
 
 

Delft University of Technology

Risk-sensitive Distributional Reinforcement Learning for Flight Control

Seres, Peter; Liu, Cheng; van Kampen, Erik Jan

DOI
10.1016/j.ifacol.2023.10.1097
Publication date
2023
Document Version
Final published version
Published in
IFAC-PapersOnLine

Citation (APA)
Seres, P., Liu, C., & van Kampen, E. J. (2023). Risk-sensitive Distributional Reinforcement Learning for
Flight Control. IFAC-PapersOnLine, 56(2), 2013-2018. https://doi.org/10.1016/j.ifacol.2023.10.1097

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ifacol.2023.10.1097
https://doi.org/10.1016/j.ifacol.2023.10.1097


IFAC PapersOnLine 56-2 (2023) 2013–2018

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2023.10.1097

10.1016/j.ifacol.2023.10.1097 2405-8963

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Risk-sensitive Distributional Reinforcement
Learning for Flight Control

Peter Seres ∗ Cheng Liu ∗ Erik-Jan van Kampen ∗

∗ Aerospace Engineering, Delft University of Technology, 2629HS Delft
peter.seres.ae@gmail.com, c.liu-10@tudelft.nl, e.vankampen@tudelft.nl

Abstract: Recent aerospace systems increasingly demand model-free controller synthesis, and
autonomous operations require adaptability to uncertainties in partially observable environments.
This paper applies distributional reinforcement learning to synthesize risk-sensitive, robust
model-free policies for aerospace control. We investigate the use of distributional soft actor-
critic (DSAC) agents for flight control and compare their learning characteristics and tracking
performance with the soft actor-critic (SAC) algorithm. The results show that (1) the addition
of distributional critics significantly improves learning consistency, (2) risk-averse agents increase
flight safety by avoiding uncertainties in the environment.
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1. INTRODUCTION

In recent years, technological advancements have resulted
in increased complexity in the dynamics of aerospace
systems. Such complex control systems have to maintain
safety and performance in challenging, partially observable
environments with unforeseen circumstances. These factors
drive the need for increased levels of intelligence and
autonomy in the control of aerospace systems.

Traditional approaches to flight control synthesis rely
on the costly identification of high-fidelity models and
predefined operating conditions, and therefore reduce
robustness and adaptability. Advanced control methods,
such as incremental non-linear dynamic inversion (INDI)
reduce modelling requirements, and have shown fault-
tolerant capability, but introduce challenges with sensor
synchronization (Pollack and Van Kampen, 2022).

Deep reinforcement learning (DRL) methods have shown
capability to solve large-scale real-world problems in
decision making and control. Reinforcement learning (RL)
is a goal-oriented model-free approach to synthesize policies
for complex tasks. DRL algorithms, such as the soft actor-
critic (SAC) (Haarnoja et al., 2019) have been shown
to achieve fault-tolerant flight control, while maintaining
robustness to varying flight conditions and sensor noise
(Dally and Van Kampen, 2022).

Even though such algorithms show great control perfor-
mance and generalization power, their learning behaviour
is inconsistent and sensitive to hyperparameters. In order
to facilitate the application of DRL algorithms on safety-
critical systems, it is desirable to improve the reliability
of these approaches. In order to reduce model dependence,
risk-sensitive policies are needed to handle the uncertainty
in the environment.

Unlike traditional RL methods, distributional RL algo-
rithms (Bellemare et al., 2017; Dabney et al., 2018) rep-

resent the full probability distribution of the reward and
achieve improved learning characteristics as a result. They
also enable the synthesis of risk-sensitive control laws. Liu
et al. (2022) have shown that the use of risk-sensitive
distributional RL agents improves the safety of drone
navigation in uncertain environments.

We implement the distributional soft actor-critic (DSAC)
(Ma et al., 2020) to solve an attitude control task using
a validated model of a research aircraft. A population of
agents is trained to investigate the learning and tracking
performance of agents trained using distributional critics.

The contribution of this paper is two-fold. Firstly, we
demonstrate that using DSAC for flight control significantly
improves learning consistency, while achieving similar
tracking performance to SAC controllers. Secondly, we
show that risk-averse policies achieve safer flight control by
sacrificing rewards to avoid uncertainty in the environment.

The structure of the paper is as follows. Section 2 provides
background on RL-based flight control. Then, Section 3
discusses the methodology used to train the agents. Section
4 presents the results followed by concluding remarks in
Section 5.

2. BACKGROUND

2.1 Reinforcement Learning

We consider a sequential decision making task formulated
as a Markov Decision Process (MDP) described by the
structured set M ∼ ⟨S,A, R,P, γ⟩, with state-space S ⊂
Rn, action-space A ⊂ Rm, reward function R : S ×A → R,
stochastic state transition P : S × S × A → [0,∞) and
discount factor γ ∈ [0, 1). The decision making agent
chooses action at ∈ A according to policy at ∼ π(at|st)
at time-step t, and observes the transition tuple Tt =
⟨s, a, r, s′⟩, where r is the immediate reward and s′ is
the next-state st+1 ∼ P(st+1|st, at). The traditional RL
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task is to find the optimal policy π∗ that maximizes the
expected return, i.e. the expected cumulative rewards of
this sequential decision making task.

The action-value function Qπ : S ×A → R is the expected
return of the agent choosing action a in state s, and
following policy π thereafter, as given by (1):

Qπ(s, a) := E

[ ∞∑
t=0

γtR(st, at)

]
(1)

In order to find the optimal policy π∗, RL algorithms
repeatedly apply the contractive Bellman operator T π:

T πQ(s, a) := E [R(s, a)] + γEP,π [Q(s′, a′)] (2)

In order to solve complex tasks, the field of DRL introduces
deep neural networks (DNNs) as function approximators
to parameterize the action-value function Qk(s, a)≈Q(s, a)
(value-based methods), the policy directly πw(s) ≈ π∗(s)
(policy-based methods) or both (actor-critic methods).

Actor-critic methods combine the advantages of both value-
based and policy-based approaches: the direct parameteri-
zation of the policy enables the use of continuous actions,
and the critic provides a biased estimate of the return,
greatly improving the learning behaviour. State-of-the-art
algorithms, such as DDPG (Lillicrap et al., 2015), TD3
(Fujimoto et al., 2018), and SAC (Haarnoja et al., 2019)
are capable of tackling high-dimensional control tasks.

2.2 Soft actor-critic

The SAC algorithm (Haarnoja et al., 2019) makes use
of maximum entropy RL, which extends the objective
function to maximize not only the return, but an additional
entropy term Hπ, shown in (3). Maximizing the entropy of
the stochastic policy results in more efficient exploration,
encouraging the diversity of actions. The resulting soft
Bellman operator T π

S is shown in (4):

H(πw(·|s)) = Ea∼πw
[−log πw(a|s)] (3)

T π
S Q(s, a) := E [R(s, a)] + γEP,π

[
Q(s′, a′)

− η log π(a′|s′)
]
, (4)

where η is the temperature parameter balancing the
prioritization of rewards and the entropy of the policy.

The approach by Haarnoja et al. (2019) utilizes double-
critics to prevent the overestimation of the value function
(Fujimoto et al., 2018). Two soft Q-functions are trained in
parallel Qk1,2(s, a) and the minimum is taken to determine
the temporal-difference (TD) error. The use of fixed Q-
networks Qk̄ is adopted to stabilize learning, and the
parameters of the target-networks are interpolated with
step-size ζ towards the local networks.

The critic loss function LQ minimizes the mean-squared
TD-error δl given in (5) for both Q-networks l = 1, 2:

δl = r + γ
(

min
l=1,2

Qk̄l
(s′, a′)− η log πw(a

′|s′)
)
−Qkl

(s, a)

LB
Q(kl) = EB

[
δ2l
]
, (5)

where B is a mini-batch of transitions sampled from an
experience replay buffer B ∼ D = {T0,T1, ...}, Qkl

(s, a) is
the local soft action-value estimate and Qk̄l

(s′, a′) is the
one-step ahead prediction.

SAC uses a stochastic actor to ensure improved exploration:
a multivariate Gaussian distribution with a diagonal
covariance matrix. The mean vector µw ∈ Rm and the
covariance diagonal σw ∈ Rm are estimated by a DNN. The
actions sampled from the distribution are passed through
a tanh squashing function to ensure they are defined on a
finite bound (Haarnoja et al., 2019):

aw(s) = tanh(ãw), with ãw ∼ N (µw(s), σw(s)) (6)

The loss function Lπ maximizes both return and entropy:

LB
π (w) = EB

[
η log πw(aw|s)− min

l=1,2
Qkl

(s, aw(s))

]
(7)

The temperature η is dynamically optimized to achieve
a target entropy H̄ (Haarnoja et al., 2019), in order to
improve exploration, via the loss function:

LB(η) = EB
[
ηH̄ − η log πw(a|s)

]
(8)

2.3 Distributional RL

While traditional RL maximizes the expected cumulative
rewards, distributional RL gets rid of the expectation and
estimates the entire probability distribution of returns, i.e.
the return distribution function.

The action-value function defined in (1) is the first moment
of the return distribution Qπ(s, a) := E [Zπ(s, a)], and the
random variable Z is the discounted cumulative reward
Zπ(s, a) =

∑∞
t=0 γ

tR(st, at). As shown by Bellemare et al.
(2017), the distributional Bellman operator T π

D can be
formulated as given in (9):

T π
DZ(s, a)

D
:= R(s, a) + γZ(s′, a′), (9)

where
D
= denotes equality by distribution, i.e. the notion

that two random variables are equal when their distribu-
tions are equal.

A distributional RL method is primarily defined by two
attributes: the probability metric used to measure distances
between distributions and the parameterization of the
approximate return distribution.

Bellemare et al. (2017) showed that the distributional
Bellman operator is a contraction under the p-Wasserstein
metric defined in terms of the inverse cumulative distribu-
tion function (c.d.f.) of the random return. Given random
variable Z, the c.d.f. is defined as FZ(z) := P [Z < z] and
the quantile function is F−1

Z (τ) := inf {z ∈ R : τ ≤ FZ(z)},
where τ is the quantile fraction. Hereinafter, the notation
Zτ
k (s, a) is used for the approximate quantile function.

In order to parameterize the return distribution, C51
(Bellemare et al., 2017) uses discrete atoms, whereas
implicit quantile networks (IQN) (Dabney et al., 2018) use
quantile regression to approximate the continuous quantile
function implicitly.

2.4 Flight Control as an RL Task

To represent aircraft dynamics, we consider the non-linear,
non-affine, stationary system ẋ = f(x, u, t) ≈ f(x, u),

where f is the state transition function, x ∈ Rn′
is the

dynamic state vector, u ∈ Rm′
is the control input vector.



	 Peter Seres  et al. / IFAC PapersOnLine 56-2 (2023) 2013–2018	 2015

A tracking control task is to minimize the tracking error
between references and the controlled states. To represent
the control task as an MDP, the observation space of the
RL agent must include either the reference yr, or the
tracking error e = yr − xc, where xc ⊂ x is the vector
of controlled states. The reward function is often defined
as a penalty proportional to the tracking error R ∝ ∥e∥1.
Flight control tasks often contain intrinsic uncertainty,
either due to stochastic processes, such as turbulence and
sensor noise, or due to the influence of unobservable states
on the dynamics of the aircraft.

3. METHODOLOGY

3.1 Distributional Soft Actor-Critic

The distributional RL approach is adopted to the con-
tinuous control task by using distributional critics in an
actor-critic architecture. The DSAC method by Ma et al.
(2020) combines maximum entropy RL and distributional
critics to enable the training of risk-sensitive actors.

Figure (1) shows the DSAC architecture where the critic
networks are distributional Z-function approximators and a
risk-distortion step is introduced in the policy loss function.
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Fig. 1. DSAC architecture with risk-sensitive learning.

DSAC uses the quantile Huber loss as a substitute for the
Wasserstein metric. The pairwise TD-error between two
quantile fractions τi and τj is given by (10):

δlij = r + γ


min
l=1,2

Zτi
k̄l
(s′, a′)− η log πw(a

′|s′)

− Z

τj
kl
(s, a)

(10)
where the quantile fractions are sampled independently
τi, τj ∼ U([0, 1]) and a′ ∼ πw(·|s′). The Huber loss for
quantile fraction τ is given by (11):

ρκτ (δ) = |τ − I{δ < 0}| · Lκ(δ),with

Lκ(δ) =





1

2
δ2 for |δ| ≤ κ

κ


|δ| − 1

2
κ


otherwise

,
(11)

where I is the indicator function, and κ is the Huber-loss
threshold (commonly κ = 1). The approximate quantile
loss is estimated using a set of N independent quantiles
sampled for both target and local networks:

LB
Z(kl) = EB


 1

N2

N−1
i=0

N−1
j=0

ρκτj (δ
l
ij)


 (12)

Risk-sensitive learning can be achieved by maximizing a
distorted expectation of the soft action-value distribution
(Dabney et al., 2018). Let Ψ : [0, 1] → [0, 1] be a continuous
monotonic function, which acts as a distortion risk measure:

QΨ
k (s, a) = Eτ


Z

Ψ(τ)
k (s, πw(·|s))


, (13)

The risk-distortion is parameterized towards risk-averse
or risk-seeking learning by using the Wang risk-distortion
function (Wang, 2000):

Wang(τ ; ξ) = Φ(Φ−1(τ) + ξ), (14)

where Φ is the c.d.f. of the normal distribution and ξ is
the distortion parameter for risk-averse ξ < 0 and risk-
seeking ξ > 0 learning. Figure (2) shows the difference
in the risk-distorted expectation of two random variables
with different variances. Under risk-averse distortion, a
return distribution with higher uncertainty results in a
lower expected reward.
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Fig. 2. Risk-averse and risk-seeking distortions.

3.2 Policy regularization

A phenomenon of converged DRL control laws is the lack
of smoothness, which reduces the practical utility, causing
degraded tracking performance, high power usage, and
actuator failure. The approach of Conditioning for Action
Policy Smoothness (CAPS) by Mysore et al. (2021) adds
the regularizing term LC

π to the policy loss to encourage
spatial and temporal smoothness:

LS = ∥πw(s)− πw(s̃ )∥2 , s̃ ∼ N (s, σ̃) (15)

LT = ∥πw(s)− πw(s
′)∥2 (16)

LC
π = λSLS + λTLT , (17)

where s̃ are the proximal states and λS , λT tune the
prevalence of smoothness regularization.

Thus, the final objective function of the policy maximizes
entropy to facilitate diverse actions, maximizes the risk-
distorted soft action-value QΨ

k to facilitate risk-sensitive
policies, and encourages smooth control laws using the
regularization term LC

π . The combined policy objective
function is formulated as a loss in (18):

LB
π (w) = EB


η log πw(aw(s)|s)−QΨ

k (s, a) + LC
π


(18)

task is to find the optimal policy π∗ that maximizes the
expected return, i.e. the expected cumulative rewards of
this sequential decision making task.

The action-value function Qπ : S ×A → R is the expected
return of the agent choosing action a in state s, and
following policy π thereafter, as given by (1):

Qπ(s, a) := E

[ ∞∑
t=0

γtR(st, at)

]
(1)

In order to find the optimal policy π∗, RL algorithms
repeatedly apply the contractive Bellman operator T π:

T πQ(s, a) := E [R(s, a)] + γEP,π [Q(s′, a′)] (2)

In order to solve complex tasks, the field of DRL introduces
deep neural networks (DNNs) as function approximators
to parameterize the action-value function Qk(s, a)≈Q(s, a)
(value-based methods), the policy directly πw(s) ≈ π∗(s)
(policy-based methods) or both (actor-critic methods).

Actor-critic methods combine the advantages of both value-
based and policy-based approaches: the direct parameteri-
zation of the policy enables the use of continuous actions,
and the critic provides a biased estimate of the return,
greatly improving the learning behaviour. State-of-the-art
algorithms, such as DDPG (Lillicrap et al., 2015), TD3
(Fujimoto et al., 2018), and SAC (Haarnoja et al., 2019)
are capable of tackling high-dimensional control tasks.

2.2 Soft actor-critic

The SAC algorithm (Haarnoja et al., 2019) makes use
of maximum entropy RL, which extends the objective
function to maximize not only the return, but an additional
entropy term Hπ, shown in (3). Maximizing the entropy of
the stochastic policy results in more efficient exploration,
encouraging the diversity of actions. The resulting soft
Bellman operator T π

S is shown in (4):

H(πw(·|s)) = Ea∼πw
[−log πw(a|s)] (3)

T π
S Q(s, a) := E [R(s, a)] + γEP,π

[
Q(s′, a′)

− η log π(a′|s′)
]
, (4)

where η is the temperature parameter balancing the
prioritization of rewards and the entropy of the policy.

The approach by Haarnoja et al. (2019) utilizes double-
critics to prevent the overestimation of the value function
(Fujimoto et al., 2018). Two soft Q-functions are trained in
parallel Qk1,2(s, a) and the minimum is taken to determine
the temporal-difference (TD) error. The use of fixed Q-
networks Qk̄ is adopted to stabilize learning, and the
parameters of the target-networks are interpolated with
step-size ζ towards the local networks.

The critic loss function LQ minimizes the mean-squared
TD-error δl given in (5) for both Q-networks l = 1, 2:

δl = r + γ
(

min
l=1,2

Qk̄l
(s′, a′)− η log πw(a

′|s′)
)
−Qkl

(s, a)

LB
Q(kl) = EB

[
δ2l
]
, (5)

where B is a mini-batch of transitions sampled from an
experience replay buffer B ∼ D = {T0,T1, ...}, Qkl

(s, a) is
the local soft action-value estimate and Qk̄l

(s′, a′) is the
one-step ahead prediction.

SAC uses a stochastic actor to ensure improved exploration:
a multivariate Gaussian distribution with a diagonal
covariance matrix. The mean vector µw ∈ Rm and the
covariance diagonal σw ∈ Rm are estimated by a DNN. The
actions sampled from the distribution are passed through
a tanh squashing function to ensure they are defined on a
finite bound (Haarnoja et al., 2019):

aw(s) = tanh(ãw), with ãw ∼ N (µw(s), σw(s)) (6)

The loss function Lπ maximizes both return and entropy:

LB
π (w) = EB

[
η log πw(aw|s)− min

l=1,2
Qkl

(s, aw(s))

]
(7)

The temperature η is dynamically optimized to achieve
a target entropy H̄ (Haarnoja et al., 2019), in order to
improve exploration, via the loss function:

LB(η) = EB
[
ηH̄ − η log πw(a|s)

]
(8)

2.3 Distributional RL

While traditional RL maximizes the expected cumulative
rewards, distributional RL gets rid of the expectation and
estimates the entire probability distribution of returns, i.e.
the return distribution function.

The action-value function defined in (1) is the first moment
of the return distribution Qπ(s, a) := E [Zπ(s, a)], and the
random variable Z is the discounted cumulative reward
Zπ(s, a) =

∑∞
t=0 γ

tR(st, at). As shown by Bellemare et al.
(2017), the distributional Bellman operator T π

D can be
formulated as given in (9):

T π
DZ(s, a)

D
:= R(s, a) + γZ(s′, a′), (9)

where
D
= denotes equality by distribution, i.e. the notion

that two random variables are equal when their distribu-
tions are equal.

A distributional RL method is primarily defined by two
attributes: the probability metric used to measure distances
between distributions and the parameterization of the
approximate return distribution.

Bellemare et al. (2017) showed that the distributional
Bellman operator is a contraction under the p-Wasserstein
metric defined in terms of the inverse cumulative distribu-
tion function (c.d.f.) of the random return. Given random
variable Z, the c.d.f. is defined as FZ(z) := P [Z < z] and
the quantile function is F−1

Z (τ) := inf {z ∈ R : τ ≤ FZ(z)},
where τ is the quantile fraction. Hereinafter, the notation
Zτ
k (s, a) is used for the approximate quantile function.

In order to parameterize the return distribution, C51
(Bellemare et al., 2017) uses discrete atoms, whereas
implicit quantile networks (IQN) (Dabney et al., 2018) use
quantile regression to approximate the continuous quantile
function implicitly.

2.4 Flight Control as an RL Task

To represent aircraft dynamics, we consider the non-linear,
non-affine, stationary system ẋ = f(x, u, t) ≈ f(x, u),

where f is the state transition function, x ∈ Rn′
is the

dynamic state vector, u ∈ Rm′
is the control input vector.
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3.3 Attitude Control

The tracking task investigated in this paper is the attitude
control of a validated high-fidelity model of a Cessna
Citation II research aircraft, with fully-coupled non-linear
dynamics (Van den Hoek et al., 2018). The task is to track
pitch θr and roll ϕr, and regulate the sideslip to βr = 0.

Aircraft Model The model has 10 dynamic states: altitude
h, true airspeed V , angle of attack α, angle of sideslip β,
angular velocities p, q and r and Euler-angles ϕ, θ and ψ
for roll, pitch and yaw respectively.

Similarly to the methodology of Dally and Van Kampen
(2022), the thrust control is delegated to an inner loop
controller that regulates velocity to the trim-condition.
The available control surfaces are the elevator δe, aileron
δa and rudder δr deflections. The resulting dynamic state
vector x ∈ R10 and control input vector u ∈ R3 are:

x = [p, q, r, V, α, β, ϕ, θ, ψ, h]T (19)

u = [δe, δa, δr]
T (20)

The aircraft model is initialized from a trimmed condition
at h = 2, 000 (m) and V = 90 (m/s). The refresh rate of the
simulation is 100 (Hz) with ideal sensors. The actuators are
modeled as low-pass filters with fixed deflection saturation
which results in the action space:

←−δe−→ ←−δa−→ ←−δr−→
A = {[−17◦, 15◦]× [−19◦, 15◦]× [−22◦, 22◦]} ⊂ R3 (21)

Controller Architecture We consider only the safety-
critical inner loop control, as opposed to previous studies
(Dally and Van Kampen, 2022; Teirlinck and Van Kampen,
2022), with cascaded control architectures. This isolates
the effect of distributional RL without the complexity of
multi-agent systems. We consider the architecture shown
in Figure (3), with observation and action:

s = [θe, ϕe, βe, p, q, r, α]
T , a = [δe, δa, δr]

T (22)
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Fig. 3. SAC/DSAC attitude controller architecture.

The reward function found optimal by Dally and Van Kam-
pen (2022) is adopted to penalize the tracking error:

R(s, a) = −1

3

∥∥∥∥clip
([

6

π
c⊙ e

]
,−1, 0

)∥∥∥∥
1

, (23)

where e ∈ R3 is the tracking error e = [θr−θ, ϕr−ϕ, βr−β]T

and c ∈ R3 is the relative cost [1, 1, 4]T . The agents are
trained using 30 (s) episodes with randomly generated
⟨θr, ϕr⟩ reference signals, which are sequences of cosine-
smoothed step inputs with uniformly sampled amplitudes.

3.4 Agent Training

Critic Network IQN estimators by Dabney et al. (2018)
are used as distributional critics. The quantiles are
passed through a cosine embedding layer Cj(τ) :=

F
(∑N

i=1 cos(πiτ)wij + bj

)
, where F is a sigmoid func-

tion, and wij , bj are the individual weights and biases.
Interaction between the state-action pair [s, a]T and the
sample embedding is achieved using the Hadamard product,
and layer normalization is used to ensure well-bounded
quantiles. Figure (4) shows the architecture of the Z-
function approximator networks.
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Fig. 4. IQN network based on Dabney et al. (2018)

Experiment Design To assess the effect of distributional
RL, batches (10 each) of three agent variants are trained:
baseline SAC, risk-neutral (R.N.) DSAC and risk-averse
(R.A.) DSAC agents. The learning performance of the
agents is assessed with respect to consistency, sample
efficiency, and mean and variance of converged rewards. The
tracking performance is assessed using a normalized mean
absolute error (nMAE) metric, similarly to the methodology
of Teirlinck and Van Kampen (2022).

The hyperparameters are shown in Table (1). The linearly
decreasing learning rate, γ, h̄, |B|, and ζ have been set to
the values found optimal by Dally and Van Kampen (2022).
The buffer size |D| is increased to 1e6 to stabilize learning.
Ψ is set to identity for risk-neutral and Wang(−0.5) for
risk-averse agents.

Table 1. Hyperparameters.

Hyperparameter Notation Value

Learning rate αLR 4.4e-4 → 0
Entropy target H̄ −m = −3
Discount factor γ 0.99
Dense network activation ReLU

Hidden neurons h̄ 64× 64
Memory buffer size |D| 1, 000, 000
Mini-batch size |B| 256
Interpolation step-size ζ 0.995
CAPS-smoothing λS,T 400
Smoothing proximity σ̃ 5e−2

Nr. of quantiles N 8
Nr. of cosine neurons C 64
Nr. of quantiles for QΨ

k T 16
Risk-averse parameter ξ −0.5
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In order to ensure reproducibility, the pseudo-random
stochasticity during training is controlled for both envi-
ronment and agent. The source code and algorithm 1 are
available online.

4. RESULTS AND DISCUSSION

4.1 Learning and tracking performance

The agents are trained for 7.5e5 samples, i.e. 250 episodes.
The learning curves are shown in Figure (5), for the
first 1.5e5 samples, due to early convergence. DSAC
demonstrates an increase in sample efficiency of 33.9%
for the risk-neutral, and 28.5% for the risk-averse agents.

Fig. 5. Mean learning curve and standard deviation (n=10).

In addition to improved sample efficiency, two further
improvements can be observed: higher converged average
rewards and a reduction in variance.

Table (2) summarizes the converged average return µ
and standard deviation of return σ for each variant,
indicating the relative improvement with respect to the
SAC baseline. Additionally, nMAE values are shown as a
metric of tracking performance. The p-value is shown for
the hypotheses that DSAC achieves higher returns, achieves
lower variance, and performs better in tracking control.

Table 2. Average return, variance, and nMAE.
Bold shows significant improvement (p<5e-2).

SAC R.N. DSAC R.A. DSAC

Value (Rel.) p Value (Rel.) p

µ[Z] -149 -122 (+18%) 3e-1 -118 (+21%) 3e-1
σ[Z] 177 32 (-82%) 5e-6 31 (-82%) 5e-6
nMAE 12.5 12.4 (-1.5%) 5e-1 12.0 (-4.0%) 8e-3

It can be seen that the reduced variance of DSAC agents
is statistically significant. This indicates improved learning
stability and improved robustness to the stochasticity
of the environment. Furthermore, the improvement in
learning characteristics is achieved while maintaining
similar tracking performance.

The sample efficiency of all three agent variants have
increased by 95% relative to the approach of Dally and
Van Kampen (2022), which required 1e6 samples. This

1 https://github.com/peter-seres/dsac-flight

improvement is likely due to the omission of the incremental
architecture, which reduces the size of the observation space
from R9 to R7.

Example time-domain responses of the evaluation are
shown in Figure (6). Adequate attitude tracking can be
observed for both θ and ϕ, while β is successfully regulated
within [−1◦, 1◦], for all realizations of the agents. At t ≈ 10
(s), the pitch error increases as banking is initiated.

Fig. 6. Mean time-domain response of risk-averse DSAC
agents with ∼95% (2σ) confidence interval.

4.2 Risk-sensitive learning

In order to investigate the effect of risk-averse learning on
the synthesized control law, the agents are evaluated on
a high-risk task to follow a sustained pitch-up manoeuvre
to near-stall, extreme flight conditions. Such a situation
is chosen for two reasons. Firstly, it is expected that the
uncertainty of such conditions is high, due to the lack of
exploration and the unobservable dynamics that depend
on airspeed and altitude. Secondly, such situations connect
the uncertainty of return directly to flight risk, as stall
conditions are considered hazardous and may lead to loss-
of-control.

The responses of both risk-neutral and risk-averse agents
are shown in Figure (7), depicting only the longitudinal
states of the system (ϕr = 0). The sustained high pitch
reference causes the aircraft to lose airspeed and gain
altitude. The 45◦ pitch reference at 60 (s) is unattainable
without entering stall-induced oscillations and instability.
The risk-neutral DSAC agent responds by further deflecting
the elevator, inducing undesirable oscillations. On the
other hand, the risk-averse agent avoids the stall-induced
oscillations and keeps the angle of attack at 10◦. The risk-
neutral agent loses altitude, whereas the risk-averse agent
maintains a stable climb.

Figure (7) also shows that while the risk-averse agent
achieves higher rewards compared to the risk-neutral agent

3.3 Attitude Control

The tracking task investigated in this paper is the attitude
control of a validated high-fidelity model of a Cessna
Citation II research aircraft, with fully-coupled non-linear
dynamics (Van den Hoek et al., 2018). The task is to track
pitch θr and roll ϕr, and regulate the sideslip to βr = 0.

Aircraft Model The model has 10 dynamic states: altitude
h, true airspeed V , angle of attack α, angle of sideslip β,
angular velocities p, q and r and Euler-angles ϕ, θ and ψ
for roll, pitch and yaw respectively.

Similarly to the methodology of Dally and Van Kampen
(2022), the thrust control is delegated to an inner loop
controller that regulates velocity to the trim-condition.
The available control surfaces are the elevator δe, aileron
δa and rudder δr deflections. The resulting dynamic state
vector x ∈ R10 and control input vector u ∈ R3 are:

x = [p, q, r, V, α, β, ϕ, θ, ψ, h]T (19)

u = [δe, δa, δr]
T (20)

The aircraft model is initialized from a trimmed condition
at h = 2, 000 (m) and V = 90 (m/s). The refresh rate of the
simulation is 100 (Hz) with ideal sensors. The actuators are
modeled as low-pass filters with fixed deflection saturation
which results in the action space:

←−δe−→ ←−δa−→ ←−δr−→
A = {[−17◦, 15◦]× [−19◦, 15◦]× [−22◦, 22◦]} ⊂ R3 (21)

Controller Architecture We consider only the safety-
critical inner loop control, as opposed to previous studies
(Dally and Van Kampen, 2022; Teirlinck and Van Kampen,
2022), with cascaded control architectures. This isolates
the effect of distributional RL without the complexity of
multi-agent systems. We consider the architecture shown
in Figure (3), with observation and action:

s = [θe, ϕe, βe, p, q, r, α]
T , a = [δe, δa, δr]

T (22)
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Fig. 3. SAC/DSAC attitude controller architecture.

The reward function found optimal by Dally and Van Kam-
pen (2022) is adopted to penalize the tracking error:

R(s, a) = −1

3

∥∥∥∥clip
([

6

π
c⊙ e

]
,−1, 0

)∥∥∥∥
1

, (23)

where e ∈ R3 is the tracking error e = [θr−θ, ϕr−ϕ, βr−β]T

and c ∈ R3 is the relative cost [1, 1, 4]T . The agents are
trained using 30 (s) episodes with randomly generated
⟨θr, ϕr⟩ reference signals, which are sequences of cosine-
smoothed step inputs with uniformly sampled amplitudes.

3.4 Agent Training

Critic Network IQN estimators by Dabney et al. (2018)
are used as distributional critics. The quantiles are
passed through a cosine embedding layer Cj(τ) :=

F
(∑N

i=1 cos(πiτ)wij + bj

)
, where F is a sigmoid func-

tion, and wij , bj are the individual weights and biases.
Interaction between the state-action pair [s, a]T and the
sample embedding is achieved using the Hadamard product,
and layer normalization is used to ensure well-bounded
quantiles. Figure (4) shows the architecture of the Z-
function approximator networks.
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Fig. 4. IQN network based on Dabney et al. (2018)

Experiment Design To assess the effect of distributional
RL, batches (10 each) of three agent variants are trained:
baseline SAC, risk-neutral (R.N.) DSAC and risk-averse
(R.A.) DSAC agents. The learning performance of the
agents is assessed with respect to consistency, sample
efficiency, and mean and variance of converged rewards. The
tracking performance is assessed using a normalized mean
absolute error (nMAE) metric, similarly to the methodology
of Teirlinck and Van Kampen (2022).

The hyperparameters are shown in Table (1). The linearly
decreasing learning rate, γ, h̄, |B|, and ζ have been set to
the values found optimal by Dally and Van Kampen (2022).
The buffer size |D| is increased to 1e6 to stabilize learning.
Ψ is set to identity for risk-neutral and Wang(−0.5) for
risk-averse agents.

Table 1. Hyperparameters.

Hyperparameter Notation Value

Learning rate αLR 4.4e-4 → 0
Entropy target H̄ −m = −3
Discount factor γ 0.99
Dense network activation ReLU

Hidden neurons h̄ 64× 64
Memory buffer size |D| 1, 000, 000
Mini-batch size |B| 256
Interpolation step-size ζ 0.995
CAPS-smoothing λS,T 400
Smoothing proximity σ̃ 5e−2

Nr. of quantiles N 8
Nr. of cosine neurons C 64
Nr. of quantiles for QΨ

k T 16
Risk-averse parameter ξ −0.5
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Fig. 7. Near-stall response of risk-neutral (blue) and risk-
averse (red) DSAC agents.

in the first half of the episode, it chooses more conservative
actions following the 45◦ pitch reference at 60 (s), resulting
in a decrease in rewards. The risk-averse agent achieves a
reduced end-of-episode return, but manages to avoid stall-
induced oscillations. It is shown that the variance can be
used as a metric of uncertainty, and that the risk-averse
controller sacrifices immediate rewards to avoid states with
high uncertainty, thus increasing the safety of the flight.

This risk-averse behaviour is achieved without the addition
of human-domain knowledge, e.g. reward shaping. Whether
the critic’s estimate of uncertainty is due to parametric or
intrinsic uncertainty in the environment is not pertinent to
the safety of control and decision making. Instead, in order
to reduce flight risk, both unexplored and highly stochastic
state-action pairs are to be assigned a lower risk-distorted
action-value to avoid uncertainty.

5. CONCLUSION

This research contributes to the synthesis of risk-averse
model-free flight controllers for non-linear fully-coupled
aerospace systems, and lays the foundation for DRL
flight controllers that approximate the uncertainty of
the environment. We show that the DSAC algorithm
significantly improves learning consistency by reducing
the variance of returns, while achieving similar tracking
performance. In addition, we show that training risk-averse
policies results in control laws that prioritize state-action
pairs with low uncertainties, indicated by smaller variance
in the return distribution.

However, the DSAC algorithm used in this paper does
not utilize the return distribution estimate post training,
although it is demonstrated that the variance of the return
is a valuable predictor of flight risk. Future work is needed
to make use of the trained critic networks, in a potentially
adaptive, continually learning setting.

To sum up, the risk-sensitive behaviour in this paper is
achieved through goal-oriented interaction. The risk-averse
agents avoid both intrinsic and parametric uncertainty,
which inherently increases the safety of RL-based flight
control.
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