even though overall consumption 
increases due to the subsidy provided, the 
consumption of coal sees a decline due to the 
exposure. This combination shows that policies can 
compensate one another to have a more desirable 
impact. In the short term, the impact of the electricity 
subsidy will cause a direct decrease in emission levels, 
however unlike during the single policy 
implementation, the faster increase in consumption of 
the undesirable fuels is negated as citizens are 
encouraged to shift their fuel of consumption as a 
result of the improved knowledge of households. 

The policy combination that includes a coal ban, 
combined the electricity subsidy shows a lower 
demand in energy than the single implementation of 
the coal ban policy. The ban means only three fuel 
options are available and forces a significant portion 
of the population to shift to electricity. Due to the 
electricity subsidy, many people decide to shift to 
electricity as an alternative, however, because the 
price of electricity is still significant, there is a lower 
average per household consumption of electricity. 
Future research needs to be done in order to validate 
whether this behaviour is representable of that of the 
population, or if further adjustments need to be made 
to the model to improve its validity concerning this 
policy combination. 

5. Conclusion 

To investigate household energy transitions in low-
tier prefectures in China, this paper studied the case of 
Jingmen, conducted interviews and surveys, and 
developed simulation models to understand the 
household energy consumption behaviour and the 
impact of potential policy interventions. A system 
dynamics (Vensim) model, that simulates policies and 



16 | 8th International Workshop on Simulation for Energy, Sustainable Development & Environment, SESDE 2020 
 

 
household consumption behaviours, is linked with an 
energy (LEAP) model to estimate the corresponding 
emissions under different policy scenarios.  

Five policy options and their duo combinations are 
investigated: coal ban, coal tax, electricity subsidy, 
additional gap pipelines, and more exposure to clean 
energies. The experiments show that although policies 
on coal ban or coal tax are effective in reducing 
emissions, they will severely impact the overall energy 
consumption of the residents. These policies are more 
effective in combination with supportive policies such 
as an increase in gas pipeline placement or an 
electricity subsidy. The policy of electricity subsidy can 
create transition towards electricity and reduces 
emissions, but it is not effective on its own as it may 
merely increase demand. It hence shall be 
implemented with a restrictive policy. In addition, 
exposing the population to clean energy can be 
effective as people become more aware of the dangers 
of coal consumption. However, as this policy depends 
on the cooperation of citizens on a large scale, its 
actual effectiveness is uncertain. Increasing the 
placement of gas pipelines has little impact in the 
long-term but can be effective to create a fast 
transition from coal to natural gas consumption. 
Future work shall design and investigate supportive 
policy options for the adoption of local renewable 
generations.  

Acknowledgement  

This study is a part of the “Study on the Synergetic 
Mechanism of Urban Energy Structure, Carbon 
Emission and Air Pollution”, granted by the 2020 
International Cooperation Projects of Shenzhen 
Science and Technology Innovation Committee, China. 

References 

Alem, Y., Beyene, A. D., Köhlin, G., & Mekonnen, A. 
(2016). Modeling household cooking fuel choice: A 
panel multinomial logit approach. Energy 
Economics, 59, 129–137. 
https://doi.org/10.1016/j.eneco.2016.06.025 

Bildik, Y., Daalen, C. E. Van, Yü, G., Ortt, J. R., & 
Thissen, W. A. H. (2015). Modelling Wind Turbine 
Diffusion : A comparative study of California and 
Denmark 1980-1995. International Conference of 
the System Dynamics Society, 1–25. 

CEIC. (2019). China Electricity Price – China CN: 
Service Price: 36 City Avg: Electricity: for Resident: 
220v. Retrieved from: 
https://www.ceicdata.com/en/china/electricity-
price [Accessed: 09/06/20] 

Climate Action Tracker. (2019). Country Summary: 
China. Retrieved from: 
https://climateactiontracker.org/countries/china/ 
[Date Accessed: 18/10/2019] 

Delang, C. O. (2016). China's Air Pollution Problems. 

Routledge. 

Dong, K. Y., Sun, R. J., Li, H., & Jiang, H. D. (2017). A 
review of China’s energy consumption structure 
and outlook based on a long-range energy 
alternatives modeling tool. Petroleum Science, 
14(1), 214–227. https://doi.org/10.1007/s12182-
016-0136-z 

Energy Information Administration (EIA). (2020). 
China Emission Data. Retrieved from: 
https://www.eia.gov/international/data/country/C
HN 

Gilley, B. (2012). Authoritarian environmentalism and 
China’s response to climate change. Environmental 
Politics, 21(2), 287–307. 
https://doi.org/10.1080/09644016.2012.651904 

Gu, Y., Wong, T. W., Law, C. K., Dong, G. H., Ho, K. F., 
Yang, Y., & Yim, S. H. L. (2018). Impacts of sectoral 
emissions in China and the implications: air 
quality, public health, crop production, and 
economic costs. Environmental Research Letters, 
13(8), 084008. 

Hosier, R. H., & Dowd, J. (2002). Household fuel choice 
in Zimbabwe. Resources and Energy, 9(4), 347–
361. https://doi.org/10.1016/0165-0572(87)90003-
x 

Huang, Y., Bor, Y. J., & Peng, C. Y. (2011). The long-
term forecast of Taiwan’s energy supply and 
demand: LEAP model application. Energy Policy, 
39(11), 6790–6803. 
https://doi.org/10.1016/j.enpol.2010.10.023 

Huang, Y., & Warnier, M. (2019). Bridging the 
Attitude-Behaviour Gap in Household Energy 
Consumption. In 2019 IEEE PES Innovative Smart 
Grid Technologies Europe (ISGT-Europe) (pp. 1-5). 
IEEE.  

Hubei Provincial Bureau of Statistics. (2020). 
荆门市统计年鉴 [Jingmen Statistical Yearbook Data]. 
Retrieved from: 
http://tjj.hubei.gov.cn/tjsj/sjkscx/tjnj/gsztj/jms/ 
[Date Accessed: 04/06/2020] 

Hubei Province Provincial People’s Government. 
(2018). 荆门市城镇化率大幅提升 [Jingmen City’s 
urbanization rate has increased significantly]. 
Retrieved from: 
http://www.hubei.gov.cn/xxbs/szbs/jms/201805/t2
0180508_1284145.shtml [Date Accessed: 
22/10/2019] 

Hu, G., & Mu, X. (2019). Analysis of urban energy 
metabolic system: An ecological network 
framework and a case study for Beijing. Journal of 
Cleaner Production, 210, 958–969. 
https://doi.org/10.1016/j.jclepro.2018.11.088 

Hu, S., Yan, D., Guo, S., Cui, Y., & Dong, B. (2017). A 
survey on energy consumption and energy usage 
behavior of households and residential building in 



Van Bilsen et al. | 17 
 

 
urban China. Energy & Buildings, 148(2017), 366–
378. https://doi.org/10.1016/j.enbuild.2017.03.064 

Jia, H. (2018). China digs deep on environmental 
research. Retrieved from: 
https://www.natureindex.com/news-blog/china-
digs-deep-on-environmental-research [Date 
Accessed: 17/09/2019] 

Jiang, L., & O’Neill, B. C. (2004). The energy transition 
in rural China. International Journal of Global 
Energy Issues, 21(1–2), 2–26. 
https://doi.org/10.1504/IJGEI.2004.004691 

Latif, S. A., Omar, M. S., Bidin, Y. H., & Awang, Z. 
(2013). Role of Environmental Knowledge in 
Creating Pro-Environmental Residents. Procedia - 
Social and Behavioral Sciences, 105, 866–874. 
https://doi.org/10.1016/j.sbspro.2013.11.088 

LEAP. (n.d.). TED: Technology And Environmental 
Database.,  Retrieved from: 
http://www.energycommunity.org/WebHelpPro/T
ED/TED_Intro.htm 

Liao, H., Chen, T., Tang, X., & Wu, J. (2019). Fuel 
choices for cooking in China: Analysis based on 
multinomial logit model. Journal of Cleaner 
Production, 225, 104–111. 
https://doi.org/10.1016/j.jclepro.2019.03.302 

Muller, C., & Yan, H. (2014). Household Fuel Use in 
Rural China. (June), 1–38. Retrieved from 
https://afse2016.sciencesconf.org/98089/documen
t 

Molero-Simarro, R. (2017). China Economic Review 
Inequality in China revisited . The effect of 
functional distribution of income on urban top 
incomes , the urban-rural gap and the Gini index, 
1978 – 2015. China Economic Review, 42, 101–117. 
https://doi.org/10.1016/j.chieco.2016.11.006 

National Development and Reform Commission. 
(2008). Main Functions of Departments of the 
NDRC – Department of Climate Change. Retrieved 
from: 
http://en.ndrc.gov.cn/mfod/200812/t20081218_25
2201.html [Accessed: 03/07/19] 

Ou, J., Meng, J., Zheng, J., Mi, Z., Bian, Y., Yu, X., … 
Guan, D. (2017). Demand-driven air pollutant 
emissions for a fast-developing region in China. 
Applied Energy, 204, 131–142. 
https://doi.org/10.1016/j.apenergy.2017.06.112 

Paço, A., & Lavrador, T. (2017). Environmental 
knowledge and attitudes and behaviours towards 
energy consumption. Journal of Environmental 
Management, 197, 384–392. 
https://doi.org/10.1016/j.jenvman.2017.03.100 

Qi, Y., Ma, L., Zhang, H., & Li, H. (2008). Translating a 
Global Issue Into Local Priority. The Journal of 
Environment & Development, 17(4), 379–400. 
https://doi.org/10.1177/1070496508326123 

Sahu, B. K. (2018). Wind energy developments and 
policies in China : A short review. Renewable and 
Sustainable Energy Reviews, 81(April 2017), 1393–
1405. https://doi.org/10.1016/j.rser.2017.05.183 

Sandalow, D. (2018). Guide to Chinese Climate Policy 
2018. Columbia University School of International 
and Public Affairs, Center on Global Energy Policy, 
(July), 1–139. 

Shin, H. C., Park, J. W., Kim, H. S., & Shin, E. S. (2005). 
Environmental and economic assessment of 
landfill gas electricity generation in Korea using 
LEAP model. Energy Policy, 33(10), 1261–1270. 
https://doi.org/10.1016/j.enpol.2003.12.002 

Stockholm Environment Institute (SEI). (2005). LEAP: 
Long Range Energy Alternatives Planning System, 
User Guide for LEAP 2005. Retrieved from: 
http://forums.seib.org/leap/documents/Leap2005
UserGuideEnglish.pdf,2005S. 

Struben, J., & Sterman, J. D. (2008). Transition 
challenges for alternative fuel vehicle and 
transportation systems. Environment and Planning 
B: Planning and Design, 35(6), 1070–1097. 
https://doi.org/10.1068/b33022t 

Su, M., Chen, C., & Yang, Z. (2016). Urban energy 
structure optimization at the sector scale: 
Considering environmental impact based on life 
cycle assessment. Journal of Cleaner Production, 
112, 1464–1474. 
https://doi.org/10.1016/j.jclepro.2015.01.059 

The People’s Government of Jingmen Municipality. 
(2019). About Jingmen. Retrieved from: 
http://www.jingmen.gov.cn/col/col4232/index.htm
l [Date Accessed: 22/10/2019] 

Wang, H., Lu, X., Deng, Y., Sun, Y., Nielsen, C. P., Liu, 
Y., ... & McElroy, M. B. (2019). China’s CO2 peak 
before 2030 implied from characteristics and 
growth of cities. Nature Sustainability, 2(8), 748-
754. 

Wang, K., Wang, Y. X., Li, K., & Wei, Y. M. (2015). 
Energy poverty in China: An index based 
comprehensive evaluation. Renewable and 
Sustainable Energy Reviews, 47, 308–323. 
https://doi.org/10.1016/j.rser.2015.03.041 

Wang, T. J., Jin, L. S., Li, Z. K., & Lam, K. S. (2000). A 
modeling study on acid rain and recommended 
emission control strategies in China. 34. 

Yang, X. J., Hu, H., Tan, T., & Li, J. (2016). China’s 
renewable energy goals by 2050. Environmental 
Development, 20(October), 83–90. 
https://doi.org/10.1016/j.envdev.2016.10.001 

Yue, T., Long, R., Liu, J., Liu, H., & Chen, H. (2019). 
Empirical Study on Households ’ Energy-
Conservation Behavior of Jiangsu Province in 
China : The Role of Policies and Behavior Results. 
https://doi.org/10.3390/ijerph16060939 



18 | 8th International Workshop on Simulation for Energy, Sustainable Development & Environment, SESDE 2020 
 

 
Zhao, S., & Alexandro, A. (2019). Current and future 

struggles to eliminate coal. 129(February), 511–
520. https://doi.org/10.1016/j.enpol.2019.02.031 


	1. Introduction
	2. Interviews and Surveys in Jingmen
	3. Model overview
	4. Experimental results
	5. Conclusion

