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Abstract
The security of sensitive areas against adversarial threats is a critical concern, necessitating the devel-
opment of effective patrol strategies. This thesis addresses the problem of optimal patrolling in adver-
sarial scenarios through the formulation of an analytical method to calculate the interception probability
of a possible attacker in a graph-based patrolling game. By leveraging Markovian strategies, the re-
search provides a robust framework for efficiently calculating interception probabilities and proposes a
methodology to optimize patrol routes.

Firstly, the structure and modeling framework that is used in this thesis is set out. Subsequently, a prob-
abilistic, a recursive, and a matrix-product method are derived to calculate the interception probability.
This constitutes the core of this thesis. Lastly, the discussion is extended by applying the matrix-product
method to practical examples. Monte Carlo simulations are used to compare the performance of differ-
ent patrol strategies under varying conditions. The results illustrate how the developed methods enable
detailed performance analyses, showing that the effectiveness of patrol strategies can vary based on
the distribution of attack strategies.

Key findings highlight the impact of graph structure and attack strategy distributions on interception
probabilities, the scalability and practicality of the matrix product method to calculate the interception
probability, and the significant computational efficiency gained by using this approach. The research
also outlines several avenues for future work, including the exploration of heterogeneous environments,
optimization improvements, and multi-agent scenarios. Overall, this thesis contributes to the field of
patrolling games by offering enhanced methods to evaluate and optimize Markovian patrol strategies,
providing both theoretical methodologies and practical implementations that can be used to improve
security in adversarial settings.
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Glossary

𝐺 = (𝑉, 𝐸) The graph 𝐺 with vertices 𝑉 and edges 𝐸 on which the patrolling game is played.
A The adjacency matrix of graph 𝐺. So, 𝑎𝑖,𝑗 = 1 if graph G has an edge from vertex 𝑖 to

vertex 𝑗 and 𝑎𝑖,𝑗 = 0 otherwise.
𝑛 The number of vertices in 𝐺, i.e. 𝑛 = |𝑉|.
(𝑋𝑡)𝑡≥0 The discrete-time Markov chain underlying the Markov patrol.
Q The transition matrix corresponding to the Markov process (𝑋𝑡)𝑡≥0. The entries are

denoted as 𝑞𝑖,𝑗.
𝒫𝒫𝒫𝑛 The matrix containing the probabilities of visiting a state at least once in 𝑛 steps plus

the starting position. So, (𝑝𝑛)𝑖,𝑗 = ℙ(𝑋0 = 𝑗 ∪ … ∪ 𝑋𝑛 = 𝑗 | 𝑋0 = 𝑖).
I The identity matrix.
𝑑𝑝 The duration of the patrol in time steps. This includes the starting point, so a patrol

includes the starting point and 𝑑𝑝 − 1 movements.
𝑑𝑎 The duration of the attack in time steps. It is assumed that 1 ≤ 𝑑𝑎 ≤ 𝑑𝑝.
𝝒 The probability distribution over the starting positions of the patrol. So, 𝜘𝑖 = ℙ(𝑋0 = 𝑖).
Y ∈ ℝ𝑛×𝑑𝑝−𝑑𝑎+1 The attack probability distribution. So, 𝑦𝑣,𝑡 = ℙ(Attack on vertex 𝑣 starts at time 𝑡).
𝒰 The probability that an attack is intercepted for a given patrol strategy and a given

attack strategy defined on a graph 𝐺 for a certain 𝑑𝑎 and 𝑑𝑝.
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1
Introduction

“Defending for intentional threats has been a central and longstanding focus for governments through-
out the world”, as Hunt and Zhuang so aptly state [1]. Although cyberspace security has become
increasingly more important in recent years, physical security remains a crucial cornerstone of modern
societies. Nevertherless, it remains difficult, if not impossible, to guarantee infallible safety. In general,
there is too much to protect and too few resources to protect it with. Perhaps, if intelligence and se-
curity services could perfectly predict where and when each future attack would take place, the scarce
resources could be placed just right. Such accurate prediction, of course, is an impossible task. In
the case of patrolling, this means that not every part of the area of responsibility can be guarded at all
times. A mathematical model can provide insight into the optimal choice of patrolling strategy when the
ratio of resources to responsibilities is constrained.

In this paper, it is assumed that there are two adversarial parties and a single contained area of interest.
One side controls the area and wishes to protect it against the adversary. Meanwhile, the other party
seeks to either infiltrate or attack the same area. The problem is viewed from the perspective of the
defending side. Patrolling the area is a possible security measure. For example, Figure 1.1 shows a
graph representation of the 7th arrondissement of Paris, where the Eiffel Tower is located. This area
is frequently targeted by individuals with disruptive, and sometimes even destructive intentions. Yet,
without additional intelligence, it is unclear exactly when and where possible adversaries might want to
attack. The core question then is how an optimal patrol strategy can be found when the location and
time of the attack are unknown. In the literature, this is commonly referred to as a patrolling game.

Patrolling games have been extensively studied. In 2011, Alpern and Papadaki created a mathematical
framework for modeling patrolling games and provided some analytical solutions [2]. Their model uses
a graph representation of the environment with discrete time steps. Within this environment are a single
patroller and a single attacker. An attack has a fixed duration and location, and the attacker is free to
choose a place and time to attack. The attack fails if the patroller moves through the attack area while
the attack is underway and succeeds otherwise. However, Alpern and Papadaki only derive analyti-
cal intercept probabilities for very small instances of the problem, i.e. for graphs with only a few vertices.

Subsequent papers relaxed certain assumptions or simplifications made by Alpern and Papadaki. For
instance, Basilico et al. provide an algorithmic technique to find the optimal patrolling strategy for large
instances of a similar problem on an infinite timescale [3]. The infinite timescale means that the setup
differs slightly from that used in [2] and, in addition, Basilico et al. still conclude that finding optimal
mixed patrol strategies is computationally difficult and requires the use of reduction strategies. Both
[2] and [3] use discrete time steps. However, the timeframes used by the attacker and the patroller
need not be aligned. Therefore, in a 2022 paper by Alpern et al. the problem was generalized to in-
clude continuous time steps [4]. Subsequently, a 2013 paper by Lin et al. introduced heterogeneous
node values for the attacker [5]. An attack could be more impactful in certain places than in others,
so adding heterogeneous node values adds realism in that regard. Furthermore, the time required to
launch an attack might depend on the location. A 2019 paper by Yolmeh and Baykal-Gürsoy introduced
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Figure 1.1: Graph representation of the map of the 7th arrondissement of Paris, France.

node-dependent attack times to account for this [6]. A core difficulty of patrolling games that is often
mentioned in the literature, including the papers described above, is the size of the solution space for
the defender “given that she must consider all potential patrol routes and/or schedules” [1]. Finding
the probability of intercepting the attacker generally requires a probability distribution over all possible
patrols, which is exactly the bottleneck in this case. As mentioned above, Alpern et al. mitigate this
problem by only considering small, very specific instances of the problem [2].

In contrast, this thesis assesses whether the use of aMarkovian patrol strategy allows efficient analytical
calculation of the interception probability for large, general instances. In Chapter 3, three different
methodologies are derived that can be used to calculate the interception probability without having to
consider every possible patrol separately. In Chapter 4, it is then shown that the last methodology
derived in Section 3.3 is indeed efficient enough to optimize for and compare different patrol strategies
for large graph instances in limited time.



2
Model framework

As mentioned in the Introduction, the paper by Alpern et al. lays the
foundational structure for patrolling games [2]. Although subsequent
papers on the topic have generalized this structure, this thesis seeks
to approach the problem from an entirely different mathematical angle.
As such, the base structure is deemed the most appropriate for this
research. The setup is as follows: A patrolling game is played on a
graph 𝐺 = (𝑉, 𝐸) with vertices 𝑉 and edges 𝐸. The structure of this
graph is represented using the adjacency matrix A. Each game lasts
for 𝑑𝑝 time steps, which is the duration of a single patrol. Therefore,
a pure strategy for the patroller is a deterministic walk of 𝑑𝑝 − 1 steps
plus a starting point on the graph. The walk is not restricted in any way.
In other words, the patrol can start and end at any vertex in the graph
and may take any possible path consisting of 𝑑𝑝 time steps, which
may include staying at the same vertex for consecutive time steps or
returning to a vertex that has been visited before. Figure 2.1 shows
an example of a possible pure patrol strategy for 𝑑𝑝 = 5, where the
patroller starts at vertex 𝑥1. An attack takes 𝑑𝑎 time steps to complete
and is carried out in an unknown vertex 𝑣𝑎. If the patrol moves through
the vertex under attack while the attack takes place, the attack is
intercepted.

𝑥1 𝑥2

𝑥3

𝑥4

Figure 2.1: Example of a pure
patrol strategy for 𝑑𝑝 = 5.

A mixed strategy for the patroller is a probability distribution over all starting positions 𝑣 ∈ 𝑉 and all
possible walks of 𝑑𝑝 − 1 steps starting in 𝑣. Thus, a patrol always visits 𝑑𝑝, not necessarily unique,
vertices. A mixed strategy for the attacker is a probability distribution over all combinations of possible
attack nodes and attack times. The difficulty lies in the exponential nature of the space of patrolling
strategies. Suppose 𝐺 is complete. Then, at each time step, the patroller has |𝑉| possible steps she
can take. So, at worst, there are |𝑉|𝑑𝑝 possible paths the patroller can take.

For a given patrol and a given attack, it is easy to check whether the attack would be intercepted. There-
fore, for small instances, it is possible to directly find the interception probability at different vertices. As
mentioned above, the attack can be carried out at any vertex 𝑣 ∈ 𝑉. In addition, it is assumed that any
attack will start and end within the time span of a single patrol. That means that 𝑑𝑎 ≤ 𝑑𝑝, and for any 𝑑𝑎,
the attack may only start at times 𝑡 ∈ {0, … , 𝑑𝑝−𝑑𝑎}. The attack strategy space can thus be represented
as a set or ordered pairs 𝒜𝑑𝑝 ,𝑑𝑎 = {(𝑣, 𝑡) | 𝑣 ∈ 𝑉, 𝑡 ∈ {0, … , 𝑑𝑝 − 𝑑𝑎}} where ∑𝑎∈𝒜𝑑𝑝,𝑑𝑎 ℙ(𝑎) = 1. The
dependency of the attack strategy space on the attack duration 𝑑𝑎 and the patrol duration 𝑑𝑝 is clear
from context, so the double subscript will subsequently be omitted. The patrol space ℬ consists of all
possible walks on 𝐺 with a length of 𝑑𝑝, not necessarily unique, vertices. Suppose that 𝐴 is the random
variable that dictates which option the attacker selects, and 𝐵 is the random variable that determines
the specific patrol that is carried out. Then, the value of the game, 𝒰(𝐴, 𝐵), is defined as the probability
that the attack is intercepted for a given mixed patrol strategy and a given mixed attack strategy. In
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Equation (2.1), the dependence of 𝒰 on 𝐴 and 𝐵 is explicitly denoted. As the specific mixed strategies
for the patroller and the attacker can be deduced from the context in which 𝒰(𝐴, 𝐵) is used, it is used
interchangeably with 𝒰.

𝒰(𝐴, 𝐵) = ∑
𝑏∈ℬ

∑
𝑎∈𝒜

ℙ𝒜(𝐴 = 𝑎)ℙℬ(𝐵 = 𝑏)1{patrol 𝑏 intercepts attack 𝑎} (2.1)

The objective is to find a probability distribution for 𝐵 that achieves an optimal outcome for the patroller,
given a mixed attacker strategy 𝐴. In this case, which aspect of the game is optimized depends on the
specific situational context of the patroller. For example, shemight be willing to risk a large uncertainty in
the interception probability if the average value is high enough, or she might prefer a lower interception
probability with more certainty. These aspects will be formalized and illustrated in Chapter 4. The most
straightforward notion of optimality would be a mixed patroller strategy that maximizes 𝒰 for a given
mixed attacker strategy. Note that maximizing 𝒰 with respect to the mixed patroller strategy 𝐴 requires
an efficient calculation of this value 𝒰. However, as mentioned above, since the strategy space of the
patroller grows exponentially, this quickly becomes intractable when either the graph or the number of
time steps becomes too large. To alleviate this problem, the patrol is modeled as a Markov process in
this thesis. This was also one of the research directions proposed by Alpern et al. [2]. Modeling the
patrol as a Markov process means that, at every time step, the direction in which to continue the patrol
is determined stochastically based on the patroller’s current location alone. However, using a Markov
chain does not immediately improve the complexity of finding the intercept probability and, in exten-
sion, 𝒰. The naive method would be to iterate over all possible patrols, but this would not provide any
improvement, as the number of patrols increases exponentially in the patrol duration and the graph size.

The patrol is thus modeled as a Markov chain 𝑋 = (𝑋𝑘)𝑘≥0 on the discrete state space 𝑉, i.e. the
vertices of the graph. So, at each time step 𝑡, 𝑋𝑡 is a random variable whose realization 𝑥𝑡 determines
the vertex at which the patroller will be at time step 𝑡. The probability of taking each individual step is
determined by the time-homogeneous transition matrixQ. Without loss of generality, the vertices 𝑣 ∈ 𝑉
can be numbered {1, ..., |𝑉|}. Now, a Markov chain also requires a probability distribution for the starting
position, which is used in the next chapter. To that end, define:

Definition 2.0.1 (Probability distribution for the starting point of the patrol).

⎡
⎢
⎢
⎣

ℙ(𝑋0 = 1)
ℙ(𝑋0 = 2)

ℙ(𝑋0 = |𝑉|)

⎤
⎥
⎥
⎦

⊤

≕ 𝝒

Then, let Y ∈ ℝ|𝑉|×(𝑑𝑝−𝑑𝑎+1) be a matrix containing the probabilities of𝒜. In other words, 𝑦v,t = ℙ𝒜(𝐴 =
(𝑣, 𝑡)). As mentioned above, a patrol intercepts an attack if the patrol moves through the vertex under
attack when the attack takes place. Suppose that an attack on vertex 𝑣 starts at time step 𝑡 and ends at
time step 𝑡+𝑑𝑎−1. The attack is then intercepted if (𝑋𝑡 = 𝑣)∪(𝑋𝑡+1 = 𝑣)∪…∪(𝑋𝑡+𝑑𝑎−1 = 𝑣). This can
be used jointly to express the value𝒰 in terms of the Markov chain 𝑋 and the attack probability matrix Y:

𝒰 = ∑
𝑏∈ℬ

∑
𝑎∈𝒜

ℙ𝒜(𝐴 = 𝑎)ℙℬ(𝐵 = 𝑏)1{patrol 𝑏 intercepts attack 𝑎}

=
𝑑𝑝−𝑑𝑎

∑
𝑡=0

∑
𝑣∈𝑉

ℙ(𝑋𝑡 = 𝑣 ∪ … ∪ 𝑋𝑡+𝑑𝑎−1 = 𝑣)ℙ(𝑌 = (𝑣, 𝑡))

=
𝑑𝑝−𝑑𝑎

∑
𝑡=0

|𝑉|

∑
𝑣=1

ℙ(𝑋𝑡 = 𝑣 ∪ … ∪ 𝑋𝑡+𝑑𝑎−1 = 𝑣)𝑦v,t

(2.2)

Nevertheless, this does not yet directly solve the dimensionality problem. Without further simplifica-
tions, it is not directly clear how ℙ(𝑋𝑡 = 𝑖 ∪ … ∪ 𝑋𝑡+𝑑𝑎−1 = 𝑖) can be determined for all time steps and
vertices without iterating over all possible patrols. Thus, to find the value of the game, it would still be



5

necessary to consider every individual patrol. Chapter 3 shows how this can be avoided by utilizing the
Markovian structure of the patrol. Specifically, this chapter provides a probabilistic, a recursive, and
a direct matrix-multiplicative method to find this probability without having to consider each individual
patrol. As briefly mentioned above, Chapter 4 then shows how the characterization in Equation (3.21)
can be used to compare different notions of an optimal patrol by applying gradient ascent.



3
Analytical solutions

In the previous chapter, the value 𝒰 of the game was derived in Equation (2.2). For simplicity, Sections
3.1 through 3.3 assume that the duration of an attack equals the duration of a complete patrol cycle,
i.e., 𝑑𝑎 = 𝑑𝑝. In Section 3.4, this assumption is relaxed to allow 𝑑𝑎 ≠ 𝑑𝑝. Consequently, under the
assumption 𝑑𝑎 = 𝑑𝑝, any attack must start at 𝑡 = 0, simplifying Equation (2.2) to:

𝒰 =
𝑑𝑝−𝑑𝑎

∑
𝑡=0

|𝑉|

∑
𝑣=1

ℙ(𝑋𝑡 = 𝑣 ∪ … ∪ 𝑋𝑡+𝑑𝑎−1 = 𝑣)𝑦v,t

=
|𝑉|

∑
𝑣=1

ℙ(𝑋0 = 𝑣 ∪ … ∪ 𝑋𝑑𝑎−1 = 𝑣)𝑦v,0

=
|𝑉|

∑
𝑣=1

ℙ(𝑋0 = 𝑣 ∪ … ∪ 𝑋𝑑𝑎−1 = 𝑣)𝑦v

=

⎡
⎢
⎢
⎢
⎢
⎣

ℙ (⋃𝑑𝑎−1𝑡=0 (𝑋𝑡 = 1))
ℙ (⋃𝑑𝑎−1𝑡=0 (𝑋𝑡 = 2))

ℙ (⋃𝑑𝑎−1𝑡=0 (𝑋𝑡 = |𝑉|))

⎤
⎥
⎥
⎥
⎥
⎦

⊤

Y

(3.1)

Now, the domain of Y consists of only the vertices of the graph, rather than a Cartesian product of
the vertices and possible starting times. As such, it can be seen as a restriction of the general Y
where the starting time of the attack is fixed at 𝑡 = 0. A result of this is that Y is now a vector in
ℝ|𝑉| rather than a matrix, so the second index can be omitted. The difficulty currently lies in finding
ℙ(𝑋0 = 𝑣 ∪ … ∪ 𝑋𝑑𝑎−1 = 𝑣) for all 𝑣 ∈ 𝑉. This value represents the probability that the patroller visits
vertex 𝑣 at least once during its patrol. Section 3.1 provides a direct approach to find this probability
using the inclusion-exclusion principle. It is also shown that, by conditioning on the starting position
of the patrol, the problem can be reformulated to find a specific matrix 𝒫𝒫𝒫𝑑𝑎 . Then, two propositions
are derived and proven in Section 3.2, which jointly allow for a recursive expression of 𝒫𝒫𝒫𝑑𝑎 . Lastly, in
Section 3.3, this recursive expression is solved and a closed-form solution for 𝒫𝒫𝒫𝑑𝑎 is given.

3.1. Inclusion-exclusion
Recall that the vertices 𝑣 ∈ 𝑉 can be numbered {1, ..., 𝑛}, where 𝑛 is the cardinality of 𝑉. So, whenever
a proof or derivation contains ∑𝑛𝑣=1, the summand indices refer to the vertices 𝑣 ∈ 𝑉. In addition, ⊙
is used to refer to the Hadamard (or element-wise) matrix product. This means that for any square
matrix H and correctly sized identity matrix I, H ⊙ I equals the matrix H with all nondiagonal elements
set to zero. As this operation will be used extensively in the upcoming sections, one last notation is
introduced for all square matrices H:

6



3.1. Inclusion-exclusion 7

H𝐷 ≔ H ⊙ I
Now, direct application of the inclusion-exclusion principle to the Markov chain 𝑋 results in the following:

ℙ(
𝑑𝑝−1

⋃
𝑡=0

(𝑋𝑡 = 𝑣)) =
𝑑𝑝−1

∑
𝑡=0

⎛
⎜

⎝

(−1)𝑡−1 ∑
𝒦⊆{0,…,𝑑𝑝−1}

|𝒦|=𝑡

ℙ(⋂
𝑘∈𝒦

(𝑋𝑘 = 𝑣))
⎞
⎟

⎠

(3.2)

Note that inclusion-exclusion only provides an alternative characterization of ℙ(⋃𝑡(𝑋𝑡 = 𝑣)) for a single
vertex 𝑣. Therefore, in the following subsections, the inclusion-exclusion operations are vectorized. In
other words, it is applied simultaneously, yet separately, to all vertices 𝑣:

⎡
⎢
⎢
⎣

ℙ (⋃𝑡(𝑋𝑡 = 1))
ℙ (⋃𝑡(𝑋𝑡 = 2))

ℙ (⋃𝑡(𝑋𝑡 = 𝑛))

⎤
⎥
⎥
⎦

⊤

=
⎡
⎢
⎢
⎢
⎣

∑ ((−1)𝑡−1 ∑𝒦 ℙ (⋂𝑘∈𝒦(𝑋𝑘 = 1)))
∑ ((−1)𝑡−1 ∑𝒦 ℙ (⋂𝑘∈𝒦(𝑋𝑘 = 2)))

∑ ((−1)𝑡−1 ∑𝒦 ℙ (⋂𝑘∈𝒦(𝑋𝑘 = 𝑛)))

⎤
⎥
⎥
⎥
⎦

⊤

This characterization of (3.1) by itself is not directly helpful, as it still contains an exponentially growing
number of probabilities of intersections of events. However, expanding and simplifying the equation for
a few values of 𝑑𝑝, provides additional insight. The base case is when a patrol consists of a single time
step, i.e. 𝑑𝑝 = 1. In this scenario, only the starting point of the patrol is visited. It follows directly from
Definition 2.0.1 that the probability distribution is then represented by 𝝒. Sections 3.1.1 through 3.1.3
provide more elaborate derivations for 𝑑𝑝 = 2, 𝑑𝑝 = 3 and 𝑑𝑝 = 4.

3.1.1. 𝑑𝑝 = 2
Now, the patroller starts in a certain vertex and then takes a single step. Expanding Equation (3.2)
gives:

⎡
⎢
⎢
⎢
⎣

ℙ(⋃1𝑡=0(𝑋𝑡 = 1))
ℙ(⋃1𝑡=0(𝑋𝑡 = 2))

ℙ(⋃1𝑡=0(𝑋𝑡 = 𝑛))

⎤
⎥
⎥
⎥
⎦

⊤

=
⎡
⎢
⎢
⎣

ℙ(𝑋0 = 1)
ℙ(𝑋0 = 2)

ℙ(𝑋0 = 𝑛)

⎤
⎥
⎥
⎦

⊤

+
⎡
⎢
⎢
⎣

ℙ(𝑋1 = 1)
ℙ(𝑋1 = 2)

ℙ(𝑋1 = 𝑛)

⎤
⎥
⎥
⎦

⊤

−

⎡
⎢
⎢
⎢
⎢
⎣

ℙ (⋂1𝑡=0(𝑋𝑡 = 1))
ℙ (⋂1𝑡=0(𝑋𝑡 = 2))

ℙ (⋂1𝑡=0(𝑋𝑡 = 𝑛))

⎤
⎥
⎥
⎥
⎥
⎦

⊤

= 𝝒+
⎡
⎢
⎢
⎣

ℙ(𝑋1 = 1)
ℙ(𝑋1 = 2)

ℙ(𝑋1 = 𝑛)

⎤
⎥
⎥
⎦

⊤

−

⎡
⎢
⎢
⎢
⎢
⎣

ℙ (⋂1𝑡=0(𝑋𝑡 = 1))
ℙ (⋂1𝑡=0(𝑋𝑡 = 2))

ℙ (⋂1𝑡=0(𝑋𝑡 = 𝑛))

⎤
⎥
⎥
⎥
⎥
⎦

⊤

Explicit calculation of this vector of probabilities requires careful consideration of the newly introduced
terms. Since 𝑋 represents a Markov random process, the probability of each step is dictated by the
transition matrix Q. Therefore, this equation can be rewritten as follows:

⎡
⎢
⎢
⎣

ℙ(𝑋1 = 1)
ℙ(𝑋1 = 2)

ℙ(𝑋1 = 𝑛)

⎤
⎥
⎥
⎦

⊤

=
𝑛

∑
𝑣=1

⎡
⎢
⎢
⎣

ℙ(𝑋1 = 1 |𝑋0 = 𝑣)ℙ(𝑋0 = 𝑣)
ℙ(𝑋1 = 2 |𝑋0 = 𝑣)ℙ(𝑋0 = 𝑣)

ℙ(𝑋1 = 𝑛 |𝑋0 = 𝑣)ℙ(𝑋0 = 𝑣)

⎤
⎥
⎥
⎦

⊤

=
𝑛

∑
𝑣=1

⎡
⎢
⎢
⎣

𝑞v,1𝜘v
𝑞v,2𝜘v

𝑞v,n𝜘v

⎤
⎥
⎥
⎦

⊤

= 𝝒Q

(3.3)
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Lastly, consider the vector [ℙ(𝑋0 = 1 ∩ 𝑋1 = 1),… , ℙ(𝑋0 = 𝑛 ∩ 𝑋1 = 𝑛)]. It immediately becomes clear
that each entry within this vector is the probability of starting in the corresponding Markov state and
staying there. More formally:

⎡
⎢
⎢
⎣

ℙ((𝑋0 = 1) ∩ (𝑋1 = 1))
ℙ((𝑋0 = 2) ∩ (𝑋1 = 2))

ℙ((𝑋0 = 𝑛) ∩ (𝑋1 = 𝑛))

⎤
⎥
⎥
⎦

⊤

=
⎡
⎢
⎢
⎣

ℙ(𝑋1 = 1 |𝑋0 = 1)ℙ(𝑋0 = 1)
ℙ(𝑋1 = 2 |𝑋0 = 2)ℙ(𝑋0 = 2)

ℙ(𝑋1 = 𝑛 |𝑋0 = 𝑛)ℙ(𝑋0 = 𝑛)

⎤
⎥
⎥
⎦

⊤

=
⎡
⎢
⎢
⎣

𝑞1,1𝜘1
𝑞2,2𝜘2

𝑞n,n𝜘n

⎤
⎥
⎥
⎦

⊤

= 𝝒Q𝐷

(3.4)

Taken together, this results in the following.

⎡
⎢
⎢
⎢
⎢
⎣

ℙ (⋃1𝑡=0(𝑋𝑡 = 1))
ℙ (⋃1𝑡=0(𝑋𝑡 = 2))

ℙ (⋃1𝑡=0(𝑋𝑡 = 𝑛))

⎤
⎥
⎥
⎥
⎥
⎦

⊤

= 𝝒(I+Q−Q𝐷) (3.5)

3.1.2. 𝑑𝑝 = 3
Adding a third patrol step results in a number of additional terms, as can be seen in (3.6).

⎡
⎢
⎢
⎢
⎣

ℙ(⋃2𝑡=0(𝑋𝑡 = 1))
ℙ(⋃2𝑡=0(𝑋𝑡 = 2))

ℙ(⋃2𝑡=0(𝑋𝑡 = 𝑛))

⎤
⎥
⎥
⎥
⎦

⊤

=
⎡
⎢
⎢
⎣

ℙ(𝑋0 = 1)
ℙ(𝑋0 = 2)

ℙ(𝑋0 = 𝑛)

⎤
⎥
⎥
⎦

⊤

+
⎡
⎢
⎢
⎣

ℙ(𝑋1 = 1)
ℙ(𝑋1 = 2)

ℙ(𝑋1 = 𝑛)

⎤
⎥
⎥
⎦

⊤

+
⎡
⎢
⎢
⎣

ℙ(𝑋2 = 1)
ℙ(𝑋2 = 2)

ℙ(𝑋2 = 𝑛)

⎤
⎥
⎥
⎦

⊤

−
⎡
⎢
⎢
⎣

ℙ((𝑋0 = 1) ∩ (𝑋1 = 1))
ℙ((𝑋0 = 2) ∩ (𝑋1 = 2))

ℙ((𝑋0 = 𝑛) ∩ (𝑋1 = 𝑛))

⎤
⎥
⎥
⎦

⊤

−
⎡
⎢
⎢
⎣

ℙ((𝑋0 = 1) ∩ (𝑋2 = 1))
ℙ((𝑋0 = 2) ∩ (𝑋2 = 2))

ℙ((𝑋0 = 𝑛) ∩ (𝑋2 = 𝑛))

⎤
⎥
⎥
⎦

⊤

−
⎡
⎢
⎢
⎣

ℙ((𝑋1 = 1) ∩ (𝑋2 = 1))
ℙ((𝑋1 = 2) ∩ (𝑋2 = 2))

ℙ((𝑋1 = 𝑛) ∩ (𝑋2 = 𝑛))

⎤
⎥
⎥
⎦

⊤

+
⎡
⎢
⎢
⎣

ℙ((𝑋0 = 1) ∩ (𝑋1 = 1) ∩ (𝑋2 = 1))
ℙ((𝑋0 = 2) ∩ (𝑋1 = 2) ∩ (𝑋2 = 2))

ℙ((𝑋0 = 𝑛) ∩ (𝑋1 = 𝑛) ∩ (𝑋2 = 𝑛))

⎤
⎥
⎥
⎦

⊤

= 𝝒+𝝒Q+𝝒Q2− 𝝒Q𝐷 −
⎡
⎢
⎢
⎣

ℙ((𝑋0 = 1) ∩ (𝑋2 = 1))
ℙ((𝑋0 = 2) ∩ (𝑋2 = 2))

ℙ((𝑋0 = 𝑛) ∩ (𝑋2 = 𝑛))

⎤
⎥
⎥
⎦

⊤

−
⎡
⎢
⎢
⎣

ℙ((𝑋1 = 1) ∩ (𝑋2 = 1))
ℙ((𝑋1 = 2) ∩ (𝑋2 = 2))

ℙ((𝑋1 = 𝑛) ∩ (𝑋2 = 𝑛))

⎤
⎥
⎥
⎦

⊤

+
⎡
⎢
⎢
⎣

ℙ((𝑋0 = 1) ∩ (𝑋1 = 1) ∩ (𝑋2 = 1))
ℙ((𝑋0 = 2) ∩ (𝑋1 = 2) ∩ (𝑋2 = 2))

ℙ((𝑋0 = 𝑛) ∩ (𝑋1 = 𝑛) ∩ (𝑋2 = 𝑛))

⎤
⎥
⎥
⎦

⊤

(3.6)
Certain terms can be found relatively easily. For instance, the reasoning used for equation (3.3), also
holds for 𝑡 = 2 in equation (3.7). The only difference is that, rather than using the one-step transition
matrix Q, the two-step transition matrix Q2 with entries 𝑞2i,j is used.

[ℙ(𝑋2 = 1) ℙ(𝑋2 = 2) … ℙ(𝑋2 = 𝑛)] = 𝝒Q2 (3.7)
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Similarly,

⎡
⎢
⎢
⎣

ℙ((𝑋0 = 1) ∩ (𝑋2 = 1))
ℙ((𝑋0 = 2) ∩ (𝑋2 = 2))

ℙ((𝑋0 = 𝑛) ∩ (𝑋2 = 𝑛))

⎤
⎥
⎥
⎦

⊤

=
⎡
⎢
⎢
⎣

ℙ(𝑋2 = 1 |𝑋0 = 1)ℙ(𝑋0 = 1)
ℙ(𝑋2 = 2 |𝑋0 = 2)ℙ(𝑋0 = 2)

ℙ(𝑋2 = 𝑛 |𝑋0 = 𝑛)ℙ(𝑋0 = 𝑛)

⎤
⎥
⎥
⎦

⊤

=
⎡
⎢
⎢
⎢
⎣

𝑞21,1𝜘1
𝑞22,2𝜘2

𝑞2n,n𝜘n

⎤
⎥
⎥
⎥
⎦

⊤

= 𝝒(Q2)𝐷

(3.8)

And also

⎡
⎢
⎢
⎣

ℙ((𝑋1 = 1) ∩ (𝑋2 = 1))
ℙ((𝑋1 = 2) ∩ (𝑋2 = 2))

ℙ((𝑋1 = 𝑛) ∩ (𝑋2 = 𝑛))

⎤
⎥
⎥
⎦

⊤

=
⎡
⎢
⎢
⎣

ℙ(𝑋2 = 1 |𝑋1 = 1)ℙ(𝑋1 = 1)
ℙ(𝑋2 = 2 |𝑋1 = 2)ℙ(𝑋1 = 2)

ℙ(𝑋2 = 𝑛 |𝑋1 = 𝑛)ℙ(𝑋1 = 𝑛)

⎤
⎥
⎥
⎦

⊤

Now, denote the probability vector found in Equation (3.3) by w ≔ 𝝒Q. So, 𝑤i ≔ ℙ(𝑋1 = 𝑖) and
therefore:

=
⎡
⎢
⎢
⎣

𝑞1,1𝑤1
𝑞2,2𝑤2

𝑞n,n𝑤n

⎤
⎥
⎥
⎦

⊤

= 𝝒QQ𝐷 (3.9)

The last element to be determined contains an additional term:

⎡
⎢
⎢
⎣

ℙ((𝑋0 = 1) ∩ (𝑋1 = 1) ∩ (𝑋2 = 1))
ℙ((𝑋0 = 2) ∩ (𝑋1 = 2) ∩ (𝑋2 = 2))

ℙ((𝑋0 = 𝑛) ∩ (𝑋1 = 𝑛) ∩ (𝑋2 = 𝑛))

⎤
⎥
⎥
⎦

⊤

=
⎡
⎢
⎢
⎣

ℙ(𝑋2 = 1 | (𝑋1 = 1) ∩ (𝑋0 = 1))ℙ(𝑋1 = 1 |𝑋0 = 1)ℙ(𝑋0 = 1)
ℙ(𝑋2 = 2 | (𝑋1 = 2) ∩ (𝑋0 = 2))ℙ(𝑋1 = 2 |𝑋0 = 2)ℙ(𝑋0 = 2)

ℙ(𝑋2 = 𝑛 | (𝑋1 = 𝑛) ∩ (𝑋0 = 𝑛))ℙ(𝑋1 = 𝑛 |𝑋0 = 𝑛)ℙ(𝑋0 = 𝑛)

⎤
⎥
⎥
⎦

⊤

=
⎡
⎢
⎢
⎣

ℙ(𝑋2 = 1 | (𝑋1 = 1) ∩ (𝑋0 = 1))𝑞1,1𝜘1
ℙ(𝑋2 = 2 | (𝑋1 = 2) ∩ (𝑋0 = 2))𝑞2,2𝜘2

ℙ(𝑋2 = 𝑛 | (𝑋1 = 𝑛) ∩ (𝑋0 = 𝑛))𝑞n,n𝜘n

⎤
⎥
⎥
⎦

⊤

=
⎡
⎢
⎢
⎣

ℙ(𝑋2 = 1 |𝑋1 = 1)𝑞1,1𝜘1
ℙ(𝑋2 = 2 |𝑋1 = 2)𝑞2,2𝜘2

ℙ(𝑋2 = 𝑛 |𝑋1 = 𝑛)𝑞n,n𝜘n

⎤
⎥
⎥
⎦

⊤

Now, since this Markov process is time-invariant, it holds that ℙ(𝑋2 = 𝑖 | 𝑋1 = 𝑖) = ℙ(𝑋1 = 𝑖 | 𝑋0 = 𝑖).
Therefore:

=
⎡
⎢
⎢
⎣

(𝑞1,1)2𝜘1
(𝑞2,2)2𝜘2

(𝑞n,n)2𝜘n

⎤
⎥
⎥
⎦

⊤

= 𝝒(Q𝐷)2
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Combining these results gives:

⎡
⎢
⎢
⎢
⎣

ℙ(⋃2𝑡=0(𝑋𝑡 = 1))
ℙ(⋃2𝑡=0(𝑋𝑡 = 2))

ℙ(⋃2𝑡=0(𝑋𝑡 = 𝑛))

⎤
⎥
⎥
⎥
⎦

⊤

= 𝝒(I+Q+Q2−Q𝐷 −(Q
2)𝐷 −QQ𝐷 +(Q𝐷)2) (3.10)

3.1.3. 𝑑𝑝 = 4
When adding a fourth time step, the methodologies applied in the previous subsections can be used
again. As the derivations remain virtually unchanged, a proof of equation (3.11) is omitted.

⎡
⎢
⎢
⎢
⎣

ℙ(⋃3𝑡=0(𝑋𝑡 = 1))
ℙ(⋃3𝑡=0(𝑋𝑡 = 2))

ℙ(⋃3𝑡=0(𝑋𝑡 = 𝑛))

⎤
⎥
⎥
⎥
⎦

⊤

= 𝝒(I+Q+Q2+Q3−Q𝐷 −(Q
2)𝐷 − (Q3)𝐷 −QQ𝐷 −Q(Q

2)𝐷

−Q2Q𝐷 +(Q𝐷)2 + (Q
2)𝐷Q𝐷 +Q𝐷(Q

2)𝐷 +Q(Q𝐷)2 − (Q𝐷)3)

= 𝝒 (I+Q+Q2+Q3−Q𝐷 −(Q
2)𝐷 − (Q3)𝐷 −QQ𝐷 −Q(Q

2)𝐷

−Q2Q𝐷 +(Q𝐷)2 + 2(Q
2)𝐷Q𝐷 +Q(Q𝐷)2 − (Q𝐷)3)

(3.11)

Some additional simplifications can be made. Since the Hadamard product is distributive, it is possible
to define Q𝑂 ≔ Q−Q𝐷. Since Q𝐷 contains the probabilities that the Markov process stays in the same
state for one time step, Q𝑂 only contains the probabilities that the Markov process leaves its current
state after a single time step. In addition, using the distributive nature of the Hadamard product and
the matrix product separately, the following terms can be rewritten as follows:

QQ𝐷 = (Q𝐷 +Q𝑂)Q𝐷 = (Q𝐷)2 +Q𝑂Q𝐷
Q(Q2)𝐷 = (Q𝐷 +Q𝑂)(Q

2)𝐷 = Q𝐷(Q
2)𝐷 +Q𝑂(Q

2)𝐷
Q2Q𝐷 = (Q𝐷 +Q𝑂)(Q𝐷 +Q𝑂)Q𝐷

= (Q𝐷)3 + (Q𝐷)(Q𝑂)(Q𝐷) + (Q𝑂)(Q𝐷)2 + (Q𝑂)2(Q𝐷)
Q(Q𝐷)2 = (Q𝐷 +Q𝑂)(Q𝐷)2 = (Q𝐷)3 +Q𝑂(Q𝐷)2

Combined, this yields the following.

⎡
⎢
⎢
⎢
⎣

ℙ(⋃3𝑡=0(𝑋𝑡 = 1))
ℙ(⋃3𝑡=0(𝑋𝑡 = 2))

ℙ(⋃3𝑡=0(𝑋𝑡 = 𝑛))

⎤
⎥
⎥
⎥
⎦

⊤

= 𝝒(I+(Q+Q2+Q3)𝑂 − (Q𝐷)2 −Q𝑂Q𝐷 −Q𝐷(Q
2)𝐷 −Q𝑂(Q

2)𝐷

−(Q𝐷)3 −Q𝐷Q𝑂Q𝐷 −Q𝑂(Q𝐷)2 − (Q𝑂)2Q𝐷 +(Q𝐷)2

+2Q𝐷(Q
2)𝐷 + (Q𝐷)3 +Q𝑂(Q𝐷)2 − (Q𝐷)3)
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= 𝝒(I+(Q+Q2+Q3)𝑂 −Q𝑂Q𝐷

−(Q𝐷)3 −Q𝐷Q𝑂Q𝐷 −Q𝑂(Q
2)𝐷 − (Q𝑂)2Q𝐷

+Q𝐷(Q
2)𝐷)

(3.12)

This formulation still contains multiple (Q2)𝐷. However, this can be rewritten even further:

(Q2)𝐷 = ((Q𝐷 +Q𝑂)2)𝐷
= ((Q𝐷)2)𝐷 + (Q𝑂Q𝐷)𝐷 + (Q𝐷Q𝑂)𝐷 + ((Q𝑂)2)𝐷

Furthermore, (Q𝐷)𝑛 is amatrix power of a diagonal matrix, which itself is diagonal. Therefore, ((Q𝐷)2)𝐷 =
(Q𝐷)2. In addition, since Q𝐷 is diagonal and Q𝑂 only has zeros on the diagonal, Q𝑂Q𝐷 and Q𝐷Q𝑂
only contain zeros on the diagonal. Therefore, (Q𝑂Q𝐷)𝐷 = (Q𝐷Q𝑂)𝐷 = O. Combining this gives the
following.

(Q2)𝐷 = (Q𝐷)2 + ((Q𝑂)2)𝐷
And consequently:

⎡
⎢
⎢
⎢
⎣

ℙ(⋃3𝑡=0(𝑋𝑡 = 1))
ℙ(⋃3𝑡=0(𝑋𝑡 = 2))

ℙ(⋃3𝑡=0(𝑋𝑡 = 𝑛))

⎤
⎥
⎥
⎥
⎦

⊤

= 𝝒(I+(Q+Q2+Q3)𝑂 −Q𝑂Q𝐷 −(Q𝐷)3 −Q𝐷Q𝑂Q𝐷

−Q𝑂((Q𝐷)2 + ((Q𝑂)2)𝐷) − (Q𝑂)2Q𝐷

+Q𝐷((Q𝐷)2 + ((Q𝑂)2)𝐷))

= 𝝒 (I+(Q+Q2+Q3)𝑂 −Q𝑂Q𝐷 −Q𝐷Q𝑂Q𝐷

−Q𝑂(Q𝐷)2 −Q𝑂((Q𝑂)2)𝐷 − (Q𝑂)2Q𝐷 +Q𝐷((Q𝑂)2)𝐷)

= 𝝒 (I+(Q+Q2+Q3)𝑂 − (Q𝐷 +Q𝑂 + I)Q𝑂Q𝐷 −Q𝑂(Q𝐷)2

−Q𝑂((Q𝑂)2)𝐷 +Q𝐷((Q𝑂)2)𝐷)

= 𝝒 (I+(Q+Q2+Q3)𝑂 − (Q+ I)Q𝑂Q𝐷

−Q𝑂(Q𝐷)2 −Q𝑂((Q𝑂)2)𝐷 +Q𝐷((Q𝑂)2)𝐷)

(3.13)

Furthermore,

Q𝐷((Q𝑂)2)𝐷
(3.1.1)= (Q𝐷(Q𝑂)2)𝐷 = ((Q𝑂)2Q𝐷)𝐷

The first equality makes use of Theorem 3.1.1 below, retrieved from [7]. The second equality follows
from the fact that for a square matrix A1 and a diagonal matrix A2, A1A2 equals A2A1 on the diagonal.
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Theorem 3.1.1. Suppose A,B are 𝑚 × 𝑛 matrices and D and E are diagonal matrices of sizes 𝑚 ×𝑚
and 𝑛 × 𝑛, respectively. Then,

D(A ⊙ B)E = (DAE) ⊙ B = (DA) ⊙ (BE)
= (AE) ⊙ (DB) = A ⊙ (DBE)

In addition, it holds that:

((Q+ I)(Q𝑂Q𝐷))𝐷 = (QQ𝑂Q𝐷)𝐷 + (Q𝑂Q𝐷)𝐷
= (QQ𝑂Q𝐷)𝐷
= (Q𝑂Q𝑂Q𝐷)𝐷 + (Q𝐷Q𝑂Q𝐷)𝐷
= ((Q𝑂)2Q𝐷)𝐷

(3.14)

Therefore:

Q𝐷((Q𝑂)2)𝐷 − (Q+ I)Q𝑂Q𝐷 = −((Q+ I)Q𝑂Q𝐷)𝑂 (3.15)

And consequently, equation (3.11) becomes:

⎡
⎢
⎢
⎢
⎣

ℙ(⋃3𝑡=0(𝑋𝑡 = 1))
ℙ(⋃3𝑡=0(𝑋𝑡 = 2))

ℙ(⋃3𝑡=0(𝑋𝑡 = 𝑛))

⎤
⎥
⎥
⎥
⎦

⊤

= 𝝒( I+(Q+Q2+Q3)𝑂 − ((Q+ I)Q𝑂Q𝐷)𝑂 −Q𝑂(Q𝐷)2 −Q𝑂((Q𝑂)2)𝐷)

= 𝝒( I+(Q+Q2+Q3)𝑂 − ((Q+ I)Q𝑂Q𝐷)𝑂 −Q𝑂(Q
2)𝐷)

(3.16)

These steps have shown that it is possible not only to obtain a closed-form solution for the desired
probability but also to simplify it significantly. However, this simplification required a tedious amount of
manual algebra and has not yet resulted in a general closed-form solution for all 𝑑𝑝 and 𝑑𝑎. Neverthe-
less, there does appear to be a structure present. In particular, in every solution up to and including
𝑑𝑝 = 4, 𝝒 can be factored out. This can also be directly deduced from equation (3.1). Indeed, by
applying the law of total probability, part of this equation can be rewritten as follows:

⎡
⎢
⎢
⎢
⎢
⎣

ℙ (⋃𝑑𝑎−1𝑡=0 (𝑋𝑡 = 1))
ℙ (⋃𝑑𝑎−1𝑡=0 (𝑋𝑡 = 2))

ℙ (⋃𝑑𝑎−1𝑡=0 (𝑋𝑡 = 𝑛))

⎤
⎥
⎥
⎥
⎥
⎦

⊤

=
𝑛

∑
𝑖=1

⎡
⎢
⎢
⎢
⎢
⎣

ℙ (⋃𝑑𝑎−1𝑡=0 (𝑋𝑡 = 1) | 𝑋0 = 𝑖)ℙ(𝑋0 = 𝑖)
ℙ (⋃𝑑𝑎−1𝑡=0 (𝑋𝑡 = 2) | 𝑋0 = 𝑖)ℙ(𝑋0 = 𝑖)

ℙ (⋃𝑑𝑎−1𝑡=0 (𝑋𝑡 = 𝑛) | 𝑋0 = 𝑖)ℙ(𝑋0 = 𝑖)

⎤
⎥
⎥
⎥
⎥
⎦

⊤

=
𝑛

∑
𝑖=1

⎡
⎢
⎢
⎢
⎢
⎣

ℙ (⋃𝑑𝑎−1𝑡=0 (𝑋𝑡 = 1) | 𝑋0 = 𝑖) 𝜘i
ℙ(⋃𝑑𝑎−1𝑡=0 (𝑋𝑡 = 2) | 𝑋0 = 𝑖) 𝜘i

ℙ(⋃𝑑𝑎−1𝑡=0 (𝑋𝑡 = 𝑛) | 𝑋0 = 𝑖) 𝜘i

⎤
⎥
⎥
⎥
⎥
⎦

⊤

=
⎡
⎢
⎢
⎣

ℙ(𝑋0 = 1)
ℙ(𝑋0 = 2)

ℙ(𝑋0 = 𝑛)

⎤
⎥
⎥
⎦

⊤⎡
⎢
⎢
⎢
⎢
⎣

ℙ (⋃𝑑𝑎−1𝑡=0 (𝑋𝑡 = 1) | 𝑋0 = 1) ℙ(⋃𝑑𝑎−1𝑡=0 (𝑋𝑡 = 𝑛) | 𝑋0 = 1)
ℙ(⋃𝑑𝑎−1𝑡=0 (𝑋𝑡 = 1) | 𝑋0 = 2) ℙ(⋃𝑑𝑎−1𝑡=0 (𝑋𝑡 = 𝑛) | 𝑋0 = 2)

ℙ(⋃𝑑𝑎−1𝑡=0 (𝑋𝑡 = 1) | 𝑋0 = 𝑛) ℙ(⋃𝑑𝑎−1𝑡=0 (𝑋𝑡 = 𝑛) | 𝑋0 = 𝑛)

⎤
⎥
⎥
⎥
⎥
⎦

= 𝝒𝒫𝒫𝒫𝑑𝑎
(3.17)
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As such, to find a simple way to calculate the value 𝒰 of the game, it is necessary to find a closed-
form expression of the matrix 𝒫𝒫𝒫𝑑𝑎 as defined here. Upon closer inspection, it becomes clear that 𝒫𝒫𝒫𝑑𝑎
is a matrix containing the probabilities of visiting a certain state in the Markov chain given a starting
position. No research could be identified where a direct expression of this matrix of probabilities is
provided. Therefore, in sections 3.2 and 3.3, two methods are derived that allow direct calculation of
this matrix for every 𝑑𝑎 = 𝑑𝑝 ≥ 1.

3.2. Recursive matrix-equation
Let 𝑋 = (𝑋𝑘)𝑘≥0 be a Markov chain on the discrete state space Ω with a time-homogeneous transition
matrix Q. Furthermore, define:

Definition 3.2.1 (First passage time). 𝑇𝜔 is the time step where state 𝜔 ∈ Ω is visited for the first time
(first passage time step).

Definition 3.2.2 (Number of visits). 𝑁(𝑚)𝜔 is the number of visits of state 𝜔 ∈ Ω in𝑚+1 time steps, that
is, the number of visits after taking 𝑚 steps plus the starting point.

Definition 3.2.3 (Identity matrix). I ∈ ℝ𝑛×𝑛 is the identity matrix, where 𝑛 is the cardinality of Ω.
Definition 3.2.4 (First passage probabilities). P𝑘 is the matrix that contains the first visit probabilities
after taking 𝑘 steps given a starting point, so (𝑝𝑘)𝑖,𝑗 ≔ ℙ(𝑇𝑗 = 𝑘 |𝑋0 = 𝑖).

Lastly, note that ℙ(𝑋0 = 𝑗 ∪ … ∪ 𝑋𝑚 = 𝑗 | 𝑋0 = 𝑖) = ℙ(𝑁(𝑚)𝑗 ≥ 1 |𝑋0 = 𝑖).

Proposition 3.2.1. ℙ(𝑁(𝑚)𝑗 ≥ 1 |𝑋0 = 𝑖) = ∑
𝑚
𝑘=0(𝑝𝑘)𝑖,𝑗

Proof.

ℙ(𝑁(𝑚)𝑗 ≥ 1 |𝑋0 = 𝑖) =
𝑚

∑
𝑘=0

ℙ(𝑁(𝑚)𝑗 ≥ 1, 𝑇𝑗 = 𝑘 |𝑋0 = 𝑖)

This follows from a direct application of the law of total probability using the partition {𝑇𝑗 = 𝑘 ∶ 0 ≤ 𝑘 ≤
𝑚} ∪ {𝑇𝑗 > 𝑘}. Note that ℙ(𝑁(𝑚)𝑗 ≥ 1, 𝑇𝑗 > 𝑚 |𝑋0 = 𝑖) = 0, so the expression above follows directly.
Then, applying the definition of conditional probability gives:

=
𝑚

∑
𝑘=0

ℙ(𝑇𝑗 = 𝑘 |𝑋0 = 𝑖)ℙ(𝑁(𝑚)𝑗 ≥ 1 | 𝑇𝑗 = 𝑘, 𝑋0 = 𝑖)

However, if 𝑇𝑗 = 𝑘 for 0 ≤ 𝑘 ≤ 𝑚, then the Markov process certainly visits state 𝑗 at least once in 𝑚
steps, namely at time 𝑘. So, ℙ(𝑁(𝑚)𝑗 ≥ 1 | 𝑇𝑗 = 𝑘, 𝑋0 = 𝑖) = 1 and as such:

=
𝑚

∑
𝑘=0

ℙ(𝑇𝑗 = 𝑘 |𝑋0 = 𝑖)

=
𝑚

∑
𝑘=0
(𝑝𝑘)𝑖,𝑗

Proposition 3.2.2. ∑𝑚𝑘=0 P𝑘(Q
𝑚−𝑘)𝐷 = Q𝑚

Proof.

The 𝑚 step transition matrix Q𝑚 is used. This means that:

𝑞𝑚i,j = ℙ(𝑋𝑚 = 𝑗 | 𝑋0 = 𝑖)
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Here, the law of total probability can be applied using the same partition over 𝑇𝑗 as in the proof of
proposition 3.2.1, after which the definition of conditional probability is used again.

=
𝑚

∑
𝑘=0

ℙ(𝑋𝑚 = 𝑗, 𝑇𝑗 = 𝑘 |𝑋0 = 𝑖)

=
𝑚

∑
𝑘=0

ℙ(𝑋𝑚 = 𝑗 | 𝑇𝑗 = 𝑘, 𝑋0 = 𝑖)ℙ(𝑇𝑗 = 𝑘 |𝑋0 = 𝑖)

(3.2.4)=
𝑚

∑
𝑘=0

ℙ(𝑋𝑚 = 𝑗 | 𝑇𝑗 = 𝑘, 𝑋0 = 𝑖)(𝑝𝑘)𝑖,𝑗

Now, note that ℙ(𝑋𝑚 = 𝑗 | 𝑇𝑗 = 𝑘, 𝑋0 = 𝑖) = ℙ(𝑋𝑚 = 𝑗 | (𝑋0 ≠ 𝑗,… , 𝑋𝑘−1 ≠ 𝑗, 𝑋𝑘 = 𝑗), 𝑋0 = 𝑖) = ℙ(𝑋𝑚 =
𝑗 | 𝑋𝑘 = 𝑗). The second equality follows directly from the Markov property. Therefore,

=
𝑚

∑
𝑘=0

ℙ(𝑋𝑚 = 𝑗 | 𝑋𝑘 = 𝑗)(𝑝𝑘)𝑖,𝑗

=
𝑚

∑
𝑘=0

𝑞𝑚−𝑘j,j (𝑝𝑘)𝑖,𝑗

Note that this holds for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Combined with the fact that only the diagonal elements of Q𝑚−𝑘
are used, his can be written as a matrix-vector product and, therefore, it directly follows that:

Q𝑚 =
𝑚

∑
𝑘=0

P𝑘(Q𝑚−𝑘)𝐷

Proposition 3.2.1 shows that the probability of visiting a state at least once can be written as the sum of
the first passage probabilities and Proposition 3.2.2 provides a recursive way to find the first passage
probabilities using the transition matrix Q. If 𝑚 = 0, then:

Q0 = P0Q0𝐷 ⟹ P0 = I

Therefore, assuming 𝑚 ≥ 1:

Q𝑚 =
𝑚

∑
𝑘=0

P𝑘(Q𝑚−𝑘)𝐷 ⟺ Q𝑚 = P𝑚 +
𝑚−1

∑
𝑘=0

P𝑘(Q𝑚−𝑘)𝐷

⟹ P𝑚 = Q𝑚 −
𝑚−1

∑
𝑘=0

P𝑘(Q𝑚−𝑘)𝐷

⟹
𝑚

∑
𝑗=0

P𝑗 =
𝑚

∑
𝑗=1
(Q𝑗 −

𝑗−1

∑
𝑘=0

P𝑘(Q𝑗−𝑘)𝐷) + I

⟺ 𝒫𝒫𝒫 =
𝑚

∑
𝑗=1
(Q𝑗 −

𝑗−1

∑
𝑘=0

P𝑘(Q𝑗−𝑘)𝐷) + I (3.18)
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This method is an improvement compared to the inclusion-exclusion method as set out in the previ-
ous section. Equation (3.18) provides a direct and recursive method of calculating 𝒫𝒫𝒫𝑑𝑎 for any 𝑑𝑎 ≥ 1.
However, the recursive element is also what makes this method computationally expensive. The differ-
ent P𝑖 all need to be stored and reused at every subsequent time step. To account for this, Proposition
3.2.2 is expanded and solved explicitly in the next section.

3.3. Closed-form block matrix solution
Using block matrices, it is possible to rewrite equation 3.2.2 as a matrix-matrix equation. Note that in
the proof, 𝑚 ≥ 0 is arbitrary. Therefore, the equation also holds for 𝑘 = 0, 1, … ,𝑚 − 1. Now, after
substituting 𝑑𝑝 for 𝑚 and setting 𝑑𝑝 = 0, it is possible to rewrite:

I =
0

∑
𝑘=0

P𝑘(Q−𝑘 ⊙ I)

= I+
𝑚

∑
𝑘=1

O ⋅P𝑘

(3.19)

Or, equivalently,

[P0 P1 … P𝑚]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I

O

O

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= I

The same process can be applied for 𝑑𝑝 = 1:

Q =
1

∑
𝑘=0

P𝑘(Q1−𝑘 ⊙ I)

= P0(Q⊙ I) + P1+
𝑚

∑
𝑘=2

O ⋅P𝑘
⟺

[P0 P1 … P𝑚]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Q𝐷

I

O

O

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Q

These two steps can then be combined to give the following system of matrix equations:

[P0 P1 … P𝑚]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I Q𝐷

O I

O

O O

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= [I Q]

Continuing this process up to and including 𝑑𝑝 − 1 yields the following equation:
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[P0 P1 … P𝑚]⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝
PΣ

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I Q𝐷 Q2𝐷 Q𝑑𝑝−2𝐷 Q𝑑𝑝−1𝐷

O I Q𝐷 Q𝑑𝑝−2𝐷

I

Q𝐷

I Q𝐷

0 O I

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

Z

= [I Q Q2 … Q𝑑𝑝−1]⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝
QΣ

which will be denoted as PΣ Z = QΣ, where both Z and QΣ are known. Note that Z is an upper-
triangular matrix with only ones on the diagonal. Therefore, all eigenvalues of Z equal one, which
makes it invertible. In addition, I−Z is an upper triangular matrix with only zeros on the diagonal, and
therefore it is nilpotent [8, Proposition 8.18]. Note that it is possible to use the Neumann series to
write the matrix inverse as an infinite sum, namely Z−1 = ∑∞𝑘=0(I−Z)𝑘 [9, Lemma 6.6]. Since I−Z
is nilpotent, ∃𝑁0 > 0 such that ∀𝜂 > 𝑁0 it holds that (I−Z)𝜂 = 0. Therefore, Z−1 = ∑𝑁0𝑘=0(I−Z)𝑘.
Consequently:

PΣ = QΣ
𝑁0
∑
𝑘=0
(I−Z)𝑘

Lastly, let IΣ be the 𝑑𝑝|𝑉| × |𝑉| matrix consisting of 𝑑𝑝 identity matrices stacked on top of each other.
Then, it directly follows that 𝒫𝒫𝒫 = PΣ IΣ and therefore:

𝒫𝒫𝒫𝑑𝑎 = QΣ (
𝑁0
∑
𝑘=0
(I−Z)𝑘) IΣ (3.20)

3.4. Extension
In the previous chapter, the assumption was made that 𝑑𝑎 = 𝑑𝑝. However, in reality, it is not a realistic
assumption that an attack lasts the entire patrol. Therefore, this assumption is relaxed to 𝑑𝑎 ≤ 𝑑𝑝. To
do so, the methodology of Section 3.3 is applied to equation (2.2):

𝒰 =
𝑑𝑝−𝑑𝑎

∑
𝑡=0

𝑛

∑
𝑣=1

ℙ(𝑋𝑡 = 𝑣 ∪ … ∪ 𝑋𝑡+𝑑𝑎−1 = 𝑣)𝑦v,t

=
𝑑𝑝−𝑑𝑎

∑
𝑡=0

𝑛

∑
𝑣,𝑤=1

ℙ(𝑋𝑡 = 𝑤 ∪ … ∪ 𝑋𝑡+𝑑𝑎−1 = 𝑤 |𝑋𝑡 = 𝑣)ℙ(𝑋𝑡 = 𝑣)𝑦w,t
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Again, it should be noted that 𝑋 represents a time-homogeneous Markov process. As such, it is time-
invariant, which means that the conditional probabilities may be shifted

=
𝑑𝑝−𝑑𝑎

∑
𝑡=0

𝑛

∑
𝑣,𝑤=1

ℙ(𝑋0 = 𝑤 ∪ … ∪ 𝑋𝑑𝑎−1 = 𝑤 |𝑋0 = 𝑣)ℙ(𝑋𝑡 = 𝑣)𝑦w,t

=
𝑑𝑝−𝑑𝑎

∑
𝑡=0

𝑛

∑
𝑣,𝑤=1

(𝑝𝑑𝑎)v,w ℙ(𝑋𝑡 = 𝑣)𝑦w,t

=
𝑑𝑝−𝑑𝑎

∑
𝑡=0

(𝝒Q𝑡)𝒫𝒫𝒫𝑑𝑎 Y𝑡 (3.21)

Here, Y𝑡 represents column 𝑡 of Y. Since the matrix 𝒫𝒫𝒫𝑑𝑎 depends only on Q and 𝑑𝑎, the characteriza-
tion derived in Equation (3.20) can still be used. The following section compares the asymptotic time
complexity of this closed-form characterization to that of the naive method which considers every pa-
trol individually. Afterward, Chapter 4 uses Equation (3.21) to find various patrol strategies for different
underlying assumptions to illustrate some possible applications and to test the runtime complexity in
practice.

3.5. Time Complexity
Now that a closed-form expression for 𝒰 has been found, it is possible to objectively compare the
time complexity of this method to the method which iterates over every patrol. For the analysis, it is
assumed that the graph 𝐺 is complete. So, as also mentioned in Chapter 2, the patroller has |𝑉|𝑑𝑝
possible patrols she can take. Algorithm 1 shows the step-by-step breakdown of calculating the inter-
ception probability by considering every patrol. To reiterate, an attack is carried out on a single vertex
𝑣 ∈ 𝑉, starts at a certain time step 𝑡 and lasts until time step 𝑡 + 𝑑𝑎 − 1. Line 4 checks whether a
given patrol would intercept a specific attack. So, at most, steps 𝑡 up to and including 𝑡 + 𝑑𝑎 − 1 of
the patrol would have to be considered to check whether the patrol visits vertex 𝑣 during this interval.
As such, line 4 is 𝒪(𝑑𝑎) operations. The calculation of the probability in lines 5-7 is 𝒪(1), so this is
dominated by checking whether the interception takes place at all. As can be seen in lines 2 and 3,
this is repeated (𝑑𝑝 − 𝑑𝑎 + 1)|𝑉|𝑑𝑝+1 times. So, the iterative method which considers every patrol is
𝒪 (𝑑𝑎(𝑑𝑝 − 𝑑𝑎 + 1)|𝑉|𝑑𝑝+1).

Algorithm 1: Interception probability: iterative method
Output: Interception probability

1 probability ← 0
2 foreach patrol in |𝑉|𝑑𝑝 patrols do
3 foreach attack in (𝑑𝑝 − 𝑑𝑎 + 1)|𝑉| attacks do
4 intercepted ← 1{patrol intercepts attack}
5 if intercepted then
6 probability ← probability +ℙ(patrol) ℙ(attack)
7 end
8 end
9 end
10 return probability

Algorithm 2 shows how Equation (3.21) can instead be used to calculate the interception probability.
Line 3 requires careful consideration to find the time complexity. Recall that Z is an upper triangu-
lar matrix of dimensions 𝑑𝑎|𝑉| × 𝑑𝑎|𝑉|. As stated in [10, Section 3.2], solving a standard triangular
system of equations of this size is 𝒪(𝑑2𝑎|𝑉|2). However, since QΣ is of size 𝑑𝑎|𝑉| × |𝑉| rather than
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𝑑𝑎|𝑉| × 1 as in the standard case, it actually takes 𝒪(𝑑2𝑎|𝑉|3) time to find PΣ. Then PΣ ∈ ℝ|𝑉|×𝑑𝑎|𝑉|
and IΣ ∈ ℝ𝑑𝑎|𝑉|×|𝑉|. Since line 4 represents a standard matrix product, this is 𝒪(𝑑𝑎|𝑉|3)1. Lines 1-2
are 𝒪(1), so finding PΣ dominates lines 1, 2 and 4. Lines 6 through 8 are all matrix-vector products,
whereas line 9 is a matrix-matrix product. Since the matrices are all the same size, the operation in
line 9 dominates those of lines 6 through 8. Both Q and Q𝑡 are |𝑉| × |𝑉| matrices, so this operation is
𝒪(|𝑉|3). Therefore, lines 5 through 10 are 𝒪 ((𝑑𝑝 − 𝑑𝑎 + 1)|𝑉|3). In total, then, the entire algorithm is
𝒪 (𝑑2𝑎|𝑉|3 + (𝑑𝑝 − 𝑑𝑎 + 1)|𝑉|3) = 𝒪 (max{𝑑2𝑎 , 𝑑𝑝 − 𝑑𝑎 + 1}|𝑉|3).

Algorithm 2: Interception probability: matrix-multiplication method
Output: Interception probability

1 probability ← 0
2 𝑄0 ← I
3 PΣ ← solve PΣ Z = QΣ
4 𝒫𝒫𝒫𝑑𝑎 ← PΣ IΣ
5 for 𝑡 ∈ {0, 1, … , 𝑑𝑝 − 𝑑𝑎 + 1} do
6 𝑣1 ← 𝝒Q𝑡
7 𝑣2 ← 𝑣1𝒫𝒫𝒫𝑑𝑎
8 probability ← 𝑣2 Y𝑡
9 Q𝑡+1 ← Q𝑡Q

10 end
11 return probability

So, while the highest-order term in the naive iterative method is |𝑉|𝑑𝑝+1, this is only |𝑉|3 for the method
resulting from Equation (3.21). Thus, the matrix-multiplication method of finding the interception prob-
ability as proposed in this thesis does indeed constitute a significant improvement in the asymptotic
runtime complexity compared to the naive method that iterates over all patrols.

1This Big-O assumes a naive matrix product implementation. In practice, there are more specialized algorithms that can reduce
the time complexity.



4
Application

In the previous chapter, a matrix 𝒫𝒫𝒫𝑑𝑎 is derived which can be used to find the interception probability
of a patrol given a starting distribution 𝝒 and an attack distribution Y. As mentioned in Chapter 2, this
result is derived with the purpose of using it to find an optimal patrol strategy for the patroller. In this
chapter, different notions of optimality are discussed and optimized for to illustrate the potential opti-
mization results.

Recall that the patroller can choose the probability distribution 𝝒 over the starting positions and the
transition matrix Q, whereas the attacker can choose the probability distribution Y over the graph ver-
tices and the attack times. Each of the following sections seeks to maximize an objective function with
respect to 𝝒 and Q. However, the assumptions that underlie this optimization and, consequently, how
Y is implemented vary. In Section 4.1.1, it is assumed that the attacker is a rational actor who also
seeks to maximize his expected outcome by minimizing the interception probability. In Section 4.1.2,
it is no longer assumed that the attacker also seeks to optimize his strategy. Instead, it is assumed
that he wishes to be as unpredictable as possible by attributing an equal probability to every possible
combination of attack location and time. Lastly, in Section 4.1.3, the attacker strategy is only used to
evaluate the effectiveness of the defender strategy, but no longer for optimization. Rather than maxi-
mizing the value 𝒰 of the game, this section seeks to explicitly maximize the minimum visit probability
over all vertices for the patroller.

The analyses presented in this chapter are facilitated by the rapid computation of𝒫𝒫𝒫 and 𝒰, as enabled
by the methodology derived in Chapter 3. At the end of Section 4.2, a brief analysis shows that the
theoretical improvement in runtime found in Section 3.5 is verifiably achieved in practical applications,
too.

4.1. Methodology
Two locations are used to illustrate how Equation (3.21) can be applied by assessing the effectiveness
of different strategies and scenarios. Firstly, the Scottish town of Tobermory is used as an example
of an organically shaped area. As can be seen in Figure 4.1a, the town is only sparsely connected.
There are many dead ends, as well as areas that are only connected by one or two edges. In contrast,
Hell’s Kitchen in New York, as seen in Figure 4.1b, has a gridlike structure. This visual insight is also
supported by the average degree of the vertices in both graphs. In the Tobermory graph, each vertex
has on average 2.25 neighbors, whereas this is 3.45 for Hell’s Kitchen. For a fair comparison, the two
areas are similarly sized, with both graph representations containing 113 vertices. It is assumed that
a patrol lasts for 50 time steps. This constitutes a significant size increase compared to the example
given in [2], where |𝑉| = 6, 𝑑𝑝 = 5 and 𝑑𝑎 = 3.

The subsections below briefly describe three different scenarios, the underlying assumptions for each,
and the form of the objective function in each case. Objective function (4.1) is then optimized by using
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(a) Tobermory, Scotland, UK (b) Hell’s Kitchen, New York, USA

Figure 4.1: Graph representations of the analyzed areas.

gradient descent-ascent, leading to the Nash Heuristic (NH) patrol strategy. Equations (4.2) and (4.3)
are optimized using gradient ascent, resulting in the Optimized for a Homogeneous Attacker (OHA)
and Maximize the Minimum Visit probability (MMV) patrol strategies, respectively 1.

In Section 4.2, these strategies are evaluated by calculating the probability of interception for differ-
ent attack strategies. These attack strategies include a Nash heuristic attack strategy, which is also
obtained by optimizing Equation (4.1) using gradient descent-ascent, and the homogeneous strategy
used to obtain the OHA patrol strategy. In addition, Monte Carlo simulations are used to test the stability
of the patrol strategies by randomly varying the attack strategy.

4.1.1. Nash Heuristic equilibrium
A core definition in game theory is that of a Nash equilibrium. In a multiplayer game, a Nash equilib-
rium is achieved if “each player’s strategy is optimal against those of the others” [11]. Many, if not all,
zero-sum games have a mixed Nash equilibrium, yet for large game-theoretic problems it is notoriously
hard to find this equilibrium even if it exists. If a Nash equilibrium exists and the patroller sticks to the
corresponding strategy, it is by definition impossible for the attacker to lower the value 𝒰 of the game
(the interception probability) by unilaterally diverging from his Nash equilibrium strategy. However, with
the specific formulation of the game value 𝒰 used in this paper, it is not directly clear whether a proper
mixed Nash equilibrium exists. Proving or disproving that it exists is beyond the scope of this paper.
Therefore, while applying gradient descent-ascent as explained in [12] could result in convergence to
a (local) Nash equilibrium, this need not be the case. As such, the resulting strategy is referred to as
the Nash Heuristic (NH) strategy rather than a proper Nash strategy.

Recall that the attacker seeks to minimize the probability of interception, that is, the value of the game.
The patroller, on the other hand, wants to maximize this same interception probability by adjusting her
strategy to that of the attacker. Equation (4.1) then shows the optimization problem that is considered
in this case. Here, QΣ,Z and IΣ are as defined in Section 3.3. The constraints ensure that all entries of
𝝒, Q and Y are probabilities and that the correct elements sum to unity. Furthermore, as mentioned in
Chapter 2, A is the adjacency matrix of the graph 𝐺 on which the patrolling game is played. Therefore,
the constraint 0 ≤ 𝑞𝑖,𝑗 ≤ 𝑎𝑖,𝑗 ensures that ℙ(𝑋𝑡+1 = 𝑣2 | 𝑋𝑡 = 𝑣1) = 0 if there is no edge between
vertices 𝑣1 and 𝑣2.
1Optimization is done in Python using the PyTorch library. The full code can be found at https://github.com/koningt/
MarkovianPatrolling.git.

https://github.com/koningt/MarkovianPatrolling.git
https://github.com/koningt/MarkovianPatrolling.git
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max
𝝒,Q

min
Y

𝑑𝑝−𝑑𝑎

∑
𝑡=0

𝝒Q𝑡(QΣ Z−1 IΣ)Y𝑡

s.t. 0 ≤ 𝜘i ≤ 1 ∀𝑖 ∈ {1, … , |𝑉|}
0 ≤ 𝑦v,t ≤ 1 ∀𝑣 ∈ {1, 2, … , |𝑉|}, ∀𝑡 ∈ {0, 1, … , 𝑑𝑝 − 𝑑𝑎}
0 ≤ 𝑞i,j ≤ 𝑎𝑖,𝑗 ∀ 𝑖, 𝑗 ∈ {1, … , |𝑉|}
∑𝑗𝑞i,j = 1 ∀ 𝑖 ∈ {1,… , |𝑉|}
∑𝑖𝜘i = 1
∑𝑣,𝑡𝑦v,t = 1

(4.1)

4.1.2. Unknown attacker rationality
The previous section is based on a process where both the attacker and the defender seek to an-
ticipate what the other will do, and in doing so hope to find a mixed strategy such that neither party
can unilaterally alter the interception probability. A different dynamic is obtained when assuming that
the attacker wants to be as unpredictable as possible by making all attack possibilities equiproba-
ble. So, let Y ∈ ℝ𝑛×(𝑑𝑝−𝑑𝑎+1) be the homogeneous distribution of the attacker. Stated differently,
𝑦v,t = ℙ𝒜(𝐴 = (𝑣, 𝑡)) = 1

𝑛(𝑑𝑝−𝑑𝑎+1)
. The objective function of the optimization problem as shown in

Equation (4.2) is quite similar to that of Section 4.1.1. The main difference is that the attacker strategy
is fixed in this case, so optimizing the objective function will not return an optimized Y. The resulting 𝝒
and Q are jointly called the Optimized for a Homogeneous Attacker (OHA) patrol strategy.

max
𝝒,Q

𝑑𝑝−𝑑𝑎

∑
𝑡=0

𝝒Q𝑡𝒫𝒫𝒫𝑑𝑎 Y𝑡

s.t. 0 ≤ 𝜘i ≤ 1 ∀𝑖 ∈ {1,… , |𝑉|}
0 ≤ 𝑞i,j ≤ 𝑎𝑖,𝑗 ∀ 𝑖, 𝑗 ∈ {1, … , |𝑉|}
∑𝑗𝑞i,j = 1 ∀ 𝑖 ∈ {1,… , |𝑉|}
∑𝑖𝜘i = 1

(4.2)

4.1.3. Maximize minimum visit probability
The last approach can be seen as a risk avoidant approach. The attacker can observe the defender’s
patrol strategy and attack at the place and time where the patroller is least likely to pass through. Note
that (𝝒Q𝑡𝒫𝒫𝒫𝑑𝑎)𝑣 contains the probability that, throughout the duration of an attack starting at time 𝑡,
vertex 𝑣 is visited at least once. Therefore, min (𝝒Q𝑡𝒫𝒫𝒫𝑑𝑎) is the smallest visit probability for this in-
terval, and somin {min (𝝒Q𝑡𝒫𝒫𝒫𝑑𝑎) | 𝑡 = 0, 1, … , (𝑑𝑝 − 𝑑𝑎)} is the smallest visit probability for all attack
intervals. This corresponds to the smallest possible interception probability, and thus the smallest pos-
sible value of the game. The resulting optimization problem is shown in Equation (4.3). Maximizing
the smallest visit probability is then equivalent to ensuring that no vertex is visited significantly less
frequently, avoiding exploitable blind spots. The resulting patrol strategy is henceforth referred to as
the Maximize Minimum Visit probability (MMV) patrol strategy.
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max
𝝒,Q

min {min (𝝒Q𝑡𝒫𝒫𝒫𝑑𝑎) | 𝑡 = 0, 1, … , (𝑑𝑝 − 𝑑𝑎)}

s.t. 0 ≤ 𝜘i ≤ 1 ∀𝑖 ∈ {1, … , |𝑉|}
0 ≤ 𝑞i,j ≤ 𝑎𝑖,𝑗 ∀ 𝑖, 𝑗 ∈ {1, … , |𝑉|}
∑𝑗𝑞i,j = 1 ∀ 𝑖 ∈ {1,… , |𝑉|}
∑𝑖𝜘i = 1

(4.3)

4.2. Results
Optimization of the objective functions in Sections 4.1.1 through 4.1.3 resulted in different possible 𝝒
and Q, jointly called a patrol strategy, each with their own underlying assumptions. However, these
assumptions need not hold up in reality. An attacker could, for instance, use a homogeneous random
draw to decide where and when to attack, while the defender had assumed that the attacker would
rationally optimize the distribution over his strategy space. It is therefore important to check how well
each defense strategy holds up when the assumptions underlying the strategy are not met. Some core
results are illustrated and explained below.

As mentioned above, it might be possible for the attacker to observe the movements of the defender
and choose a place and time to attack when the probability of interception is lowest. However, the
interception probability can never be lower than the smallest visit probability as set out in Section 4.1.3.
Figure 4.2 shows this minimum visit probability for the three different patrol strategies for 𝑑𝑎 = 5 (4.2a)
and 𝑑𝑎 = 10 (4.2b), respectively. Interestingly, the OHA patrol strategy has minimum visit probabilities
of zero. Therefore, this patrol contains specific vertices which will never be visited during a certain
attack window. It should be noted that, even though the MMVP patrol is specifically optimized for this
metric, the NH patrol strategy performs almost as well if not better in most cases. Specifically, in Hell’s
Kitchen with an attack duration of 10 time steps, the NH strategy has a significantly higher minimum
visit probability, as can be seen in Figure 4.2b. The reason for this is not entirely clear. A possible
explanation is that objective function 4.3 converged to a suboptimal local maximum, but proving this
would require additional analyses.

(a) Attack duration: 5 time steps (b) Attack duration: 10 time steps

X-axis: patroller strategy

Figure 4.2: Bar plot showing the minimum visit probabilities for different optimized patrol strategies. For each patrol strategy
and graph, the minimum is taken over all vertices for all possible attack intervals (𝑑𝑎 = 5 or 𝑑𝑎 = 10) during the patrol

(𝑑𝑝 = 50).

Two additional Monte Carlo simulations were run to test the stability of the three different patrol strate-
gies. Algorithm 3 briefly describes the procedure that was followed to obtain the results. The first round
of simulation iterations uses a Gaussian distribution𝒩(0, 1) to randomly and independently draw each
entry of Y, whereas the second round uses a Cauchy distribution 𝒞(0, 1). The softmax function is then
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applied to the matrix Y to ensure that the entries sum to unity. In the Gaussian simulations, the attack
probabilities 𝑦v,t are roughly homogeneously distributed. However, a Cauchy distribution has signifi-
cantly heavier tails. As a result, it is more likely that the random draw for a specific entry of Y will result
in a notably higher value than the random draw for the other entries. Combined with the exponentiation
used when applying the softmax function, the attacker is then likely to attribute a high attack probability
to a single vertex and time step.

𝑑𝑎 = 5, Cauchy random attack strategies

Figure 4.3: Boxplots with the interception probabilities of three patrol strategies in Tobermory for 10 000 Cauchy 𝒞(0, 1) random
attack strategies.

Again, a few results stand out. Firstly, as can be seen in Figure 4.3, the OHA patrol strategy is sig-
nificantly less stable than the NH and MMV strategies when the attack strategy resembles a Cauchy
distribution. In other words, there are certain vertices and time steps where interception is almost cer-
tain when using the OHA strategy, but also many vertices and time steps where interception is almost
guaranteed not to happen. In particular, the median interception probability is 6.84 × 10−11. This is an
expected outcome, as the OHA strategy optimizes for an unweighted sum of interception probabilities.
In other words, a high probability of interception in some nodes can compensate for a low probability
in other nodes. This can also be seen in Figure 4.5. For every attack window of five time steps during
the patrol, the probability is calculated for each vertex that a patrol will visit that vertex. Then, for every
patrol strategy and vertex, the average is taken over the probabilities for all attack windows. Since
the majority of probabilities are quite small, the square roots of the probabilities are shown to create a
clearer distinction between the vertices. The figure clearly shows that, while the average vertex visit
probabilities of the NH and MMV strategies are distributed quite homogeneously, the OHA strategy
does indeed visit certain vertices with a very high probability on average but most other vertices with a
probability close to zero.

At the same time, when comparing Figure 4.3 with the scenario in which the attack strategy is drawn
from a Gaussian distribution as visualized in Figure 4.4, the distributions for the MMV strategies ap-
pear to be quite similar. In fact, a Wilcoxon signed rank test does not indicate that the distributions are
significantly different (p =.752)2. The same result holds for 𝑑𝑎 = 10 (p =.272). Interestingly, the OHA
strategy is significantly affected by the attack strategy, but is not significantly affected by the graph
structure if the attack strategy is drawn from a Gaussian distribution. Although not visualized, a t-test
showed that, for the OHA strategy, the Tobermory interception probability neither differs significantly
from that of Hell’s Kitchen for 𝑑𝑎 = 5 (p =.652) nor for 𝑑𝑎 = 10 (p =.939). Consequently, these results
tentatively indicate that the MMV strategy is more robust against different attack distributions, whereas
the graph-optimized OHA strategies yield a more stable interception probability against different graph
structures if the attack strategy is drawn from a Gaussian distribution.

These results certainly do not provide a comprehensive comparison of the three patrol strategies under
varying circumstances. Instead, they are merely meant to illustrate the results that can be obtained by
2The differences between the two results were not normally distributed, so a t-test could not be used.
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𝑑𝑎 = 5, Gaussian random attack strategies

Figure 4.4: Boxplots with the interception probabilities of three patrol strategies in Tobermory for 10 000𝒩(0, 1) random attack
strategies.

(a) NH (b) OHA (c) MMV

Figure 4.5: A heatmap showing the square root of the average visit probabilities for the NH, OHA and MMV patrol strategies.
The averages are over all possible attack intervals (𝑑𝑎 = 5) during the patrol (𝑑𝑝 = 50).

using the method provided in this paper, specifically in Chapter 3. Because the interception probabil-
ity is calculated analytically, gradient ascent could directly be applied to the the objective functions in
Sections 4.1.1 through 4.1.3. In addition, due to the lower computational complexity required to find 𝒰
by using Equation (3.21), it was possible to run extensive Monte Carlo simulations in a limited time.

Section 3.5 already showed the theoretical improvement in asymptotic runtime. Although this was
confirmed in practice by observation during the simulations discussed above, it is important to make
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the improvement concrete by quantizing it. Recall that for a patrol that lasts 50 time steps (𝑑𝑝 = 50)
the patroller starts at a vertex and then decides 49 times to either take a step or remain in place.
Therefore, the total number of unique patrols corresponds to the sum of all entries in the 49th power
of the adjacency matrix. This means that there are 2.1199 × 1031 different patrols in Tobermory and
1.0159 × 1035 in Hell’s Kitchen. Thus, it does not require further explanation that it is intractible to
calculate 𝒰 by considering each patrol. In contrast, constructing matrix 𝒫𝒫𝒫𝑑𝑎 and then calculating 𝒰
using equation (3.21) takes less than 0.5 seconds for both graphs3, as can be seen in Figure 4.6.
During this analysis,Q, 𝝒 and Y were kept homogeneous. Since the complexity of the operations of the
matrix method only depends on 𝑑𝑎, 𝑑𝑝, and |𝑉|, the results in Figure 4.6 are deemed representative of
all possibleQ, 𝝒 and Y that can be defined on the two graphs for 𝑑𝑝 = 50. As such, it can be concluded
that the lower computational complexity is achieved not only in theory as demonstrated in Section 3.5,
but also in practice.

𝑑𝑝 = 50

Figure 4.6: Average runtime (100 iterations) required to calculate 𝒰 by using the methodology in Section 3.3 to build 𝒫𝒫𝒫𝑑𝑎 and
subsequently applying Equation (3.21) for 𝑑𝑎 ∈ {1, 2, … , 50}.

3Code executed with GPU acceleration on a MacBook Pro with an M3 Pro chip (18 GPU cores).
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Algorithm 3: Pseudocode of the Monte Carlo simulation algorithm used to evaluate the NH,
OHA, and MMV patrol strategies.

1 for graph 𝐺 = (𝑉, 𝐸) ∈ {Tobermory, Hell’s Kitchen} do
2 for 𝑑𝑎 ∈ {5, 10} do
3 for patrol strategy (Q, 𝝒) ∈ {NH, OHA, MMV} do

/* Note that each combination of 𝑑𝑎 and graph 𝐺 has its own
unique NH, OHA and MMV strategies */

4 for probability distribution 𝒟 ∈ {𝒩(0, 1), 𝒞(0, 1)} do
5 for 𝑖 ∈ {1, 2, … , 10000} do
6 seed ← SeedList[i]

/* Use fixed seeds to ensure a fair comparison */
7 for 𝑣 ∈ 𝑉, 𝑡 ∈ {0, … , 𝑑𝑝 − 𝑑𝑎} do
8 𝑦v,t ← 𝒟 random draw
9 end
10 Y ← SoftMax(Y)
11 𝒫𝒫𝒫𝑑𝑎 ← QΣ Z−1 IΣ

/* Methodology from Section 3.3 */

12 probability ← ∑𝑑𝑝−𝑑𝑎𝑡=0 𝝒Q𝑡𝒫𝒫𝒫𝑑𝑎 Y𝑡
/* Methodology from Section 3.4 */

13 append probability to values[scenario]
14 end
15 end
16 end
17 end
18 end



5
Conclusion

This thesis has explored the problem of optimal patrolling strategies in adversarial scenarios using
mathematical models and simulations. By focusing on a contained area of interest where a patroller
must guard against potential attacks, various patrol strategies have been formulated and analyzed
through the lens of patrolling games. The central challenge lies in balancing limited patrol resources
against extensive areas requiring protection, making it crucial to determine an effective patrol strategy.

Building on the foundational framework of Alpern et al. [2], this research extends it by incorporating
Markovian strategies, which allow for the efficient calculation of interception probabilities. This ap-
proach significantly reduces computational complexity, allowing patrol strategies to be derived using
gradient descent methods.

Chapter 3 serves as the core body of this research, presenting the mathematical derivation of the differ-
ent methods to calculate the interception probability. These analytical methods, coupled with numerical
simulations, provide a robust means of evaluating and optimizing patrol strategies. The gradient ascent
method applied to the Markovian model proved effective in finding suitable strategies within a reason-
able computational timeframe.

Chapter 4 demonstrates some practical applications of the methods developed in Chapter 3. The
results of preliminary Monte Carlo simulations highlight how the expression of the interception proba-
bility as stated in Equation (3.21) enables performance comparisons of various patrol strategies. For
instance, while specific patrol strategies like OHA may perform well under certain conditions, their ef-
fectiveness can vary depending on the specific probability distribution on all possible attack strategies.
This variation is effectively captured and analyzed using the equations of Chapter 3.

Several key findings that emerged from this thesis are:

• Analytical and Numerical Approaches: The gradient ascent method applied to the Markovian
model proved effective in finding suitable patrol strategies within a reasonable computational
timeframe.

• Impact of Attack Strategy Distributions: Analysis showed that the distribution of attack strategies
can significantly influence the interception probability. As might be expected, there is no single
effective patrol strategy and a new suitable strategy may need to be determined for each unique
instance by comparing several potential strategies.

• Scalability and Practicality: As was shown in Chapter 4, the methods developed in Sections 3.3
and 3.4 are scalable and can be applied to larger instances of patrolling games. This addresses
one of the core difficulties of the patrolling game problem - the exponential growth of possible
patrol routes. By leveraging the Markovian structure, this bottleneck was mitigated, making the
approach practical for real-world applications.

27
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In conclusion, this thesis has developed and provided preliminary validation of a method that can be
used to improve the efficiency and effectiveness of patrol strategies. The insights gained from this
research not only advance the theoretical understanding of patrolling game problems but also offer
practical solutions to improve security in various adversarial settings. The methodologies presented in
Chapter 3, and their applications demonstrated in Chapter 4, underscore the practical relevance and
potential of these strategies in real-world scenarios.

5.1. Discussion
As was mentioned in the introduction, much research has already been done on patrolling games. This
thesis sought to contribute to this body of research by expanding on the Markovian framework to model
the problem. This does mean, however, that the different extensions that can be found in the literature
have not yet been incorporated into this methodology. Certain extensions can likely be incorporated rel-
atively easily. For instance, Equation (3.20) can be directly modified for a time-inhomogeneous Markov
chain. On the one hand, using a time-dependent transition matrix adds additional dimensions of free-
dom to the patroller’s strategy space, which might improve the interception probability. However, a
trade-off is the significantly higher computational complexity required to find the optimal patrol strategy
since the number of parameters over which to optimize will scale at a rate of 𝑑𝑝|𝑉| instead of |𝑉|.

At the same time, the computational complexity of the optimization procedure is already quite high.
The Markovian patrol method set forth in this thesis does ease the exponential time-complexity asso-
ciated with considering every patrol individually, but it still requires a significant number of high-cost
operations during the optimization phase. For example, when using gradient descent, the matrix 𝒫𝒫𝒫𝑑𝑎
as used in Equation (3.20) has to be recalculated after every step. Especially for larger instances, this
can result in slow convergence.

Furthermore, the restriction to Markovian patrol strategies can significantly
affect the domain of possible probability distributions over the patrols.
Consider the scenario where 𝑑𝑎 = 𝑑𝑝 = 5 on the graph drawn in Figure
5.1. The attack could then be intercepted with absolute certainty if the
patroller always chooses patrol (𝑥1, 𝑥2, 𝑥3, 𝑥2, 𝑥4), corresponding to the
patrol shown in Figure 2.1. However, both edge (𝑥2, 𝑥3) and (𝑥2, 𝑥4) would
need to be traversed with certainty at some point. This is impossible in
a time-homogeneous first-order Markov patrol. In this small example,
it can be verified quite easily that the probability of visiting all vertices
during the patrol can never exceed 0.5 when using a first-order Markov
patrol. However, by using a time-inhomogeneous Markov chain, it would
again be possible to find a patrol that visits all vertices with certainty.
Do note that this is a very specific example. As such, it is unknown at
this time if this effect is as significant in more realistic settings and, if so,
if using a time-inhomogeneous Markov patrol could still resolve this limitation.

𝑥1 𝑥2

𝑥3

𝑥4

Figure 5.1: Example
graph

Lastly, the optimization method using gradient descent/ascent as implemented in Chapter 4 does not
guarantee convergence to a global optimum. For example, as mentioned in Section 4.2, the NH patrol
strategy had a higher minimum visit probability than the MMV patrol strategy, while the latter is specifi-
cally optimized to maximize this probability. If, in fact, it had converged to a global maximum, this could
not have been the case. Future research could potentially focus on the implementation of improved
optimization methods or the provision of theoretical convergence guarantees.

In addition, future studies could explore the impact of heterogeneous environments where nodes have
different values or significance, further complicating the patrolling strategy but potentially leading to
more realistic models. Extending the model to include multiple patrollers and attackers could also
provide deeper insights into more complex security scenarios, reflecting the collaborative efforts often
required in real-world security operations.
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