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Abstract
In this contribution, we introduce the ambiguity-resolved (AR) detector and study its distributional characteristics. The AR-
detector is a new detector that lies in between the commonly used ambiguity-float (AF) and ambiguity-known (AK) detectors.
As the ambiguity vector can seldomly be known completely, usage of the AK-detector is questionable as reliance on its
distributional properties will then generally be incorrect. The AR-detector resolves the shortcomings of the AK-detector by
treating the ambiguities as unknown integers. We show how the detector improves upon the AF-detector, and we demonstrate
that the, for ambiguity-resolved parameter estimation, commonly required extreme success rates can be relaxed for detection,
thus showing that improved model validation is also possible with smaller success rates. As such, the AR-detector is designed
to work for mixed-integer GNSS models.

Keywords GNSS · Ambiguity-resolved (AR) detector · Ambiguity-float (AF) detector · Ambiguity-known (AK) detector ·
Integer ambiguity resolution · Detectability · Integer least-squares (ILS)

1 Introduction

Model validation constitutes an essential part of any data
processing scheme. This applies to, for instance, quality con-
trol of geodetic networks (DGCC 1982; Yang et al. 2021),
geophysical and structural deformation analysis (Lehmann
and Lösler, 2017; Nowel 2020), different GNSS applications
(Perfetti 2006; Yu et al. 2023) and various configurations
of integrated navigation systems (Gillissen and Elema 1996;
Salzmann 1993). The very first step of model validation is
usually the employment of an overall model test to detect for
unspecified model misspecifications (Koch 1987; Teunissen
2006). The current detectors in use for mixed-integer GNSS
models are the ambiguity-float (AF) and the ambiguity-
known (AK) detector (Leick et al. 2015; Teunissen and
Montenbruck 2017). The AF-detector considers the ambi-

B P. J. G. Teunissen
p.j.g.teunissen@tudelft.nl

1 Department of Geoscience and Remote Sensing, Delft
University of Technology, Delft, The Netherlands

2 Department of Infrastructure, University of Melbourne,
Melbourne, Australia

3 GNSS Research Centre, Curtin University of Technology,
Perth, Australia

guity vector unknown, while the AK-detector assumes the
ambiguity vector to be completely known. As the ambiguity
vector can seldomly be known completely, the AK-detector
is, despite its usage, not really an operational detector.
Reliance on its distributional properties will therefore be
generally incorrect. The AR-detector of this contribution
resolves the shortcomings of the AK-detector by treating
the ambiguities as unknown integers. The AR-detector lies
therefore in between the AF-detector and the AK-detector. It
improves on the AF-detector by incorporating the informa-
tion that the ambiguities are integer, but it does not consider
them known as the AK-detector does. As such, the AR-
detector is designed towork formixed-integerGNSSmodels.

This contribution is organized as follows. In section 2,
after a brief review of mixed-integer model estimation, we
describe and compare the ambiguity-float (AF) detector
and the ambiguity-known (AK) detector. We also determine
their Pythagorean relation and show how their α-acceptance
regions are related. What the difference of these regions
imply for detectability is discussed. We hereby also intro-
duce a useful orthogonal decomposition of observation space
to facilitate the impact description of an arbitrary model bias
on the relevant parameters of interest. Then, in section 2.4 the
AF- and AK-detection capabilities are explicitly described
for a general GNSS model by developing expressions for
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the noncentrality parameters of the detectors. This is done in
dependence of four different type ofmodel biases (code-type,
phase-type, tropo-type and iono-type). This reveals under
which circumstances which model biases find improved
detection, thus providing a first indication of the improve-
ments one can expect to gain from the AR-detector.

In section 3, the AR-detector is defined for the admissible
class of integer estimators. To enable a direct comparison
between the AR- and AK-detector, we show how their CDFs
can be seen as differently weighted versions of the CDF of
theAF-detector. Special attention is hereby given to the prob-
ability mass function of the integer resolved ambiguities. In
section 3.3, we describe the different properties of invariance
that the detectors exhibit. These properties are instrumen-
tal for understanding the performance of the AR-detector
in relation to that of the AF- and AK-detector. To evalu-
ate the performance of the AR-detector, we determine its
power function and show, by means of the earlier determined
orthogonal decomposition, how it is impacted by the different
components of a general model bias. For the need of a case-
by-case performance evaluation of the AR-detector, we also
provide a chi-square calculator-based simulation procedure
for computing the detection probabilities in dependence on
the assumed model biases. Several examples are provided
to illustrate the theory, and the contribution is finalized in
section 4 with a summary and conclusions.

The following notation is used throughout. We denote a
random variable/vector by means of an underscore; thus, x is
a random variable/vector, while x is not. E(x) andD(x) stand
for the expectation and dispersion of x , respectively, C(x, y)
for the covariance between x and y, and Np(μ, Q) denotes
a p-dimensional, normally distributed random vector, with
mean (expectation) μ and variance matrix (dispersion) Q.
R

p and Zp denote the p-dimensional spaces of real and inte-
ger numbers, respectively, and the range space of a matrix
M is denoted as R(M). The least-squares (LS) inverse
of a full column rank matrix M is denoted as M+ =
(MT Q−1

yy M)−1MT Q−1
yy , and the orthogonal projector onto

R(M) as PM = MM+. P⊥
M = I −PM is then the orthogonal

projector that projects orthogonally on the orthogonal com-
plement ofR(M). The Q-weighted squared norm is denoted
as ||.||2Q = (.)T Q−1(.). P[A] denotes the probability of event
A, fx (x) the probability density function (PDF) of the con-
tinuous random vector x and P[ǎ = z] the probability mass
function (PMF) of the integer random vector ǎ. The noncen-
tral chi-square distribution with p degrees of freedom and
noncentrality parameter λ is denoted as χ2(p, λ) and its α-
percentage critical value as χ2

α(p, 0).

2 Current GNSS detectors

2.1 Themixed-integer GNSSmodel

The linear(ized) model of mixed-integer GNSS observation
equations is given as,

H0 : E(y) = Aa + Bb ; a ∈ Z
n, b ∈ R

p (1)

Strang and Borre (1997); Leick et al. (2015); Teunissen and
Montenbruck (2017), with the vector of observables y ∈ R

m

containing the carrier-phase and pseudorange data, [A, B] ∈
R
m×(n+p) being the given design matrix of full column rank,

a ∈ Z
n the unknown integer carrier-phase ambiguities, and

b ∈ R
p the unknown real-valuedparameters, such as position

coordinates, atmosphere parameters, receiver and satellite
clock parameters and instrumental biases. The distribution
of the observables is assumed as y ∼ Nm(E(y), Qyy), with
Qyy the given variance matrix of the observed pseudoranges
and carrier phases.

The solution to (1) is usually obtained through the follow-
ing three steps:

Step 1: First the integerness of the ambiguities is discarded.
Applicationof theQyy-weighted least-squares (LS) principle
provides then the solution, together with its vc-matrix, as

[
â

b̂

]
=

[
Ā+y
B̄+y

]
,

[
Qââ Qâb̂

Qb̂â Qb̂b̂

]
(2)

with Ā = P⊥
B A and B̄ = P⊥

A B. This solution is referred to
as the ambiguity float solution.

Step 2: Then, an admissible integer map I : Rn �→ Z
n is

chosen to compute the integer ambiguity vector as

ǎ = I(â) (3)

The integer map is admissible when its pull-in regions Pz =
{x ∈ R

n| I(x) = z}, z ∈ Z
n , cover Rn , while being dis-

joint and integer translational invariant (Teunissen 2000).
Some popular choices for I are integer rounding (IR), integer
bootstrapping (IB), or integer least-squares (ILS). Teunis-
sen (1999a) has shown that these estimators can be ordered
in terms of their ambiguity success rates (i.e. probability of
correct integer estimation) as

P[ǎIR = a] ≤ P[ǎIB = a] ≤ P[ǎILS = a] (4)
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Step 3: Once the integer ambiguity solution is obtained, the
float baseline solution of the first step is corrected, so as to
obtain the ambiguity-resolved baseline solution as

b̌ = b̂ − Qb̂â Q
−1
ââ (â − ǎ) (5)

This solution is referred to as the ambiguity fixed baseline
solution. To obtain a precise fixed baseline solution, one
needs to resolve the ambiguitieswith a very high success rate.
When the success rate is high enough, one may neglect the
uncertainty in ǎ and describe the uncertainty in b̌ by means
of the PDF of b̂(a). This is made precise by the following
bounds of Teunissen (1999b),

P[b̂(a) ∈ Ω]P[ǎ = a] ≤ P[b̌ ∈ Ω] ≤ P[b̂(a) ∈ Ω]

which hold true for any convex region Ω ⊂ R
p centred

at E(b̂). Thus, when the success rate is close enough to 1,
then P[b̌ ∈ Ω] ≈ P[b̂(a) ∈ Ω], which in case of GNSS,
due to the very precise carrier-phase data, is usually a much
larger probability than that obtained from the float-solution
b̂, P[b̂(a) ∈ Ω] 
 P[b̂ ∈ Ω]. Thus, very high ambiguity
success rates are needed in order to achieve precise baseline
estimation, i.e.

P[b̌ ∈ Ω] 
 P[b̂ ∈ Ω] (6)

In this contribution, we will show, however, that this is not
necessarily so if one wants to exploit the integerness of the
ambiguities for model validation.

Although we will be working in the following with the
batch formulation (1), we remark that the presented theory
applies equally well to the validation of models underlying
recursive estimation, such as recursive least-squares estima-
tion and/or Kalman filtering, see, for example, Teunissen
and Salzmann (1989); Teunissen and Montenbruck (2017).
Hence, in analogy with ambiguity resolution-based Kalman
filtering, the ambiguity-resolved detector can also be used in
real-time applications.

2.2 The AF and AK detector

The twodetectors that are commonly used for the detection of
model misspecifications in (1) are the ambiguity-float (AF)
detector and the ambiguity-known (AK) detector. They are
based on assuming the integer ambiguity vector to be either
an unknown real-valued vector or a given known vector. They
are defined as follows.

Definition 1 (AF- and AK-detectors) With the distribution
of the Qyy-weighted squared norms of the two least-squares

residual vectors, ê = P⊥[A,B]y and ê(a) = P⊥
B (y−Aa), given

under the null hypothesis (1) as

||ê||2Qyy

H0∼ χ2(r , 0), r = m − (n + p)

||ê(a)||2Qyy

H0∼ χ2(r(a), 0), r(a) = m − p
(7)

the two detector tests read:

AF : Accept H0 if ||ê||2Qyy
≤ χ2

α(r , 0)

AK : Accept H0 if ||ê(a)||2Qyy
≤ χ2

α(r(a), 0)
(8)

or reject the null hypothesis otherwise. �
In order to compare the two detectors, we first establish their
relationship by means of the geometry of orthogonal pro-
jectors. As P[A,B] = PĀ + PB , with Ā = P⊥

B A, we have

P⊥
B = P⊥[A,B] + PĀ (9)

from which the relation between the two residual vectors
follows as ê(a) = ê + PĀ(y − Aa), giving for their Qyy-

weighted squared norms, the decomposition ||ê(a)||2Qyy
=

||ê||2Qyy
+ ||PĀ(y − Aa)||2Qyy

. The last term of this decom-
position can be further expressed in the ambiguity residual
ε̂(a) = â − a as ||PĀ(y − Aa)||2Qyy

= ||â − a||2Qââ
. This

follows from using PĀ = Ā Ā+, Ā+y = â and Qââ =
( ĀT Q−1

yy Ā)−1. Hence, this establishes the following relation
between the two detectors.

Lemma 1 (AK-AF Pythagorean relation) The AF- and AK-
detectors are linked through the Pythagorean relation

||ê(a)||2Qyy
= ||ê||2Qyy

+ ||ε̂(a)||2Qââ
(10)

in which ||ε̂(a)||2Qââ
= ||â − a||2Qââ

. �

Another important property that follows from the orthogo-
nality êT Q−1

yy Ā = 0 is that the two terms on the right-hand
side of (10) are independent. The relation (10) is very useful
for comparing the two detectors and for visualizing the rela-
tionship between their respective acceptance regions. The
acceptance regions of the two detector tests are given as

AAF = {x ∈ R
+
0 |x = ||ê||2Qyy

≤ χ2
α(r , 0)}

AAK = {z ∈ R
+
0 |z = ||ê(a)||2Qyy

≤ χ2
α(r(a), 0)} (11)

For the purpose of a geometric comparison, the acceptance
regions of the AF-detector and the AK-detector are shown
in a two-dimensional fashion in Fig. 1. Note, in order for the
two detectors to have the same false-alarm probabilities, the
critical value of the AK-detector has to be larger than that of
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Fig. 1 AF- and AK-acceptance regions: (a) AAF = {x, y ∈ R
+
0 | x = ||ê||2Qyy

≤ x1 = χ2
α(r , 0)}; (b) AAK = {x, y ∈ R

+
0 | z = ||ê(a)||2Qyy

=
x + y ≤ z1 = χ2

α(r(a), 0)}, with x = ||ê||2Qyy
, y = ||ε̂(a)||2Qââ

; and (c) difference of AAF and AAK

the AF-detector, χ2
α(r(a), 0) > χ2

α(r , 0). Would this not be
the case, the AK-acceptance region would become a subset
of the AF-acceptance region, AAK ⊂ AAF, and thus always
have a smaller false-alarm probability.

When we compareAAK withAAF, we note thatAAK has
a surplus-region when χ2

α(r , 0) ≤ ||ê||2Qyy
≤ χ2

α(r(a), 0)
(indicated as 1 in Fig. 1c) and a deficit-region when
||ê||2Qyy

≤ χ2
α(r , 0) (indicated as 2 in Fig. 1c). The con-

sequence of the surplus-region 1 is that for small y =
||ε̂(a)||2Qââ

, larger values of ||ê||2Qyy
will be accepted with

the AK-detector than otherwise would be the case with AF-
detector. Modelling errors that hardly affect ||ε̂(a)||2Qââ

will
therefore be rejected less often by theAK-detector than by the
AF-detector. The consequence of the deficit-region 2 , on the
other hand, is that it eliminates the lack of sensitivity of the
AF-detector for modelling errors affecting y = ||ε̂(a)||2Qââ

.
Hence, one could say that the presence of 1 is the price the
AK-detector has to pay for being sensitive for 2 .

2.3 Comparing AF and AK detectability

In order to be able to compare the performance of the AF-
detector with the AK-detector further, the following general
alternative hypothesis is used,

Ha : E(y) = Aa + Bb + Cc ; c ∈ R
q (12)

wherebymatrix [A, B,C] ∈ R
m×(n+p+q) is assumed to be of

full column rank. Thus, underHa , the mean of y is assumed
shifted byCc, E(y|Ha) = E(y|H0)+Cc. Such shifts allowus
to model various important GNSS model misspecifications.
For instance, through the choice of C in Cc one may model
the presence of one or more outliers in the pseudorange data,
or cycle slips in the phase data, or the presence of neglected
atmospheric effects, or in fact any other systematic effect that

one failed to take into account under the null hypothesisH0

(cf. 1).
Under the alternative hypothesis (12), the two detectors

and their difference are noncentral chi-square distributed as

||ê||2Qyy

Ha∼ χ2(r , λê)

||ê(a)||2Qyy

Ha∼ χ2(r(a), λê(a))

||ε̂(a)||2Qââ

Ha∼ χ2(n, λε̂(a))

(13)

with noncentrality parameters

λê = ||P⊥[A,B]Cc||2Qyy

λê(a) = ||P⊥
B Cc||2Qyy

λε̂(a) = ||PĀCc||2Qyy

(14)

These distributional results can now be used to determine the
power functions or detection probabilities of the two detec-
tors. We have

P[||ê||2Qyy
> χ2

α(r , 0)|Ha] = γAF

P[||ê(a)||2Qyy
> χ2

α(r(a), 0)|Ha] = γAK
(15)

They depend on the user-chosen false-alarm rateα, themodel
redundancy, r or r(a), and through the noncentrality param-
eter, λê or λê(a), on the bias vector Cc. For the redundancies
(degrees of freedom) and noncentrality parameters of the two
detectors, we have the relations

r(a) = r + n and λê(a) = λê + λε̂(a) (16)

where the second expression follows from applying (9) to
(14). The AK-detector will have a larger power than the AF-
detector if γAK > γAF. Such is, however, not guaranteed
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Fig. 2 The orthogonal
decomposition R

m =
R( Ā) ⊕ R(B) ⊕ R(A, B)⊥,
with projections PĀCc and
P⊥
B Cc, giving

λε̂(a) = ||PĀCc||2Qyy
and

λê(a) = ||P⊥
B Cc||2Qyy

, where
λê = λê(a) − λε̂(a) =
||P⊥[A,B]Cc||2Qyy

in general, since the AK-detector has not only a larger non-
centrality parameter, but also larger degrees of freedom. The
increase in degrees of freedom increases the variability of
||ê(a)||2Qyy

, thus requiring a larger critical value for the same

false-alarm probability, i.e. χ2
α(r(a), 0) > χ2

α(r , 0), since
r(a) > r , see also Fig. 1. This larger critical value reduces
the rejection region and therefore goes at the expense of an
increase in power. It is therefore the balance that is stricken
between the increase in critical value and the increase in non-
centrality parameter that determineswhether or not the power
increases for the particular alternative hypothesis considered.
For instance, knowing the ambiguity vector a will not help
to increase the power if λê = λê(a), while it certainly will
increase the power when λê = 0 and λê(a) �= 0. This latter
case suggests that the power will also increase if λê is small
and λê(a) sufficiently large.

To bemore specific, we need to know howmatrixC ofHa

(cf. 12) propagates through the projectors present in the non-
centrality parameters of (14). In order to do so, we specify
the components of C with respect to an orthogonal decom-
position of observation space Rm . The three subspaces that
make up this orthogonal decomposition areR( Ā),R(B) and
R(A, B)⊥. It is not difficult to verify that they are mutually
orthogonal and together form a direct sum of observation
space, Rm = R( Ā) ⊕ R(B) ⊕ R(A, B)⊥, see Fig. 2. From
the geometry of the figure, conclusions about the following
extreme cases can be directly made:

Improved detectability The AF-detector will have zero
detectability if λê = 0 (R(C) ⊂ R(A, B) = R( Ā, B))
and the AK-detector a nonzero detectability if λê(a) �= 0
(R(C) �⊂ R(B)). These conditions are satisfied iff matrix C

is expressible as C = [A, B][XT ,Y T ]T for some matrices
X �= 0 and Y .

No improved detectability The AK-detector will not have
an improvement if λê = λê(a), i.e. if λε̂(a) = 0 (R(C) ⊂
R( Ā)⊥). This happens when matrix C is expressible as
C = [B, [A, B]⊥][XT ,Y T ]T for some matrices X and Y ,
whereby [A, B]⊥ is a basis matrix of R(A, B)⊥. If Y = 0,
then λê = λê(a) = 0.

2.4 The single-epoch GNSSmodel

To exemplify the detectability of the two detectors, we
consider the single-epoch, f -frequency, geometry-based m
double-differenced (DD) pseudorange, and carrier-phase
GNSS model under a general alternative hypothesis, see, for
example, Teunissen and Montenbruck (2017),

Ha : E
[
p
φ

]
=

[
0 G Cp

L G Cφ

]
↑
A

↑
B

↑
C

⎡
⎣a
b
c

⎤
⎦ , (17)

with D(p) = Qpp = σ 2
p Q, D(φ) = Qφφ = σ 2

φ Q and
C(p, φ) = 0. In (17), the pseudorange and carrier-phase data

are collected in p, φ ∈ R
f m , the f m integer DD ambigu-

ities in a ∈ Z
f m , the real-valued GNSS parameters, like

baseline components and possibly atmospheric delays, in
b ∈ R

p, and the hypothesized q model biases in c ∈ R
q .

The design matrices in (17) are: L = 
 ⊗ Im ∈ R
f m× f m ,

with 
 = diag(λ1, . . . , λ f ) and λi the wavelength of the i th
frequency; G = e f ⊗ G ∈ R

f m×p, with e f the f -vector
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of ones and G ∈ R
m×p the DD receiver-satellite geometry

matrix; andCp,Cφ ∈ R
f m×q the signaturematrices that link

the hypothesized model bias with the observables.
To be able to compare the detectability of the AF- and

AK-detector for the above GNSS model, we need to work
out the expressions for their noncentrality parameters.

Lemma 2 (AF-AKnoncentrality) For the single-epochGNSS
model (17), the noncentrality parameters of the AF- and AK-
detectors are given as

λê = ||P⊥
G Cpc||2Qpp

λê(a) = λê + ||P⊥
G Cφc||2Qφφ

+ ||PG (Cp−Cφ)c||2Qpp

1+σ 2
φ/σ 2

p

(18)

with projectors PG = G(GT Q−1
ppG)−1GT Q−1

pp and P⊥
G =

I − PG .

Proof See Appendix. ��
The structure of (18) can be understood as follows. Asmatrix
L of (17) is invertible, the phase data will not contribute to
any detectability in case the ambiguities are unknown. This
explains why the above λê does not depend on Cφ . For the
case the ambiguities are known, the phase data act as if they
are pseudorange data, resulting in a second term of λê(a) that
has a form similar to that of λê. The first two terms of the
above λê(a) describe therefore the detectability contributions
of the pseudorange and phase data for the case their baselines
would be uncoupled. But as their baselines are the same, an
additional detectability enters, which is described by the last
term of the above λê(a).

Note, when matrixG is invertible that (18) simplifies con-
siderably. Then, PG = I and P⊥

G = 0, thus giving

λê = 0

λê(a) = ||(Cp−Cφ)c||2Qpp

1+σ 2
φ/σ 2

p

(19)

Hence, detection with the AF-detector is then impossible and
detectionwith theAK-detector is only possible forCp �= Cφ .
The case of matrix G being invertible happens in the single-
frequency case, when G is invertible, i.e. m = p.

For when G is not invertible, we now consider four dif-
ferent types of model biases and work out the expressions
for their noncentrality parameters. The four types considered
are: code-type (Cφ = 0), phase-type (Cp = 0), tropo-type
(Cp = Cφ) and iono-type (Cp = −Cφ):

Code-type (Cφ = 0): These are any model biases that only
affect the pseudoranges. They could, for instance, be a single
outlier in one of the DD pseudoranges, in which case q = 1
and Cp is a canonical unit vector having its 1 at the slot
of the suspected DD pseudorange, or multiple pseudorange
outliers, for instance, in the i th DD pseudorange of all f

Fig. 3 (Top) GPS skyplot with PRNs 2, 6, 9, 16, 17, 18. The star indi-
cates the symmetry axis of the cone determined by all PRNs excluding
PRN 9; after (Teunissen andMontenbruck (2017)), page 700; (Bottom)
AF- and AK-powercurves for outlier in PRN 9, with α = 0.05 and
σφ = σp/100

signals, in which case q = f and Cp = I f ⊗ ci , with ci
the i th canonical unit vector. With Cφ = 0, expressions (18)
specialize to

λê = ||P⊥
G Cpc||2Qpp

λê(a) = λê + ||PGCpc||2Qpp

1+σ 2
φ /σ 2

p
≈ ||Cpc||2Qpp

(20)

The last approximation follows from using the matrix iden-
tity Im = PG + P⊥

G and the GNSS-admitted assumption that
the carrier-phase observables are much more precise than
the pseudorange observables (σ 2

φ � σ 2
p). As a result we see

that both noncentrality parameters of (20) are driven by the
pseudorange precision σ 2

p and that λê(a) has become inde-
pendent of the receiver-satellite geometry matrix G. Hence,
in contrast to the AF-detector, the AK-detector will be able
to detect model biases for which R(Cp) ⊂ R(G).

An example of the significant impact that knowing the
ambiguity vector has on testing is shown in Fig. 3 for a
single-epoch, single-frequency GNSS model. The poor per-
formance of the pseudorange drivenAF-detector is due to the
fact that all receiver-satellite direction vectors, except that of

123



The ambiguity-resolved detector: a... Page 7 of 16    83 

PRN 9, approximately lie on a common cone, the symmetry
axis of which is indicated with a star in the skyplot. This
is further explained in Teunissen and Montenbruck (2017),
page 700.

Phase-type (Cp = 0): These are any model biases that only
affect the carrier phases. They could, for instance, be single
or multiple cycle slips in the phase data, unmodelled instru-
mental phase delays, or, in case of PPP-RTK, outliers in the
provided phase-biases (Duan et al. 2024). With Cp = 0,
expressions (18) specialize to

λê = 0

λê(a) = λê + ||P⊥
G Cφc||2Qφφ

+ ||PGCφc||2Qpp

1+σ 2
φ/σ 2

p

≈
{ ||Cφc||2Qpp

if R(Cφ) ⊂ R(G)

||P⊥
G Cφc||2Qφφ

otherwise

(21)

That λê = 0 follows of course from the fact that, in the
single-epoch case, the carrier-phase observation equations
have, through their unknown ambiguities, as many unlinked
parameters as equations. Hence, the presence of any addi-
tional unlinked parameters, such as those of the phase model
biases, will remain undetected. This situation changes in case
the ambiguities are known. The detectability will then gener-
ally be driven by the very precise carrier-phase data, unless
R(Cφ) ⊂ R(G), in which case it is driven by the poorer
pseudorange precision. The conclusion reads therefore that
for phase-type model biases, knowledge of the ambiguities
turns the AF-undetectability in a very strong AK detectabil-
ity.

Tropo-type (Cp = Cφ = Cτ ): These are any model biases
that affect the pseudoranges and the carrier phases in an
identical way. If assumed absent under H0, these could, for
instance, be the tropospheric delays. Would one model the
wet zenith tropospheric delay by means of mapping func-
tions, then q = 1 and Cτ = e f ⊗ cτ , with cτ being the
m-vector of differenced mapping functions and e f the f -
vector of ones. Would one include horizontal tropospheric
gradients as well, then q = 3 and cτ becomes an m × 3
matrix. With Cp = Cφ = Cτ , expressions (18) specialize to

λê = ||P⊥
G Cτ c||2Qpp

λê(a) = λê + ||P⊥
G Cτ c||2Qφφ

=
{
0 if R(Cτ ) ⊂ R(G)

≈ ||P⊥
G Cτ c||2Qφφ

otherwise (22)

This shows that we generally see an improvement by a large
factorσ 2

p/σ
2
φ when changing from theAF-detector to theAK-

detector. This improvement is only absent when R(Cτ ) ⊂
R(G), in which case both noncentrality parameters are equal

Fig. 4 AK- and AF-power function curves for ionosphere detection as
function of iono-delay in TEC units, for different false-alarm probabil-
ities (levels of significance α), based on a single-epoch, dual-frequency
L1/L5 GPS model, with σp = 50cm and σφ = 5mm

to zero, λê = λê(a) = 0. However, note that tropo-type biases
will never be detectable, i.e. not by the AF-detector and not
by the AK-detector, in case G is invertible (cf. 19).

Iono-type (Cp = −Cφ = Cι): These are any model biases
that affect the pseudoranges and the carrier phases in the
same, but oppositely signed, way. If assumed absent under
H0, these could, for instance, be the ionospheric delays.With
Cp = −Cφ = Cι, expressions (18) specialize to

λê = ||P⊥
G Cιc||2Qpp

λê(a) = λê + ||P⊥
G Cιc||2Qφφ

+ 4||PGCιc||2Qpp

1+σ 2
φ/σ 2

p

≈
{
4||Cιc||2Qpp

if R(Cι) ⊂ R(G)

||P⊥
G Cιc||2Qφφ

otherwise

(23)

As with the tropo-type biases, we see again an improvement
by the large factor σ 2

p/σ
2
φ when changing from the AF-

detector to the AK-detector. Different from the tropo-type
case is, however, that the AK-detector now still has, in con-
trast to the AF-detector, detectability whenR(Cι) ⊂ R(G).
Also, note that for Cτ = Cι, λê(a)(iono) − λê(a)(tropo) =
4||PGCτ c||2Qpp
1+σ 2

φ /σ 2
p

≥ 0.

To illustrate the difference between ionosphere AF and
AKdetectability, Fig. 4 showsa single-epoch, dual-frequency
L1/L5 GPS example. This result clearly demonstrates the
huge impact of the improvement-factor σ 2

p/σ
2
φ , when chang-

ing from the AF-detector to the AK-detector.

3 The ambiguity-resolved detector

3.1 Definition of AR-detector test

Strictly speaking, one cannot apply the AK test in case of
GNSS. Although the ambiguities are known to be integer,
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Fig. 5 Contour lines of the joint PDF underH0 of (a) x = ||ê||2Qyy
and

y = ||ε̂(a)||2Qââ
, and (b) x = ||ê||2Qyy

and y = ||ε̌||2Qââ
= ||ε̂(ǎ)||2Qââ

,
with ymax = 18.4. The two red-dashed lines are the critical value lines
corresponding to a false-alarm probability α = 0.05, giving the critical

values z = 22.36 for (a) and z = 19.32 for (b). The results are based
on a single-epoch, dual-frequency L1/L5 GPS model, having an ILS
success rate of P[ǎILS = a] = 62%, with #Sat = 5, r = 5, r(a) = 13,
n = 8, σp = 0.5 and σφ = 5mm

they are still unknown. When the AK test is currently used
in practice, the typical approach is to replace a by its integer
estimate ǎ, thereby treating as if it is the known ambiguity
value. By replacing a in (8) by ǎ, the test becomes

AK : Reject H0 if ||ê(ǎ)||2Qyy
> χ2

α(r(a), 0) (24)

Due to the randomness of ǎ, however, this is now not the cor-
rect way of performing the test. It would only be correct if the
ambiguity success rate, i.e. the probability of correct integer
estimation P[ǎ = a], is sufficiently close to 1, thus allowing
one to neglect the uncertainty in the integer estimator ǎ and
treating ||ê(ǎ)||2Qyy

to be distributed underH0 asχ2(r(a), 0).
The first such application of the AK test, also in combination
with the AF test, can be found in Chapter 8 of Teunissen and
Kleusberg (1998). In the current contribution, however, we
will do away with the restriction of the success rate being
1 and develop the corresponding ambiguity-resolved (AR)
detector. The important practical advantage of releasing the
restriction on the ambiguity success rate is that we will be
able to perform an improved detection also for models for
which the success rate may not be sufficiently close to 1. In
doing so, we enable integer ambiguity resolution to serve two
separate goals, namely (a) the goal of most precise param-
eter estimation for which the success rate has to be close to
1, and (b) the goal of improved model validation for which
the success rate is not always required to be close to 1. The
ambiguity-resolved detector is defined as follows.

Definition 2 (AR-Detector) Let ǎ = I(â), I : Rn �→ Z
n , be

an admissible integer estimator of the mean of â
H0∼ Nn(a ∈

Z
n, Qââ), and let ε̌ = ε̂(ǎ) = â − ǎ be its corresponding

ambiguity-residual vector. Then, the AR-detector test reads:

Reject H0 if ||ě||2Qyy
= ||ê||2Qyy

+ ||ε̌||2Qââ
> kα (25)

and accept otherwise, with the critical value kα provid-
ing the probability of false alarm (or level of significance)
P[||ě||2Qyy

> kα|H0] = α. �
To make an illustrative comparison between the AR-

detector and the AK-detector, Fig. 5 shows an example of
their acceptance regions and the contour lines of the joint
PDF under H0 of ||ê||2Qyy

and ||ε̂(a)||2Qââ
(Fig. 5a), and the

joint PDF under H0 of ||ê||2Qyy
and ||ε̌||2Qââ

= ||ε̂(ǎ)||2Qââ
(Fig. 5b). Comparison of the contour lines of these two joint
PDFs shows that the one of Fig. 5b is somewhat compressed
along the vertical axis. This is also clear when one compares
the PDFs of ||ε̂(a)||2Qââ

and ||ε̌||2Qââ
, see Fig. 6(Top). As this

compression also affects the cumulative distribution func-
tion (CDF) of the AR-detector, it can be used to explain its
difference with that of the AK-detector. To do so, we first
write the CDFs of the two detectors in a form that facilitates
such comparison. As both ||ε̂(a)||2Qââ

and ||ε̌||2Qââ
are inde-

pendent of ||ê||2Qyy
, the PDFs of the two sums ||ê(a)||2Qyy

=
||ê||2Qyy

+ ||ε̂(a)||2Qââ
and ||ě||2Qyy

= ||ê||2Qyy
+ ||ε̌||2Qââ

can
be written as convolutions. As a result, their CDFs can be
written as an expectation of the CDF of the AF-detector,
FAF(x) = P[||ê||2Qyy

≤ x].We thereforemaywrite the CDFs
of the AK- and AR-detector as

FAK(x) = E||ε̂(a)||2Qââ
[FAF(x − ||ε̂(a)||2Qââ

)]
FAR(x) = E||ε̌||2Qââ

[FAF(x − ||ε̌||2Qââ
)], (26)
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thus showing that the difference between the AK- and
AR-CDF lies in the different weighting of the AF-CDF,
i.e. E||ε̂(a)||2Qââ

[.] versus E||ε̌||2Qââ
[.]. As the PDF inequality

f||ε̌||2Qââ
(y) ≥ f||ε̂(a)||2Qââ

(y) holds true for the smaller range

of y-values (cf. Figure6 (Top)), the CDF function values
FAF(x − y) get more weighted by f||ε̌||2Qââ

(y) when x − y

is closer to x then when it is much smaller than x . This
combined with the fact that the AF-CDF is a monotone
increasing function explains why in Fig. 6 (Bottom) the func-
tion values of the AR-CDF lie above those of the AK-CDF,
FAR(x) ≥ FAK(x).

3.2 AR-detector underH0

The difference between the AK- and AR-detector lies in the
replacement of ε̂(a) by ε̌ = ε̂(ǎ). Hence, to gain further
insight into the probabilistic properties of the AR-detector,
we need to know those of ε̌. The PDF of ε̌ was first given in
Teunissen (2002) as

fε̌ (x) =
∑
z∈Zn

exp{− 1
2 ||x + z||2Qââ

}
√|2πQââ |

s0(x) (27)

in which s0(x) is the indicator function of the integer estima-
tor’s pull-in region S0, i.e.

s0(x) =
{
1 if x ∈ S0
0 otherwise

(28)

The pull-in regions of IR, IB and ILS are given as,

S0,IR = {x ∈ R
n| |cTi x | ≤ 1

2 , i = 1, . . . , n}
S0,IB = {x ∈ R

n| |cTi L−1x | ≤ 1
2 , i = 1, . . . , n}

S0,ILS = {x ∈ R
n| |zT Q−1

ââ x | ≤ 1
2 ||z||2Qââ

,∀z ∈ Z
n}

in which L is the unit-triangular matrix of the triangular
decomposition Qââ = LDLT and ci denotes the canoni-
cal unit vector having a 1 as its ith entry and zeros otherwise,
see, for example, Chapter 23 of Teunissen and Montenbruck
(2017). In two dimensions, these pull-in regions are, respec-
tively, a unit square, a parallelogram and a hexagon. Figure7
shows a two-dimensional example of the contour lines of
fε̌ (x) for IR, IB and ILS, whereby the top row is for a
highly correlated â and the bottom row for its LAMBDA-
decorrelated form (Teunissen, 1995).

An important property of the ambiguity residual is that it is
always limited by its own pull-in region, ε̌ ∈ S0. This implies
that the squared weighted-norm of the ambiguity residual,
||ε̌||2Qââ

, is bounded. The largest value it can take is

ρ2 = max
x∈S0

||x ||2Qââ
(29)

Fig. 6 (Top)H0-PDFs of ||ε̌||2Qââ
and ||ε̂(a)||2Qââ

; (Bottom)H0-CDFs
of the AF-, AR- and AK-detector. The underlying model is a dual-
frequency GPS model having a 62% ambiguity success rate

Thus, ρ is the largest distance, in the metric of Qââ , that a
point in the pull-in region S0 can have to the origin. Alterna-
tively, ρ2 can be said to describe the smallest origin-centred
ellipsoid ||x ||2Qââ

= constant that covers the whole of S0.

For instance, ρ = 1
2

√
n, in case S0 is the unit-hypercube and

Qââ = In .
The boundedness of ||ε̌||2Qââ

(see Fig. 5b) implies that all
the probabilitymass of its distribution is confined to the inter-
val [0, ρ2], while that of the chi-square distributed ||ε̂(a)||2Qââ
is spread over [0,∞). This compression of the probability
mass to a smaller region, may lead, in dependence of its
spread, to a critical value that is smaller than the one of the
AK-detector, kα ≤ χ2

α(r(a), 0). This is certainly the case
when the AK-detector is computed with a being an integer
and theAR-detectorwith ǎ being the ILS ambiguity estimate,
since then ||ε̂(ǎ)||2Qââ

≤ ||ε̂(a)||2Qââ
, ∀a ∈ Z

n (see Fig. 5b).
Another important characteristic difference between the

AK-detector and AR-detector is that the PDF of the former
underH0 does not depend on the precision of the ambiguity
vector â (i.e. as it is χ2(r(a), 0)-distributed, it only depends
on the degrees of freedom r(a)), while the PDF of the latter
does. To see this, let Qââ = σ 2Q and consider the PDF of
1
σ
ε̌ in ||ε̌||2Qââ

= || 1
σ
ε̌||2Q . Since f 1

σ
ε̌
(x) = σ fε̌ (σ x), we

have according to (27),

f 1
σ

ε̌
(x) =

∑
z∈Zn

exp{− 1
2 ||x + z

σ
||2Q}

√|2πQ| s0(σ x) (30)
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Fig. 7 Contour lines of PDFs of â and ε̌ for three different integer estimators (IR, IB, ILS), when ambiguities are in double-differenced form (top
row) and LAMBDA-decorrelated form (bottom row), after (Teunissen and Verhagen 2023)

with

s0(σ x) =
{
1 if x ∈ 1

σ
S0

0 otherwise
(31)

thus showing that the PDF of 1
σ
ε̌, and therefore that of

|| 1
σ
ε̌||2Q still depends on σ .

This dependence on σ also implies that ||ε̌||2Qââ
has quite

different PDFs when σ of Qââ = σ 2Q varies, and in par-
ticular when it goes to zero or to infinity. When σ goes to
zero, the pull-in region (31) increases in size to cover the
whole of Rn , while the influence of the nonzero integers
in the sum of (30) disappears. Therefore, lim

σ→0
f 1
σ

ε̌
(x) =

Nn(0, Q) and lim
σ→0

f|| 1
σ

ε̌||2Q
(x) = χ2(n, 0), thus showing

that lim
σ→0

f||ε̌||2Qââ
(x) = χ2(r(a), 0) Hence, the more pre-

cise the ambiguities become, the more the AR-detector will
behave like the AK-detector. On the other hand, when σ

goes to infinity, the pull-in region (31) reduces to a sin-
gle point, the origin, over which all probability masses
get concentrated, thus turning the density function into an
impulse function. Therefore we have, lim

σ→∞ f 1
σ

ε̌
(x) = δ(x)

and lim
σ→∞ f||ε̌||2Qââ

(x) = δ(x), which upon substitution into

FAR(x) = E||ε̌||2Qââ
[FAF(x − ||ε̌||2Qââ

)] (cf. 26) shows that
when ambiguities get less precise, in the limit FAR(x) =
FAF(x), i.e. the AR-detector will then behave like the AF-
detector.

3.3 On the invariance of the AR-detector

We have seen that the AF-detector is incapable of detect-
ing model biases Cc when R(C) ⊂ R([A, B]). Similarly,
the AK-detector is incapable of detecting model biases when
R(C) ⊂ R(B). To determine a likewise invariance for the
AR-detector, we parametrize the model bias in y|Ha =
y|H0 + Cc as Cc = Āα + Bβ + [A, B]⊥γ and infer

for which of its components the AR-detector ||ě||2Qyy
=

||ê||2Qyy
+ ||ε̌||2Qââ

remains invariant (note: the here used
parametrization in vectors α and γ should not be confused
with the used notation for level of significance (α) and power
(γ )). As ||ê||2Qyy

is invariant for Āα+ Bβ, and ε̌ = â−I(â),

with â = Ā+y, is invariant for Bβ, we only need to con-
sider whether ε̌ = â − I(â) has an additional invariance for
certain biases Āα. This indeed is the case. From the integer
equivariance I(x + z) = I(x) + z, ∀z ∈ Z

n , it follows
that Ā+(y|H0 + Āα) − I( Ā+(y|H0 + Āα)) is invariant for
any integer vector α. The conclusion reads therefore that
in the comparison with the AK-detector, the AR-detector
exhibits an important additional invariance. The invariance
of the three detectors can therefore be summarized as follows:

Lemma 3 (Invariance of AF-, AK-, AR-detector) Let the
model bias Cc perturb the observational vector as y|Ha =
y|H0 +Cc. Then, the detectors exhibit the following invari-
ance under this perturbation:
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AF invariant for Cc = Āα + Bβ,∀α ∈ R
n, β ∈ R

p

AK invariant for Cc = Bβ,∀β ∈ R
p

AR invariant for Cc = Āz + Bβ,∀z ∈ Z
n, β ∈ R

p
(32)

�
Note although the AF-invariance looks similar to the AR-
invariance, that the former extends to a complete (n +
p)-dimensional linear space R( Ā, B), while that of the lat-
ter is confined to p-dimensional parallel spaces, obtained by
translation over all grid points Āz, z ∈ Z, i.e. Āz + R(B).
Thus, if Āz forms a dense grid in R

m , one can expect
the AR-invariance to be similar to the AF-invariance. Their
invariance will significantly differ, however, when the grid
is sparse, in which case the AR-invariance will more closely
resemble that of the AK-invariance. A scalar measure of the
denseness of Āz, z ∈ Z, is provided by the ambiguity dilution
of precision (ADOP) (Teunissen 1997),

ADOP = | ĀT Q−1
yy Ā|− 1

2n (cycle) (33)

The smaller the ADOP, the less dense the grid spacing of Āz
is in relation to the metric Q−1

yy of observation space.
To illustrate the fundamental difference between the two

different types of invariance of the AF- and AR-detector, the
following example describes a case for which the bias is not
detectable with the AF-detector, but is detectable with the
AR-detector, except for certain special discrete bias values.

Example (Code-bias in geometry-freemodel):Asnull hypoth-
esis we consider the single-epoch, f -frequency, short base-
line geometry-free DD model

E
[
p
φ

]
=

[
0 e f


 e f

]
↑
A

↑
B

[
a
ρ

]
, D

[
p
φ

]
=

[
σ 2
p I f 0
0 σ 2

φ I f

]
(34)

with p, φ ∈ R
f theDDpseudorange and carrier-phase obser-

vational vectors, a ∈ Z
f the unknown integer ambiguity

vector,ρ ∈ R the unknownDDrange,
 = diag[λ1, . . . , λ f ]
the diagonal matrix of f wavelengths and e f = [1, . . . , 1]T
the f -vector of ones. If we now assume that under the alter-
native hypothesis all pseudoranges are biased with the same
bias, then

Cc =
[
e f

0

]
c (35)

Such bias is detectable with the AK-detector, i.e. when the
ambiguity vector a is assumed known. However, since (35)
is linear dependent on the f +1 column vectors of the design
matrix of (34), i.e.

[
0 e f e f


 e f 0

] ⎡
⎣−
−1e f

−1
1

⎤
⎦ =

[
0
0

]
(36)

the bias (35) is not detectable with the AF-detector. To find
out under what circumstances the bias is detectable with the
AR-detector, we need to solve the equation Cc = Āα + Bβ

and infer for what values of c the solution α is integer. For
model (34), we have

Ā = P⊥
B A =

[ − 1
1+ε

Pe f
I f − 1

1+ε
Pe f

]

 , B =

[
e f

e f

]
(37)

with projector Pe f = e f (eTf e f )
−1eTf and phase-code vari-

ance ratio ε = σ 2
φ/σ 2

p . From solving the equation Cc =
Āα + Bβ, it follows that α is integer if and only if

c = λ1z1 = λ2z2 = . . . = λ f z f (38)

for some zi ∈ Z, i = 1, . . . , f . The conclusion reads
therefore that in contrast to the AF-detector, the bias (35)
is detectable with the AR-detector, except in the very spe-
cial cases when the bias equals an integer multiple of the
wavelengths. Thus in the single-frequency case, the small-
est bias for which this would happen would be c = ±λ1.
This value rapidly increases when more frequencies are
used. In the dual-frequency GPS case, for instance, where
λ2/λ1 = 77/60, the smallest bias for which no AR-detection
would be possible is already c = ±77λ1. �

A consequence of the above identified invariance of the
AR-detector is that it impacts the behaviour of its power
function. To see this, we make use of the independence of
x = ||ê||2Qyy

and ||ε̂(ǎ)||2Qââ
, and of the continuous version

of the total probability rule, to write the AR-power function
as

γAR =P[||ê||2Qyy
+ ||ε̂(ǎ)||2Qââ

> kα|Ha]
=

∫
P[||ε̂(ǎ)||2Qââ

> kα(x)|Ha] fx (x |Ha)dx (39)

in which kα(x) = kα − x . This shows that the power γAR
can be interpreted as being the expectation of the follow-
ing function of the noncentral chi-square distributed random
variable x = ||ê||2Qyy

: P[||ε̂(ǎ)||2Qââ
> kα(x)|Ha]. The

impact of the model bias Cc for which the AF-detector
is sensitive, is captured in the noncentral chi-square PDF
fx (x |Ha), while the additional bias sensitivity of the AR-
detector, namely Ā+Cc /∈ Z

n , is captured by the probability
function inside the integral of (39). With the z-centred ellip-
soid Ez = {u ∈ R

n|||u − z||2Qââ
≤ kα(x)} and the z-centred

pull-in region Sz = {u ∈ R
n|z = I(u)} of the integer estima-

tor used, the complement of this probability can be worked
out to give
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Fig. 8 Three different model bias lines, Ā+C1c ∈ R
2, Ā+C2c ∈ R

2

and Ā+C3c ∈ R
2, with 2D integer grid Z2, showing pull-in regions Sz

as unit squares and Ez ⊂ Sz as circular regions. The model bias lines
Ā+C1c ∈ R

2 and Ā+C2c ∈ R
2 both pass through integer grid points

(e.g. [1, 1]T z and [2, 1]T z, z ∈ Z), while model bias line Ā+C3c ∈ R
2

does not

P[||ε̂(ǎ)||2Qââ
≤ kα(x)|Ha] =

(1)= ∑
z∈Zn

P[||ε̂(z)||2Qââ
≤ kα(x), â ∈ Sz |Ha]

(2)= ∑
z∈Zn

P[||â − z||2Qââ
≤ kα(x), â ∈ Sz |Ha]

(3)= ∑
z∈Zn

P[â ∈ Ez ∩ Sz |Ha]
(4)= ∑

z∈Zn
P[â + Ā+Cc ∈ Ez ∩ Sz |H0]

(40)

Step (1) follows from using the property that pull-in regions
cover the complete space R

n without gaps and overlaps,
while step (2) uses the equivalence â ∈ Sz ⇔ ǎ = z, and
step (3) formulates the overlap of the z-centred ellipsoid and
pull-in region as an intersection. Finally, step (4) makes use
of the property that if the alternative hypothesis is true, the
float ambiguity estimator computed under the null hypothesis
is biased by Ā+Cc.

To provide a qualitative description of how the above prob-
ability (40) depends on the model bias, Fig. 8 illustrates a
2D example with three different model bias lines, Ā+C1c,
Ā+C2c and Ā+C3c. For simplicity, we assumed the ambigu-
ity variance matrix to be a scaled unit-matrix, thus resulting
in pull-in regions Sz being unit squares and the ellipsoids
Ez being circular regions. Note that the lines Ā+C1c and
Ā+C2c pass through integer grid points [1, 1]T z and [2, 1]T z,
for z ∈ Z, while the third line Ā+C3c does not pass through
integer grid points. The value of the probability (40) depends
now on where the H0-PDF of â is centred along those bias
lines.

Probability (40) is largestwhen theH0-PDFof â is centred
at the origin. Would it then move away from the origin and

pass over the model bias line Ā+C1c, the probability would
in the beginning decrease, then reach its minimum when the
centre of the PDF has equal distances to the four nearest grid
points, after which the probability increases again until the
centre of the PDF is again over an integer grid point, in this
case [1, 1]T . As this same behaviour repeats when the centre
of the PDF continuous along the line Ā+C1c, the probability
(40) will show a periodic behaviour as function of increasing
c. Such periodic behaviour, with possibly different periods,
will occur for any bias line that passes through an integer
grid point. The bias line Ā+C2c, for instance, also passes
through integer grid points but which now are at a greater
distance from each other. Such periodic behaviour will not
occur when theH0-PDF of â moves along a bias line that has
no integer grid points on it, e.g. Ā+C3c of Fig. 8. But despite
this absence of periodicity, the probability will then still not
change in a monotonic manner when the centre of the PDF
moves away from the origin. Although the probability mass
of the PDF over E0 will decrease when moving away from
the origin, it may after a while again pick upmore probability
mass from some of the other Ez �=0.

As the above-described variable behaviour of probabil-
ity (40) propagates into the expectation integral of (39), the
AR-power function will not be a monotonic function. It will
fluctuate in dependence on how close the ambiguity bias
Ā+Cc is to an integer. The frequency and size of these fluc-
tuations is driven by the combined effect of the denseness of
the grid (i.e. the ADOP, cf. 33) and the size of the input bias c
with its impact on the noncentrality parameter of the weight-
ing function fx (x |Ha) (cf. 39). As the impact on the latter
will increase with increasing input bias, the fluctuations will
have the general tendency of dying out when c increases.

To illustrate the above findings and to compare the detec-
tion performance of the AR-detector with that of the AK-
and AF-detector, Fig. 9 shows the power function curves of
the three detectors for the same receiver-satellite geometry
of Fig. 4. Four different cases are shown: (a) dual-frequency
L1/L5 with σp = 50cm; (b) dual-frequency L1/L5 with
σp = 20cm; (c) triple-frequency L1/L2/L5with σp = 50cm;
and (d) triple-frequency L1/L2/L5 with σp = 20cm. In all
cases, the standard deviations are undifferenced values and
the phase standard deviation is σφ = 2mm. Thus, (a) and (c)
may represent a mass-market receiver, while (b) and (d) may
represent a geodetic receiver. The weakest model is that of
(a), while the strongest model is that of (d). In all cases, we
see how theAR-detector outperforms theAF-detector. This is
already the case with the weakest model (a) having an ambi-
guity success rate of only 88%. For instance, for c ≈ 20,
with α = 0.05, the power of the AR-detector is about 80%,
while that of the AF-detector is only 50%. This is thus a sit-
uation for which the model strength would not be enough to
perform integer ambiguity resolution for parameter estima-
tion, but good enough to get a better detection performance
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Fig. 9 AR-, AK- and AF-power function curves for ionosphere detec-
tion as function of iono-delay in TEC units, for a single-epoch GPS
model, with different false-alarm probabilities (levels of significance

α): (a) Dual-frequency L1/L5, σp = 50cm; (b) Dual-frequency L1/L5,
σp = 20cm; (c) Triple-frequency L1/L2/L5, σp = 50cm; and (d)
Triple-frequency L1/L2/L5, σp = 20cm

with the use of the ambiguity-resolved detector than with the
ambiguity-float detector.

For the weakest model (a), having the densest integer
grid, we also see clearly, as predicted, the rapid fluctuations
in the AR-power function, which die out for increasing c.
When the integer grid gets less dense, the fluctuations will
be less rapid. The detection power increases when the model
becomes stronger. This is clear for the mass-market receiver,
when an additional frequency is added, i.e. compare (a) with
(c). And it is also clear for the dual-frequency scenario, when
the pseudorange precision improves from σp = 50cm to
σp = 20cm, i.e. compare (a) with (b). Note the tremendous
increase in AR-detection power that this improvement in
pseudorange precision achieves (also note thereby the differ-
ence in horizontal scale). Except for a few cases, the realized
performance is almost that of what the AK-detector would
bring were it an operational detector. The occurrences, how-
ever, of these few cases, where the power suddenly drops in
value, are important to identify. As explained earlier, these

sudden drops happen when Ā+Cc gets close to an integer
vector (cf. Fig. 8). With I : Rn �→ Z

n being the ILS-map,
the distance of Ā+Cc to the nearest integer vector is given
by

D(c) = || Ā+Cc − I( Ā+Cc)||Qââ (41)

Thus, the smaller this distance, the larger one can expect the
drop in power to be. To illustrate this, we have chosen three
cases, c1 = 3.5 TECU, c2 = 4.5 TECU and c3 = 5.9 TECU,
identified in Fig. 9b by three red dots. Their distance to their
nearest integer vector was computed as D(c1) = 2.57 <

D(c2) = 5.44 < D(c3) = 9.19, thus indeed explaining
why the detection power in these three cases is so different.
It will be clear if one would be relying on the performance
description of the AK-detector that one would be getting a
very deceptive description of the detection power in these
cases. This is therefore another pitfall would one work with
the AK-detector statistics.
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3.4 On computing the AR-power function

In order to be able to evaluate the performance of the AR-
detector for any particular application, one needs an efficient
way to compute its power function. Our previous integral
expression (39), that we used to obtain a qualitative insight
into the behaviour of the power function, is, however, not
really suited for this task. Therefore, we make use of the
AR-CDF expression (26), which underHa can be written as

FAR(x |Ha) = Ey̌[FAF(x − y̌|Ha)] (42)

with y̌ = ||ε̌|Ha ||2Qââ
. The corresponding expression for the

power follows then as

γAR = 1 − FAR(kα|Ha)

= Ey̌[1 − FAF(kα − y̌|Ha)]
= Ey̌[P[χ2(r , λê) ≥ kα − y̌]

(43)

which, as the last expression shows, has the advantage that
a chi-square calculator can be used in its calculations. The
calculation and simulation steps that need to be followed
for the construction of an AR-power function can now be
summarized as follows:

1. First formulate the alternative hypothesis y
Ha∼ Nm(Aa+

Bb + Cc, Qyy), a ∈ Z
n , by specifying, through Cc, the

type of model bias one wants to consider.
2. Then, infer the impact this bias has on ||ê||2Qyy

and â.
This is done by computing the noncentrality parameter

λê = ||P⊥[A,B]Cc||2Qyy
of ||ê||2Qyy

Ha∼ χ2(r , λê) and the

ambiguity bias Ā+Cc in â
Ha∼ fâ(x |Ha) = Nm(a +

Ā+Cc, Qââ).
3. From aMonte Carlo simulation of N idd samples âi , i =

1, . . . , N , of the PDF fâ(x |Ha), the N corresponding
ambiguity-residual samples ε̌i = âi − ǎi are constructed.
Hereby the user needs tomake a choice which admissible
integer estimator to use. In case of the ILS-estimator, the
samples ǎi = argminz∈Zn ||âi − z||2Qââ

are computed by
means of the LAMBDA-method (Teunissen 1995). For
the choice of N , use is made of the accuracy assessment
method described in Morio and Balesdent (2015).

4. By using the chi-square calculator and approximating
the expectation of (43) with the numerical average of the
generated samples, the power is finally computed as

γAR := 1
N

N∑
i=1

P[χ2(r , λê) ≥ kα − ||ε̌i ||2Qââ
]

As the above procedure requires the critical value kα as input,
a separate prior simulation is carried out to determine kα

from the user-defined value of 1 − α = FAR(kα|H0) =
P[||ě||2Qââ

≤ kα|H0]. This entails executing a similar sim-

ulation as above, but now for ||ě||2Qââ
under H0. After the

samples ||ěi ||2Qââ
are put in ascending order, kα is taken as

the rounded value of the (1 − α)N th ordered sample.

4 Summary and conclusions

In this contribution, we introduced the ambiguity-resolved
(AR) detector and studied its characteristics. The AR-
detector is a new detector that lies in between the ambiguity-
float (AF) detector and the ambiguity-known (AK) detector.
The AF-detector treats the ambiguity vector as unknown,
while the AK-detector assumes the ambiguity vector to be
known completely. As the ambiguity vector can seldomly
be known completely, the AK-detector is not an operational
detector, thus implying that reliance on its properties will be
incorrect. The AR-detector resolves the shortcomings of the
AK-detector by treating the ambiguities as unknown integers.
As such, it is designed to work as the detector for mixed-
integer GNSS models.

To gain insight in the relative detection properties, we
first compared the detection capabilities of the AF- and
AK-detector. This was then further made explicit for the
mixed-integer GNSS model by developing expressions for
the noncentrality parameters of the detectors. This was done
in dependence of four different type of model biases (code-
type, phase-type, tropo-type and iono-type), thus revealing
under which circumstances which model biases would find
improved detection if the ambiguities would be known. As
such, these results provided a first indication of the improve-
ments one can expect to gain from the AR-detector.

Following the above analysis, we studied and compared
the distributional properties (PDF and CDF) of the AR-
and AK-detector. Special attention was hereby given to
the impact of the probability mass function of the integer
resolved ambiguities. An important aspect hereby concerns
the different properties of invariance that the detectors
exhibit. With [A, B] being the design matrix under the null
hypothesis, the AK-detector is only invariant for model
biases that reside in the range space of B. This is also true for
the AR-detector, except for the special case when the model
bias has a component coinciding with one of the grid points
Āz, z ∈ Z

n . For those special cases, it exhibits the same
invariance as theAF-detector. Thus, if Āz forms a sufficiently
sparse grid, one can expect theAR-detector to outperform the
commonly usedAF-detector and in the limit perform as good
as the AK-detector. We hereby emphasized that the require-
ment of having very high success rates, commonly needed
for ambiguity-resolved parameter estimation, can be relaxed
for detection, thus showing that improved model validation
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is also possible with smaller ambiguity success rates. For the
need of a case-by-case performance evaluation of the AR-
detector, we also described the characteristics of its power
function and provided a chi-square calculator-based simula-
tion procedure for computing its probabilities.

5 Appendix

Proof of Lemma 2 We first derive the required expression for
λê = ||P⊥[A,B]Cc||2Qyy

. As (cf. 17)

[A, B] :=
[
0 G
L G

]
(44)

and L is invertible, a basis matrix of the orthogonal comple-
ment of R([A, B]) is

[A, B]⊥ :=
[
G⊥
0

]
(45)

where GT Q−1
ppG

⊥ = 0. We therefore have

P⊥[A,B] :=
[
P⊥
G 0
0 0

]
(46)

from which it follows that

λê = ||P⊥[A,B]Cc||2Qyy
:= ||P⊥

G Cpc||2Qpp
(47)

We now derive λε̂(a) = ||PĀCc||2Qyy
. As the range space of

Ā is orthogonal to that of [B, [A, B]⊥] and a basis matrix of
the latter is

[
G G⊥
G 0

]
(48)

, a basis matrix of the range space of Ā is

Ā :=
[

G 0
− εG G⊥

]
(49)

with ε = σ 2
φ/σ 2

p (note: the above basis matrix should not be

confused with the matrix Ā itself). Substitution of (49) into
PĀ = Ā Ā+ gives

PĀ :=
[ 1

1+ε
PG − 1

1+ε
PG

− ε
1+ε

PG P⊥
G + ε

1+ε
PG

]
(50)

from which it follows, with the assumed stochastic model of
(17), that

λε̂(a) =||PĀCc||2Qyy

:=||P⊥
G Cφc||2Qφφ

+ ||PG (Cp−Cφ)c||2Qpp

1+σ 2
φ/σ 2

p
(51)

If we add this to λê, we obtain the sought for expression for
λê(a). �
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