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ABSTRACT

Flows of fluids made of complex organic molecules exhibit unconventional fluid dynamic behavior in the vapor phase if their
thermodynamic state is close to that of the vapor-liquid critical point. If the molecule is sufficiently complex, this thermodynamic domain is
characterized by negative values of the fundamental derivative of gasdynamics I', the fluid is called Bethe-Zel'dovich-Thompson (BZT)
fluid, and atypical phenomena, such as rarefaction shockwaves, are theoretically admissible. The nature of the steepening of nonlinear waves
in dense vapor flows of organic fluids evolving in this thermodynamic region can be significantly affected by the presence of temperature
gradients in the flow. This study investigates the evolution of finite-amplitude acoustic waves in these conditions. The steepening of the wave-
front is analyzed using the wavefront expansion technique, and the deformation of the wavefront is simulated numerically by solving the
Westervelt equation. The results of simulations of wave propagation in dense vapors indicate that, though I" governs the nature of steepening
waves, local gradients in sound speed and density can alter the rate of steepening and can enhance or delay shock formation in the medium,
a result relevant also to the envisaged experiments aimed at proving the existence of nonclassical gasdynamics phenomena in BZT vapors.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0063226

I. INTRODUCTION

The thermodynamic states of a fluid with temperatures and pres-
sures close to the values at the vapor-liquid critical point form a region
characterized by changing values of the fundamental derivative of gas-

dynamics I', defined as
r=1+"? <@> , 1)
c\9p/,

where p is the density, c is the sound speed, and s is the entropy. As
the name suggests, I" is therefore inherently related to the way a wave
propagates in fluids.”” In the case of ideal gases, I is greater than 1
and equal to (y 4 1)/2 where y = ¢, /c, is the ratio of specific heats. It
has been shown that, for organic fluids made by large and complex
molecules, I' may have a value lower than 1 and may even become
negative at thermodynamic conditions close to those of the critical
point of the fluid. This set of thermodynamic states characterized by

negative values of the fundamental derivative is referred to in gasdy-
namics as the nonclassical thermodynamic region. Flows in which the
fluid thermodynamic states are characterized by I' < 1 are said to be
in the non-ideal compressible fluid dynamic (NICFD) regime. Fluids
featuring thermodynamic states for which I" < 0 are known collec-
tively as Bethe-Zel'dovich-Thompson (BZT) fluids.” Unconventional
gasdynamic phenomena, such as rarefaction shockwaves, which can-
not be observed in classical flows because they violate fundamental
principles, are instead theoretically admissible in flows of BZT fluids
and for the stated thermodynamic conditions."

The existence of a thermodynamic region with negative nonline-
arity and the formation of rarefaction shock waves (RSW) have been
extensively studied from a theoretical point of view, but the few experi-
mental attempts to prove the actuality of nonclassical gasdynamics
have led to inconclusive results so far. The first attempt to experimen-
tally verify the formation of RSWs was carried out by Borisov et al.’
using Freon-13 (trichlorouoromethane, CCIF;) as the test fluid. They
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claimed to have observed a RSW in the vapor region close to its critical
point. However, this result has been confuted by many authors citing
the impossibility for I' to be negative for vapor states of Freon-13,
as the molecule is insufficiently complex. Therefore, the possibility
that the measured flow was affected by so-called critical point phe-
nomena and two-phase effects is minimal.” A second shock-tube
experiment aimed at generating and measuring RSW was conducted
at the University of Colorado at Boulder using perfluorofluorene
(PP10, Cy5F»,) as the working fluid.” However, no meaningful experi-
mental result was achieved due to the thermal degradation of PP10 at
the high operating temperatures. This was possibly due to the presence
of air and moisture within the working fluid, which are known cata-
lysts for thermochemical decomposition.”” The flexible asymmetric
shock tube (FAST) at Delft University of Technology is one such facil-
ity designed with the intent of providing the experimental evidence for
the formation of rarefaction shocks and therefore for the existence of
nonclassical gasdynamic regime.”'’ Dodecamethylcyclohexasiloxane
(Dg) was chosen as the test fluid, given its high level of thermal stabil-
ity, non-toxicity, low level of flammability, and comparatively better
accuracy of thermodynamic models.'"'* All these experiments were
based on the assumption of homogeneous thermodynamic conditions
of the vapor along the shock tube. Mathijssen et al.” performed prelim-
inary experiments in the FAST on the propagation of rarefaction
waves in the non-ideal regime of siloxane D¢ at temperatures up to
300 °C and estimated values of the wave speed and sound speed that
were within 8% and 1.6% of the predictions of a state-of-the-art ther-
modynamic model. Recent repeated temperature measurements per-
formed by the authors of this article along the inner surface of the
high-pressure tube of the FAST setup have shown that, even with the
numerous precautions and tight control adopted to ensure the uni-
form temperature of the fluid, the vapor is always subjected to gra-
dients in temperature in the longitudinal direction. Apart from the
general interest in extending the acoustic theory to BZT fluids, thus to
wave propagation in nonclassical flow conditions, it is therefore of
interest to investigate the effect of such temperature variations on the
formation of shock waves in these fluids in order to improve the inter-
pretation of envisaged experiments.

The propagation of waves in fluids affected by non-uniform tem-
perature distribution has been investigated by several authors.
Soukhomlinov et al."” studied the propagation of a weak shockwave in
ideal gases with mild temperature gradients. They established an ana-
Iytical solution to the one-dimensional wave propagation equation
and compared the results with those obtained by numerically solving
the Euler flow equation. Lin and Szeri'* investigated the effect of
entropy gradients on shock formation in ideal gases using the wave-
front expansion technique. They developed an analytical criterion for
computing the shock formation distance and time, for a finite-
amplitude wave traveling in a medium with smoothly varying entropy.
However, the ideal gas assumption at the basis of these studies is no
longer valid if the thermodynamic states of the vapor are close to the
vapor-liquid critical state. A more general analysis was presented by
Cramer and Kluwick:'” the scientists developed a weak shock theory
for one-dimensional small-amplitude waves propagating in inviscid
flows, by considering also cases in which the fundamental derivative
associated with fluid states in the flow changes sign. Cramer and Sen'®
extended this study by investigating the steepening of one-
dimensional finite-amplitude waves in van der Waal vapors featuring
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an embedded thermodynamic region of negative nonlinearity. An ana-
Iytical solution for the steepening of a wavefront propagating in a
medium with both positive and negative nonlinearities based on the
wavefront expansion technique is presented by Muralidharan and
Sujith."” Though the solution is valid for any equation of state (EoS),
the authors limit their study to a van der Waal’s gas in the near-critical
thermodynamic region. An alternate approach based on the
Rubin-Rosenau-Gottlieb theory for the study of finite-amplitude
wave propagation in thermoviscous fluids is described by Jordan
etal'”

In the study documented here, the analytical solution obtained
with the so-called wavefront expansion technique was employed to
investigate the propagation of finite-amplitude waves in BZT fluids
with axial temperature variations. This investigation is motivated by
observations made by the authors while trying to improve the FAST’
that in any shock tube setup developed to study RSWs, temperature
gradients along the tube are inevitable. Moreover, in this study multi-
parameter equation of state was employed to model fluid properties'’
in order to achieve the highest accuracy. The validity of the inviscid
analysis is tested against viscous effects by comparing with the solution
of the one-dimensional Westervelt equation. In addition, the effects of
such gradients on shock formation distances were also computed. This
paper is structured as follows: in Secs. IT A and 1B, the Westervelt
equation and the numerical method used to solve the equation are
introduced. This is followed by a brief description of the analytical
solution in Sec. IT C. Sections III A 1 and IIT A2 treat the steepening
characteristics of waves in case the thermodynamic state of the fluid is
close to the I = 0 condition. The discussion is followed by a compari-
son between the analytical solution of the propagation equation with
the results of the solution of the Westervelt equation (Sec. 111 A 3).
Section 111 B discusses the effect of temperature gradients on shock for-
mation distances in BZT fluids. Concluding remarks are summarized
in Sec. I'V.

Il. METHODOLOGY
A. Westervelt Equation

The Westervelt equation is a well-known mathematical model in
nonlinear acoustics that is widely adopted in studies concerning sev-
eral industrial and medical applications including diagnostic ultra-
sound, sonochemistry, etc.”"?! Assuming that the disturbances in the
fluid properties are of small amplitude relative to the medium at rest,
and that the wave propagates in a fluid in which the length scale of the
inhomogeneity is larger than the wavelength of the wave, the propaga-
tion of finite amplitude disturbances in a thermoviscous fluid can be
written as™*”’

, 19 1 5p T 9*p?
Sl St TP S 2
V’p 3ot p, VeoVp+ s or + poca Ot @

where p is the acoustic pressure, ¢y and p, are the sound speed and
density of the quiescent fluid, ¢ is the diffusivity of sound, and I' is the
fundamental derivative of gasdynamics. The first two terms of Eq. (2)
makeup the 1D linear wave equation describing the linear and lossless
wave propagation at the small-signal sound speed. The third term
accounts for the variation in density, and the fourth term for the losses
due to thermal and viscous effects. The fifth term in Eq. (2) models the
nonlinear distortion of the wave arising from finite amplitude effects.
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In nonlinear acoustics, the fluid thermodynamic property associ-
ated with the variation of the sound speed is termed the coefficient of
nonlinearity ff and is defined as™*

B

p=1+57, 3
where A and B are the first and second order coefficients in the
pressure-explicit virial equation of state of the fluid written as a func-
tion of density at constant entropy.”**” Their ratio, B/A, is called non-
linearity parameter. It can easily be shown by using basic
thermodynamic relations that ff and I', the fundamental derivative of
gasdynamics, are the same thermodynamic property called in different
ways. Since the gaseous fluids dealt with in acoustics are treated under
the ideal gas assumption, f5, and hence I, in conventional acoustics is
positive and larger than 1. However, if acoustic phenomena occur in
the so-called non-ideal compressible fluid dynamics (NICFD) regime,
thus close to vapor saturation and for high values of the reduced pres-
sure P, and the reduced temperature T;, I is lower than 1. The value
of I can even be lower than zero for some thermodynamic states if the
medium is a BZT fluid, and in these conditions, the speed of sound
decreases with density at constant entropy.

B. Solution of the Westervelt equation

The Westervelt equation does not have a known analytical solu-
tion and is, therefore, solved using numerical methods. Spatial and
temporal derivatives in Eq. (2) are approximated with discrete differ-
ences using the finite difference time domain (FDTD) method.”® The
x spatial dimension is divided into N, elements, equally spaced by Ax
and indexed with i. Absorbing boundary conditions are imposed to
prevent wave reflections that are numerical artifacts from affecting the
results. The spatial derivative is computed using second-order-accurate
central differences as

0, 1, e
el =
62 1 n n n
32i ~ A2 (P — 2] +piy)- (4b)

Similarly, the temporal dimension is discretized into N; elements,
divided into equal intervals At and indexed with #. The time derivative
in the second term of Eq. (2) is computed using second-order-accurate
central differences while the nonlinear and absorption terms are
expanded using backward differencing, resulting in

82 1 1 1 n—

8—£~(At)z (b = 20) 4517 (52)
o 1 ~ .
Sh~ a8+ 24 (5b)

—14p} = + 3pf1),

3W~2(M’%ﬂWPVy+M@T+@VM3
o~ 2A¢ A ‘

(50)

Equations (4) and (5) are substituted into Eq. (2) and solved for
n+1

pi
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C. Method for the simulation of the wavefront
propagation—wavefront expansion technique

If a finite-amplitude rarefaction wave travels in a homogeneous
medium featuring a thermodynamic state with negative I', accepted
theory prescribes that it steepens as a result of the nonlinearity. Given
sufficient amplitude of the initial disturbance, the steepening of the
wave can eventually result in the formation of a rarefaction shockwave
(RSW). Numerically, the formation of a RSW can be identified by
tracking the rate of steepening of the leading edge of the disturbance
till the slope becomes infinity. According to Muralidharan and
Sujith,"” the evolution of the leading edge of a finite-amplitude wave
propagating in a stationary vapor in the presence of entropy gradients
is

1 F(0) 1 [FFE)T() .
) T R b o) & ©
where u is the particle velocity and
w(x) = < [ux)] )
E(x) = eo(0) oo and x=X(),  ®

with u;(0) being the initial slope of the wave, X(f) the location of the
leading edge of the wave at time £, and ¢, and p,, the local sound speed
and density of the undisturbed medium. A shock is formed if
11 (x) — 0. The local rate of change of 1/u;, which is a measure of
the curvature of the wavefront, can be derived from Eq. (6) and is writ-
ten as

d /1 I 1 1 d
dx <u1) oo {F(x)dx[F(X)]} ©)
This numerical method provides a closed-form solution
which is at the foundation of the study on the effect of temperature
variations on wave steepening. Equation (6) provides the wave
slope only at the leading edge and, therefore, does not capture
shocks formed elsewhere along the wave. This is, however, consis-
tent with the current study, which also focuses on the steepening at
the leading edge of the wave.

lll. RESULTS

The wavefront expansion method was used to investigate the prop-
agation of waves in the dense vapor of dodecamethylcyclohexasiloxane,
Dg, a complex organic molecule considered in recent theoretical, numer-
ical, and experimental studies on nonclassical gasdynamics.”” The prop-
erties of the fluid are computed using a Span-Wagner multiparameter
equation of state model”*”” implemented in an in-house software library
for the computation of fluid thermophysical properties.”’ Since the
pressure of the medium is assumed constant, the variation of the
temperature alone can completely describe the thermodynamic state
of the fluid.

Moreover, the treatment is simplified by the adoption of the non-

dimensional parameters,
x*=x/Ly and n=x—X(¢),

where Ly (= 10 m) and 7 are the domain length and the distance from
the leading edge at time t, respectively.
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A. Effect of temperature gradients on wave steepening
1. Uniform temperature

The effect of the variation of temperature, and therefore of I', on
nonlinear wave propagation is first described in case a finite-
amplitude wave travels in a fluid in which the temperature is homoge-
neous. In this case, Eq. (6) reduces to

1 1
—=——+Tt 10
u u ( 0) + 0ty ( )
where I' = I' is the fundamental derivative evaluated for the thermo-
dynamic state of the medium, which is, therefore, constant. The local
rate of change of the wavefront slope (1/u;)" also simplifies to,

4 (L) o (11)
dx \uy o
Consequently, the sign and magnitude of I" dictate the nature and rate
of steepening of a nonlinear wave propagating in a constant-
temperature medium. Equation (10) also shows that any traveling
wave would necessarily undergo distortion, apart from the exceptional
case of I' =0, entailing, therefore, linear propagation.

2. Non-uniform temperature

The effect of temperature variation within the fluid was investi-
gated by means of simulations of the one-dimensional propagation of
a rarefaction wave in the dense vapor of D subjected to a linear tem-
perature gradient, with temperatures varying from 369 °C to 373 °C
over a length of 10 m and at an ambient pressure of 9 bar. These values
were chosen because they are representative of nonclassical gasdy-
namic experiments by means of a shock tube documented in the litera-
ture and planned within this research project for the near future.’
However, the validity of the results does not depend on these values or
fluid and a different fluid and similar reduced thermodynamic

0.15 — 373
0.1 /
/' 1 372
0.05 | 4
g _—
. O
N 1 R TN ol 371 <=
/: &~
-0.05 =
A 1370
-0.1 ¢ /‘ :
72 2 Ir=0
-0.15 : - : : 369
0 0.2 04 06 0.8 1
x*
(@)
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properties would lead to similar results. The variation of I" as a func-
tion of the non-dimensional tube length is shown in Fig. 1(a). For
these fluid thermodynamic conditions, I transitions from negative
values at lower temperature to positive values at higher temperature. It
can, therefore, be expected that a rarefaction wave traveling in this
medium would initially steepen for all locations within the tube in
which I' is negative and then relax further downstream.

This is indeed what is observed in Fig. 1(b), which shows the evo-
lution of 1/u; of rarefaction waves for different inverse initial slopes
1/u1(0) resulting from calculations performed with the method illus-
trated in Sec. IT C. The global trend for all rarefaction waves propagat-
ing in the fluid subjected to the temperature gradient shown in Fig.
1(a) is to initially steepen in portions of the flow domain in which the
thermodynamic state features I < 0 followed by a relaxation in the
portions featuring the I" > 0 thermodynamic state. The value of 1/u
reaches a minimum at the location where the steepening behavior of
the wavefront reverses. As the initial strength of the wave increases
(decreasing 1/u;(0)), this minimum value of 1/u; gradually
approaches zero until a shock is formed when 1/u; = 0. The corre-
sponding initial strength of the wave ;(0) is defined such that any
wave with an initial slope larger than #;(0) can steepen to form a
shock wave while a wave with u;(0) < #1;(0) cannot steepen suffi-
ciently to form a shock wave in the medium.

Figure 1(b) shows also the line connecting the points of mini-
mum of 1/u; in the flow domain, denoted as Xmin{1/u,}> for different
11 (0) and where the thermodynamic state of the fluid features I' =0,
denoted as xr—y. In a fluid affected by temperature gradients, a rare-
faction wavefront might be expected to steepen as long as the thermo-
dynamic state implies that I" < 0 and to relax if I" > 0. The transition
to the opposite steepening behavior of the wave would occur at the
location where I" is zero. However, as shown in Fig. 1(b), for all the
initial wave strengths characterized by a value of the initial wave slope
lower than i (0), Xmin{1/u,} Precedes xr—o along the x coordinate.
Thus, the wave ceases to steepen and starts relaxing even if the

0.01 : T
Tmin{1/us} |
0.008 1:
I:
_ 0.006 1:
3 B
= =
0.004 ¢ I:
I:
0.002 | k
t
0 . { . .
0 0.2 0.4 0.6 0.8 1
x*
(b)

FIG. 1. Variation of relevant quantities as a function of the non-dimensional coordinate x* related to the evolution of rarefaction waves in a one-dimensional flow domain
(x = 0— 10 m) formed by dense vapor of siloxane Dg at p = 9 bar and subjected to a linearly increasing temperature change: (a) variation of T (Red dashed line) and I"
(Blue solid line), and (b) evolution of the inverse of the slope of the leading edge of rarefaction waves propagating along x*, starting at x* = 0 and t= 0 s with different values
of uy(0). (.--): locus of the positions in the flow domain where the wave features minimum 1/us. (.....): locus of the positions in the flow domain for which the thermodynamic

state of the fluid features " =0.
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thermodynamic state of the fluid features negative I'. The value of I
at the position where Xpn(1 /4, can be found from Eq. (9) as

(12)

c[ 1 d

T (%min{1/u}) = " {%a[F(x)]] N
min{1/u;}
Note that F(x) defined in Eq. (8) has a finite value and dF /dx cannot
be zero in a flow domain featuring gradients in fluid properties.
Therefore, for I to be zero at Xpinf1/4,}> 1 /u; must be necessarily zero
at that location in a fluid subject to a temperature gradient indicating
the formation of a shock wave. This leads to the definition of the criti-
cal initial slope condition # (0).

The evolution of compression wavefronts propagating in a
medium in which I" changes from positive to negative was also stud-
ied. In this case, the temperature of the fluid decreases linearly from
373°C to 369 °C. The variation of I" and 1/u; along the flow domain
is shown in Figs. 2(a) and 2(b). Initially, the wave steepens as expected
since I' > 0, but the rate of steepening decreases as I" approaches
zero. Unlike the case of a medium subjected to a linearly increasing
temperature, Xmin{1/y,} is greater than xr— for all initial wave
strengths 11 (0) < i;(0). Therefore, compression waves continue
to steepen even if the local thermodynamic state of the fluid fea-
tures negative I" before starting to relax. Again, there exists a criti-
cal initial strength #;(0) for which 1/u, is tangential to the x axis.
This highlights the fact that the observed behavior is a general
physical characteristic of nonlinear waves in the region close to
I' = 0 regardless of its sign.

3. Analysis based on the Westervelt equation

The propagation of finite-amplitude waves in a fluid affected
by temperature variation is simulated by numerically solving the
1D Westervelt equation. Unlike the analytical solution of the one-
dimensional wave propagation problem that can be derived from
the 1D Euler equations, the Westervelt equation accounts for the

0.15 373
0.17
1372
0.05 1
()
~ 0 371 &~
&~
-0.05
1370
-0.1
-0.15 369
x*
(@)
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effect of viscosity. The effect of viscosity on wave propagation
can be assessed by comparing the numerical solution of the
Westervelt equation model to the analytical solution of the Euler
equations.

Figure 3(a) shows the wavefront of a rarefaction wave, defined as
a ramp in pressure and expressed in terms of acoustic velocity, at a
given time instant while propagating in quiescent isothermal Dg. The
particle velocity increases linearly from u=0 m/s at the wavefront
(n =0m) till it reaches a maximum value of u, at the tail of the wave,
defined as

P (13)
Po G
where Ap is the pressure difference across the wave and p, and ¢, are
the density and sound speed in the quiescent medium. Minor undula-
tions can be observed along the wavefront, which result from the
Gibb’s oscillations forming at the two edges of the wavefront.

Figure 3(b) shows a closeup of the wavefront between the
leading edge point (y=0m) and a location downstream of the
wavefront. Though 1/u; is calculated at the leading edge in
the analytical solution, this does not yield accurate values in the
simulation since it suffers from numerical dissipation at this loca-
tion. This can be observed clearly at #=0m where the leading
edge of the wavefront is smoothed due to dissipation. This has the
tendency to artificially reduce the slope of the wavefront. To over-
come this effect, the leading edge of the wavefront is reconstructed
by calculating the actual leading edge location in the absence of
numerical dissipation. This can be readily estimated owing to the
fact that the leading edge is unaffected by nonlinear effects and
propagates only at the local sound speed. Thus, the leading edge
location at any time step n is

X(n)=X(n—1)+c(n—1)-dt. (14)

The slope between the leading edge point and a location at 5
along the wavefront is calculated as

0

-0.002 ¢

-0.004 ¢

1/U1

-0.006 : Lmin{l/ui}

-0.008

-0.01

(b)

FIG. 2. Variation of relevant quantities as a function of the non-dimensional coordinate x* related to the evolution of compression waves in a one-dimensional flow domain
(x =0 — 10 m) formed by dense vapor of siloxane Dg at p = 9 bar and subjected to a linearly decreasing temperature change: (a) variation of T (Red dashed line) and I"
(Blue solid line), and (b) evolution of the inverse of the slope of the leading edge of rarefaction waves propagating along x*, starting at x* = 0 and t= 0 s with different values
of uy(0). (.--): locus of the positions in the flow domain where the wave features minimum 1/us. (.....): locus of the positions in the flow domain for which the thermodynamic

state of the fluid features " =0.
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FIG. 3. (a) Variation in acoustic velocity as a function of 7 = x — X(t) along the wavefront of a rarefaction wave propagating in dense vapor of isothermal Dg at p = 9 bar
and (b) closeup of the leading edge location showing the numerical dissipation and the method of estimation of the leading edge slope.

u = M . 15
1 |numr. n ( )

The calculation of u, in this study is performed numerically at a
location where u(n) = 0.1u,. The sensitivity of u; to the choice of
u(n) was analyzed and was found to be small. Figure 4 compares the
evolution of 1/u; calculated using the analytical solution of the 1D
Euler equations and the numerical solution of the Westervelt equation.
As expected, both models predict a monotonous steepening of the
wavefront until a shock wave is formed and the results are very similar,
except for the fluctuations affecting the solution of the Westervelt
equation arising from the Gibb’s oscillations shown in Fig. 3(a).

Figure 5(a) shows the variation in the particle velocity along the
wavefront at three different time instances for a rarefaction wave prop-
agating in the dense vapor of Dy subjected to linearly increasing tem-
perature as shown in Fig. 1(a). The profile of the wavefront during the
initial stage of propagation in the medium is shown for t = 0.005s.

0.01 T T T ' '
X — 1D Westervelt
0.008 t — — — Analytical
N\
0006 | N
= N
i
L N
0.004 N
AN
AN
0.002 | AN
N
0

0 0.1 02 03 04 05 06
x*
FIG. 4. Evolution of the inverse of the wavefront slope in isothermal Dg at p = 9

bar propagating along x*, starting at x* = 0 and {=0 s calculated using the ana-
lytical solution of the Euler equations and the solution of the Westervelt equation.

The particle velocity varies linearly from u =0 at the leading edge to
u = u, at the tail of the wave and the wavefront is largely devoid of
any numerical oscillation. Since I' < 0 in the fluid in this thermody-
namic state, the wave steepens as it propagates. This steepening can be
observed in the wavefront profile shown at t = 0.1 s. It is seen that
the tail of the wave at this time instant lies closer to # =0 m than at
t = 0.005 s. At this time instant, the wave is close to the location of
Xmin{1/u,} i Fig. 1(b). After this time, the fluid thermodynamic state
features I' > 0 and thus the wave relaxes during propagation. This is
seen at t = 0.15 s in Fig. 5(a). Once again, the tail of the wave moves
farther from 7 = 0 m, indicating that the wave is relaxing as it travels
in the medium.

Another observation that can be deduced from Fig. 5(a) is related
to the magnitude of u at the tail of the wave. Since the wave travels in
a medium in which the temperature varies, the acoustic impedance z
of the medium also varies with location. This results in a continuous
reflection of a part of the incident wave in the upstream direction.
Thus, the particle velocity at the tail end of the wave is higher than u,
as the wave progresses and increases steadily from t = 0.005 s to
t=0.15s.

Figure 5(b) shows the evolution of 1/u; calculated using both the
analytical solutions to the 1D Euler equation and the Westervelt equa-
tion. The steepening of the wavefront computed using the Westervelt
equation is seen to match closely with the analytical solution and cap-
tures the behavior accurately. Once again, numerical oscillations seen
in Fig. 5(a) affect 1/u; and the numerical slope fluctuates about the
analytical solution.

It can, therefore, be concluded that the variation of temperature
significantly affects the steepening characteristics of finite-amplitude
waves propagating in dense vapors of fluids made of complex mole-
cules. If the fluid is in a thermodynamic state close to states for which
I'=0, the effect of sound speed and density variation can alter the
steepening of the wave in a way that is opposite to that dictated by the
local value of I'. Unless the wave features a critical initial strength
111(0), then it is shown that a rarefaction wave can relax even if it
propagates through a fluid for which the thermodynamic state features
I' < 0 and vice versa for a compression wave.
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FIG. 5. (a) Particle velocity u vs 1 (= x — X(t)) along a rarefaction wave propagating in Dg subjected to linearly increasing temperature at three different time instances and
(b) comparison of evolution of 1/u4 between the analytical solution to 1D Euler equations and the solution of the Westervelt equation.

In addition, numerical simulations of wave propagation show
that viscosity has a negligible effect on wave steepening even if the
wave propagates in a fluid whose thermodynamic state features I"
close to zero.

B. Effect of temperature gradients on shock formation

Apart from the scientific interest of understanding how tempera-
ture variations influence the propagation of waves in dense vapors, the
results of this investigation are of particular relevance regarding
experiments aimed at generating and proving the formation of a rare-
faction shock with a shock tube experiment. In such an experiment,
one is interested in obtaining the shortest shock formation distance to
keep the length of the shock tube as short as possible.

As an example relevant to the experimental study of nonclassi-
cal gasdynamics, the propagation of a rarefaction wave in a tube
containing dense vapor of siloxane D¢ and subjected to a sinusoidal
fluctuation of temperature around a mean value along its length
was numerically investigated. This type of temperature perturba-
tion allows to study the effect of both the amplitude and wavelength
of the disturbance on wave evolution. The temperature perturba-
tion is, therefore,

2
T:TO+AT.sm($+¢), (16)
T

where T is the temperature of the quiescent fluid in °C, AT is the
amplitude of temperature variation in °C, At is the wavelength of
the temperature variation in meters, and ¢ € [—=, 7] is the phase of
the sinusoidal disturbance. The evolution of the wavefront is analyzed
for M values of A7 and N values of ¢, linearly distributed over their
range and indexed as 4r; (i=1,2,...,M) and ¢; (j=1,2,...,N),
and the corresponding shock formation distances xg, are calculated.
To remove the effect of the initial phase of the disturbance, mean
shock distances xg, rather than a single shock distance x,, dependent
on the initial phase are compared. The mean shock distances are,
therefore, computed as

N
> % (Aris §;)
=1

N )
and are compared with the shock distance xgh homog that is computed
for the case in which the properties of the medium are homogeneous,

with temperature equal to the mean temperature of the sinusoidal pro-
file. The non-dimensional parameters,

Xn(i) = (17)

A =Jr/Ly, x"=x/Lo,

and

* _x _
X¢h = Xsh /xsh,homog7 Xsh = Xsh /x5h>h0m°g’

facilitate the analysis of the results. In these definitions, L, (=10 m)
and Xgh homog are the fluid domain length and the shock formation dis-
tance in a homogeneous fluid, respectively.

1. Rarefaction waves

The fluid thermodynamic state chosen for this analysis is such
that I < 0 everywhere in the domain. Rarefaction waves with differ-
ent initial waveslopes u;(0) were simulated to propagate in dense
vapor of Dg at 9 bar and subjected to a sinusoidal temperature distur-
bance defined by Eq. (16) with T'=369°C, AT = 0.5°C, M=10
and N=200. In this thermodynamic state, the mean value of I is
—0.14.

Figure 6 shows the variation of the mean shock formation dis-
tance X, as a function of " for pressure waves with different values of
11(0). Figure 6(a) highlights that X7 is between 0.96 and 0.99 for A"
< 0.1 for all values of u;(0). This implies that the shock formation
distance is only weakly dependent on the initial wave slope for
A% < 0.1. It can also be observed that, though x} < 1, the spread in
the mean shock distance increases with increasing 4*. Figure 6(b) puts
into evidence that, for A* > 0.1, the mean shock formation distance
increases with increasing 1°, eventually reaching a value greater than
1. Also, the variation of x}j, with A" exhibits a stronger dependency on

Phys. Fluids 33, 107109 (2021); doi: 10.1063/5.0063226
© Author(s) 2021

33, 107109-7


https://scitation.org/journal/phf

Physics of Fluids ARTICLE

! vy (0) = 100 571
..... moouy(0) = 12587
0.99 |+ @ u(0) = 150 57! i
o uy(0)=2005" . u Bt

K7 098 o 1
0.97 ]
0.96 - : : : : T

0.01 0.025 0.04 0055 007 0085 0.1
)\*
(a)

scitation.org/journal/phf

oAy (0) = 100571
LOO T s i (0) = 125 57 e
104 @ uy(0) = 150 571 e ¢ et
P e (0) = 2005 e e
PO A A
102 B . - ‘A il

0.1 02 03 04 05 06 0.7 08 09 1
)\*
(b)

FIG. 6. Variation of X, as a function of 1* for rarefaction waves with different values of initial slope u1(0) evolving in dense vapors of D at p = 9 bar and subjected to a sinu-

soidally varying temperature: (a) 2* < 0.1 and (b) A" between 0.1 and 1.

u1(0): as the initial slope of the wave increases, the minimum wave-
length at which x, starts increasing toward 1 decreases.

Figure 7 compares the evolution of 1/u; in a fluid affected by a
sinusoidal temperature variation with A* = 0.05 and ¢ = /2 with
the evolution of 1/u; for a wave that propagates in a homogeneous
medium. The choice of the values of 1" and ¢ was made to highlight
the effect of the temperature gradient on wave evolution and has no
impact on the previous observations. Similarly to what is displayed in
Figs. 1(b) and 2(b), the rarefaction wave steepens if the fluid is in a
thermodynamic state featuring negative I" and relaxes if I' > 0. The
undulations in the slope of the evolving wavefront in Fig. 7(a) are
caused by the periodic oscillation of the local temperature, and there-
fore of I'. It can be seen in Fig. 7(b), which is a close-up of Fig. 7(a)
and shows the early evolution of the wave, that the steepening phase of

3 x107° . . . . .
N < — ——AT=0°C
N AT =0.5°C
6 N
N
N
24 N
— N
N
\\
2 N
AN
N
N
0 L L L L L AN
0 0.05 0.1 0.15 0.2 0.25 0.3
x*
()

the wave is more prominent than the relaxing phase. This observation
can be explained by means of Eq. (9), rewritten here for better

clarity, as
d /1 r «x
— (=) ===—= 18
dx(ul) c u’ (18)

1 d
= |+ |F
“= |t P
which shows that (1/u;)" depends on both the local values of I and ¢
as well as on the gradient of sound speed and density.

Figure 8 displays the variation of the two terms constituting Eq.
(18) for two different values of A*. The first term, I'/c, is directly

where

3 x 107 . . . . .
~ — — —=AT=0°C
> - AT =05 °C
757 -
~
~
S RN
=7 N
Relaxing ~ -
6.5t N 2~
. ~
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FIG. 7. Variation of relevant quantities as a function of the non-dimensional coordinate x* related to the evolution of rarefaction waves in a one-dimensional flow domain
(x = 0 — 10 m) formed by dense vapor of siloxane Dg at p = 9 bar and subjected to a sinusoidal temperature change [see Eq. (16)] with " = 0.05 and ¢ = =/2: (a) evolu-
tion of 1/uy of the rarefaction wave propagating along x*, starting at x* = 0 and t=0s, till x* = x;, and (b) closeup of evolution of 1/uy from x* = 0-0.06 for better clarity.
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FIG. 8. Variation of relevant quantities constituting Eq. (18) as a function of the non-dimensional coordinate x* in dense vapor of siloxane D at p = 9 bar and subjected to a
sinusoidal temperature change with AT = 0.5 °C and for 2* = 0.05 and 0.5: (a) variation of I /c and (b) variation of x.

determined by the local temperature in the medium and, therefore,
shows a similar sinusoidal oscillation. Since the fluid is in a state in
which I < 0, this term is negative everywhere in the fluid. The second
term, kc/uy, is also determined by the initial conditions of the medium.
However, k can either be positive or negative depending on whether
the location is on the increasing or the decreasing branch of the sinu-
soidal temperature gradient. If x < 0, the cumulative effect of the neg-
ative contributions of both terms enhances the nonclassical steepening
of the rarefaction wave. However, if k is positive, the contributions
have opposite sign and the relaxing of the wave is mitigated. This
explains why a shorter shock formation distance is calculated in a
wave propagating through a medium with temperature gradients
when compared to a medium with homogeneous temperature
distribution.

In Eq. (18), k is modulated by the local inverse slope of the wave-
front 1/uy; therefore, the magnitude of x/u; reduces as the wave
steepens (1/u; — 0) to form a shock. Since the magnitude of I'/c is
smaller than «/u; (see Fig. 8), the undulations are dampened as the
wave steepens during propagation, as seen in Fig. 7. Figure 8 also high-
lights the effect of the change in the wavelength of the temperature dis-
tribution on I'/c and x/u;. As the wavelength increases, the
magnitude of I' /¢ remains constant but the value of x decreases signif-
icantly owing to the smaller gradients in sound speed and density in a
fluid whose temperature varies less sharply. Thus, at higher 1, the
enhancement of nonlinear steepening caused by x decreases. This also
explains the inverse dependence among X} and u;(0) for A" > 0.1:
the contribution of x/u;, which is already lower at higher 1, is further
reduced due to smaller 1/u; (higher u;(0)) leading to the behavior
observed in Fig. 6(b).

Figure 9 shows the variation of the shock formation distance x,
as a function of ¢ for 2* equal to 0.05 and to 0.5 for two initial wave
slopes of 100 and 200s~'. The enhancement of the nonlinear steepen-
ing of the wave by the gradients in sound speed and density can be
observed in the lines showing the variation of x} with ¢ for 1* = 0.05.
For both cases of u;(0), the variation of x}, with A" is similar and

superimpose each other highlighting the independence of xj from
u1(0) as observed in Fig. 6(a). Also, x3, is close to 1 or lower than 1 for
both u;(0), indicating that the gradients in sound speed and density
ensure that the wave in this medium almost always shocks earlier than
in a homogeneous medium. For 1* = 0.5, the variation in x} with ¢ is
more significant due to the smaller gradients in sound speed and den-
sity associated with this temperature variation. For both the initial
wave slope cases, x; is greater than 1 for certain ¢. This effect is stron-
ger for u;(0) =200 s~' where, in addition to the smaller value of &,
the contribution of the r/u; term in Eq. (18) is also smaller owing to
the lower value of 1/u;(0). Thus, the shock formation distance is
more susceptible to the phase of the sinusoidal temperature distribu-
tion as the wavelength of this variation increases.

1.8 - - ;
[ ] Uy (0) =100s! ] ul(O) =200s"!

1.6 f—e— X\ =0.05 —a— A" =0.05

— @& -\ =05 — ® — )\ =05
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FIG. 9. Variation of shock formation distance x;, as a function of the phase of the
sinusoidal temperature gradient ¢ for rarefaction waves with different u (0) evolv-
ing in dense vapor of Dg at p = 9 bar and subjected to a temperature distribution
given by Eq. (16) for different 1*.
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FIG. 10. Variation of X, as a function of A* for compression waves with different values of initial slope u1(0) evolving in dense vapors of Dg at p = 9 bar and subjected to a

sinusoidally varying temperature: (a) A* < 0.1 and (b) A* between 0.1 and 1.

The results presented here indicate that, contrary to the intuition
that a temperature gradient in an experimental setup aimed at generat-
ing a rarefaction shock wave would be detrimental with respect to
nonlinear steepening, a temperature variation can help enhance the
steepening of a propagating finite-amplitude wave and can in fact
cause the wave to steepen into a shock at a shorter distance from the
wave origin if compared to the wave propagation in a homogeneous
medium. This outcome has a significant impact on rarefaction shock
wave experiments using shock tubes, because inevitable fluctuations of
the temperature along the tube can be controlled to cause a shorter
shock formation distance. The results also show that the shock forma-
tion distance is the lowest when the wave initially encounters a I' < 0
region during propagation in an inhomogeneous fluid. Thus, even in
experiments without inherent temperature gradients, or in situations
where maintaining one across the setup is not feasible, the shock for-
mation distance can be reduced by simply altering the conditions in
the region close to the wave origin to obtain a value of I' that is lower
than elsewhere.

2. Compression waves

The fluid thermodynamic state chosen for this analysis is such
that I' > 0 everywhere in the fluid domain. Compression waves with
different initial waveslopes u; (0) were simulated to propagate in dense
vapor of Dg at 9 bar and subjected to a sinusoidal temperature distur-
bance defined by Eq. (16) with T = 373°C, AT = 0.5°C, M =10,
and N=200. In this thermodynamic state, the mean value of I" is
0.11.

Figure 10 shows the variation in mean shock formation distance
x7, for different A*. It is seen that for all 1*, the mean shock distance is
greater than the homogeneous shock formation distance g homog- The
variation of x}j, with ¥, however, is similar to what can be observed in
Fig. 6, wherein X7, remains fairly constant for 2 < 0.1 and then
increases depending on u; (0) for A" > 0.1. It can also be noticed that
the variations in x}, in this case are not more than 1.5% in the consid-
ered range of 1", which is significantly lower than the observed varia-
tions in X, seen in Fig. 6.

Figure 11 shows the comparison of the evolution of the compres-
sion wavefront in a fluid affected by sinusoidal temperature variation
with 2" = 0.05 and ¢ = 7t/2 with the evolution of 1/u; for a wave that
propagates in a homogeneous medium. Unlike what can be seen in
Fig. 7, the rate of steepening of the wavefront is nearly constant with
only minor undulations. For this combination of ¢ and 2*, the shock
formation distance in the fluid affected temperature gradients is only
marginally smaller than that in the fluid subjected to uniform temper-
ature. Similar to what is observed in Fig. 7(a), the undulations in the
evolution of 1/u; are dampened in this case also as the wave
approaches shock formation.

The reason for the dampened response of 1/u; to the variation
in I" and x can be attributed to the lower sensitivity of I', p & ¢ to tem-
perature variations in this thermodynamic region. Figure 12 depicts
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FIG. 11. Evolution of 1/u; of a compression wave propagating along x*, starting at
x* =0and t=0s, till x* = x§, in a one-dimensional flow domain (x = 0 — 10 m)
formed by dense vapor of siloxane Dg at p = 9 bar and subjected to a sinusoidal
temperature change [see Eq. (16)] with A* = 0.05 and ¢ = n/2.
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aT
and I' > 0 thermodynamic regions are highlighted.

the variation in (OI'/OT)p and (OF/OT), with the reduced tempera-
ture T, along the isotherm at P, =0.94 in the range of temperatures
related to the cases presented in Secs. I[IIB 1 and IIIB2, in the ' < 0
and I > 0 domains. It is seen that the gradients in I" are approxi-
mately twice as large in I' < 0 region [Fig. 12(a)], while the gradients
in F are three times larger in the same regime [see Fig. 12(b)] when
compared to those in the I" > 0 region. Thus, the impacts of the varia-
tions in medium properties on (1/u;)" and (1/u;) are much smaller
in the I" > 0 region when compared with those in the I" < 0 region.
This results in a smaller perturbation of the propagating wave, result-
ing in similar or longer shock formation distances than those calcu-
lated for the case of homogeneous medium.

IV. CONCLUSIONS

This article presents the results of an analytical and numerical
investigation on the effect of axial temperature gradients on the propa-
gation of finite amplitude waves in the dense vapor of BZT fluids,
therefore, in the case of nonclassical gasdynamics. The evolution and
the steepening of the wavefront were studied analytically by means of
a closed-form solution of the one-dimensional governing equation. A
model based on the Westervelt equation was developed in order to
simulate wave propagation and visualize simulation results. The analy-
sis was performed by assuming that the dense vapor is that of siloxane
Dy, initially isobaric conditions. Different temperature variations along
the physical domain were considered.

The model allowed us to demonstrate analytically that, if the
wave propagates nonclassically, there exists a minimum initial value of
the slope of a finite-amplitude wave, which allows the wave to steepen
into a shock, if the fluid is subjected to a variation of temperature along
the flow domain. While I" determines the nature of the steepening of
propagating disturbances for the most part, there exists a small region
close to I' = 0 in which the gradients in sound speed and density over-
come the effect of nonlinearity on the distortion of the wave. If the
state of the fluid lies in this thermodynamic region, a rarefaction
wave can relax even if I' < 0, and a compression wave can steepen
evenifI' > 0.

The effect of gradients in sound speed and density are also shown
to significantly influence the location of the shock formation. The
results show that rarefaction waves evolving in a fluid for which I" < 0
and subjected to temperature gradients tend to shock at a shorter dis-
tance from the wave origin if compared to the case in which the fluid
is at uniform temperature. Furthermore, this effect of enhanced non-
linear steepening is shown to decrease with increasing initial wave
slopes. Compression waves evolving in a fluid for which I > 0 are
seen to be less influenced by the gradients of the medium properties
owing to the lower sensitivity of these properties to temperature varia-
tions in this thermodynamic region.
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