
 
 

Delft University of Technology

Fast and Reliable Detection of Significant Solitons in Signals with Large Time-Bandwidth
Products

Koster, Pascal de; Wahls, Sander

DOI
10.1109/JLT.2023.3285434
Publication date
2023
Document Version
Final published version
Published in
Journal of Lightwave Technology

Citation (APA)
Koster, P. D., & Wahls, S. (2023). Fast and Reliable Detection of Significant Solitons in Signals with Large
Time-Bandwidth Products. Journal of Lightwave Technology, 41(20), 6586-6598.
https://doi.org/10.1109/JLT.2023.3285434

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/JLT.2023.3285434
https://doi.org/10.1109/JLT.2023.3285434


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



6586 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 20, OCTOBER 15, 2023

Fast and Reliable Detection of Significant Solitons in
Signals With Large Time-Bandwidth Products

Pascal de Koster and Sander Wahls , Senior Member, IEEE

Abstract—We present a fast method to calculate the significantly
large solitonic components of signals with large time-bandwidth
products governed by the nonlinear Schrödinger equation, for
which the computation typically becomes prohibitively expensive
and/or numerically unstable. We partition the full signal in both
frequency and time to obtain short signals with a constant number
of samples, independent of the size of the full signal. The soli-
tons within each short signal are computed using a conventional
nonlinear Fourier transform (NFT) algorithm. The partitioning
in general leads to spurious solitons not present in the full signal.
We therefore design an acceptance scheme that removes spurious
solitons. The remaining solitons are attributed to the full signal.
Solitons that are too wide to fit into the short signals cannot be
detected by this approach, but since wide solitons must be of low
amplitude, the significant solitons will be found. This approach
only requires O(N) floating point operations, with N the number
of signal samples. It can furthermore be applied to signals with
large time-bandwidth products for which conventional NFT algo-
rithms become unreliable or even fail. When applying our proposed
method to a signal of 15,000 samples, the significant solitonic
components were computed 14 times faster than when considering
the whole signal, for which the conventional algorithm furthermore
provided wrong results. We found that time-partitioning yields
accurate results, while frequency-partitioning causes a small loss
in accuracy. Combined frequency-time partitioning leads to the
fastest computation, but also suffers from the same loss in accu-
racy as with frequency-partitioning. As time-partitioning yields a
significant speed-up at nearly no loss in accuracy, we regard this as
the method of choice in most practical scenarios.

Index Terms—Nonlinear Schrödinger equation, solitons, non-
linear Fourier transform, forward scattering transform.

I. INTRODUCTION

THE nonlinear Schrödinger equation (NLSE) describes
wave propagation in optical fibers [1]. The lossless NLSE

is known for the existence of so-called solitons, which are local-
ized particle-like waves [2], [3]. Even though individual solitons
have a distinctive hyperbolic secant shape for the NLSE, they
often cannot be determined by visual inspection of a wave packet
because nonlinear interactions with other signal components
temporarily change their form. In such cases, the nonlinear
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Fourier transform (NFT) is nevertheless able to detect them [4],
[5]. Due to their stability, solitons have found many applications
in fiber optics, such as fiber-optical communication [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], fiber parameter
estimation [17], [18], the analysis of laser radiation [19], [20],
[21], [22], optical resonators [23], [24] and optical combs [25]. It
is well known that the number of hidden solitons in a rectangular
pulse grows with both its amplitude and duration, see e.g., [6].
This suggests that especially long and/or high power signals are
typically rich in solitons. Accordingly, conventional orthogonal
frequency division multiplexing (OFDM) and Nyquist-shaped
communication signals with long durations and/or powers have
surprisingly been observed to contain large numbers of hidden
solitons [17], [26].

The numerical computation of the NFT is however a nontrivial
problem due its nonlinear nature. Even though many different
algorithms to compute the discrete part of the NFT that cor-
responds to solitons have been proposed in the literature (e.g.,
search methods [27], [28], [29], [30], [31], matrix methods [28],
[30], [32], subdivision methods [29], [33], machine learning
methods [34], phase tracking [35] and all-pass filter synthe-
sis [36]), a wave packet with 32 solitons is still considered a
challenging example [35]. For more complicated signals, the
numerical algorithms often become computationally expensive
and/or unreliable when using standard double precision floating
point arithmetic. The efficient detection of the potentially hidden
solitons in signals with large time-bandwidth products would
be directly relevant for example in fiber parameter identifica-
tion [17], [18], soliton-based communication systems [7], [14],
[15], [16], [37], [38], [39], analysis of optical soliton gases [40],
[41], optical rogue wave analysis [42], as well as in areas outside
fiber optics (e.g., ocean waves [43], [44], [45]).

Since solitons are localized in both the physical and the
frequency domain, it should however be possible to accurately
calculate the significantly large solitons using only a limited
part of the full signal. This would result in a faster and more re-
liable calculation. Several previous studies have indeed already
observed that solitons are not influenced by other signal compo-
nents that are sufficiently separated in the time or frequency
domain [44], [46], [47]. If we thus take a sufficiently large
frequency-time window, the significant solitons in the center
of the window are expected not to be influenced by the solitons
outside the window.

In this article, we propose a novel method based on these
findings to quickly calculate the significant solitons within a
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signal. Our idea is to partition the full signal into shorter signals,
and/or band-pass filtered signals. The center frequencies of the
band-pass filtered signals are temporarily shifted to zero such
that they can be captured with less samples. The signals with
less samples are then evaluated separately. We define rectangular
frequency-time windows of fixed bandwidth ΔΩwindow and du-
ration ΔTwindow, and cover the full rectangular frequency-time
domain of the original signal with such windows. The windows
are allowed to overlap. The signal content in each window
can then be captured with only M ≤ N samples, where N is
the number of samples of the full signal (proportional to the
time-bandwidth product of the full signal), and M the number
of samples of the windowed signal (proportional to the smaller
time-bandwidth product of the frequency-time windows). The
computation time for a single windowed signal will thus only
depend on M and the chosen NFT method, but does not scale
with the full signal length N . As we require O(N

M ) windows
to cover the entire frequency-time domain, the computation of
the significant eigenvalues in the discrete spectrum can thus be
performed with only O(N) floating point operations (FLOPs).
The proposed method does not suffer from numerical reliability
issues that normally arise for signals with large time-bandwidth
products due to the nonlinear nature of the NFT. Spurious
solitons, which can occur as a result of the partitioning, are
avoided by rejecting solitons whose support is not sufficiently
contained within the window. The impact of the partitioning
on the estimated soliton parameters is controlled by taking
sufficiently large sub-domains of the signal. This allows us to
quickly and reliably find the significant solitons of the full signal.
Here, solitons are considered significant if their amplitudes are
above a threshold that only depends on the chosen window
sizes.

Our main contributions are as follows. We formalize the above
ideas of partitioning the signal and calculating the eigenvalues
associated to the significant solitons from small frequency-
time windows. We derive a heuristic for the minimal required
window size to be able to capture all significant solitons. By
letting the windows overlap, we can ensure that all significant
eigenvalues are captured, although some eigenvalues may be
doubly captured. We then introduce an acceptance scheme, to
keep only the most reliable version of eigenvalues that were
captured in multiple windows due to their overlap, and to
reject unreliable or spurious eigenvalues. Finally, we demon-
strate the accuracy and speed of this frequency- and time-
windowing method on several signals with large time-bandwidth
products.

This article is organized as follows. Section II will reca-
pitulate the nonlinear Fourier transform to define the eigen-
values associated with the solitonic components. Section III
will define the window size based on the required support to
capture the expected soliton content and describes an algo-
rithm to reject spurious or inaccurate eigenvalues. Section IV
summarizes the final algorithm. Section V tests the described
frequency- and time-windowing algorithm on signals with large
time-bandwidth products. Finally, Section VI concludes the
article.

II. SOLITONS, THE NONLINEAR FOURIER TRANSFORM, AND

SOLITON LOCATION

We consider the focusing nonlinear Schrödinger equation
(NLSE) for signals with vanishing tails [1],

qz = iqtt + 2i|q|2q, q
t→±∞−−−−→ 0 sufficiently fast, (1)

with q(t, z) the complex signal amplitude and i the imaginary
unit. Subscripts denote partial derivatives. We consider the nor-
malized and unitless NLSE, but for the sake of clarity we will
refer to t as time and z as position, which is often the case in
fiber optics [1]. The normalization procedure itself depends on
the application, but can be found in the corresponding literature.
For fiber optics, see e.g. [6, Eq. 3] or [17, Eq. 5].

The focusing NLSE has soliton solutions, which are particle-
like waves that retain their shape even after interacting with
other solitons or dispersive waves. The defocusing NLSE, which
differs from (1) by a sign in front of the nonlinear term, in
contrast has no soliton solutions. A pure 1-soliton solution
of the NLSE may be associated with a complex eigenvalue
λk = ξk + iηk (ξk ∈ R, ηk > 0), where k is an index that is
used later for signals containing multiple solitons. We refer to
λk as an eigenvalue because it arises as such from a spectral
problem, as explained in the next section. The 1-soliton solution
is given by [5]

qk(t, z; λk, t
0
k, ψ

0
k) =

envelope︷ ︸︸ ︷
2ηk sech

⎛
⎝2ηk(t− t0k − (−4ξk︸ ︷︷ ︸

ck

)z)

⎞
⎠

× exp
(−2iξk(t− t0k)− ψ0

k − 4i(ξ2k − η2k)z
)︸ ︷︷ ︸

carrier

,

(2)

in which t0k and ψ0
k are, respectively, the time and phase offset

of the soliton at z = 0. The envelope wave speed is ck = −4ξk.
For the rest of this article we will assume z = 0, as we are not
interested in the propagation of solitons. We note some important
properties of the 1-soliton.
� The envelope shape is only determined by the eigenvalue

height ηk = �(λk): the soliton amplitude scales linearly
with ηk, but the soliton also becomes narrower, as illus-
trated in Fig. 1.

� The carrier is only determined by the real part ξk = �(λk).
The linear center frequency of this soliton is given byωk =
−2ξk. Shifting the real part of the eigenvalue by Δξ thus
causes a linear frequency shift of Δω = −Δξ/2 and vice
versa.

� The energy of the 1-soliton is given by

Ek =

∫ ∞

−∞
|qk(t, z; λk)|2 dt = 4ηk, (3)

so the highest eigenvalues (i.e., with the largest imaginary
part ηk) contain the most energy.
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Fig. 1. Envelope of three solitons with different η in the time- and frequency-
domain, and the 99%-energy support of the unit soliton with η = 1 (vertical
lines).

If we consider an arbitrary signal with K solitonic compo-
nents with different speeds (i.e., ξk �= ξj if k �= j), the soli-
tons will eventually separate, and evolve into a train of K
1-solitons [48], [49]:

q(t, z) ≈
K∑

k=1

qk(t, z; λk, t
±
k , ψ

±
k ), as z → ±∞. (4)

When considering an arbitrary signal, this separation will prob-
ably not have happened for practically relevant values of z.
Instead, the solitons may be packed close together, and interact
with one another as well as with the dispersive part of the
signal. In this case, the solitons typically cannot be distinguished
visually. To identify which solitons are present, the nonlinear
Fourier transform is often employed.

A. The Nonlinear Fourier Transform

The soliton content of a signal q(t) governed by the NLSE
can be determined by the NFT. The NFT is defined through the
Zakharov-Shabat scattering problem [4],

∂

∂t

[
φ(1)(t, λ)

φ(2)(t, λ)

]
=

[
−iλ q(t)

−q∗(t) iλ

][
φ(1)(t, λ)

φ(2)(t, λ)

]
, (5a)

s.t.

[
e−iλt

0

]
t→−∞←−

[
φ(1)(t, λ)

φ(2)(t, λ)

]
t→+∞−→

[
a(λ)e−iλt

b(λ)e+iλt

]
, (5b)

in which φ(t, λ) is the vector eigenfunction corresponding to
the complex spectral parameter λ = ξ + iη, and a(λ) and b(λ)
are the scattering coefficients that characterize the behavior at
the right boundary conditions in (5b). The naming convention
of ‘eigenfunction’, ‘spectral parameter’ and ‘eigenvalue’ are be-
cause the Zakharov-Shabat scattering problem may be rewritten
as Lφ = λφ, with L a linear operator. Each λk related to a
solitonic component in (4) turns out to be an eigenvalue of L,
with eigenfunction φk.

The full NFT of q(t) consists of a continuous spectrum and
a discrete spectrum. We define the continuous spectrum over
the real axis, Λc := {b(ξ) : ξ ∈ R}. This spectrum corresponds
to the dispersive wave content of the signal. The continuous
spectrum is mentioned here for completeness, but we are not
further interested in it throughout this article.

We define the discrete (solitonic) spectrum using the zeros
of a(λ) in the upper half plane, Λd := {(λk, b(λk)) : a(λk) =
0, �(λk) > 0}, where bk = b(λk) denotes the solution of (5) at
λk. Methods for the computation of a(λ) and b(λ) can e.g. be
found in [27], [28], [30], [50]. Such methods can be utilized to
find the λk in various ways, as was pointed out in the introduc-
tion. The computation of bk is known to yield numerical issues
without special precautions, but we overcome this by computing
bk with the NLSE-version of the adapted bidirectional algorithm
from [51]. The eigenvalues λk = ξk + iηk correspond to those
in the previously mentioned 1-soliton solutions. The eigenvalue
λk defines the shape and speed of the soliton, while the b-
coefficient bk = b(λk) provides information about the soliton
location and phase [5]. As a signal propagates according to the
normalized NLSE in (1), all eigenvalues remain constant, and
the b-coefficients evolve in a simple manner:

b(λ; z) = b(λ; 0)e4iλ
2z ⇒ |bk(z)| = |bk(0)|e−8ξηz. (6)

B. Soliton Location

At the start of this section, we noted that every 1-soliton is
localized at t0k (at z = 0), where the peak of its envelope is
located. For the further analysis in this article, we assume that
hidden solitons in a general signal are also localized around
some soliton location tk, similar to a 1-soliton. If we take a
sufficiently large section of the full signal around that soliton
location, it should be possible to detect the associated soliton
accurately by computing the NFT of that section. The soliton
location can usually only be observed visually in the far field,
where all solitons have separated and the dispersive part becomes
negligible. Therefore, we define a novel soliton location tk for
the near field when the solitons have not separated yet, suitable
for the purpose in this article. The idea for tk is to find an initial
soliton location from bk, assuming that the soliton is isolated.
Then we refine that initial soliton location by taking all soliton
interactions into account.

First, we assign each soliton a ‘1-soliton location’ t̂k, which
corresponds with the location of the soliton derived from bk if
the signal had been a 1-soliton with eigenvalue λk as given in
(2) [48], [49, Eq. 1.7],

t̂k =
ln |bk|
2ηk

. (7)

Next, we refine the 1-soliton locations by taking all the
pairwise soliton interactions into account. Let two solitons be
represented by (λ1, b1) and (λ2, b2). Fig. 2(a) compares the
corresponding individual 1-solitons, and the 2-soliton with this
discrete spectrum (i.e., a signal with exactly two eigenvalues, and
zero continuous spectrum). Clearly, the locations of the peaks
have shifted away from each other in the 2-soliton, despite the
fact that the same b-coefficients were used. The result of the
soliton interaction is that the solitons are pushed apart: the left
one further to the left, and the right one further to the right.

To approximate the size of this shift, we consider the total
shift between the soliton peaks as one overtakes the other, as is
illustrated in Fig. 2(b) and (c). When the interaction is fully
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Fig. 2. Illustration of the soliton location, by comparing a 2-soliton with two 1-solitons with the same spectrum. Spectral data of the two solitons are (λ1 =
−0.1 + 1i, b1 = exp(2i)) and (λ2 = 0.2 + 1.5i, b2 = exp(0)) at z = 0. Left: the 2-soliton at z = −3 compared to the two 1-solitons with the same spectral
data (λk, bk). The corresponding 1-soliton locations t̂k and soliton locations tk are indicated, as well as the shift due to the soliton interaction. Middle: the
propagation of the 2-soliton. Soliton 1 overtakes solitons 2 at z = 0. Right: the 1-soliton locations and final soliton locations, overlaid on the propagating 2-soliton.
Note the jump in t1 and t2 as result of the overtaking at z = 0.

completed, the total time shift for soliton k as result of the
interaction with soliton j is given by [49, Eq. 1.18]:

Δtk,j =
1

ηk

∣∣∣∣∣ln
∣∣∣∣∣λk − λj

λk − λ∗j

∣∣∣∣∣
∣∣∣∣∣ . (8)

For the soliton location, we assume that the interaction is in-
stantaneous, and add (resp. subtract) half the total time shift
to (from) the 1-soliton location if the soliton k is right (left)
of soliton j. We add half the time shift, as the interaction is
symmetric, and when the right- and left-most solitons switch
place (as if one overtook the other), the result would indeed
be the full time shift. Fig. 2(c) shows the result of the soliton
location for a 2-soliton before, during and after the interaction.
Indeed the soliton locations corresponds very well to the peak
locations, even close to the interaction.

For a multi-soliton signal, it is well known that the total time
shift is simply the summation of all pair-wise time shifts [48]. We
thus define the refined soliton location as the 1-soliton location,
compensated for every soliton-pair interaction:

tk = t̂k +
K∑

j=1,j �=k

sign
(
t̂k − t̂j

) 1

2ηk

∣∣∣ln ∣∣∣ λk−λj

λk−λ∗j

∣∣∣∣∣∣ . (9)

Note that we disregard the interaction with the continuous spec-
trum. This choice is deliberate, as it is hard to determine which
dispersive components are ‘left’ or ‘right’ of the soliton, while it
is only significant when much of the energy is in the continuous
spectrum. We obtained good results without it, although we
only considered signals with most of the energy in the discrete
spectrum.

It has been observed empirically that various pulse shaping
methods commonly employed for fiber-optical communications
can be dominated by solitons at practically relevant transmit
powers [17], [26]. For a specific class of NFT-based fiber-optic
transmitters, it has even been proven that without using solitons,
the signal power must approach zero as the signal duration

increases [52]. Ignoring the continuous spectrum in the soliton
location is therefore often a reasonable approximation.

III. PARTITIONING THE FREQUENCY-TIME DOMAIN INTO

WINDOWS, AND ACCEPTING EIGENVALUES

In this section, we define heuristics to choose the frequency-
time window size to capture the significant solitons accurately.
We will find, consistently with (2), that the significant (i.e.,
higher amplitude and ηk, respectively) solitons occupy a broad
bandwidth but short duration, while solitons with lower eigen-
values occupy longer durations, but shorter bandwidths. To en-
sure that the windows can capture all of the significant solitons,
we first estimate the mean eigenvalue height using the mean
energy density, and adjust the window size accordingly. Next, we
allow the windows to overlap to ensure that all higher solitons are
captured. Finally, we filter out unreliable and/or doubly-detected
solitons with an eigenvalue acceptance scheme.

A. Estimation of the Mean Eigenvalue Height

We wish to choose a window size such that all significant
solitons can be captured. To do so, we start by estimating a
‘mean’ eigenvalue height ηmean of the solitons in the signal, as
the eigenvalue height will be the decisive factor for the required
bandwidth and duration of the windows. To estimate the mean
eigenvalue height, we define a mean energy density ρmean over
the considered frequency-time domain, and then estimate the
mean eigenvalue height of the signal by comparing the mean
energy density of the signal to the mean energy density of a
1-soliton.

First, we define the mean energy density ρmean of a 1-soliton
as the total energy, divided by the time-bandwidth product that
captures most of the energy. Let the 99%-energy (p = 0.99)
bandwidth (resp. duration) be defined as the smallest bandwidth
(resp. duration) required to capture a fraction p of the total signal
energy. For a 1-soliton qk with ξk = 0 and tk = 0 as shown in

Authorized licensed use limited to: TU Delft Library. Downloaded on October 30,2023 at 07:43:40 UTC from IEEE Xplore.  Restrictions apply. 



6590 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 41, NO. 20, OCTOBER 15, 2023

Fig. 1, the support bandwidth and duration are

∫ ΔTk

2

−ΔTk

2

|qk(t)|2 dt = pEk︸︷︷︸
0.99(4ηk)

⇒ ΔTk =
2.64

ηk
, (10a)

1

2π

∫ ΔΩk

2

−ΔΩk

2

|Qk(ω)|2 dω = pEk ⇒ ΔΩk = 6.75ηk, (10b)

where Qk(ω) =
∫∞
−∞ qk(t)e

−iωt dt, i.e., the Fourier transform
of qk(t). The time-bandwidth product ΔΩkΔTk = 17.82 rad of
a 1-soliton does not depend on ηk because they are related to
each other through time- and amplitude scalings, which leave
the time-bandwidth product invariant. We then define the mean
energy density of a 1-soliton with eigenvalue height ηk as its total
energy (Ek = 4ηk), divided by its time-bandwidth product:

ρmean
k =

Ek

ΔTkΔΩk
=

4ηk
17.82

= 0.224ηk. (11)

Next, we calculate the mean energy density of the signal too
as the total energy divided by its 99%-energy bandwidthΔΩ and
99%-energy duration ΔT . Finally we estimate that the ‘mean’
soliton has the same mean energy density as the signal ρmean

q ,

ρmean
q = 0.224ηmean ⇒ ηmean =

ρmean
q

0.224
=

Eq

0.244ΔΩΔT
,

(12)
with ηmean the ‘mean’ eigenvalue height. Note that the mean
eigenvalue height only roughly indicates a center for the final
eigenvalue cloud. It does not correspond with the actual mean
height, as low eigenvalues usually appear more frequently than
high ones.

B. Choosing the Window Frequency-Time Size

After establishing the estimated mean eigenvalue height, we
will choose the frequency-time window sufficiently large to
capture all eigenvalues which have ηk around the estimated
eigenvalue height. We will first define a significant frequency-
time support of a soliton with eigenvalue λ, and then design the
frequency-time window large enough such that it can contain
the significant support of all significant solitons of interest. We
finally create the window size based on the expected mean eigen-
value height defined in (12), and the height range of eigenvalues
that we want to capture.

We assume that a soliton with the mean eigenvalue height
ηmean occupies a rectangular frequency-time support of ΔΩ×
ΔT , with ΔΩ = 6.74ηmean and ΔT = 2.64/ηmean, centered
around its soliton location tk and center frequency (ωk = −2ξk).
To capture higher eigenvalues we require a larger bandwidth
ΔΩ, and for lower eigenvalues a longer durationΔT . To capture
a wide range of solitons, we chose the window bandwidth as
cΩ = 16 times the mean-eigenvalue bandwidth, and the window
duration as cT = 4 times the mean-eigenvalue duration:

ΔΩwindow×ΔTwindow = cΩ︸︷︷︸
=16

(6.74 ηmean)× cT︸︷︷︸
=4

(2.64/ηmean) .

(13)

We made the bandwidth 16 times larger to ensure that all high
eigenvalues are captured. We made the duration only four times
larger because this mainly allowed us to capture more low
eigenvalues, in which we are less interested. This window size
gave us accurate results for signals with approximate uniform
energy distribution of the occupied frequency-time domain, but
of course the window size may be tailored to specific appli-
cations. When only time-windowing is desired, simply set the
frequency-window size equal to the full occupied bandwidth
ΔΩwindow =∞, and vice versa for only frequency-windowing.

C. Dividing the Domain and Window Overlap

After deciding on the window size, we will cover the entire
occupied frequency-time domain with windows of this size. The
most straightforward method would be to use as few windows
as possible while still covering the entire domain. However, we
could then miss several high eigenvalues with soliton location
tk or center frequency ωk close to the window edges. Part of
the soliton support would then fall outside the window, and the
detected eigenvalue could be significantly distorted as a result.

To ensure that all higher eigenvalues are captured well by
at least one window, we let all neighboring windows overlap
for a fraction of at least 0 ≤ R < 1 for both frequency- and
time-windowing. After creating the equispaced windows with
this minimum overlap fraction, the actual time overlap fraction
RT ≥ R and frequency overlap fraction RΩ ≥ R are often
slightly larger because the number of windows is an integer
number. In the worst-case scenario for time-windowing (resp.
frequency-windowing), a soliton has its tk (resp. ωk) exactly in
the middle of the overlapping region, such that the largest soliton
support fully contained in either window is RTΔT

window (resp.
RΩΔΩwindow) units. Following (10) and (13), the lowest ηk thus
captured within this time support and the highest ηk captured
within this frequency support are

ηk ∈ [ηmin, ηmax] = [ 1
RcT

ηmean, RcΩη
mean]. (14)

Note that when using only time-windowing (resp. frequency-
windowing), only the lower (resp. upper) limit is relevant. Lower
values of R will narrow down the range of solitons in (14)
we can capture reliably. Choosing higher values of R causes
windows to overlap more, requiring more windows and thus
more computation time. A well-balanced overlap fraction is thus
around R = 0.5. Instead of choosing even higher R > 0.5 and
thus increasing the number of required windows, cΩ or cT (i.e.,
the window size) can also be increased to capture a wider range,
which is often computationally faster.

The full domain is thus covered as follows:
1) Choose a window size ΔΩwindow ×ΔTwindow and overlap

fraction 0 ≤ R < 1.
2) Cover the full frequency domain Ω with equispaced fre-

quency sections of size ΔΩwindow such that consecutive
sections overlap for a fraction of at least R. This re-
sults in NΩ frequency sections Ω(n), 1 ≤ n ≤ NΩ. If
ΔΩwindow > ΔΩ, set ΔΩwindow =∞, and NΩ = 1.
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Fig. 3. Exemplary signal of durationΔT = 300, with its associated time win-
dows (shown below the signal) using R = 0.5 (neighboring windows overlap
at least 50%), and the corresponding acceptance regions using ε = 0.05. For
ε = 0, the acceptance regions would not overlap, and would exactly partition
the time domain.

3) Do the same for the time domain T with equispaced
sections of size ΔTwindow, resulting in MT time sections
T (m), 1 ≤ m ≤MT .

4) Define NΩ ×MT frequency-time windows Ω(n) × T (m)

as the cross product of the frequency section and time
sections.

This process is illustrated on the left in Fig. 4 with slight
offsets to improve visibility.

We note here that we only cover the 99%-energy bandwidth
and 99%-energy duration of the full signal ΔΩ×ΔT , and thus
cut away parts of the signal. We do so to be able to assign
any signal a finite bandwidth and duration to avoid wasting
computation time analyzing any slowly decaying tails of the
signal (either in frequency or time domain), which generally do
not contain high solitons. However, Ω and T may also be be set
manually if clear bounds for the signal are known.

D. Creating Windowed Signals

After defining the frequency-time windows, we extract a short
signal for each window. First, we apply an ideal band-pass filter
to the full signal to remove all frequency content outside of
Ω(n) by calculating the Fourier transform of the full signal,
and setting all frequencies components outside Ω(n) to zero.
Next, we temporarily shift the center frequency ωn (middle
of Ω(n)) to zero for the filtered signal, q(t)→ q(t)e−iωnt (i.e.,
Q(ω)→ Q(ω − ωn)), such that the filtered frequency content
can be captured without aliasing with much fewer samples
than before the center shift, namely using sampling time Δt <

2π
ΔΩwindow . The center frequency is added back later to the detected
eigenvalues, where we will use that linear frequency shifting
a signal results in a linear shift in the real part ξk of each
eigenvalue: q(t)→ q(t)e−iωnt ⇒ ξk → ξk + ωn/2 [6, p. 4319,
D6, frequency shift property].

After frequency-windowing, the filtered signal is time-
windowed by only keeping those samples within the time-
window T (m), resulting in a short signal containing the signal
content within the frequency-time window Ω(n) × T (m). We
used rectangular filters/time-windows in our implementation as

the impact of general linear filters and time-windows on the
nonlinear Fourier spectrum is not well-understood.

E. Eigenvalue Acceptance

After all the frequency- and time-windowed signals have been
created, the eigenvalues of each windowed signal are computed
using the NFT and the center frequency is added back to the real
part of the eigenvalues again, λk → λk − ωn/2. The eigenvalues
from the windowed signal are estimations for the eigenvalues of
the full signal. However, many of the eigenvalues from the full
signal will have been affected by the windowing process, and
we wish to only keep the eigenvalues that are also present in the
full signal. We therefore introduce an acceptance criterion for
the eigenvalues of the windowed signal.

The idea for the eigenvalue acceptance is that the soliton
support (see (10)) should lie entirely within the window. The
required time-support of an eigenvalue grows with 1/ηk, so
the lowest eigenvalues will require a broader time-support than
the window duration. We should therefore discard the too-low
eigenvalues by default. Similarly, the highest eigenvalues require
a large frequency-support. We set the acceptance height range
for the detected eigenvalue height equal to the earlier defined
eigenvalue capture region from (14), and reject all eigenvalues
outside this height range. The frequency-windows should be
chosen spaciously, so that it is nearly guaranteed that the highest
eigenvalues are captured. An additional rough measure for the
highest eigenvalue present (based on the 1-soliton in (2)) is the
maximum absolute wave heightmaxk ηk ∝ |q|/2. Choosing the
frequency-window size such that ηmax � maxt |q(t)|/2 ensured
that the highest solitons were captured for our data.

After rejecting all eigenvalues below the acceptance height
range, it may still occur that several of the remaining eigenvalues
are too close to the window edge, such that their significant
support still lies partially outside the considered window. These
eigenvalues should thus be rejected. To do so, we first determine
the soliton location tk from (9) using the (λk, bk) of every
soliton above the acceptance height of the considered window.
Next, we assign each window an associated acceptance region
as defined below, which corresponds to the window minus a
narrow strip near the window edges. The idea is that we only
keep those eigenvalues from the windowed signal that also
have their frequency-time location (ωk = −ξk/2, tk) within the
acceptance region of that window.

We initially define the acceptance region Ω
(n)
+ × T (m)

+ of
a window as the part of the full frequency-time domain
closer to the center of the window than to any other win-
dow center, as shown in Fig. 4. The result is that all over-
lapping regions are exactly split into half and divided equally
over the two overlapping windows. For the overlap frac-
tion RΩ (resp. RT ), the initial frequency (resp. time) accep-
tance region Ω

(n)
+ = [Ω

(n)
+,l ,Ω

(n)
+,r ] (resp. T (m)

+ = [T
(m)
+,l , T

(m)
+,r ])

is thus a fraction RΩ/2 (resp. RT /2) smaller on both
sides than the frequency-window [Ω

(n)
l ,Ω

(n)
r ] (resp. time-

window [T (m))l, T
(m)
r ]). Here, the subscript l is short for

‘left’ and r is short for ‘right’. We thus get [Ω
(n)
+,l ,Ω

(n)
+,r ] =
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Fig. 4. Comparison between the eigenvalues found by the NFT of a full 3000 sample signal and the corresponding windowed signals using Algorithm 1
and Algorithm 2. Three cases were considered for windowing: only time-windowing (top), only frequency-windowing (middle), and combined frequency- and
time-windowing (bottom). The left column shows the used windows (windows are slightly offset for visibility). The bandwidth limited noise signal |q(t)| is shown
in blue at the left of the domain and |Q(ω)| below in red for illustration purposes (not to scale). Both q(t) and Q(ω) quickly decay outside the shown domain
Ω× T = [−10.47, 10.47] rad× [−150, 150]. The right column shows the full eigenvalue spectrum and the accepted eigenvalues from the windowed signals.

[
Ω

(n)
l + RΩΔΩwindow

2 ,Ω
(n)
r − RΩΔΩwindow

2

]
and

[
T

(m)
+,l , T

(m)
+,r

]
=[

T
(m)
l + RTΔTwindow

2 , T
(m)
r − RTΔTwindow

2

]
. The left edge of the

leftmost frequency-windows and time-windows and right edge
of the rightmost windows are not shortened, as those regions are
not captured better by any other window. We thus partition the
full domain into disjoint acceptance regions, which usually pre-
vents eigenvalues from being detected twice by two neighboring
overlapping windows.

However, we found that it may sometimes occur that eigen-
values are entirely missed this way. If a soliton has true soliton
frequency-time location (ωk = −ξk/2, tk), its observed time
or frequency location can slightly vary depending on the used
window. If may therefore occur that tk is on the boundary
between two acceptance regions, and that the detected soliton
location from the left window is tk + ε, and for the right window
tk − ε. It would then fall outside both windows, and be rejected
by both acceptance regions.

To avoid doubly-rejecting eigenvalues that are on the bound-
aries of the initial acceptance regions, we slightly extend the
acceptance regions in both the time and frequency domain by a
small fraction ε of the window size, as illustrated in Fig. 3. The
final acceptance regions Ω(n)

+ × T (m)
+ thus become

[
Ω

(n)
+,l ,Ω

(n)
+,r

]
=

[
Ω

(n)
l + (RΩ

2 − ε)ΔΩwindow,

Ω(n)
r − (RΩ

2 − ε)ΔΩwindow
]
, (15a)

[
T

(m)
+,l , T

(m)
+,r

]
=

[
T

(m)
l + (RT

2 − ε)ΔTwindow,

T (m)
r − (RT

2 − ε)ΔTwindow
]
,

using Ω
(1)
l = T

(1)
l = −∞, Ω(N)

r = T (M)
r = +∞. (15b)

A typical value for the acceptance region extension fraction
is ε = 0.05, but should be much smaller than R/2, else the
acceptance region will become larger than the window itself.
While the overlap fraction R itself does not play an active
role in the acceptance, we emphasize that it should be chosen
sufficiently large to facilitate the capturing of eigenvalues close
to window boundaries.

Higher extension fractions ε increase the chance that all
eigenvalues are captured, but also increase the chance that
some eigenvalues are captured twice. In choosing the exten-
sion fraction, we prioritized ensuring that all high eigenvalues
were detected, which caused some eigenvalues to be detected
doubly. Higher eigenvalues that are detected twice can often be
easily distinguished from the case with two different solitons,
as for twice-detected solitons both their λk and their tk are
near-identical. Had those λk belonged to two different solitons,
then they would have had very different tk as it is very hard for the
peaks of two different solitons with near-identical λk to get close
(see (9) and Fig. 2). However, solitons with lower eigenvalues
that were captured twice are captured less accurately, and thus it
is harder to filter low twice-captured solitons with certainty. The
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Algorithm 1: Creating Frequency-Time Windows.
Input:
• Signal q(t) with finite time domain D.
•Window time-broadening factor cT and window
frequency-broadening factor cΩ (suggested: cT = 4,
cΩ = 16). Set cT =∞ if not time-windowing, and
cΩ =∞ if not frequency-windowing.
•Window overlap fraction R (suggested: R = 0.5).
• Acceptance region extension fraction ε (suggested:
ε = 0.05).

Output:
• A set of frequency-time windows Ω(n) × T (m), that
cover the significant frequency-time domain of q(t),
and their associated acceptance regions Ω(n)

+ × T (m)
+ .

- Set Ωq = [Ωl,Ωr], Tq = [Tl, Tr] as the smallest
frequency and time domain containing 99% of the
signal energy Eq =

∫
D |q(t)|2 dt = 1

2π

∫∞
−∞ |Q(ω)|2 dω;

- Set ΔΩ = Ωr − Ωl, ΔT = Tr − Tl;
- Set ηmean =

Eq

0.224ΔΩΔT , (see (12));
- Set ΔΩwindow = min(cΩ2.64/η

mean,ΔΩ), and
ΔTwindow = min(cT 6.74η

mean,ΔT ), (See (13));
- Set NΩ = 1 + � ΔT−ΔTwindow

(1−R)ΔTwindow �,
MT = 1 + � ΔΩ−ΔΩwindow

(1−R)ΔΩwindow �, (the number of required
frequency- and time-windows respectively);

- Create NΩ ×MT frequency-time windows
Ω(n) × T (m), n = 1, . . . , NΩ, m = 1, . . . ,MT , where
Ω(n) = [Ωn,Ωn +ΔΩwindow] (or Ω(1)= R, if NΩ= 1),
with Ωn = Ωl + (n− 1) ΔΩ−ΔΩwindow

max(NΩ−1,1) , and

T (m) = [Tm, Tm +ΔTwindow] (or T (1)= R if MT = 1),
with Tm = Tl + (m− 1) ΔT−ΔTwindow

max(MT−1,1) ;

- Set RT =
T

(1)
r −T (2)

l
ΔTwindow , RΩ =

Ω
(1)
r −Ω(2)

l
ΔΩwindow (actual overlap)

- Create NΩ ×MT acceptance regions Ω(m)
+ × T (n)

+ :=

[Ω
(n)
l + (RΩ

2 − ε)ΔΩwindow,Ω
(n)
r − (RΩ

2 −
ε)ΔΩwindow]×
[T

(m)
l + (RT

2 − ε)ΔTwindow, T
(m)
r − (RT

2 −
ε)ΔTwindow], but with Ω

(1)
l = T

(1)
l = −∞,

Ω
(N)
r = T

(M)
r = +∞;

- Return the windows Ω(n) × T (m) and associated
acceptance regions Ω(n)

+ × T (m)
+ .

focus in this article is on capturing all solitons, so we simply
accept it when some solitons are captured twice in this article.

IV. SUMMARY OF THE FREQUENCY- AND TIME-WINDOWING

NFT ALGORITHM

For completeness, we summarize the steps of the full al-
gorithm. The partitioning of the frequency-time domain into
windows is described in Algorithm 1, while the windowing of
the full signal and the calculation of the higher eigenvalues
from the windowed signals is described in Algorithm 2. For
the full estimation of the higher eigenvalues, we first apply

Algorithm 2: NFT on Windowed Signals.

Algorithm 1, followed by Algorithm 2. Algorithm 1 first es-
timates a representative ‘mean’ soliton height, and chooses
the window size accordingly. Next, the occupied domain of
the signal is covered with overlapping windows of this size.
After defining the windows, Algorithm 2 calculates the higher
eigenvalue content in each window. For every window, the full
signal is band-pass filtered to the window frequency domain,
the center frequency is shifted to zero, and the resulting signal
is finally truncated to the window time domain. The eigenvalues
of the resulting windowed signal are calculated with the NFT.
Eigenvalues are accepted if the eigenvalue height is within the
reliable height range, and if the soliton frequency-time location
(ωk, tk) is within the acceptance region. Finally, all accepted
eigenvalues are combined for an approximation of the higher
eigenvalues of the full signal.

V. RESULTS

In this section, we investigate the accuracy and speed for the
proposed combined frequency- and time-windowing NFT algo-
rithm, as well as for only time-windowing and only frequency-
windowing. First, we test the performance of the algorithm on
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a bandwidth-limited random signal, sampled at oversampling
rate s = 3, resulting in 3000 samples. This is the signal with
the largest time-bandwidth product that we could produce such
that the full NFT could still be reliably calculated with the
software library FNFT [53] (commit 9756b3, default settings
with 4split4B, with sub-sampling disabled as the considered
signals are already sampled close to Nyquist frequency). This
method requires O(N2) FLOPs to calculate the discrete spec-
trum of a signal with N samples. Second, we investigate the
accuracy for a very long signal. For this long signal, the NFT of
the full signal can no longer be computed with the mentioned
settings of FNFT. To validate the accuracy of the windowing
NFT, we instead calculate the reference eigenvalues from the full
signal by Newton-refining (using the method in [27]) for a dense
grid of initial guesses with high precision arithmetic. Third, we
quantitatively measure the computation times for the frequency-
and/or time-windowing NFT. As combined frequency- and time-
windowing uses windows with the smallest time-bandwidth
product, this method should yield the largest speed-up.

A. Results for a Random 3000-Sample Signal

We first validate the frequency- and time-windowing NFT
on a signal with 3000 samples, generated from ideally low-
pass filtered, complex, circularly symmetric, zero-mean, white
Gaussian noise. This signal has the following properties: time
domain T = [−150, 150], sample time Δt = 0.1, a maximum
bandwidth of [−10π,+10π] rad, and occupied bandwidth =
[−10π/3,+10π/3] = [−10.5, 10.5] rad (ideal low-pass filtered,
oversampling rate s = 3). While FNFT in general works well
for at this oversampling rate, we found that it occasionally
still missed some eigenvalues in both the full NFT and in the
windowing NFT. To ensure that we only study the effect of
the windowing, we also redid the full and windowing NFTs
after upsampling the signal by a factor two using band-limited
interpolation, and used those results for Fig. 4. The amplitude of
the signal was scaled such that the mean energy density was
0.0224 , which corresponds to an expected mean eigenvalue
height of ηmean = 0.1 according to (12). The corresponding
1-soliton has a frequency-time support of 0.68 rad× 26.

To be able to capture the largest solitons with broad band-
widths, we choose the window bandwidth 16 times the mean
eigenvalue bandwidth (cΩ = 16), and the duration as four times
the mean eigenvalue duration (cT = 4). The resulting window
size was 11.3 rad× 101. Imposing an overlap fraction of R =
0.5, we require three frequency-windows Ω(n) and five time-
windows T (m). We thus obtain 15 windows Ω(n) × T (m), with
Ω(n) ∈ {[−10.5, 0.8], [−5.4, 5.4], [−0.8, 10.5]}, and T (m) ∈
{[−150,−49], [−100, 1], [−50, 50], [−1, 100], [49, 150]}. The
acceptance region extension fraction was chosen as ε = 0.05.
The time windows and acceptance regions are also shown in
Fig. 3.

We first consider the cases with only time-windowing and
only frequency-windowing to observe the individual effects on
the detected eigenvalues. Then, we apply both frequency- and
time-windowing, which will yield the largest speed-up. The
resulting time-windowing, frequency-windowing and combined

frequency- and time-windowing are shown on the left in Fig. 4
(windows are slightly offset for visibility).

1) Results Using Only Time-Windowing: In the top row of
Fig. 4, the eigenvalues resulting from only time-windowing are
shown. We observe that the higher eigenvalues above ηmean

correspond very well to the eigenvalues from the full signal.
Even the lower eigenvalues between ηmean and ηmin seem to be
rather accurate.

Upon closer inspection, it turns out that some eigenvalues have
been captured doubly by neighboring windows. However, both
eigenvalues are so close that they are not visibly distinguishable.
As explained, this is due to the acceptance region extension
fraction ε = 0.05. We also investigated ε = 0, and ε = 0.02,
which respectively resulted in eight and three missing high
eigenvalues above ηmean.

We thus find that time-windowing yields very accurate results
for the high eigenvalues above ηmean, and fairly good results
for the eigenvalues between ηmin and ηmean. The acceptance
region extension fraction allows a trade-off between increasing
the chance to capture all eigenvalues versus capturing some
eigenvalues doubly.

2) Results Using Only Frequency-Windowing: The windows
and detected eigenvalues using only frequency-windowing are
shown in the second row of Fig. 4. We observe that the eigenval-
ues are detected rather accurately, but not as accurately as with
time-windowing. The high eigenvalues above ηmean are within
2% of their correct eigenvalue from the full signal. Although
frequency-windowing may cut away a part of the frequency
support of in particular the highest eigenvalues, this effect seems
to be limited. This is likely due to the large frequency-broadening
factor cΩ = 16. This hypothesis is supported by the fact that
ηmax = 1.20 is several times larger than the highest eigenvalue.
We also observe that a few eigenvalues are also captured twice
due to the overlapping acceptance regions. The doubly captured
eigenvalues can in several cases be distinguished visually, indi-
cating that the eigenvalues are less accurately captured than for
only time-windowing.

Below ηmean, many of the lower eigenvalues seem to be
captured with similar accuracy as the higher ones. However,
we also observe that many of the lower eigenvalues are missed,
but we found that many of these were missed because the
oversampling factor s was too low for the used FNFT method,
and not due to the frequency windowing itself: upon upsampling
the signal using band-limited Fourier interpolation to twice as
many samples, many of the missing low eigenvalues were found
again. Despite the fact that there is no lower bound ηmin, it
seems that frequency-windowing thus also affects the lower
eigenvalues.

3) Results Using Combined Frequency- and Time-
Windowing: Finally, we combined frequency- and time-
windowing, as described in Algorithm 2. The results are shown
in the bottom of Fig. 4. We observe that the eigenvalues
from combined frequency- and time-windowed signals are
very similar to those from the only frequency-windowed
signals. It thus seems that the time-windowing does not incur a
significant additional error on top of the inaccuracies that the
frequency-windowing is incurring.
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Fig. 5. Eigenvalues of a signal with 15,000 samples (at oversampling s = 3), detected from windowed signals, and the higher eigenvalues detected from the
full signal by Newton refining a dense grid of initial guesses. For both the top and bottom case, we used five time-windows. However, the top case used only one
frequency-window (i.e., the full bandwidth), whereas the lower figure used seven frequency-windows.

In conclusion, the combined frequency- and time-windowing
method yields quite accurate estimates with less than 2% error
for the higher eigenvalues for the chosen example. Most of
the error was caused by the frequency-windowing, while the
time-windowing did not cause a visible error at all in the higher
detected eigenvalues above ηmean.

In conclusion, we observe that time-windowing hardly infers
any loss in accuracy, and may thus be used to speed up the
calculation of the higher solitons. Furthermore, if a slight loss
of accuracy in the eigenvalues is acceptable, the combined
frequency- and time-windowing NFT can be used to obtain an
even greater speed-up.

B. Results for a Random 15,000 Sample Signal

After considering the 3000 sample signal, we are inter-
ested how the windowing algorithm performs for signals with
very large time-bandwidth products. We therefore consider
a signal with an occupied frequency-time domain five times
as large as the 3000 sample signal, resulting in a signal of
15,000 samples. This long signal again consists of ideally low-
pass filtered, complex, circularly symmetric, white Gaussian
noise with zero mean, sampled at oversampling rate s = 3
with respect to the Nyquist frequency corresponding to the
occupied signal bandwidth. The time domain of this signal
was T = [−375, 375], sample time Δt = 0.05, and occupied
bandwidth Ω = [−20π/3,+20π/3] = [−20.9, 20.9] . The sig-
nal amplitude was scaled such that the mean energy density

corresponded to ηmean = 0.1, equal to the 3000 sample signal.
The mean eigenvalue height of the 15,000 sample signal should
therefore be equal to the 3000 sample signal, only approximately
five times as many solitons should be present.

The 15,000 sample signal was too long to directly compute
the eigenvalues with the used version of FNFT, as only spurious
eigenvalues were detected that were far too high or far too
low. We believe this is due to the rational approximation of
the function a(λ), which requires high precision arithmetic at
some point for signals with very long durations. To obtain a
ground truth, we instead used conventional Newton refinement
to refine a dense grid of initial guesses. To verify that the found
eigenvalues were indeed correct, the refinement was repeated
using high-precision arithmetic.

We performed the combined frequency- and time-windowing
NFT algorithm by running Algorithm 1 and then Algorithm 2 on
the 15,000 sample signal, with the suggested parameters cT =
4, cΩ = 16, R = 0.5 and ε = 0.05. This resulted in NΩ = 7
frequency-windows and MT = 14 time-windows.

The eigenvalues from the windowed signals are compared to
the correct eigenvalues in Fig. 5. The top figure shows the result
of only time-windowing, and the bottom of combined frequency-
and time-windowing. When using only frequency-windowing,
all detected eigenvalues were spurious. Even when we used
28 narrow frequency-windows (instead of 7) all eigenvalues
were still spurious. This is likely again due to the rational
approximation of a(λ), that yields numerical issues for signals
with long durations.
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TABLE I
THE COMPUTATION TIMES FOR THE FULL NFT AND WINDOWING NFT OF VARIOUS SIGNALS (THE RESULTING EIGENVALUES WERE NOT VALIDATED). ALL

SIGNALS WERE GENERATED AS BANDWIDTH-LIMITED WHITE NOISE SIGNALS, WITH APPROXIMATE MEAN ENERGY DENSITY CORRESPONDING TO ηMEAN = 0.1.
ALL SIGNALS HAD THE SAME OVERSAMPLING RATE OF s = 3

We observe that time-windowing yields very accurate results
for the majority of the eigenvalues above ηmean, while only
a few of the high eigenvalues are visually different from the
correct eigenvalues. A few eigenvalues are still missing (one
example is around λ = 9.2 + 0.16i), despite the extension of
the acceptance region with ε = 0.05. We attempted to further
enlarge the acceptance regions, but this resulted in several
spurious eigenvalues being accepted, while still not capturing
all missing eigenvalues. Apparently, a small number of high
eigenvalues are still missed altogether. However, this issue could
be overcome by redoing the calculation with an upsampled
version of the signal (e.g., using band-limited interpolation).
Upon upsampling the signal to s = 4.5 (from s = 3, i.e. 50%
more samples) and increasing the acceptance region to ε = 0.10,
all missing eigenvalues above ηmean were recovered, although
several poorer copies of eigenvalues with errors up to 5% were
also accepted (figure omitted).

The results of the combined frequency- and time-windowing
NFT are shown in the bottom of Fig. 5. We observe clear visual
differences between the eigenvalues from the frequency- and
time-windowed signals and the eigenvalues from the full signal.
As for the 3000 sample signal, this is mostly the results of
the frequency-windowing. Although some eigenvalues show an
error of up to 10%, most eigenvalues are still within 1% of the
correct value. The resulting eigenvalues are therefore still useful
as rough estimates of the eigenvalues. They may also be used as
initial points for local refinement using the full signal to find the
correct eigenvalues.

In summary, we observe from the random 15,000 sample
signal that time-windowing provides highly accurate results
for the higher eigenvalues. Only frequency-windowing did not
suffice to analyze the signal due to failures of the used NFT
method. Finally, combined frequency- and time-windowing
causes significant errors due to the frequency-windowing. We
thus suggest to apply time-windowing to reduce the computation
time for finding the higher eigenvalues, and only additionally
use frequency-windowing when time-windowing alone does not
provide sufficient speed up, or when a rough estimate of the
discrete spectrum is sufficient.

C. Speed up Due to Windowing

In this section, we consider the speed-up achieved through
frequency- and/or time-windowing. Note that the time-
bandwidth product of the window in (13) only depends on

the choice for the frequency- and time-broadening factors cΩ
and cT , but not on the signal itself. Independent of the oc-
cupied time-bandwidth product of the full signal, we may
thus window the full signal into pieces with small and con-
stant time-bandwidth product. The complexity of computing
the NFT for each window is therefore approximately con-
stant. As the time-bandwidth product per window is con-
stant, the number of required windows increases linearly with
the time-bandwidth product of the full signal. Therefore, a
windowing NFT only requires O(N) FLOPs, as opposed
to a full NFT, which typically requires O(N2) or O(KN)
(with K the total number of solitons) for the considered
configuration.

To demonstrate the speed-up, we considered a variety of
low-pass filtered Gaussian white noise signals, with various
bandwidths and durations. All signals were generated to have a
mean energy density of approximately 0.026 1/rad, correspond-
ing to ηmean = 0.1, and had oversampling rate of s = 3. For all
signals we used FNFT to calculate the high eigenvalues from
the full signal directly, and using the windowing NFT method
with the suggested parameters. The correctness of the detected
eigenvalues was not validated, only the computation times were
recorded for the speed analysis.

The computation times are shown in Table I. The first
three rows show the computation times of the 3000-sample
signal when applying only frequency-windowing, only time-
windowing, and combined frequency- and time-windowing
NFT. Between rows 3-8, we gradually increased the number of
samples in the signal, mostly by increasing the duration of the
signal. We doubled the bandwidth of the signal for the signals of
6000 samples and longer, but we observe that this only affects
the configuration of the windowing, while the computation time
required for the windowing NFT hardly changes. We observe
that the windowing NFT determines the higher eigenvalues
faster than the full NFT in all considered cases, although the
speed-up is most apparent for the longest signal of 15,000
samples, where a speed-up of 623 s

44.7 s ≈ 14 times was observed
for combined frequency-and time-windowing, and a speed-up of
623 s
111 s ≈ 6 for only time-windowing. We observe that the full NFT
indeed requiresO(N2) computation time (e.g., 15000

3000 = 5 times
more samples results in about 623 s

26.1 s ≈ 25 times the computation
time), while the windowing NFT only requiresO(N) time (e.g.:
15000
3000 =5 times more samples results in about 44.7

9.61 ≈ 5 times the
computation time).
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We thus conclude that the windowing NFT is much faster
than the full NFT for signals with large time-bandwidth prod-
ucts. While the demonstrated window size works well in most
applications, the windows size can be further shrunk to allow
faster computations, or increased for higher accuracy of the
eigenvalues.

VI. CONCLUSION

We have proposed and validated a method to compute the
significantly large solitonic components in the discrete part of
the nonlinear Fourier transform for the nonlinear Schrödinger
equation quickly and accurately, by partitioning the signal in
the frequency and time domain. We divide the full occupied
frequency-time domain into smaller overlapping windows, de-
termine the higher eigenvalues within each individual window,
reject the unreliable eigenvalues, and finally combine all ac-
cepted higher eigenvalues to obtain the full spectrum of higher
eigenvalues associated with the larger solitons. The computa-
tion time of the NFT of a signal scales superlinearly in the
occupied time-bandwidth product, so it is thus computation-
ally faster to divide the full signal in many small frequency-
time domains than to compute the NFT of the full signal.
Our proposed frequency- and time-partitioning NFT uses a
pre-defined time-bandwidth product for the windows, and thus
only scales linearly in the number of used windows. It can
therefore also be applied to very complicated signals for which
other methods either fail or require very long computation
times.

We tested the accuracy of the method on several signals
and configurations, first by partitioning only the time domain,
then by partitioning only the frequency domain, and finally by
partitioning both the frequency and time domain. When only
partitioning the time domain, the results are very good, and the
higher solitons are captured with high accuracy. Only partition-
ing the frequency domain resulted in some loss of accuracy of the
higher eigenvalues. Combined frequency- and time-partitioning
resulted in the fastest result, but with a small loss in accuracy,
mostly due to the frequency-partitioning.

To the best of our knowledge, we have thus presented the first
method that can calculate the higher eigenvalues of signals with
arbitrarily large time-bandwidth product, while the computation
time depends only linearly on the occupied time-bandwidth
product.
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